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MFRGN: Multi-scale Feature Representation Generalization
Network For Ground-to-Aerial Geo-localization
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ABSTRACT
Cross-area evaluation poses a significant challenge for ground-to-
aerial geo-localization (G2AGL), in which the training and testing
data are captured from entirely distinct areas. However, current
methods struggle in cross-area evaluation due to their emphasis
solely on learning global information from single-scale features.
Some efforts alleviate this problem but rely on complex and specific
technologies like pre-processing and hard sample mining. To this
end, we propose a pure end-to-end solution, free from task-specific
techniques, termed the Multi-scale Feature Representation Gener-
alization Network (MFRGN) to improve generalization. Specifically,
we introduce multi-scale features and explicitly utilize them for
G2GAL. Furthermore, we devise an efficient global-local informa-
tionmodule with two flows to bolster feature representations. In the
global flow, we present a lightweight Self and Cross Attention Mod-
ule (SCAM) to efficiently learn global embeddings. In the local flow,
we develop a Global-Prompt Attention Block (GPAB) to capture
discriminative features under the global embeddings as prompts.
As a result, our approach generates robust descriptors representing
multi-scale global and local information, thereby enhancing the
model’s invariance to scene variations. Extensive experiments on
benchmarks show our MFRGN achieves competitive performance
in same-area evaluation and improves cross-area generalization by
a significant margin compared to SOTA methods.

CCS CONCEPTS
• Computing methodologies → Visual content-based index-
ing and retrieval; Matching; Image representations.

KEYWORDS
Cross-view image geo-localization, imagematching, image retrieval,
information representation

1 INTRODUCTION
Ground-to-Aerial Geo-Localization (G2AGL) aims to determine the
real-world geographic location of ground/street-view images (as
queries) by matching with GPS-tagged aerial/satellite-view images
(as references) covering the same geographic region. It has a great
potential for accurate location with noisy GPS [4, 46], autonomous
driving [16, 32], automatic navigation [17, 44], augmented reality
[27] and object localization [42]. However, the drastic differences

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

56 58 60 62 64 66 68 70 72
Same-area (%)

20

25

30

35

40

Cr
os

s_
ar

ea
 (%

)

TransGeo (CVPR22)

GeoDTR (AAAI23)

GeoDTR+ (Arxiv23)

SAIG-D (Arxiv23)

Sample4Geo (ICCV23)

MFRGN (our)

Figure 1: Comparison of R@1 accuracy between recent meth-
ods without using task-specific techniques on VIGOR bench-
mark, encompassing both polar transformation [31, 45] and
hard negative mining [7]. Our proposed MFRGN achieves
the SOTA same-area and cross-area evaluation for G2AGL.

in viewpoint and appearance make the two-view images distinct
features, and even some contents of the one-view images are invisi-
ble to the other. Consequently, G2AGL is an extremely challenging
problem.

Existing approaches [5, 12, 13, 20, 43] typically learn a com-
mon representation across different views to convert image geo-
localization into an image-to-image matching/retrieval task. How-
ever, these methods achieve high same-area performance, in which
the training and testing data are captured from identical areas,
but low cross-area evaluation, where data are collected from com-
pletely distinct areas. For example, TransGeo [52] demonstrates
excellent same-area retrieval accuracy, e.g. ∼85% top-1 recall (R@1)
accuracy on CVACT [21] benchmark, but notably low R@1 across
different one, e.g. only 17.45% when training on CVACT (mostly in-
cluded urban scenery in Canberra, Australia) and testing on CVUSA
[43, 47] (collected from across the United States). Others attempt
to improve cross-area generalization by complex pre-processing
techniques[45, 49], e.g., the polar transformation relying on a center
alignment assumption between two views, which often unmeting
in real-life settings. Additionally, elaborate hard sample mining
techniques like dynamic similarity sampling strategy [7] and con-
trastive hard sample generation [48] have been explored. To make
G2AGL more practical, some methods try to get rid of these task-
specific technologies, but there remains a notable performance gap
between same- and cross-area evaluation for these algorithms with-
out these techniques on the challenging VIGOR [53] benchmark,
as shown in Fig. 1.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Motivated by these observations, this paper makes concerted
efforts to improve cross-area performance by devising an efficiently
pure structure devoid of specific techniques. As illustrated in Fig. 2,
the basic structures of the existing methods can be broadly divided
into two categories: those based on CNN or Vision Transformer
(ViT) [38], and those based on a combination of CNN and ViT.
However, single-scale features considered by most methods may be
insufficient for new or changed scenes, which limits the final per-
formance. It’s noteworthy that features conducive to localization
may be distributed across different scales due to variations in dis-
tance and resolution of image acquisition. On the other hand, since
images from nearby yet distinct geographic locations often share
common properties like street layout or building type, existing
methods focusing only on learning global context fail to distinguish
them, leading to matching with the same reference. This can be
mitigated by incorporating local information, e.g. the diverse colors
and textures found in two buildings. As a matter of fact, humans
typically employ a “rough screening through global context, then
fine matching through local details” mechanism when pairing two
images. Hence, we introduce multi-scale features and jointly learn
global and local information from them to bolster robustness in
feature representations.

