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Abstract

Convolutional neural networks (CNNs) can now achieve human-level performance
on challenging object recognition tasks. CNNs are also the leading quantitative
models in terms of predicting neural and behavioral responses in visual recognition
tasks. However, there is a widely accepted critique of CNN models: unlike newborn
animals, which learn rapidly and efficiently, CNNs are thought to be “data hungry,”
requiring massive amounts of training data to develop accurate models for object
recognition. This critique challenges the promise of using CNNs as models of visual
development. Here, we directly examined whether CNNs are more data hungry
than newborn animals by performing parallel controlled-rearing experiments on
newborn chicks and CNNs. We raised newborn chicks in strictly controlled visual
environments, then simulated the training data available in that environment by
constructing a virtual animal chamber in a video game engine. We recorded the
visual images acquired by an agent moving through the virtual chamber and used
those images to train CNNs. When CNNs received similar visual training data as
chicks, the CNNs successfully solved the same challenging view-invariant object
recognition tasks as the chicks. Thus, the CNNs were not more data hungry than
animals: both CNNs and chicks successfully developed robust object models from
training data of a single object.

1 Introduction

After decades of lagging behind the recognition abilities of even young children, machine-learning
systems can now rival human adults on challenging object recognition tasks (Krizhevsky et al.,
2012). In addition to powering new technologies, modern machine-learning systems are serving as
executable, neurally-mechanistic models in psychology and neuroscience (Kriegeskorte & Douglas,
2018). Cognitive scientists have been particularly interested in a class of computer vision models
called deep convolutional neural networks (CNNs), which are directly inspired by neurophysiological
observations taken from biological visual systems, including a restricted connectivity pattern that
resembles the receptive field organization found in the animal visual cortex (Hubel & Wiesel, 1968;
Fukushima, 1980; LeCun et al., 1990). These "end-to-end" models learn to recognize objects from
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raw high-dimensional sensory inputs (pixels) and produce behavioral categorizations as outputs.
Notably, these models produce internal unit response properties at each level of the network that
are similar to actual neurophysiological unit responses at the corresponding levels in animal visual
systems (Yamins & DiCarlo, 2016). CNNs can also be used to control the activity state of individual
neurons and populations of neurons, indicating that these models capture rich causal properties of
how biological visual systems process information (Bashivan et al., 2019). These models are built
at scale (i.e., they can take any retinal image as input) and can rival the behavioral performance of
mature animals across many challenging visual recognition tasks (Schrimpf et al., 2020).

Despite these strengths, there is a lingering worry about using CNNs as models of the brain. The
worry relates to the large amount of data needed to train CNNs, compared to the relatively small
amount of training data apparently needed by newborn animals. Specifically, the CNNs that have
revolutionized computer vision require massive amounts of training data. These models often have
hundreds of layers, tens of millions of parameters, and are trained on millions of images across a
thousand different object categories. In contrast, newborn animals require small amounts of training
data in order to solve challenging perceptual and motor tasks, with many core abilities emerging
within the first few days of life (Held & Hein, 1963; Walk et al., 1957).

One of the most striking differences between newborn animals and CNNs comes in the domain object
recognition. In particular, a number of automated controlled-rearing experiments with newborns
chicks have demonstrated that chicks rapidly learn to solve challenging object perception tasks, even
in the absence of extensive visual experience with objects. Soon after hatching, newborn chicks
are capable of object parsing (Wood & Wood, 2021), visual binding (Wood, 2014), view-invariant
object recognition (Wood, 2013; Wood & Wood, 2015a), face recognition (Wood & Wood, 2015b),
rapid object recognition (Wood & Wood, 2017), action recognition (Goldman & Wood, 2015), and
object permanence (Prasad et al., 2019). All of these abilities emerge when chicks are raised in an
environment containing a single object, indicating that newborn visual systems can perform “one-
shot” learning without extensive training data with objects. From the perspective of CNNs, this is an
impressive feat. CNNs typically require thousands to millions of labeled training images to develop
object recognition, whereas newborn chicks develop object perception from visual experience with
a single object. Consequently, learning in newborn brains appears to be fast and efficient, whereas
learning in CNNs appears to be slow and inefficient. If this conclusion were accurate, then it would
place significant constraints on the use of CNNs as models of visual development.

