
Test Time Adaptation Using Adaptive Quantile Recalibration

Paria Mehrbod 1 2 Pedro Vianna 3 2 Geraldin Nanfack 1 2 Guy Wolf 3 2 Eugene Belilovsky 1 2

Abstract
Domain adaptation methods have emerged as
effective mechanisms to improve the generaliz-
ability and robustness of deep learning models,
particularly in real-world scenarios where test
data may differ significantly from the training
domain. However, traditional domain adaptation
techniques often require prior knowledge of tar-
get domains or model retraining, which limits
their applicability in dynamic settings where such
information is unavailable or retraining is imprac-
tical. Approaches based on updating batch nor-
malization statistics at test-time have been gain-
ing traction, as it allows for unsupervised adap-
tation based on the target data. Some of these
approaches only adjust batch normalization statis-
tics and do not fully capture complex distributions
and are restricted to specific normalization types.
To address this, we propose Adaptive Quantile
Recalibration (AQR), a novel test-time adaptation
method based on quantile recalibration, which
modifies the pre-activation distributions by align-
ing quantiles on a channel-by-channel basis. AQR
captures the complete shape of activation distri-
butions and works across diverse architectures
regardless of normalization type (BatchNorm,
GroupNorm, or LayerNorm).We demonstrate that
our method provides robust adaptation across di-
verse settings, outperforming baseline test-time
adaptation methods.

1. Introduction
Deep neural networks have demonstrated remarkable suc-
cess across numerous computer vision tasks, including
image classification, object detection, and segmentation.
However, these models often suffer significant performance
degradation when deployed in real-world environments that
differ from their training conditions. This phenomenon,

1Concordia University 2Mila – Quebec AI Institute
3Université de Montréal. Correspondence to: Paria Mehrbod
<paria.mehrbod@mila.quebec>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

known as distribution shift or domain gap, poses a major
challenge for the practical deployment of deep learning sys-
tems in applications where reliability and robustness are
critical.

Several domain adaptation methods have been proposed to
address this issue, although they often assume prior knowl-
edge of the target domain or require retraining, which hin-
ders their applicability across different tasks and scenarios.
Test-time adaptation (TTA) techniques have emerged as
promising approaches that adapt models to target distribu-
tions during inference, relying solely on test data batches.
These techniques are particularly suitable for real-world ap-
plications where distribution shifts may occur unexpectedly
or evolve over time.

A popular approach to TTA is based on test-time normaliza-
tion (TTN), where batch normalization statistics are modi-
fied to match the target data distribution. This method has
been demonstrated to be particularly effective for convolu-
tional neural networks (CNNs) (Nado et al., 2020; Schneider
et al., 2020; Vianna et al., 2024), and recently has achieved
notable success when applied to vision transformers (ViT)
(Marsden et al., 2023; Lee & Chang, 2024; Lee et al., 2024;
Wang et al., 2024). However, TTN implicitly assumes the
neuron-level activations approximate a Gaussian distribu-
tion, which may not hold for complex, multi-modal dis-
tributions encountered in practice. Furthermore, TTN is
limited to architectures that employ batch normalization
layers (BatchNorm), making it inapplicable to models using
other normalization schemes such as group normalization
or layer normalization (GroupNorm and LayerNorm).

We thus propose Adaptive Quantile Recalibration (AQR), a
novel TTA method that aligns the distributions of internal
features between source and target domains, without rely-
ing on parametric distribution assumptions. Our approach
leverages nonparametric quantile-based transformations to
map target domain activations to their corresponding source
domain distributions on a channel-by-channel basis. Un-
like methods that only adjust the mean and variance of
pre-activations, AQR captures and preserves the complete
shape of pre-activation distributions, making it effective for
handling complex distribution patterns commonly found in
deep neural networks (Figure 1). A critical advantage of our
method is that it does not degrade over time, as we are adapt-

1



Test Time Adaptation Using Adaptive Quantile Recalibration
De

ns
ity TTN

(Test Time
Normalization)

Target Distribution
Source Distribution
Adapted Target Distribution

Pre-Activation Values

De
ns

ity AQR

(Adaptive Quantile
Recalibration)

Target Distribution
Source Distribution
Adapted Target Distribution

Figure 1. Comparing AQR and TTN in preserving complex distri-
bution shapes at test-time using synthetic data.

ing to source activations that are precomputed and remain
fixed throughout testing. Unlike entropy-based methods that
continuously update model parameters and can drift toward
suboptimal solutions, AQR provides a stable reference point
derived from the source domain statistics, ensuring consis-
tent and stable adaptation performance even in challenging
test scenarios. Our key contributions are as follows:

• We propose a novel method that calibrates pre-
activations at test-time to align with train-time pre-
activations by leveraging statistics computed at the end
of model training.

