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Abstract

Unsupervised constrained text generation aims001
to generate text under a given set of constraints002
without any supervised data. Current state-of-003
the-art methods stochastically sample edit po-004
sitions which may cause unnecessary search005
steps. In this paper, we propose PMCTG to006
improve effectiveness by searching for the best007
position and action in each step. Specifically,008
PMCTG extends the perturbed masking tech-009
nique to effectively search for the best edit po-010
sition. Then it uses proposed multi-aspect scor-011
ing functions to select edit action to further012
reduce search difficulty. Since PMCTG does013
not require supervised data, it can extend to014
different generation tasks. We show PMCTG015
achieves state-of-the-art results in keywords-to-016
sentence generation and paraphrasing.017

1 Introduction018

Constrained text generation is the task of gener-019

ating text that satisfies a given set of constraints,020

and it serves many real-world text generation ap-021

plications, such as dialogue generation (Li et al.,022

2016) and summarization (See et al., 2017). There023

are broadly two types of constraints: (1) Hard con-024

straints such as including a set of given words or025

phrases in the generated text. Example 1 in Table026

1 shows that the keywords “You” and “beautiful”027

must occur in the generated sentence. (2) Soft con-028

straints such as acquiring the generated text to be029

semantically similar to the original text. Example 2030

in Table 1 shows a pair of paraphrases where “What031

are the effective ways to learn cs?” and “How to032

learn cs effectively?” share a similar meaning.033

Conventional approaches model the task as an034

encoding-decoding problem with a supervised set-035

ting (Prakash et al., 2016; Gupta et al., 2018).036

However, these methods have certain shortcom-037

ings for two constrained generation tasks. For hard038

constrained text generation, without external con-039

strained means, it is difficult for these methods to040

No. Original Text Generated Text

1
You,
beautiful

You are so beautiful .

2
How to learn
cs effectively?

What are the effective
ways to learn cs?

Table 1: Examples on constrained text generation.

guarantee that the generated text can satisfy all con- 041

straints. For soft constrained tasks, conventional 042

methods treat it as a machine translation (MT) task 043

(Sutskever et al., 2014) and require massive parallel 044

supervised data for training. However, construct- 045

ing such datasets is resource-intensive. Besides, the 046

domain-specific supervised models may be difficult 047

to transfer to new domains. (Li et al., 2019). 048

Unsupervised text generation is an effective solu- 049

tion to address the above challenges. There are re- 050

cently two research directions: Beam search-based 051

method aims to generate candidates in order from 052

left to right that satisfy the constraints in each step, 053

inspired by MT (Hokamp and Liu, 2017; Post and 054

Vilar, 2018). However the search space of MT sys- 055

tems is relatively small, and when applied to other 056

generation tasks, such as paraphrase, the beam 057

search-based approach does not work as optimally 058

as expected because the search space is too large 059

(Sha, 2020). Local edit-based method represented 060

by CGMH (Miao et al., 2019) and USPA (Liu et al., 061

2020) is another effective solution. These methods 062

propose stochastic local edit strategies to search for 063

reasonable sentences in a huge search space based 064

on the given constraints. One main concern is that 065

these methods take a long time to search for the 066

optimal solution because they are based on stochas- 067

tic strategies. Intuitively, they need more search 068

steps to converge. G2LC (Sha, 2020) tries to use 069

gradients to determine edit positions and actions to 070

improve search effectiveness. But it still relies on 071

supervised data. 072

Dedicated to improving the local edit-based 073
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methods, this paper proposes a framework PM-074