Here, we suggest that the learning gap between animals and machines is not as large as it appears. To
compare learning across animals and machines, we performed parallel controlled-rearing experiments
on newborn chicks and CNNs. First, we raised newborn chicks in strictly controlled virtual environ-
ments and measured the chicks’ view-invariant object recognition performance. Second, we created a
virtual simulation of the controlled-rearing chambers in a video game engine, and then simulated
the visual training data available in the chick’s environment by recording the first-person images
acquired by an agent moving through the virtual animal chamber. Third, we trained CNNs using that
simulated training data and tested their object recognition performance with the same recognition
tasks used to test the chicks. Accordingly, the chicks and CNNs were trained with the same visual
data and tested with the same tasks, allowing for direct comparison of their learning abilities.

2 Method

Animal experiments & stimuli In this work, we focused on the view-invariant recognition task
from Wood (2013). After hatching, each chick was moved from the incubator to a controlled-rearing
chamber in darkness. The controlled-rearing chamber was equipped with two display walls that were
used to display the object animations. The chicks’ entire visual object experience was limited to the
virtual objects projected on the display walls.

The stimulus set from Wood (2013) consisted of two 3D objects, each of which was shown from
12 different viewpoint ranges (Figure A.1). Each animation displayed the object rotating through a
60° viewpoint range about an axis passing through its centroid, completing the full back and forth
rotation every 6s. During the first week of life (Training Phase), the chicks’ visual experience was
limited to a single virtual object seen from a single viewpoint range. During the second week (Test
Phase), the chicks were tested on their ability to recognize that object from the 12 viewpoints (11
novel, 1 familiar), using a two-alternative forced choice test. The imprinted object was shown on one
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Figure 1: Examples of the simulated training data used to train the CNN models. The dataset was
constructed by recording the visual observations of an agent moving within a virtual controlled-
rearing chamber.

display wall, and the unfamiliar object was shown on the opposite display wall (see Figure A.2). Test
trials were scored as “correct” when the chicks spent a greater proportion of time with their imprinted
object and “incorrect” when the chicks spent a greater proportion of time with the unfamiliar object.
In order to succeed on the task, chicks needed to learn invariant object representations that generalize
across large, novel, and complex changes in the object’s appearance.

The chicks performed well on the task, scoring 79% (chance = 50%) when the object was shown
from a familiar view and 69% when the object was shown from novel viewpoints (see Wood (2013)
for details). Thus, the chicks successfully generated view-invariant representations that generalized
across substantial variation in the object’s appearance. This study demonstrates that newborn visual
systems are capable of building robust object representations from training data of a single object
seen from a limited range of views.

Simulating the training data available to chicks In order to mimic the visual experiences of the
chicks raised in the controlled-rearing chambers, we constructed an image dataset (Figure 1) by
sampling visual observations of an agent moving through a virtual controlled-rearing chamber. The
virtual chamber and agent were created with the Unity 3D game engine and the ML-Agents Toolkit
(Juliani et al., 2020). The agent received visual input (64×64 pixel resolution images) through a
forward-facing camera attached to its head. The agent could move forward or backwards and rotate
left or right. We first sampled the visual observations of an agent following a random policy, then
programmatically removed images that did not contain an object. The resulting dataset contained
40,000 images (10k images for each of the 4 object animations that the chicks were raised with during
the training phase).

Unsupervised training Newborn animals learn through unsupervised (self-supervised) methods.
Thus, to directly compare the learning abilities of newborn animals and CNNs, we must use CNNs
that learn through unsupervised methods. To this end, we used unsupervised learning algorithms
to train the CNNs. As a starting point, we focused on three unsupervised learning algorithms:
convolutional autoencoders, simple contrastive learning of representations (SimCLR) (Chen et al.,
2020), and "Bring Your Own Latent" (BYOL) (Grill et al., 2020).