In this paper, we introduce a Multi-scale Feature Representation
Generalization Network (MFRGN) aimed at enhancing generaliza-
tion for real-world applications. A simplified structure diagram of
MFRGN is depicted in Fig. 2 (c), which differs from the two existing
architectures (a) and (b). Firstly, we leverage a pre-trained CNN
backbone to acquire multiple feature maps with richer informa-
tion across different scales. Subsequently, we devise an efficient
global-local information representation module to concurrently
learn global and local representation. In this module, we introduce
ViT-based Self and Cross Attention Module (SCAM) to efficiently
learn multi-scale global context representations, and propose a
CNN-based Global-Prompt Attention Block (GPAB) to encourage
the model to learn distinctive local features under the global repre-
sentations as prompts. Furthermore, to alleviate model burden and
feature redundancy on multiple scales, we introduce a lightweight
Transformer encoder and a concise Pyramid Pooling Sampling (PPS)
strategy. As a result, MFRGN improves the abilities in terms of fea-
ture representation and model generalization by simultaneously
learning global and local embeddings across multi-scale features.
Our code will be released.

The main contributions of this work are as follows:
1) We explicitly utilize multi-scale features and propose MFRGN

to enhance the model’s representational capability, thereby improv-
ing cross-area generalization.

2) We simultaneously consider global and local information (pos-
sibly for the first time in G2AGL’s task) by a well-designed dual-flow
structure based on ViT and CNN.

3) We present lightweight SCAM to efficiently model global
dependencies and propose GPAB to boost local representation with
learned global embedding as prompts, both of which are in the
multi-scale case.

4) Our framework is simple and efficient, and purely end-to-end
requiring no neither complex pre-processing steps relying on strict
assumptions, nor specific sample mining technologies. Our method

CNN/Transformer Transformer

CNN 
Backbone

Input

Transformer

CNN

Fusion Desc.
Input

Input

CNN 
Backbone

Desc.Desc.

(a) (b) 

(c) 

Figure 2: Basic structures for G2AGL. Input is ground-view
images or aerial-view images, and Desc. is descriptor. Exits-
ing structures, (a) and (b), aim to learn global descriptors. The
proposed novel structure (c) extracts multi-scale features and
explicitly utilizes them to learn global and local representa-
tion for better cross-area performance in G2AGL.

outperforms previous works in generalization evaluation by a large
margin.

2 RELATEDWORK
2.1 CNN & Transformer structures
Early methods [2, 39] based on handcrafted features [3, 24] face
challenges due to the large viewpoint and appearance differences
between queries and references, resulting in extremely low re-
trieval accuracy. Subsequent efforts [7, 11–13, 17] shift towards
deep learning-based methods to extract powerful deep features.
Workman et al. [43] demonstrate the superiority of deep features
over hand-crafted ones by utilizing a deep CNN network, achieving
high accuracy. Building upon this pioneering work, Vo el et. [40]
design Siamese-like CNN for learning image features, while Zhai
et al. [47] employ a VGG16 architecture to predict a dense pixel-
level segmentation of the ground image. Further advancements
include CRN [14], which learns contextual feature representations
by reweighting CNN to produce a spatial weightingmask. CVM-Net
[11] utilizes a full CNN to extract local features and a NetVLAD [1]
layer to get the global descriptor. GeoCapNet [35] learns the spatial
feature hierarchies to enhance representation based on ResNet [10]
and capsule network [30]. Recently, Vision Transformer (ViT) [38]
has achieved marvelous success in drawing global dependencies.
Due to the significant computational burden of directly applying
ViT, L2LTR [45] combines CNN and ViT (i.e. hybrid ViT) to reduce
visual ambiguity by extracting global contextual descriptors, where
CNN learns high-level semantic features from input images and
ViT encodes them to produce global representations. Inspired by
[31], GeoDTR [49] introduces a geometric layout extractor based on
ViT to generate attention maps from high-level semantics features
of the CNN backbone. TransGeo [52] proposes a pure ViT-based
model to learn global context directly from input images by using
attention-guided non-uniform cropping, and achieves outstand-
ing results in same-area evaluation, yet poor results in cross-area
evaluation.
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Figure 3: Pipeline of MFRGN, a Siamese network with two identical branches. In each branch, firstly, images (ground/satellite-
view) are fed into a CNN backbone to extract multi-scale features. Then, we input them into a dual-flow structure, namely
global-local information representation. The global representation flow learns global representations (𝑓 𝑔) using a lightweight
Self and Cross Attention Module (SCAM), while the local representation flow learns local representations (𝑓 𝑙 ) by four parallel
Global-Prompt Attention Block (GPAB) with 𝑓 𝑔 as prompt. Finally, 𝑓 𝑔 and 𝑓 𝑙 are individually processed by a linear projection
(𝑃𝑟𝑜 𝑗 .) and then concatenated them to output the final descriptor.