CTG (Perturbed Masking for Constrained Text075

Generation) for constrained text generation. PM-076

CTG focuses on controlling the search direction077

and reducing the number of search steps by search-078

ing for the best edit position and the best edit action.079

Specifically, PMCTG extends perturbed masking080

(Wu et al., 2020) from the pre-trained BERT model081

(Devlin et al., 2019) to find the edit position in the082

sequence. Perturbed masking aims to estimate the083

correlation between words in a sequence, which084

can be naturally used to find the edit location. We085

also propose a series of scoring functions for differ-086

ent tasks to select the edit action. PMCTG does not087

rely on supervised data and only needs a pre-trained088

BERT model to perform perturbed masking.089

We evaluate PMCTG in two constrained text gen-090

eration tasks, keywords-to-sentence generation and091

paraphrasing. Experimental results show that PM-092

CTG achieves competitive performance compared093

to multiple baselines. In summary, the contribu-094

tions are as follows:095

1. We extend perturbed masking to constrained096

text generation to find edit positions more ef-097

fectively.098

2. We design different scoring functions to se-099

lect the best action effectively. With different100

scoring functions, PMCTG can be extended to101

various generation tasks (Kikuchi et al., 2016;102

Ficler and Goldberg, 2017; Hu et al., 2017).103

3. We demonstrate our method’s state-of-the-art104

performance in keywords-to-sentence genera-105

tion and paraphrasing tasks.106

2 Related Work107

2.1 Constrained Text Generation108

Constrained text generation is formulated as a109

supervised sequence-to-sequence problem under110

the encoding-decoding paradigm (Sutskever et al.,111

2014). For example, (Prakash et al., 2016) and (Li112

et al., 2019) respectively propose a stacked resid-113

ual LSTM network and a transformer-based model114

(Vaswani et al., 2017), and (Gupta et al., 2018) pro-115

pose to leverage a combination of variational au-116

toencoders (VAEs) with LSTM models to generate117

paraphrases. A new sentence generation language118

model is proposed by (Guu et al., 2018), where a119

prototype sentence is first extracted from the train-120

ing corpus and then edited into a new sentence.121

However, these methods do not allow the integra-122

tion of constraints (Miao et al., 2019). Some works123

have attempted to add constraints on the generated 124

models. (Wuebker et al., 2016) and (Knowles and 125

Koehn, 2016) utilize prefixes to guide the gener- 126

ation of the target text. (Mou et al., 2016) use 127

pointwise mutual information (PMI) to predict a 128

keyword and treat it as a constraint to generate tar- 129

get text. However, these methods always bind the 130

constraints to the original model and are therefore 131

difficult to apply to new domains and new genera- 132

tion models (Li et al., 2019). Moreover, the above 133

approaches rely on an adequate parallel supervised 134

corpus, which is hard to obtain in real-world appli- 135

cation scenarios. 136

Unsupervised constrained text generation has be- 137

come a popular research direction due to the low 138

training cost and the mitigation of insufficient train- 139

ing data. VAEs and their variants (Bowman et al., 140

2016; Roy and Grangier, 2019) are leveraged to 141

generate sentences from a continuous latent space. 142

These methods can effectively get rid of the re- 143

liance on supervised datasets but remain difficult 144

to control and incorporate generative constraints. 145

Beam search is a representative direction for un- 146

supervised constrained text generation. Grid Beam 147

Search (GBS) (Hokamp and Liu, 2017) is an al- 148

gorithm that extends beam search by allowing the 149

inclusion of pre-specified lexical constraints. (Post 150

and Vilar, 2018) propose Dynamic Beam Allo- 151

cation (DBA), a much faster beam search-based 152

method with hard lexical constraints. (Zhang et al., 153

2020) propose an insertion-based approach consist- 154

ing of insertion-based generative pre-training and 155

inner-layer beam search. For the tasks where the 156

search space is limited (represented by machine 157

translation), such methods work well. However, 158

when faced with a large search space, they do not 159

work as optimally (Sha, 2020). 160

Local edit-based methods have attracted atten- 161

tion recently, as they can be applied to reduce 162

search spaces. CGMH (Miao et al., 2019) ap- 163

plies the Metropolis-Hastings algorithm (Metropo- 164

lis et al., 1953) to unsupervised constrained gen- 165

eration. UPSA (Liu et al., 2020) is another local 166

edit-based method. It directly models paraphrasing 167

as an optimization problem and uses simulated an- 168

nealing to solve it. However, these models require 169

more steps and running time to generate reason- 170

able sentences since they are based on stochastic 171

strategies. (Sha, 2020) proposes a gradient-guided 172

method G2LC that uses the gradient of tokens to 173

determine the edit actions and positions, making 174
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the generation process more controllable. However,175