To learn useful representations, unsupervised CNNs are trained on self-supervised proxy tasks.
Autoencoders learn by first projecting the inputs to lower-dimensional embeddings and then recon-
structing the inputs from those embeddings. Contrastive learning methods (SimCLR and BYOL) learn
by mapping differently augmented "views" of an image close to each other in the latent embedding
space. In SimCLR, positive image pairs are selected by applying two random transforms to an image
in the training batch. The rest of the images in the batch are treated as negative examples. Unlike
many other contrastive learning methods, BYOL does not rely on negative samples. Instead, it uses
two neural networks, referred to as the "online" and "target" networks, that interact and learn from
each other. Starting from an augmented view of an image, BYOL trains its online network to predict
the target network’s representation of another augmented view of the same image.
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We used a standard ResNet architecture (He et al., 2016) with 18 layers as the base encoder for all
of our CNN models. Importantly, during training, the models only received visual input of a single
object rotating through a single viewpoint range (akin to the chicks). For each unsupervised method,
we trained models in each of the 4 visual rearing conditions (2 objects presented from 2 viewpoint
ranges) presented to the chicks. All models were trained with a batch size of 512 for 500 epochs.
Following Chen et al. (2020), we used linear warmup for the first 10 epochs and decayed the learning
rate according to cosine annealing schedule without restarts.

Data augmentation Contrastive learning methods rely on data augmentation to generate different
"views" of an image. In our experiments, we randomly applied size crops, horizontal flips and color
jitters to generate "views" of an image. We used the same data augmentation scheme across all
unsupervised methods to provide the same "amount" of training data to each CNN model. Since
autoencoders do not require data augmentation for training (unlike SimCLR and BYOL), we trained
the autoencoders either with or without data augmentation. Thus, we could test the effect of data
augmentation on the quality of representations learned by the autoencoders.

Baselines We also included two baseline models: untrained and supervised CNNs. The untrained
CNN was a randomly initialized ResNet-18 encoder. The supervised CNN had the same network
architecture as the untrained baseline, but was optimized for a challenging large-scale object clas-
sification task (ImageNet; Deng et al., 2009). CNNs trained on the ImageNet dataset achieve high
transfer performance on various downstream visual tasks (Huh et al., 2016) and can serve as accurate
models of object recognition in mature visual systems (Battleday et al., 2020; Yamins & DiCarlo,
2016). Thus, the transfer performance of an ImageNet trained CNN can serve as a proxy to quantify
the performance of an “ideal” observer (mature visual system) on the task.

Linear evaluation With linear classifiers, we evaluated the classification performance of the unsu-
pervised CNNs using the same recognition task that was presented to the chicks. Task performance
was assessed by adding a single fully connected linear readout layer on top of the last layer of each
trained CNN encoder and then training only the parameters of that readout layer on the binary object
classification task. The linear readout layers were optimized for binary cross-entropy loss.

For the linear evaluation, we collected 24,000 simulated visual observations from an agent moving
randomly in the virtual chamber (1,000 images for each of 2 objects in 12 viewpoint ranges). The
object identities were used as the ground-truth labels.

To evaluate whether the learned representations could generalize across novel viewpoints, we sys-
tematically varied the number of viewpoint ranges used to train (Ntrain) and test (Ntest) the linear
classifiers. We used three different training and test splits, as described below:

• Ntrain = 10;Ntest = 2 - We first divided the dataset into 6 folds such that each fold
contained images of each object rotating through 2 viewpoint ranges. The linear classifiers
were cross-validated by training on 5 folds (10 viewpoint ranges) and testing on the held-out
fold (2 viewpoint ranges).