2.2 Task-specific technologies
To bridge the large domain gap between panoramic and satellite
images, some methods specialize in designing specific techniques
for G2AGL. For example, [29] introduces conditional GAN (cGAN)
to synthesize overhead-view images from ground-view images,
while [36] does the opposite. However, their achievements of high
accuracy depend on the generated successful results of the cGAN.
Alternatively, other methods [31, 33, 36] have adopted polar trans-
formation to tackle the cross-view domain gap by leveraging the
center alignment assumption: a reference image exactly centers at
the location of any query image. For example, Shi et al. [31] apply
this transformation to preprocess aerial images into ground-view
images, which are similar to the domain of the street images, re-
sulting in remarkably high retrieval accuracy. DSM [33] directly
estimates the orientation alignment of the two-view images under
this assumption. Later, numerous methods [25, 34, 45, 48] employ
this transformation as a pre-processing technique. Moreover, some
methods tend to mine samples. GeoDTR+ [48], a recent outstand-
ing method aimed at improving cross-area evaluation, introduces
a hard sample mining strategy to generate additional challenging
samples in training batches. Sample4geo [7] develops GPS-based
sampling and dynamic similarity sampling strategies to sample
hard negatives, outperforming previous SOTA results without po-
lar transformation. Yet, it still relies on an assumption that both
query and reference images have GPS tags in the raw data, which
are unmet in the real world. In contrast, some works have proposed
datasets that do not adhere to these limitations. For instance, the
VIGOR [53] dataset allows ground images’ GPS coordinates to be
at any location of aerial images, while the University-1652 [51]
dataset is primarily proposed for drone-to-aerial geo-localization
but also provides ground images collected from ground cameras
without GPS tags.

3 METHODOLOGY
In this section, we present the proposed Multi-scale Feature Rep-
resentation Generalization Network (MFRGN), aiming to enhance
generalization for ground-to-aerial geo-localization. MFRGN is a
Siamese neural network with two identical branches. Each branch
consists of two main steps: multi-scale feature extraction (Sec. 3.1)
and feature representation with a global representation flow (GRF)
to learn global embeddings (Sec. 3.2), along with a local representa-
tion flow (LRF) to reinforce local feature representation with the
global embeddings as prompts (Sec. 3.3). Consequently, we obtain
a global descriptor from the GRF and a local descriptor from the
LRF, then concatenate them together as the final output descriptor
for similarity calculation. An overview of our MFRGN is presented
in Fig. 3.

Following [7, 9, 19], we utilize symmetric InfoNCE loss based on
Noise-Contrastive Estimation (NCE) [26, 28] to train our model.

L(𝑞, 𝑅)InfoNCE = − log
exp(𝑞 · 𝑟+/𝜏)∑𝑖=0
𝑅

exp(𝑞 · 𝑟𝑖/𝜏)
(1)

where 𝑞 denotes an encoded query, and 𝑅 is a set of encoded ref-
erences. The InfoNCE loss calculates cosine similarity and is low
when 𝑞 and the positive match 𝑟+ are similar, and high when they
are dissimilar. The temperature parameter 𝜏 is learnable.

3.1 Multi-scale Feature Extraction
Due to the distance at which the images were taken and the differ-
ent resolutions of the images captured, which are more pronounced
across different areas, features favorable for localization are dis-
tributed across different scales. Therefore, we extract features at
multiple scales as opposed to a single scale in most existing methods
[31, 45, 49]. We employ a pre-trained CNN (e.g. RetNet [10], Con-
vNeXt [22]) as our backbone with multiple stages for multi-scale
feature extraction.
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Figure 4: Lite-Transformer encoder (LTE). 𝑓𝑖 is 𝐹𝐻 (= 𝑆2 ∼ 𝑆4)
when 𝑓𝑗 (= 𝑆1) is 𝐹𝐿 and vice versa. 𝐶𝑎𝑡 represents a concate-
nation operation. 𝑒𝑙𝑢 (·) denotes the exponential linear unit
activation function.