• We demonstrate our method’s applicability across di-
verse model architectures, independent of specific
types of normalization layer.

• We identify and address challenges associated with
varying batch sizes in computing statistical information
and propose strategies for the accurate estimation of
distribution tails.

• Our experiments on two datasets across three archi-
tectures show that our method outperforms current
state-of-the-art approaches and shows potential for real-
world applications.

2. Related Work
TTA methods frequently operate by updating the parameters
associated with BatchNorm layers in response to covariate
shifts in the input distribution, as is the case of the popular
approach TTN (Schneider et al., 2020; Nado et al., 2020).
This strategy has demonstrated effectiveness in mitigating
the effects of varying degrees of image corruption. However,
a key limitation lies in their dependency on BatchNorm,
which restricts their applicability to architectures using this
specific normalization scheme. Additionally, BatchNorm
is considered a major contributor to instability in standard
TTA pipelines (Niu et al., 2023).

The rising use of alternative normalization layers like Group-
Norm and LayerNorm necessitates the development of TTA
algorithms compatible with various architectures. Address-
ing these challenges, sharpness-aware and reliable entropy
minimization (SAR) (Niu et al., 2023) was developed as an
online TTA method that supports all types of normalization
layer.

Another popular approach, often combined with TTN, re-
quires adapting the affine parameters of normalization lay-
ers using entropy minimization loss, as seen in methods
like (Wang et al., 2021) and (Niu et al., 2023). However,
these methods face stability challenges in wild test scenar-
ios. Specifically, they can produce faulty feedback if an
incorrect selection of samples is used to calculate the loss
and may suffer performance degradation over time.

For easier deployment across multiple architectures,
marginal entropy minimization with one test point (MEMO)
(Zhang et al., 2022) was proposed as an approach needing
only the trained model and a single test input. However, it
is computationally expensive due to per-sample backpropa-
gation and test-time augmentation, making it unsuitable for
latency-sensitive tasks.

Neuron editing (Amodio et al., 2019) addresses the prob-
lem of generating transformed versions of data based on
the pre- and post-transformation versions observed of a
small subset of the available data. Rather than learning
distribution-to-distribution mappings, it reframes the prob-
lem as learning a general edit function that can be applied to
other datasets. The method applies piecewise linear transfor-
mations to neuron activations in autoencoder latent spaces,
computing percentile-based differences between source and
target distributions. This nonparametric approach preserves
data variability and avoids issues like mode collapse seen
in generative models. Inspired by this approach, we adapt
their percentile-based transformation strategy to the test-
time adaptation setting while making it applicable to diverse
neural network architectures independent of specific nor-
malization layers.

3. Methodology
In the current work, we propose a TTA method based on
aligning the distributions of the intermediate features of a
neural network. Our key insight is that distribution shifts
between training and testing data manifest as shifts in the
distributions of intermediate features of neural networks.
By transforming these internal distributions to match those
observed during training, we can improve the model’s per-
formance on out-of-distribution test data without requiring
access to training data or modifying the training process.
Our method consists of two phases: First, in the setup phase,
we compute the statistical information of the internal lay-

2



Test Time Adaptation Using Adaptive Quantile Recalibration

ers of the model when given the source data. Second, in
the inference phase, we transform the model’s internal pre-
activation values to correct for distribution shifts that occur
when processing test data.

3.1. Setup Phase: Source Distribution Statistics

Let fθ denote a neural network with parameters θ trained
on source distribution P (x). After training is complete and
before any inference, we perform a one-time setup phase to
capture the statistical information of the source distribution.
In this phase, we apply the following steps:

1) Process a subset of source/training data S through the
trained model.