a problem with G2LC is that it still relies on the176

supervised corpus to train a binary classification177

model to serve their semantic similarity objective.178

2.2 Perturbed Masking179

Perturbed masking (Wu et al., 2020) is a parameter-180

free probing technique to analyze and interpret pre-181

trained models. It introduces the perturbed mask-182

ing technique based on a pre-trained BERT-based183

model with masked language modeling (MLM)184

objective to measure the impact a word has on pre-185

dicting another word. It is originally used in syntax-186

based tasks such as syntactic parsing and discourse187

dependency parsing. We extend perturbed masking188

to constrained text generation.189

3 Methodology190

In this section, we would like to introduce the pro-191

posed model PMCTG by first introducing the spe-192

cific process of using perturbed masking to select193

edit positions, and then explaining the proposed194

scoring functions and the use of them to select the195

edit actions.196

3.1 Edit Position Selection197

Most previous works select edit locations stochasti-198

cally, which lead to many unnecessary search steps.199

To reduce the number of search steps, we propose200

to use perturbed masking (Wu et al., 2020) to sam-201

ple the edit position.202

Background. The perturbed masking technique203

is proposed to assess the inter-word information204

(i.e., the impact one word has on another word in205

a sequence) based on masked language modeling206

(MLM). It is originally used for dependency pars-207

ing.208

Formally, given a sequence with n tokens209

x = {xi}ni=1 and a pre-trained BERT-based210

model(Devlin et al., 2019) trained with MLM ob-211

jective, we obtain contextual representations for212

each token H(x)i. To quantify the impact a to-213

ken xj has on another token xi, we conduct the214

following three-step calculation:215

1. Replace xi with [MASK] token and feed the216

new sequence x\xi into BERT, a contextual217

representation denoted as H(x\{xi})i for xi218

is obtained.219

2. Replace xi and xj with [MASK] token and220

feed the new sequence x\{xi, xj} into BERT,221

another contextual representation denoted as 222

H(x\{xi, xj})i for xi is obtained. 223

3. Given the distance metric d(, ), compute the 224

difference between two vectors I(x|xj , xi) = 225

d(H(x\{xi})i, H(x\{xi, xj})i). In this pa- 226

per, we leverage cosine similarity as our dis- 227

tance metric. 228

I(x|xj , xi) indicates the impact xj has on xi, 229

where a higher value indicates a lower impact, 230

and vice versa. Intuitively, if H(x\{xi})i and 231

H(x\{xi, xj})i are similar, it means that the pres- 232

ence or absence of xj has little effect on the predic- 233

tion of xi, thus reflecting the low importance of xj 234

to xi. 235

Position Selection. It is natural to apply perturbed 236

masking to select the edit position for constrained 237

text generation. Based on perturbed masking tech- 238

nique, we compute the edit score for each token 239

in the sequence and then sample the token with 240

the highest score to edit. The token with minimal 241

impact on its adjacent tokens indicates that it has 242

the weakest correlation with adjacent words and 243

therefore requiring edit. We add the special tokens 244

[CLS] and [SEP ] to the original sentence and then 245

use the pre-trained BERT to calculate the edit score 246

for each token: 247

ESi = 1− 1

2
(I(x|xi, xi+1) + I(x|xi, xi−1))

(1)
248

Then we can get an edit score vector ES = 249

{ESi}ni=0. Later, we feed it into a softmax layer 250

and obtain the edit probabilities: 251

pediti =
exp(ESi)∑
j exp(ESj)