Given that the output feature maps of the initial backbone stages
(e.g. , stage0, stage1) tend to be large, leading to a substantial num-
ber of tokens if a ViT-like architecture is subsequently involved, we
opt the output maps from the final three backbone stages, denoted
as 𝑆1, 𝑆2, 𝑆3, as shown in Fig. 3. 𝑆4 is acquired by further downsam-
pling 𝑆3 by a ratio of 0.5. Ranging from 𝑆1 to 𝑆4, the feature scale
progressively increases, capturing richer semantic information con-
ducive to global matching. Conversely, lower-level features contain
more detailed information beneficial for localized fine matching.

3.2 Global Representation Flow
Most approaches [21, 47–49, 52] for G2AGL achieve better results
by generating global descriptors, which indicates the significance
of global information. Leveraging the notable capability of ViT in
capturing global dependencies, we adopt ViT to construct global
representation. We designate 𝑆1 ∼ 𝑆4 as the 𝑄 (query), 𝐾 (key),
and 𝑉 (value) for each ViT encoder. In this configuration, cross-
attention can be regarded as retrieving corresponding features
among different scale features when the tokens of 𝑄 , 𝐾 , and 𝑉
come from different scale features. On the other hand, self-attention
resembles retrieving corresponding features within the same scale
features when tokens stem from the same scale features. Therefore,
we propose a ViT-based Self and Cross Attention Module (SCAM)
(shown in Fig. 3), which effectively exploits both self-attention
and cross-attention mechanisms to capture global dependencies
across different scale features, contributing to more effective feature
representation.

However, it is impractical to directly utilize features 𝑆1 ∼ 𝑆4 for
ViT. This is because these multi-scale features would generate a
large number of tokens, leading to excessively high model complex-
ity, even rendering training infeasible. Inspired by Lite-DETR [18],
we present features 𝑆2 ∼ 𝑆4 as high-level features (𝐹𝐻 ) and 𝑆1 as
low-level features (𝐹𝐿). The number of tokens in 𝐹𝐻 accounts for
6% ∼ 33% of 𝐹𝐿 , significantly reducing computational costs. Due
to global descriptors primarily focusing on global semantics, we
update 𝐹𝐻 at a higher frequency. As shown in Fig. 3 and 4, we firstly
utilize 𝐹𝐻 as the query 𝑄 and concatenate 𝐹𝐿 with 𝐹𝐻 as the key
and value (𝐾 = 𝑉 ), which are then inputted into Lite-Transformer
Encoder (LTE) for updating 𝐹𝐻 . The update process of 𝐹𝐻 is as

Flatten   Cat

Poolavg Poolavg Poolavg Poolavg

1 1C  3 3C 
6 6C  8 8C 

(1 1 3 3 6 6 8 8) 110C C  +  +  +  = 

C H W 

Figure 5: Pyramid pooling sampling (PPS).

follows:
𝑄 = 𝐹𝐻 , 𝐾 = 𝑉 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝐹𝐻 , 𝐹𝐿){
𝑂𝑢𝑡𝑝𝑢𝑡1 = 𝐹 ′𝐻 = 𝑄 ′ = 𝐿𝑇𝐸 (𝑄,𝐾,𝑉 )
𝑂𝑢𝑡𝑝𝑢𝑡2 = 𝐹𝐿

(2)

where 𝐶𝑜𝑛𝑐𝑎𝑡 represents concatenating all scale features, 𝐹𝐻 and
𝐹𝐿 are the initial input features, and 𝐹 ′

𝐻
are the updated features.

𝐹𝐻 is updated 𝐴 times.
𝐹𝐿 contains only a small amount of global semantic information;

therefore, it is updated only a few times. The updating process of
𝐹𝐿 is as follows:

𝑄 = 𝐹𝐿, 𝐾 = 𝑉 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝐹𝐿, 𝐹 ′𝐻 ){
𝑂𝑢𝑡𝑝𝑢𝑡1 = 𝐹 ′𝐿 = 𝐿𝑇𝐸 (𝑄,𝐾,𝑉 )
𝑂𝑢𝑡𝑝𝑢𝑡2 = 𝐹 ′𝐻

(3)

where 𝐹𝐿 represents the original low-level features, 𝐹 ′
𝐻
represents

the features updated from the previous iteration of 𝐹𝐻 , and 𝐹 ′
𝐿
rep-

resents the updated features. 𝐹𝐿 is updated for 𝐵 iterations. The
output of SCAM is represented as 𝑓 𝑔 (= Concat(𝐹𝐿′, 𝐹𝐻 ′)), fol-
lowed by linear projection to generate the global descriptor (Desc𝑔).