2) For each layer l, and each channel c within that layer,
store the pre-activation values denoted as alc (outputs of
normalization layers before activation function)

3) Compute percentiles pSi where i ∈ {0, 1, . . . , 100} from
the stored pre-activation values alc, doing this separately for
each channel in each layer.

These stored percentiles (pSi ) serve as a memory of the dis-
tribution characteristics of the model’s internal values when
processing in-distribution data, and will be used during in-
ference to guide the adaptation process.

3.2. Inference Phase: Distribution Alignment

During inference, when out-of-distribution test samples
are processed through the network, the distribution of pre-
activation values (alc) deviates from what was observed
during training. We propose to transform these values to
match their training-time distributions.

Our method is agnostic to the specific type of normalization
layer used in the network (batch, layer, or group normal-
ization). For each batch of test samples, we: 1) compute
percentiles pTi of the pre-activation values for each channel,
2) transform these values using a piecewise linear transfor-
mation adapted from (Amodio et al., 2019) that we denote
AQR. This transformation is applied as follows:

AQR(x) = pSj +

(
x− pTj
∆T

j

)
·∆S

j for x ∈ [pTj , p
T
j+1)

(1)
where, ∆T

j = pTj+1−pTj and x represents the pre-activation
values of a specific channel and a specific layer, pTi repre-
sents the i-th percentile of the test samples’ pre-activation
values (computed on-the-fly), and pSi represents the i-th
percentile of the source/training pre-activation values (pre-
viously computed during the setup phase). This transforma-
tion uses 100 percentile intervals, with j ∈ {0, 1, 2, ..., 99}
covering the entire distribution range from the 0th to the
100th percentile, and maps the test-time distribution back to

0 10 20 30 40 50 60 70 80 90 100
Percentile

0.2

0.1

0.0

0.1

0.2

Va
ria

tio
n 

fro
m

 S
ou

rc
e 

Pe
rc

en
til

es

Figure 2. Distribution of deviations between small-batch (128 sam-
ples) and reference (10,000 samples) percentiles across 20 trials.

the distribution observed during training. This transforma-
tion is applied to all channels of a given model.

3.3. Calibrating the tail of distribution

The size of source dataset S can affect how accurately the
source distribution is estimated. More samples lead to better
overall estimation, but can produce extreme values in the
distribution tails. Figure 2 demonstrates the instability of
tail percentile estimation using small batches. We drew 20
different batches of 128 samples from the source/training
distribution and computed percentiles for each batch. For
each percentile level, we calculated the deviation from the
source/training percentile computed using 10,000 training
samples. Each boxplot shows the distribution of these de-
viations across the 20 batches. The results reveal that tail
percentiles show substantial variability: the 0th percentile
(minimum) consistently overestimates the true minimum,
while the 100th percentile (maximum) consistently under-
estimates the true maximum. This bias and high variability
in tail estimation motivates our tail calibration strategy. In-
stead of using actual minimum and maximum values of the
source data, we estimate the first and last percentiles through
sampling. We compute these statistics over a batch of 100,
repeat the sampling 1,000 times, and then average the re-
sults. This approach provides more reliable estimates of the
distribution tails. We evaluate the impact of this strategy in
the following section.

4. Experiments
Datasets. We evaluate AQR on two standard benchmarks:
CIFAR-10/CIFAR-10-C and ImageNet-1K/ImageNet-1K-C
(Hendrycks & Dietterich, 2019), which apply 19 corruption
types at 5 severity levels to test robustness under distribution
shift. Models. We test diverse architectures with different
normalization schemes: For CIFAR-10: ResNet18 (Batch-
Norm), ResNet26-GN (GroupNorm), and ViT-Patch4-32
(LayerNorm). For ImageNet: ResNet50 (BatchNorm) and
ResNet50-GN (GroupNorm). All experiments use 10 ran-
dom seeds for statistical significance. Baselines. We com-

3



Test Time Adaptation Using Adaptive Quantile Recalibration

Table 1. Classification accuracy (%) of different test-time adaptation methods on ImageNet-C

Method Batch Size = 128 Batch Size = 512

Severity 1 Severity 3 Severity 5 Severity 1 Severity 3 Severity 5

ResNet50 (BatchNorm)