(2) 252

After that, the pedit is utilized as the weights to 253

sample the edit position xe in x where e indicates 254

the edit position index. 255

3.2 Edit Action Selection 256

After sampling the edit position, next we need to 257

determine the edit action. The edit three actions 258

we focus on are: insert, replace and delete. Specifi- 259

cally, our strategy in this step is to pre-implement 260

the three actions first and then sample the actions 261

based on their action scores. When scoring inser- 262

tion action, we simply make the equal probability 263

of the front or back of the position for token in- 264

sertion. We first introduce the scoring functions 265

3



for different tasks and then explain the edit action266

selection based on the action scores.267

3.2.1 Scoring Function Design268

We propose multiple scoring functions to improve269

generated text. Given the initial sentence x0 =270

{x0,1, x0,2, . . . , x0,n} with n tokens and the gener-271

ated sentence x∗ = {x∗,1, x∗,2, . . . , x∗,m} with m272

tokens, the scoring functions include fluency, edi-273

torial rationality, semantic similarity and diversity.274

Fluency. The primary condition for a reasonable275

sentence is fluency, thus we use the average nega-276

tive log-likelihood to estimate a sentence’s fluency277

based on a forward language model. The score is278

calculated as:279

Sflu(x∗) = − 1

m

m∑
i=1

logpLM (x∗,i|x∗,<i) (3)280

Editorial Rationality. Since the sentence gen-281

eration process is based on local edits, we fur-282

ther use perturbed masking to design a local edit283

score for different actions to evaluate their ratio-284

nality. After a replacement action is executed285

at index i in x0, we obtain the sentence x∗ =286

{x∗,1, x∗,2, . . . x∗,i−1, x
′, x∗,i+1, . . . , x∗,n}, where287

x′ is the replaced token and m = n. Then we288

define the edit score as:289

Sedit(x∗) =
1

2
(I(x∗|x′, x0,i+1) + I(x∗|x′, x0,i−1)) (4)290

Similarly, after an insertion action, we obtain291

x∗ = {x∗,1, x∗,2, . . . x∗,i, x′, x∗,i+1, . . . , x∗,n},292

where x′ is the inserted token and m = n + 1.293

The edit score is calculated as:294

Sedit(x∗) =
1

2
(I(x∗|x′, x0,i+1) + I(x∗|x′, x0,i)) (5)295

After a deletion action, we obtain296

x∗ = {x∗,1, x∗,2, . . . x∗,i−1, x∗,i+1, . . . , x∗,n},297

where m = n − 1. The edit score calculated for298

deletion is a little different from replacement and299

insertion action:300

Sedit(x∗) =
1

2
(I(x∗|x0,i−1, x0,i+1)+

I(x∗|x0,i+1, x0,i−1))
(6)301

Semantic Similarity. The semantic similarity con-302

sists of keyword similarity and sentence similarity.303

We use KeyBERT (Grootendorst, 2020) to extract304

the keyword set K from x0. And the pre-trained305

BERT is leveraged to encode x0 and x∗, where306

ik = idx(k) indicates the index of keyword k in 307

x0. The keyword similarity is defined as finding 308

the closest word in x∗ by computing their cosine 309

similarity: 310

Ssem,key(x∗,x0) =

1

|K|
∑
k∈K

max
i

(cos(H(x0)ik, H(x∗)i))
(7) 311

As for the sentence similarity into account, as- 312

suming that H(x) indicates the [CLS] representa- 313

tion in x from BERT and is leveraged to presents 314

the whole sentence (Devlin et al., 2019), we define 315

the sentence similarity Ssem,sen(x∗, x0) as: 316

Ssem,sen(x∗,x0) = cos(H(x0), H(x∗)) (8) 317

Altogether, the semantic similarity score is: 318

Ssem(x∗,x0) = Ssem,key(x∗,x0) + Ssem,sen(x∗,x0)
(9) 319

Diversity. Followed (Liu et al., 2020), a BLEU- 320

based (Papineni et al., 2002) function is adopted 321

to evaluate the expression diversity of the original 322

and generated sentence. 323

Sexp(x∗,x0) = (1−BLEU(x∗,x0)) (10) 324

3.2.2 Action Scoring 325

As mentioned above, after sampling the edit po- 326

sition i, we need to determine the edit action by 327

re-implementing three actions and sampling the ac- 328

tions based on their action scores. We generate the 329

inserted and replaced candidate x′ from a language 330

model such as LSTM (Hochreiter and Schmidhu- 331

ber, 1997) and GPT2 (Radford et al., 2019). 332

pcandidate = pLM (x0,i|x0,<i) (11) 333

We use pcandidate as weights to sample x′.After 334

obtaining the edit position i and candidate x′, we 335

need to calculate the edit score for each action. We 336

adopt Sflu and Sedit as our scoring function for 337

keywords-to-sentence generation: 338

Shard(x∗) = λfluSflu + λeditSedit (12) 339

and Sflu, Ssem, Sexp and Sedit for paraphrasing: 340

Ssoft(x∗) =λfluSflu + λeditSedit+

λsemSsem + λexpSexp
(13) 341

Notably, since different scores are in different 342

magnitudes, they need to be normalized to avoid 343

the dominance of one type of the score. After scor- 344

ing different actions, we use the scores as weights 345

to sample the edit action. 346
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3.3 Overall Searching Process347