• Ntrain = 2;Ntest = 10 - We divided the dataset into 6 folds in the same way as previ-
ously described, but importantly, we inverted the ratio of the training and validation data.
Specifically, 1/6 of the images were used for training and 5/6 of the images were used for
testing. Thus, the linear classifiers were trained using only 2 viewpoint ranges and tested on
the remaining 10 viewpoint ranges.

• Ntrain = 1;Ntest = 11 - In this extreme case, we split the dataset into 12 folds so that
each fold contained images of each object rotating through a single viewpoint range. As
such, 1/12 of the images were used for training and 11/12 of the images were used for
testing. Thus, the linear classifiers were trained using only 1 viewpoint range from each
object and tested on the remaining 11 viewpoint ranges.

For each of the three linear classifier conditions, transfer performance was evaluated by first fitting
the parameters of the linear classifier on the training set and then measuring classification accuracy
on the held-out test set. We report average cross-validated performance on the held-out images not
used to train the linear readout layer.
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Figure 2: View-invariant object recognition performance of unsupervised and baseline CNNs. The
chicks and unsupervised CNNs were only trained with images of a single object seen from a single
viewpoint range, and the linear classifiers were cross-validated with different viewpoint ranges in
the training versus test sets. Thus, these results reflect the generalization performance of the chicks
and models across novel views. Like newborn chicks, the unsupervised CNNs could successfully
recognize the objects across novel viewpoints, even when the linear classifiers were trained on a
small number of viewpoints. The error bars represent standard errors of model performances across
validation folds. The red horizontal line shows the chicks’ performance on the 2-alternative forced
choice task, with the ribbon representing standard error.

3 Results and Discussion

Figure 2 shows the view-invariant object recognition performance of the CNNs. We also report the
performance of the newborn chicks from Wood (2013). The baseline ImageNet-trained supervised
CNN performed the best among all models across all cross-validation schemes, outperforming the
chicks by 4.9% points even with the most sparse linear classifiers (Ntrain = 1). However, this
CNN was trained on a massive dataset (millions of images across 1,000 object categories). Can
CNNs still perform well on this task when they receive sparse training data, akin to newborn chicks?
All of the unsupervised methods performed on par or better than chicks when the linear classifiers
were trained on 10 viewpoint ranges. In more sparse conditions (Ntrain = 2 and Ntrain = 1), the
contrastive learning methods (SimCLR and BYOL) showed comparable performance as the chicks,
indicating that CNNs can build invariant object representations from sparse visual input. Across all
of the linear classifier conditions, the contrastive learning methods performed on par or better than
the autoencoders. This result is consistent with previous studies reporting that contrastive learning
methods outperform other classes of unsupervised methods both in downstream classification tasks
(Chen et al., 2020) and in tasks that require predicting neural processing in biological visual systems
(Zhuang et al., 2021).

To visualize the representational space learned by the CNNs, we used two-dimensional linear
discriminant analysis (LDA) (Figure 3). We first extracted CNN features of images randomly sampled
from the simulated dataset and then fitted an LDA model using those features as inputs. To explore
whether the underlying CNN representations encoded linearly separable information about object
identity, we used the combination of 12 viewpoint ranges and 2 object identities (instead of object
identities alone) as labels. Although the ground truth of object identity was not explicitly encoded
in the labels, the resulting LDA plots for contrastive (SimCLR & BYOL) and supervised features
showed clear distinction between the two object categories (green-blue dots vs red-yellow dots). We
also show representational dissimilarity matrices (RDMs) for the models in Figure A.3.

Comparing the training data of newborn chicks and CNNs How does the number of images
used to train CNNs compare to the number of visual inputs received by newborn chicks? To make

5



Figure 3: Two-dimensional projections of the feature representations from the untrained, supervised,
and unsupervised CNNs. Each point represents a CNN representation of an input image containing
a single object. Colors denote the identities and viewpoint ranges of the objects; warm colors
(red-yellow) represent Object 1 and cold colors (green-purple) represent Object 2. To create these
visualizations, we used linear-discriminant-analysis.

a rough comparison, consider a recent study suggesting that biological visual systems perform a
form of predictive error-driven learning every 100 ms, which corresponds to the widely-studied alpha
frequency of 10 Hz that originates in deep cortical layers (O’Reilly et al., 2021). If each 100-ms
learning window is thought of as a single training image in a computer vision task, then newborn
animals acquire 36,000 training images in the first hour after birth. In their first 24 hours of visual
experience, newborns will have already acquired nearly a million (864,000) training images. This
number is significantly larger than the number of training images (10k) we used to train CNNs in our
experiments.