However, despite the above steps taken to alleviate model costs,
the computational demands of the ViT model remain high under
multi-scale settings. To address this issue, we employ two strategies.

Strategy 1: Considering that the dot-product attention with
𝑂 (𝑁 2) complexity in the vanilla ViT, we replace it with the lin-
ear attention [15] with only 𝑂 (𝑁 ) complexity, referred to as the
Lite-Transformer encoder (Fig. 4). Formally, the linear attention
substitutes the vanilla dot-product with an alternative attention
function𝜙 (𝑄)

(
𝜙 (𝐾)𝑇𝑉

)
, where𝜙 (·) = 𝑒𝑙𝑢 (·)+1, and 𝑒𝑙𝑢 (·) denotes

the exponential linear unit [6]. Fig. 4 illustrates the computation
graph of this operation.

Strategy 2: Given that the lower-level features occupy the ma-
jority of tokens and contain many redundant features, we em-
ploy a pyramid pooling sampling (PPS) strategy [50] to sample
𝑛 (𝑛 ≪ 𝐻 ×𝑊 ) representative feature points from 𝑆1. Fig. 5 shows
the default configuration: four average pooling operations are ini-
tially performed to obtain four feature maps with sizes of 1×1, 3×3,
6×6, and 8×8, respectively. Subsequently, we flatten the four maps
and then concatenate them together to obtain a sampled feature
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Figure 6: The global-prompt attention block (GPAB).

map with a length of 110. For G2AGL, we set 𝑛 to approximately
twice the total number of tokens of 𝑆2 ∼ 𝑆4.

3.3 Local Representation Flow
Based on the observation: a human typically confirms whether
two images belong to the same scene by their overall appearance,
and then verifies their correspondence-specific details. Generally,
the “overall” refers to global semantics, while the “detail” refers
to local textures. There is an interesting fact that local results are
influenced by global confirmation, meaning that in this case where
rough global matching is known, the local results would be more
adept at capturing discriminative features conducive to localization.
Therefore, we consider global information into the LRF. Specifically,
we use the global representation (𝑓 𝑔) from the GRF as prompts to
guide the learning of local representation (denoted as 𝑓 𝑙 ), shown in
Fig. 3. Due to the inconsistency between 𝑓 𝑔 and 𝑓 𝑙 , directly fusing
them may hinder information expression. We project 𝑓 𝑔 into the
local space, then reshape it to match the sizes of 𝑆1 ∼ 𝑆4, result-
ing in four global prompts (𝑓 𝑔

𝑖
∼ 𝑓

𝑔

4 ). Subsequently, we propose a
Global-Prompt Attention Block (GPAB) to achieve prompt learning,
as shown in Fig. 6. Each global prompt 𝑓 𝑔

𝑖
undergo operations ac-

cording to Eq. 4, resulting in channel-wise and spatial-wise weights
𝐹𝑐ℎ
𝑖

and 𝐹𝑐ℎ
𝑖
, respectively.{
𝐹𝑐ℎ𝑖 = Sig(Conv(pool𝑎𝑣𝑔 (𝑓

𝑔

𝑖
)))

𝐹
𝑠𝑝

𝑖
= Sig(Conv(pool𝑚𝑎𝑥 (𝑓

𝑔

𝑖
)))

, 𝑖 = 1, 2, 3, 4 (4)

where pool𝑎𝑣𝑔 represents average pooling along the channel direc-
tion, pool𝑚𝑎𝑥 represents max pooling along the spatial direction,
Conv denotes the 2D convolution operation, and Sig is the Sigmoid
activation function.

We utilize 𝐹𝑐ℎ
𝑖

and 𝐹𝑠𝑝
𝑖

to guide 𝑆𝑖 to learn local discriminative
information, ultimately leading to local representation 𝑓 𝑙

𝑖
:

𝑓 𝑙𝑖 = Pool𝑎𝑣𝑔 (𝑆𝑖 · 𝐹𝑐ℎ𝑖 · 𝐹𝑠𝑝
𝑖

+ 𝑆𝑖 ), 𝑖 = 1, 2, 3, 4 (5)

All 𝑓 𝑙
𝑖
are concatenated to 𝑓 𝑙 that then generates local descriptor

Desc𝑙 by a linear projection. Similar to sampling strategies described
in Sec. 3.2, we also use the PPS to sample 𝑆1 in LRF.