With x0 (given keywords in the keywords-to-348

sentence generation task or original sentence in349

the paraphrasing task) as input, we repeat the350

above steps including edit position selection with351

perturbed masking and edit action selection with352

scoring functions for local edit. Until the maxi-353

mum searching steps, we choose the sentence that354

achieves the highest score as the final output, ac-355

cording to (12) for keywords-to-sentence genera-356

tion task or (13) for paraphrasing task respectively.357

4 Experiments358

We evaluate our method on two constrained text359

generation tasks, namely keywords-to-sentence360

generation, and paraphrasing.361

4.1 Keywords-to-Sentence Generation362

Experimental Setting. Keywords-to-Sentence363

generation aims to generation a sentence contain-364

ing the given keywords which is a representative365

hard constrained text generation task. We conduct366

keywords-to-sentence generation experiments on367

the One-Billion-Word dataset1 (Chelba et al., 2014)368

. Two language models for generation, namely two-369

layer LSTM (followed as (Miao et al., 2019; Sha,370

2020)) and GPT2 (Radford et al., 2019), are eval-371

uated. We randomly sample 5 million sentences372

for pre-training BERT-based-cased and GPT2 for373

domain adaption and hold out 3 thousand sentences374

as the test set.375

As for hyperparameters, for each test sentence,376

we randomly sample 1 to 4 keywords as hard con-377

straints. The maximum searching step set in this378

task is 100. And λflu and λedit are set as 1 in379

equation (12). Besides, when the keyword indexes380

are sampled as edit positions, we directly conduct381

insert action since the keywords cannot be replaced382

and deleted.383

As for evaluation metrics, the generated target384

sentence is measured by negative log-likelihood385

(NLL) loss. NLL is given by a third-party language386

mode which is an n-gram Kneser-Ney language387

model (Heafield, 2011) trained in a monolingual388

English corpus from WMT182. In addition to auto-389

matic evaluation metrics, we also introduce human390

evaluation. Specifically, we invite 3 experts who391

are fluent English speakers to score the generated392

sentences according to their quality. The score393

1http://www.statmt.org/lm-benchmark/
2http://www.statmt.org/wmt18/translation-task.html

ranges from 0 to 1 with an accuracy of two deci- 394

mal places, where 1 indicates the best score. The 395

automatic and human evaluation criteria are consis- 396

tent with previous works (Sha, 2020). The scoring 397

guideline is shown in Appendix a. 398

Baseline. We compare our method with several 399

advanced methods: 400

• sep-B/F (Mou et al., 2016) is a variant of 401

the backward forward model. In sep-B/F, the 402

backward and forward sequences respectively 403

behind and after the keyword are generated 404

separately. It only supports only one keyword. 405

• asyn-B/F (Mou et al., 2016) is similar to sep- 406

B/F. The difference is that the two sequences 407

are generated asynchronously, i.e., the back- 408

ward sequence is first generated, and then the 409

forward sequence is generated based on the 410

backward one. 411

• GBS (Hokamp and Liu, 2017) is a searching 412

approach that aims to search for a valid so- 413

lution in the constrained search space of the 414

generator with grid beam search. 415

• DBA (Post and Vilar, 2018) is another beam 416

search-based approach with a higher search 417

speed. 418

• CGMH (Miao et al., 2019) is a stochastic 419

search method based on Metropolis-Hastings 420

sampling. 421

• G2LC (Sha, 2020) is a gradient-guided ap- 422

proach. It improves CGMH by leveraging 423

gradient to decide the edit positions and ac- 424

tions. 425

Automatic and Human Evaluation Results. Ta- 426

ble 2 shows the performance of multiple methods 427

on keywords-to-sentence generation task. Among 428

different kinds of methods, we can see that the local 429

edit-based methods work better than beam search- 430

based methods, indicating their superior search- 431

ing ability. CGMH can narrow the search range 432

and make it easy to find higher-quality sentences. 433

G2LC and PMCTG outperform CGMH, which il- 434

lustrates the importance of determining the correct 435

edit position and action for each step. Exploration 436

and strategies for these two issues can better guide 437

the model to find a more optimal solution, while 438

also greatly reducing the waste of potentially non- 439

essential search steps. Overall, the proposed PM- 440

CTG model outperforms other methods on average 441

in both automatic and human evaluation metrics. 442

PMCTG utilizes perturbed masking technology to 443
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Models NLL Score (Human Evaluation)
1 2 3 4 avg 1 2 3 4 avg