Not Adapted 61.75 ± 7.20 41.45 ± 14.86 19.78 ± 14.47 61.53 ± 6.33 41.87 ± 14.00 19.63 ± 13.98
TTN 66.84 ± 6.00 52.36 ± 12.48 33.01 ± 16.17 67.21 ± 4.49 53.10 ± 11.68 33.34 ± 15.94
TENT 66.89 ± 5.96 52.45 ± 12.45 33.19 ± 16.13 67.28 ± 4.46 53.22 ± 11.47 33.52 ± 15.92
SAR 66.84 ± 6.01 52.37 ± 12.48 33.05 ± 16.14 67.22 ± 4.48 53.19 ± 11.64 33.36 ± 15.94
AQR 67.39 ± 5.48 53.43 ± 12.40 33.94 ± 16.68 67.85 ± 4.05 54.36 ± 11.59 34.47 ± 16.32

ResNet50 (GroupNorm)

Not Adapted 69.65 ± 6.23 55.11 ± 12.72 32.87 ± 16.33 69.72 ± 4.92 55.42 ± 12.23 32.85 ± 15.95
TENT 69.68 ± 6.22 55.16 ± 12.71 32.86 ± 16.36 70.14 ± 6.89 55.50 ± 12.22 32.85 ± 15.95
SAR 69.64 ± 6.23 55.12 ± 12.71 32.87 ± 16.33 69.72 ± 4.92 55.42 ± 12.23 32.85 ± 15.95
AQR 68.78 ± 5.57 55.00 ± 12.17 35.61 ± 16.75 70.81 ± 3.89 58.36 ± 11.39 37.69 ± 17.15

Table 2. Classification accuracy (%) of different tail calibration
strategies on ImageNet-C with ResNet50. Results are averaged
over 10 random seeds.

Tail Calibration Strategy Batch Size

128 512

AQR (standard) 30.8±16.3 33.7±16.3
Not Calibrated 29.7±16.6 33.3±16.3
Average Sample Tails 33.7±16.6 34.6±16.1

pare against established TTA methods: TTN, TENT, and
SAR, alongside unadapted models. All methods are eval-
uated in offline TTA mode, processing each batch inde-
pendently. Additional experimental details are provided in
Appendix A.

Ablation Study on Tail Handling We conducted an ab-
lation study to evaluate different strategies for calibrating
extreme tails. The standard AQR method serves as our base-
line approach. We then tested our proposed enhancement,
AQR with ”Average Sample Tails”, which uses the sam-
pling technique described in the previous section to better
estimate extreme percentiles. We also explored a simpler
alternative: AQR with no tail adaptation. Since the extreme
ends ([p0, p1] and [p99, p100]) contain only 2% of the data,
we tested whether simply not adapting these regions would
be effective. The results in Table 2 show the impact of our
strategies. Additional details and alternative approaches are
provided in more depth in Appendix B.

5. Results
Our experimental evaluation shows the effectiveness of
AQR across multiple architectures, datasets, and corruption
severities. On the challenging ImageNet-C dataset, AQR
demonstrates superior adaptation capabilities as shown in

Table 1. With ResNet50 (BatchNorm), our method sur-
passes TTN, TENT, and SAR across all test conditions,
with advantages becoming more significant at higher cor-
ruption levels. For ResNet50 with GroupNorm, AQR shows
especially notable improvements at severity level 5. On
CIFAR-10-C, AQR consistently outperforms baseline meth-
ods across all three tested architectures, as shown in Table 4
in Appendix C.

6. Conclusion
In this study, we introduced Adaptive Quantile Recalibration
(AQR), a novel test-time adaptation approach that aligns
the distributions of internal features between source and
target domains through nonparametric quantile-based trans-
formations. Our approach offers several key advantages:
(1) it captures the complete shape of activation distributions
rather than just mean and variance, enabling more effective
adaptation for complex distribution patterns; (2) our tail
calibration strategy effectively handles the challenges of es-
timating distribution extremes with varying batch sizes; (3)
it maintains stability during extended test sessions by using
fixed source distribution statistics as reference points. Ex-
periments on CIFAR-10-C and ImageNet-C across multiple
architectures demonstrate that AQR outperforms state-of-
the-art TTA methods. However, while AQR provides sta-
bility through fixed reference statistics, this design choice
means it processes batches independently rather than ac-
cumulating knowledge across sequential batches, which
could potentially enhance adaptation in some online scenar-
ios. Future work could explore combining AQR with other
TTA methods and extending AQR to online settings while
preserving its stability advantages.