4 EXPERIMENTS
4.1 Experiments settings
Datasets. Both CVUSA [43, 47] and CVACT [21] are cross-view
datasets for ground-to-aerial geo-localization, each containing 35,532
pairs for training and 8,884 pairs for testing. CVUSA collects im-
ages from across the United States, while CVACT mainly covers
urban scenery in Canberra, Australia. The two datasets are used for

one-to-one matching, i.e. every satellite-view image has one cor-
responding street-view image, and share an assumption of center
alignment: all pairs are aligned with similar spatial localization and
orientation. For the two datasets, we use 256 × 256 for the aerial
view and 128× 256 for the ground view as input image size. VIGOR
[53] is a challenging and large-scale dataset for one-to-more map-
ping (every reference covers 2∼4 queries), which is a more real-life
setting. VIGOR collects 105,124 street panoramas and 90,618 satel-
lite images from four cities, New York, Chicago, Seattle, and San
Francisco. VIGOR provides two evaluation settings, i.e. same-area
(training and testing on all cities)) and cross-area (training on New
York and Seattle, testing on San Francisco and Chicago) evaluation
for comprehensive performance in G2AGL. Exceptionally, the geo-
graphical location of a panorama can correspond to any location
in the aerial image. Also, each satellite-view image has three semi-
positive images that cover regions of the street-view image. For
VIGOR, we use 320 × 320 for the aerial view and 320 × 640 for the
ground view as input image size.

Metrics. Similar to existing methods [7, 8, 45, 49], we choose to
use the top-𝑘 recall accuracy (denoted as R@𝑘) with𝑘 ∈ {1, 5, 10, 1%}
for evaluation purposes. R@𝑘 assesses the probability of the ground
truth reference image within the top 𝑘 ranked results given a query
image. Besides, we also use hit rate to evaluate the retrieval perfor-
mance of VIGOR following [7]. The hit rate is understood as the
R@1 without semi-positive images.

Implementation Details. Following [7, 19, 48], we use weight-
shared ConvNeXt [22] as our CNN backbone for both views. We
set 𝐴 = 2, 𝐵 = 1 in the SCAM. And, we set the latent dimension
to 128 and the feedforward layer dimension to 2048 for each Lite-
Transformer encoder with 4 heads. In PPS, we obtain four feature
maps with sizes of 1× 1, 6× 6, 12× 12, 21× 21 for satellite view, and
1×1, 3×12, 6×24, 7×36 for street view, respectively. In the training
phase, the model is trained on Nvidia Titan V GPUs for 50 epochs
with AdamW [23] optimizer. The label smoothing of InfoNCE loss
is set to 0.1, and the batch size to 64. We use a cosine annealing
learning rate decay strategy with an initial learning rate of 10−4.
The dimension of the final descriptor is 2048.

4.2 Comparison with State-of-the-Art Methods
Same-area evaluation results. Tab. 1 presents same-area results
of various methods. In the “𝑤/ Pre-processing” column, all meth-
ods use a pre-cropping technology (i.e. pre-crop the edges of street
images in CVACT) to accelerate model fitting, and some of them
also use the polar transformation (marked with the †) to pre-process
satellite images into ground-view images, which both rely on the
center alignment assumption. We observe that MFRGN with only
using pro-cropping achieves the best improvement across all four
metrics. In the “𝑤/ Sampling” column, our method brings a slight
performance fluctuation using hard negative sampling (HNS) (re-
quiring the GPS-tagged query images) in [7]. When not using all
of the above, our retrieval results surpass all others. Under this
condition, an interesting observation is that the performance of
our method far exceeds all methods with “Pre-processing” and
reaches the same level as Sample4Geo with “Sampling” on CVUSA,
even scores higher in terms of R@1, R@10 and R@1% on CVACT.
Besides, MFGAN+ obtains the maximum gain with pro-cropping
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Table 1: Same-area comparison results on CVUSA and CVACT benchmarks. † denotes using polar transformation. The best and
second best results are bolded and underlined.

Method CVUSA CVACT
R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1%

𝑤/ Pre-processing
SAFA [31] 81.15 94.23 96.85 99.49 78.28 91.60 93.79 98.15
SAFA† [31] 89.84 96.93 98.14 99.64 81.03 92.80 94.84 98.17
SAFA†+LPN [41] 92.83 98.00 8.85 99.78 83.66 94.14 95.92 98.41
GeoDTR [49] 93.76 98.47 99.22 99.85 85.43 94.81 96.11 98.26
GeoDTR† [49] 95.43 98.86 99.34 99.86 86.21 95.44 96.72 98.77
GeoDTR+ [48] 95.05 98.42 98.92 99.77 87.76 95.50 96.50 98.32
GeoDTR+† [48] 95.40 98.44 99.05 99.75 87.61 95.48 96.52 98.34
SAIG-D [54] 96.08 98.72 99.22 99.86 89.21 96.07 97.04 98.74
SAIG-D† [54] 96.34 99.10 99.50 99.86 89.06 96.11 97.08 98.89
MFRGN (ours) 98.24 99.56 99.72 99.88 89.51 96.96 97.75 99.01