seq-B/F 7.80 / / / / 0.11 / / / /
asyn-B/F 8.30 / / / / 0.09 / / / /
GBS 7.42 8.72 8.59 9.63 8.59 0.32 0.55 0.49 0.55 0.48
DBA 7.41 8.58 8.54 9.25 8.45 0.43 0.53 0.54 0.59 0.52
CGMH 7.04 7.57 8.26 7.92 7.70 0.45 0.61 0.56 0.65 0.57
G2LC 7.02 7.46 8.01 7.76 7.56 0.47 0.73 0.65 0.67 0.63
PMCTG-GPT2 6.98 7.45 7.69 7.89 7.50 0.51 0.68 0.70 0.72 0.65
PMCTG-LSTM 6.92 7.33 7.93 7.68 7.47 0.53 0.69 0.68 0.74 0.66

Table 2: Performance on keywords-to-sentence generation task. Lower NLL and higher score indicate better result.
1,2,3 and 4 present the keyword numbers and avg indicates the average score.

Keywords Sentences
worried We are very worried about there .

agreement
To achieve such an agreement ,
it is important .

competition,
action

The shots of competition and
action are on display here .

change,
hours

This will change it in the next
24 hours .

The,greatest,
court

The world’s greatest size court
will be presented to you .

I,things,
him

I can do lots of things for him .

body,
advanced,
July,funeral

The body was found advanced
in July and funeral were held
in September .

Miley,more,
final,spots

But Miley Cyrus has played
more than three times in
the finaltwo spots .

Table 3: Generated examples of PMCTG-LSTM in
keywords-to-sentence generation task.

identify edit locations and reflect the reasonable-444

ness of edit actions more intuitively and practically.445

Moreover, PMCTG shows its effectiveness by us-446

ing fewer or equal search steps to achieve better447

generation results (The maximum search steps set448

in CGMH and G2LC are 200 and 100 respectively).449

Interestingly, PMCTG-LSTM seems to be superior450

to PMCTG-GPT2 in this task, we believe that since451

keywords are locally ill-formed and semantically452

distant, the information of keywords may be diffi-453

cult to support GPT2 to generate reasonable can-454

didates without taking backward probability into455

account. In contrast, the two-layer LSTM considers456

both forward and backward probabilities and may457

be more suitable for generating candidates between458

two less correlated tokens.459

We find that more keywords may lead to better 460

results, one possible reason is that more keywords 461

can further narrow the search space and facilitate 462

the search of the model. 463

Case Study. Some generated examples of PMCTG- 464

LSTM are shown in Table 3. We observe that the 465

proposed model can generate fluent and meaningful 466

sentences while containing the given keywords. 467

4.2 Paraphrasing 468

Experimental Setting. Paraphrasing aims to con- 469

vert a sentence to a different surface form but with 470

the same meaning. We evaluate PMCTG on two 471

paraphrase datasets, namely Quora3 and Wikian- 472

swers (Fader et al., 2013). The Quora question pair 473

dataset consists of 140 thousand parallel sentences 474

pairs and 640 thousand non-parallel sentences. Fol- 475

lowing previous works (Liu et al., 2020), we ran- 476

domly sample 20 thousand sentences as the test 477

set. The Wikianswers dataset contains 2.3 million 478

question pairs scrawled from the Wikipedia web- 479

site. We also conduct an experiment on two-layer 480

LSTM (followed as (Miao et al., 2019; Liu et al., 481

2020; Sha, 2020)) and GPT2 for better compari- 482

son. Following previous works (Liu et al., 2020) 483

again, we randomly sample 20 thousand sentences 484

respectively in two datasets as test sets and used 485

the other sentences to continually pre-train BERT- 486

based-cased and GPT2 for domain adaption. 487

As for hyperparameters, the maximum searching 488

step set in this task is 50 and λ are all set as 1 in 489

equation (13). 490

In terms of evaluation metrics, we leverage the 491

representative metrics sentence-level BLEU (Pa- 492

pineni et al., 2002) and ROUGE (Lin, 2004) as 493

the basic metrics. In addition, as stated in (Sun 494

3http://www.statmt.org/wmt18/translation-task.html
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Models Quora Wikianswer
iBLEU BLEU R1 R2 iBLEU BLEU R1 R2