4



Test Time Adaptation Using Adaptive Quantile Recalibration

Acknowledgment
We acknowledge funding from FRQNT-NOVA grant 2023-
NOVA- 329759.

References
Amodio, M., van Dijk, D., Montgomery, R., Wolf, G., and

Krishnaswamy, S. Out-of-sample extrapolation with neu-
ron editing, 2019.

Hendrycks, D. and Dietterich, T. Benchmarking neural
network robustness to common corruptions and perturba-
tions. arXiv preprint arXiv:1903.12261, 2019.

Lee, J., Jung, D., Lee, S., Park, J., Shin, J., Hwang, U.,
and Yoon, S. Entropy is not enough for test-time adapta-
tion: From the perspective of disentangled factors. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=9w3iw8wDuE.

Lee, J.-H. and Chang, J.-H. Continual momentum filtering
on parameter space for online test-time adaptation. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=BllUWdpIOA.

Marsden, R. A., Döbler, M., and Yang, B. Universal test-
time adaptation through weight ensembling, diversity
weighting, and prior correction, 2023. URL https:
//arxiv.org/abs/2306.00650.

Nado, Z., Padhy, S., Sculley, D., D’Amour, A., Lakshmi-
narayanan, B., and Snoek, J. Evaluating prediction-time
batch normalization for robustness under covariate shift,
2020.

Niu, S., Wu, J., Zhang, Y., Wen, Z., Chen, Y., Zhao, P., and
Tan, M. Towards stable test-time adaptation in dynamic
wild world, 2023.

Schneider, S., Rusak, E., Eck, L., Bringmann, O., Brendel,
W., and Bethge, M. Improving robustness against com-
mon corruptions by covariate shift adaptation. Advances
in Neural Information Processing Systems, 33, 2020.

Vianna, P., Chaudhary, M., Mehrbod, P., Tang, A., Cloutier,
G., Wolf, G., Eickenberg, M., and Belilovsky, E. Channel-
selective normalization for label-shift robust test-time
adaptation, 2024. URL https://arxiv.org/abs/
2402.04958.

Wang, D., Shelhamer, E., Liu, S., Olshausen, B. A., and
Darrell, T. Tent: Fully test-time adaptation by entropy
minimization. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=uXl3bZLkr3c.

Wang, Z., Luo, Y., Zheng, L., Chen, Z., Wang, S., and
Huang, Z. In search of lost online test-time adaptation:
A survey, 2024. URL https://arxiv.org/abs/
2310.20199.

Yoshioka, K. vision-transformers-cifar10: Training
vision transformers (ViT) and related models on
CIFAR-10. https://github.com/kentaroy47/
vision-transformers-cifar10, 2024. GitHub
repository.

Zhang, M., Levine, S., and Finn, C. MEMO: Test Time Ro-
bustness via Adaptation and Augmentation, October 2022.
URL http://arxiv.org/abs/2110.09506.

5

https://openreview.net/forum?id=9w3iw8wDuE
https://openreview.net/forum?id=9w3iw8wDuE
https://openreview.net/forum?id=BllUWdpIOA
https://openreview.net/forum?id=BllUWdpIOA
https://arxiv.org/abs/2306.00650
https://arxiv.org/abs/2306.00650
https://arxiv.org/abs/2402.04958
https://arxiv.org/abs/2402.04958
https://openreview.net/forum?id=uXl3bZLkr3c
https://openreview.net/forum?id=uXl3bZLkr3c
https://arxiv.org/abs/2310.20199
https://arxiv.org/abs/2310.20199
https://github.com/kentaroy47/vision-transformers-cifar10
https://github.com/kentaroy47/vision-transformers-cifar10
http://arxiv.org/abs/2110.09506


Test Time Adaptation Using Adaptive Quantile Recalibration

A. Detailed Experimental Setup
A.1. Dataset Specifications

CIFAR-10/CIFAR-10-C: CIFAR-10 contains 50,000 training images and 10,000 validation images across 10 classes.
ImageNet-1K/ImageNet-1K-C: ImageNet-1K is a large-scale image classification dataset with 1.2 million training images
and 50,000 validation images across 1,000 classes. For experiments with AQR, we use 10,000 training samples from each
dataset to estimate source percentiles.