𝑤/ Sampling
Sample4Geo [7] 98.68 99.68 99.78 99.87 90.81 96.74 97.48 98.77
MFRGN (ours) 98.69 99.58 99.67 99.82 90.54 96.12 96.84 98.37

𝑤/𝑜 Pre-processing & Sampling
L2LTR [45] 91.99 97.68 98.65 99.75 83.14 93.84 95.51 98.40
TransGeo [52] 94.08 98.36 99.04 99.77 84.95 94.14 95.78 98.37
Sample4Geo [7] 97.84 99.58 99.75 99.88 87.73 96.58 97.59 98.99
MFRGN (ours) 98.24 99.56 99.72 99.88 88.78 96.61 97.51 98.99

MFRGN+ (ours) 98.67 99.57 99.71 99.85 91.09 96.34 97.14 98.44

Table 2: Cross-area comparison results on CVUSA and CVACT benchmarks. † denotes using polar transformation. The best and
second best results are bolded and underlined.

Method CVUSA→CVACT CVACT→CVUSA
R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1%

𝑤/ Pre-processing
SAFA† [31] 30.40 52.93 62.29 85.82 21.45 36.55 43.79 69.83
GeoDTR [49] 43.72 66.99 74.61 91.83 29.85 49.25 57.11 2.47
GeoDTR† [49] 53.16 75.62 81.90 93.80 44.07 64.66 72.08 90.09
GeoDTR+ [48] 60.16 79.97 84.67 94.48 52.56 73.08 79.82 94.80
GeoDTR+† [48] 61.17 80.22 85.45 94.56 53.89 74.56 81.10 94.93
MFRGN (ours) 71.56 88.98 92.06 97.12 55.32 76.64 83.14 96.15

𝑤/ Sampling
Sample4Geo [7] 56.62 77.79 87.02 94.69 44.95 64.36 72.10 90.65
MFRGN (ours) 66.06 82.79 86.58 94.47 63.34 80.54 86.22 96.81

𝑤/𝑜 Pre-processing & Sampling
TransGeo [52] 37.81 61.57 69.86 89.14 17.45 32.49 40.48 69.14
Sample4Geo [7] 34.88 59.68 69.28 90.02 15.78 31.13 39.40 70.04
MFRGN (ours) 51.61 73.91 80.55 94.24 49.18 70.09 77.42 95.04

MFRGN+ (ours) 79.12 91.09 93.17 96.79 69.28 84.91 89.60 97.69

and HNS, noting that without polar transformation. We further
evaluate various methods without Pre-processing and Sampling
on the highly challenging VIGOR (Tab. 3). Our MFRGN achieves the
best scores compared with all methods. These results indicate that

MFGRN can learn powerful feature representation that eliminates
the need for these task-specific techniques to bridge the domain gap
between the two distinct viewpoints, even in challenging scenarios.
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Table 3: Same-area and cross-area comparison results on
VIGOR benchmark. All methods do not use “Pre-processing”
and “Sampling”.

Method R@1 R@5 R@10 R@1% Hit rate

Cross-area
TransGeo [52] 61.48 87.54 91.88 99.56 73.09
GeoDTR [49] 56.51 80.37 86.21 99.25 61.76
GeoDTR+ [48] 59.01 81.77 87.10 99.07 67.41
SAIG-D [54] 65.23 - 88.08 99.68 74.11
Sample4Geo [7] 65.23 91.62 95.85 99.85 78.77
MFRGN (ours) 71.41 92.02 95.07 99.82 80.59

Cross-area
TransGeo [52] 18.99 38.24 46.91 88.94 21.21
GeoDTR [49] 30.02 52.67 61.45 94.40 30.19
GeoDTR+ [48] 36.01 59.06 67.22 94.95 39.40
SAIG-D [54] 33.05 - 55.94 94.64 36.71
Sample4Geo [7] 36.38 63.96 72.43 97.18 43.66
MFRGN (ours) 43.18 67.52 75.34 97.47 47.54

Cross-area evaluation results.We present the cross-area re-
sults of various methods to evaluate their generalization capabilities.
The CVUSA→CVACT represents training on CVUSA and testing
on CVACT, while CVACT→CVUSA represents the opposite. As
shown in Tab. 2, our model performs the best results almost in
all cases by a large margin. Specifically, our method achieves the
SOTA performance by improving from the previous SOTA 37.81%
to 51.61% on the CVUSA→ CVACT, and 17.45% to 49.18% on the
CVACT→CVUSA when no any special techniques are used. For
the challenging VIGOR, MFRGN obtains significant cross-area im-
provements and improves 6.80% R@1 and 3.88% hit rate compared
to Samole4Geo (Tab. 3). These considerable improvements can be
attributed to the fact that our approach improves representation
abilities by jointly learning global and local information from multi-
scale features, thereby generalizing to diverse cross-area scenarios.