ResidualLSTM 12.67 17.57 59.22 32.40 22.94 27.36 48.52 18.71
VAE-SVG-eq 15.17 20.04 59.98 33.30 26.35 32.98 50.93 19.11
Pointer-generator 16.79 22.65 61.96 36.07 31.98 39.36 57.19 25.38
Transformer 16.25 21.73 60.25 33.45 27.70 33.01 51.85 20.70
Transformer+Copy 17.98 24.77 63.34 37.31 31.43 37.88 55.88 23.37
DNPG 18.01 25.03 67.73 37.75 34.15 41.64 57.32 25.88
Pointer-generator 5.04 6.96 41.89 12.77 21.87 27.94 53.99 20.85
Transformer+Copy 6.17 8.15 44.89 14.79 23.25 29.22 53.33 21.02
Shallow fusion 6.04 7.95 44.87 14.79 22.57 29.76 53.54 20.68
MTL 4.90 6.37 37.64 11.83 18.34 23.65 48.19 17.53
MTL + Copy 7.22 9.83 47.08 19.03 21.87 30.78 54.1 21.08
DNPG 10.39 16.98 56.01 28.61 25.60 35.12 56.17 23.65
VAE 8.16 13.96 44.55 22.64 17.92 24.13 31.87 12.08
CGMH 9.94 15.73 48.73 26.12 20.05 26.45 43.31 16.53
UPSA 12.02 18.18 56.51 30.69 24.84 32.39 54.12 21.45
G2LC-Recognizer 14.34 20.13 58.90 32.79 / / / /
G2LC-Generator 14.46 23.27 59.65 33.08 / / / /
PMCTG-LSTM 14.79 23.73 59.21 31.92 25.66 33.87 56.21 21.92
PMCTG-GPT2 15.22 24.37 59.03 32.89 26.13 35.02 56.89 23.21

Table 4: Performance on paraphrasing task. R1 and R2 respectively indicate ROUGE1 and ROUGE2.

and Zhou, 2012), standard BLEU and ROUGE495

could not reflect the diversity between the gener-496

ated and original sentences. Therefore, we adopt497

iBLEU (Sun and Zhou, 2012) which penalize the498

generated sentences with high similarity with the499

original ones as an additional evaluation metric.500

Besides, we also invite experts to evaluate the gen-501

erated paraphrases. Specifically, we sample 300502

sentences from the Quora test set and ask 3 experts503

to score each sentence according to two aspects:504

relevance and fluency. The evaluation criterion505

is again consistent with the previous works (Miao506

et al., 2019; Liu et al., 2020). The scoring guideline507

is shown in Appendix b.508

Baseline. We compare our methods with three509

baselines:510

• Supervised methods are original sequence-to-511

sequence models trained in in-domain super-512

vised data, including ResidualLSTM (Prakash513

et al., 2016), VAE-SVG-eq (Gupta et al.,514

2018), Pointer-generator (See et al., 2017),515

the Transformer (Vaswani et al., 2017), and516

DNPG (the decomposable neural paraphrase517

generation) (Li et al., 2019).518

• Domain-adapted supervised methods train519

models in one domain and then adapt the mod-520

els to another domain, including shallow fu-521

sion (Gülçehre et al., 2015) and a multi-task 522

learning (MTL) method (Domhan and Hieber, 523

2017). 524

• Unsupervised methods that are free of any 525

supervised data and easily adapted to multiple 526

new domains, including VAE (Kingma and 527

Welling, 2014), CGMH (Miao et al., 2019), 528

UPSA (Liu et al., 2020), and the recurrent 529

state-of-the-art method G2LC (Sha, 2020). 530

Notably, G2LC has two variants of G2LC- 531

Generator and G2LC-Recognizer. 532

Automatic Evaluation Results. Table 4 presents 533

the results of multiple methods on paraphrasing 534

tasks. From the first part of Table 4, we can see that 535

supervised methods significantly outperform the 536

other two kinds of methods. The supervised mod- 537

els were trained on 100 thousand question pairs for 538

Quora and 500 thousand question pairs for Wikian- 539

swers. Their superiority indicates the effectiveness 540

of learning knowledge from massive parallel data. 541

However, such in-domain supervised data is hard 542

to obtain in real-world applications. 543

Besides, the second section of Table 4 shows the 544

domain-adapted supervised models’ performance. 545

These models are trained in one domain (Quora 546

or Wikianswers) and then evaluated in another do- 547

main (Wikianswers or Quora). Their performances 548

7



Method Relevance Fluency
VAE 0.53 0.64
CGMH 0.62 0.70
UPSA 0.75 0.73
G2LC(Recognizer) 0.79 0.77
G2LC(Generator) 0.81 0.78
PMCTG-GPT2 0.76 0.81