A.2. Model Implementation Details

For CIFAR-10 experiments, we obtain pre-trained weights for ResNet26-GN from (Zhang et al., 2022) and for ViT-Patch4-32
from (Yoshioka, 2024). For ImageNet experiments, we load pre-trained weights from PyTorch’s model zoo for ResNet50,
while for ResNet50-GN we use pre-trained weights from the timm library.

A.3. Baseline Implementation

For consistency, we implement episodic versions of TENT and SAR by resetting their model parameters to the original
pre-trained weights after processing each batch. For TENT and SAR, we perform one forward-backward pass to update the
model parameters, then conduct a second forward pass with the updated parameters to generate the final predictions. This
approach ensures these parameter-updating methods have the opportunity to adapt before evaluation.

B. Discussion of Strategies for Calibrating Tails of Distributions
We evaluated five distinct approaches for handling the extreme percentiles:

1. Standard AQR: Our baseline approach that maps all percentiles using the linear transformation in Equation 1. The
border cases are shown in Equation 2.

2. Average Sample Tails: This approach estimates the first and last percentiles through statistical sampling. We compute
the first and last percentiles over a batch of 100, repeat the sampling 1,000 times, and then average the results to obtain
more reliable estimates of the distribution tails.

3. Not Calibrated: In this strategy, no remapping occurs at the extremes. Values below the 1st percentile or above the
99th percentile remain unchanged, as shown in Equation 3.

4. Clipping: This implements a simple thresholding mechanism where values below the 1st percentile are set exactly to
pT1 , and values above the 99th percentile are set to pT99, as formalized in Equation 4.

5. Gaussian Estimation: This leverages parametric assumptions about the distribution tails. Rather than using empirical
extrema, this approach models both source and target distributions as Gaussian and estimates their theoretical tail
values, as shown in Equation 5.

6. Interval Estimation: This approach uses the standard deviation of the distribution as a normalizing factor, instead of
the intervals at tails to determine the remapping scale according to Equation 6.

Table 3 shows the classification accuracy of different tail handling methods across various batch sizes and datasets using
ResNet50. We conducted experiments with batch sizes of 128 and 512, evaluating performance on three datasets: standard
training data, test data, and corrupted data (severity level 5). Each experiment was repeated with 10 different random seeds.
While the ”Not Calibrated” approach performs competitively on clean test data, it shows reduced robustness on corrupted
data compared to our tail calibration strategies. The ”Clipping” method significantly underperforms across all scenarios.
Both ”Gaussian Estimation” and ”Average Sample Tails” methods performs well but ”Average Sample Tails” performs
particularly well on corrupted datasets.

6



Test Time Adaptation Using Adaptive Quantile Recalibration

Table 3. Classification accuracy (%) of different tail calibration strategies using ResNet50 on various ImageNet datasets. Results are
averaged over 10 random seeds with the best results in bold.

Calibration Strategy Batch Size = 128 Batch Size = 512

ImageNet-C Clean Test Clean Train ImageNet-C Clean Test Clean Train

AQR (standard) 30.8±16.3 73.8±3.3 84.4±1.9 33.7±16.3 74.1±1.6 86.2±1.9
Average Sample Tails 33.7±16.6 73.6±4.2 85.9±2.2 34.6±16.1 74.2±1.6 86.7±2.1
Gaussian Estimation 33.6±16.6 73.8±3.8 86.6±2.7 33.5±16.1 74.3±1.4 87.0±2.1
Not Calibrated 29.7±16.6 74.1±4.1 86.2±2.4 33.3±16.3 74.6±1.5 86.9±2.1
Interval Estimation 29.3±15.6 71.6±4.9 83.2±2.1 30.8±15.2 72.2±1.2 84.1±2.6
Clipping 3.4±4.8 52.1±5.3 59.1±5.6 3.6±4.7 53.3±2.0 61.0±2.4