It is important to note, however, that the training data for CNNs in our experiments were augmented
with slightly modified copies of already existing images. This increases the effective number of
training images received by the CNNs. On the other hand, newborn animals have higher degrees of
freedom in their body morphology compared to the artificial agent we used to collect training images.
Thus, newborn animals can spontaneously engage in rich data augmentation by acquiring large
number of unique object views from diverse bodily configurations. Across animals and machines,
heavy data augmentation may be a powerful strategy for learning from raw high-dimensional visual
inputs (Bambach et al., 2018).

Finally, in our experiments, the CNNs were trained passively on the images sampled from a randomly-
moving agent. In contrast, biological visual systems are embodied, and animals actively interact with
their environment to produce their own training data. This active exploration allows newborns to
generate their own curriculum and optimize learning (Smith et al., 2018). Future research could close
this gap between animals and machines, by embodying CNNs in autonomous artificial agents that
collect their own training data from the environment.

Broader Implications Overall, our results show that CNNs can learn to solve view-invariant object
recognition tasks from sparse visual input, akin to newborn chicks. For both chicks and CNNs, a
visual environment with a single object contains sufficient training data for building a view-invariant
object representation. Thus, CNNs might not be as “data hungry” as previously thought. Given that
newborn animals and CNNs are capable of similar feats of object recognition after receiving similar
sets of training data, we argue that CNNs can serve as models of visual development in animals.
Indeed, the initial “proto-architecture” of newborn visual systems shares two core organizational
principles with CNNs: both CNNs and newborn visual systems are hierarchically and retinotopically
organized (Arcaro & Livingstone, 2021). This finding suggests that the hierarchical and retinotopic
architecture of CNNs might be a reasonably good approximation of the “initial state” of newborn
visual systems.

There are several advantages to using CNNs as models of visual development because current theories
of visual development are incomplete in many ways. First, they are not image computable, requiring
a human in the loop to determine the predictions a theory should make in response to a particular
stimulus. Second, current theories do not provide a quantitative account of how newborn visual
systems learn and respond to raw visual inputs. Third, current theories do not explain why newborn
brains develop the way they do. By using CNNs within the framework of goal-driven modeling, we
can tackle these problems by building neurally mechanistic, image computable models of newborn
visual systems. CNNs can also be tested on a wide range of novel instances of inputs and rigorously
falsified in ways that prior models of visual development cannot. Goal-driven modeling with CNNs
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has revolutionized the study of mature vision. Likewise, we speculate that this approach can provide
a strong computational foundation for the study of visual development.
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A Appendix

A.1 Animal Experiments & Stimuli

Figure A.1: Object stimuli from Wood (2013). Each triplet shows a virtual object rotating through a
60° viewpoint range. These objects are ideal for studying invariant recognition because changing
the viewpoint of an object can produce a greater within-object image difference than changing the
identity of the object while maintaining its viewpoint.

Figure A.2: Illustration of the controlled-rearing chambers. The chambers contained no objects other
than the virtual objects projected on the display walls. During the Training Phase (left), the chicks
were exposed to a single virtual object (imprinted object). During the Test Phase (right), the imprinted
object was projected on one display wall and an unfamiliar object was projected on the opposite
display wall, in a two alternative forced choice test

9



A.2 Representation Dissimilarity Matrices

Figure A.3: Representation dissimilarity matrices (RDM) of CNN models. We used pairwise cosine
similarity as the distance measure to calculate the RDMs.
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