Table 5: Human evaluation results on paraphrasing.

are much lower than in-domain supervised models’549

performances. This demonstrates the poor gener-550

alizability of supervised models and calls for the551

need for unsupervised methods.552

The last section of Table 4 shows the results553

of multiple unsupervised methods. VAE seems to554

work worst on both datasets, which suggests that555

paraphrasing by latent space sampling performs not556

as well as local edit methods. PMCTG achieves557

the best performance in most cases, which indi-558

cates the effectiveness of PMCTG again. Unsu-559

pervised PMCTG does not require parallel data560

and can easily generalize to new domains, thus561

some unsupervised methods tend to achieve higher562

performance than the domain-adapted supervised563

models. In addition, it is worthwhile to note that564

the performance of some unsupervised methods565

(UPSA, G2LC, and PMCTG) is even better than566

some supervised methods (Residual LSTM and567

VAE-SVG-eq), which indicates that the gap be-568

tween supervised and unsupervised methods has569

narrowed due to the effective searching strategies570

of the local edit-based methods. In addition, differ-571

ent from the keywords-to-sentence generation task,572

GPT2 works better than two-layer LSTM in the573

paraphrasing task. We believe that given a partially574

fluent text, GPT2 can generate more reasonable575

candidates due to its powerful language model.576

Human Evaluation Results. From Table 5, we577

show PMCTG-GPT2 achieves state-of-the-art per-578

formance in terms of fluency, but still suffers from579

relevance. We plan to improve its relevance in580

future research.581

Case Study. Table 6 lists some representative gen-582

erated examples from PMCTG-GPT2. They show583

the four most common types of paraphrasing for584

the proposed method. The first type is the change585

of syntax such as the interchange of “what can. . . ”586

and “how to. . . ” as in the first example. The sec-587

ond type is the change of adjective such as the sec-588

ond example where the “possible” is changed into589

Type Sentence
Ori what can make physics easy to learn?
Gen how to learn physics easily?
Ref how can you make physics easy to learn?

Ori
is it possible to pursue many different things
in life?

Gen is it good to buy many different things in life?

Ref
how do i refuse to choose between different
things to do in my life?

Ori how do i choose a journal to publish my paper?

Gen
how do you choose a journal to publish your
first book?

Ref where do i publish my paper?
Ori where can i get free books to read or download?
Gen where did i download free books to read?
Ref where can i get free books?

Table 6: Generated examples of PMCTG-GPT2 in para-
phrasing task.

“good”. The third type is the change of personal 590

pronouns such as the interchange of “you” and “I” 591

in the third example. The last type is the change of 592

tense, the most common is the interchange of gen- 593

eral past tense and general present tense as the last 594

example. In general, one limitation of the proposed 595

model is the relatively low expressive diversity of 596

generated sentences. One possible reason is that 597

since each search step modifies only one token, and 598

the unit of conversion from one expression to an- 599

other is usually phrases or sentence blocks, thus the 600

model may be biased not to search in that direction. 601

5 Conclusion 602

We propose a method PMCTG to improve the pre- 603

vious stochastic searching methods in the topic 604

of unsupervised constrained generation. PMCTG 605

leverages perturbed masking technique to find the 606

best edit position and leverages newly designed 607

multiple scoring functions to decide the best edit 608

action. We evaluate the proposed method on two 609

representative tasks: keywords-to-sentence genera- 610

tion (hard constraints) and paraphrasing (soft con- 611

straints). Experimental results demonstrate the ef- 612

fectiveness of the proposed method which achieves 613

competitive results on three datasets over multiple 614

advanced baseline methods. We plan to improve 615

the diversity and relevance of the results. 616
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