B.1. AQR

AQR(x) =


pS0 +

(
x− pT0
∆T

0

)
·∆S

0 x < pT1 ,

pS99 +

(
x− pT99
∆T

99

)
·∆S

99 x ≥ pT99,

(2)

B.2. Not Calibrated

AQR(x) =

{
x x < pT1
x x ≥ pT99

(3)

B.3. clipping

AQR(x) =

{
pT1 x < pT1
pT99 x ≥ pT99

(4)

B.4. Gaussian Estimation

AQR(x) =


(

x−Q(0)T

Q(1)T −Q(0)T
·
(
Q(1)S −Q(0)S

))
+Q(0)S x < pT1(

x−Q(99)T

Q(100)T −Q(99)T
·
(
Q(100)S −Q(99)S

))
+ pS99 x ≥ pT99

(5)

Q(p)S = β + γΦ−1(p)

and
Q(p)T = µ(X) + σ(X)Φ−1(p)

where Φ−1(p) =
√
2 · erf−1(2p− 1)

(X is all points in a specific channel of a specific layer of a test input.)

B.5. Interval Estimation

AQR(x) =


(
a− pT0
std(X)

· (γ)
)
+ pS0 x < pT1(

a− pT99
std(X)

· (γ)
)
+ pS99 x ≥ pT99

(6)

7



Test Time Adaptation Using Adaptive Quantile Recalibration

C. Experiments on CIFAR-10-C

Table 4. Classification accuracy (%) of different test-time adaptation methods on CIFAR-10-C

Method Batch Size = 128 Batch Size = 512

Severity 1 Severity 3 Severity 5 Severity 1 Severity 3 Severity 5

ResNet18 (BatchNorm)

Not Adapted 59.54 ± 4.35 55.89 ± 8.22 46.78 ± 8.30 59.54 ± 4.35 55.89 ± 8.22 46.78 ± 8.30
TTN 77.97 ± 2.05 75.13 ± 2.41 70.24 ± 4.37 78.29 ± 2.01 75.46 ± 2.41 70.59 ± 4.40
TENT 77.97 ± 2.05 75.21 ± 2.44 70.24 ± 4.36 78.29 ± 2.01 75.53 ± 2.43 70.61 ± 4.38
SAR 77.97 ± 2.05 75.21 ± 2.44 70.24 ± 4.36 78.29 ± 2.01 75.53 ± 2.43 70.61 ± 4.38
AQR 77.91 ± 2.01 75.20 ± 2.36 70.61 ± 4.22 78.28 ± 1.99 75.50 ± 2.36 70.94 ± 4.24

ResNet26 (GroupNorm)

Not Adapted 81.83 ± 4.33 77.26 ± 5.03 68.17 ± 6.98 81.83 ± 4.33 77.26 ± 5.03 68.17 ± 6.98
TENT 81.86 ± 4.30 77.32 ± 4.99 68.24 ± 6.91 81.85 ± 4.31 77.31 ± 4.99 68.23 ± 6.92
SAR 81.84 ± 4.31 77.29 ± 4.99 68.20 ± 6.93 81.84 ± 4.31 77.29 ± 4.99 68.20 ± 6.93
AQR 81.72 ± 3.68 78.68 ± 4.42 73.24 ± 5.68 81.96 ± 3.54 78.94 ± 4.37 73.65 ± 5.56

ViT-Patch4-32 (LayerNorm)

Not Adapted 75.66 ± 3.52 68.93 ± 7.41 58.73 ± 14.93 75.66 ± 3.52 68.93 ± 7.41 58.73 ± 14.93
TENT 74.37 ± 3.11 67.24 ± 6.49 57.53 ± 12.64 74.42 ± 3.17 67.26 ± 6.55 57.68 ± 12.87
SAR 74.48 ± 3.17 67.29 ± 6.55 57.70 ± 12.88 74.37 ± 3.12 67.24 ± 6.53 57.71 ± 12.87
AQR 77.47 ± 1.71 74.05 ± 2.56 67.30 ± 9.24 77.80 ± 1.73 74.41 ± 2.50 67.65 ± 9.29

8