4.3 Ablation Studies
Impact of components. Tab. 4 performs a component analysis
of MFRGN, such as the GRF (𝐺), the LRF with global embedings
as prompts (𝐿𝑝 ) or with the initial features (𝑆1 ∼ 𝑆4) as prompts
(𝐿𝑖𝑛𝑖 ), and so on. We use the highest level feature map from the
last stage of the CNN backbone (i.e. 𝑆4) to directly output the
descriptor, denoted as 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 . When adding multi-scale features
(𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒) into the 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , the performance gains are slightly
smaller than 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 in the same area but are obviously larger in
cross area. We conjecture that multi-scale features could introduce
more local details but hamper information conveyance; whereas,
in the context of the cross area, these features containing richer
and more match-relevant information across different scales help
adapt to diverse scenes. Furthermore, our model improves greatly
cross-area performance after adding GRF or LRF on 𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ,
especially in the former. This proves that global information is
more favorable for image-to-imagematching than local information.
However, jointly learning 𝐺 and 𝐿𝑖𝑛𝑖 / 𝐿𝑝 can further significantly

Table 4: Component-wise analysis when training on CVACT.

Method R@1 R@5 R@10 R@1%

CVACT
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 83.52 95.27 96.75 98.96
𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 80.76 95.36 96.84 99.01
𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒+𝐿𝑖𝑛𝑖 81.59 95.03 96.36 98.90
𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒+𝐺 86.58 96.15 97.20 99.00
𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒+𝐺+𝐿𝑖𝑛𝑖 88.21 96.37 97.40 99.03
𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒+𝐺+𝐿𝑝 88.42 96.49 97.49 99.04

CVACT→CVUSA
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 10.78 23.37 30.68 62.89
𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 16.81 33.21 43.31 72.37
𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒+𝐿𝑖𝑛𝑖 18.07 35.21 44.68 78.13
𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒+𝐺 36.61 57.97 66.51 91.31
𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒+𝐺+𝐿𝑖𝑛𝑖 45.54 68.35 76.15 94.90
𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒+𝐺+𝐿𝑝 47.13 69.07 77.51 95.48

Table 5: Impact of two lightweight strategies, linear attention
(LA), and pyramid pooling sampling (PPS), when training on
CVACT. ↑ denotes the performance gain compared toMFRGN
without LA and PPS.

LA PPS FLOPs Memory Same-area Cross-area

× × 22.31G 1166M 87.47 42.14
✓ 22.31G 1065M 88.42 (↑0.95) 47.13 (↑4.99)
✓ ✓ 21.80G 1050M 88.78 (↑1.31) 49.18 (↑7.04)

improve performance. In this case, 𝐿𝑝 , namely learning global and
local information by an interaction, can obtain better local feature
representation, compared to 𝐿𝑖𝑛𝑖 , namely LRF not interacting with
GRF. Therefore, MFRGN can better bridge the gap not only between
two view images but also between two area distributions by learning
the rich and robust representation, thus improving the performance
and generalization.

Impact of lightweight strategies. Tab. 5 conducts comparative
analysis for two lightweight strategies, including Linear Attention
(LA) and Pyramid Pooling Sampling (PPS). We further report the
FLOPs and memory (using a pair of street image and satellite im-
age as input). We can see that using no LA and PPS suffers from
poor results, especially in cross-area performance. This is a rea-
sonable result since vanilla dot-product attention is more prone to
overfitting than linear attention, as well as much redundancy from
multi-scale features interfering with information representation.
But this problem is alleviated by a combination of two strategies,
and leading to an interesting observation is that the performance
gain of using two strategies is more pronounced in the two area
evaluations while using fewer FLOPs and memory.

Impact of hyperparameter. Fig. 7 analyzes the impact of dif-
ferent dimension ratios of the global descriptor and local descriptor.
As the proportion of dimensions of global descriptors relative to
local descriptors increases, namely more global information, the
same-area performance gradually improves while the cross-area
performance notably enhances. Conversely, a decrease in same-area
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Figure 7: Impact of different descriptor dimensions. 𝐷𝑖𝑚𝑔

is dimension of Desc𝑔, and 𝐷𝑖𝑚𝑙 is dimension of Desc𝑙 . We
take the average R@1 score as a baseline, and all cases are
subtracted from it, respectively.

results occurs slightly, but cross-area results rapidly decline. We
also observe a severe deterioration when only local information
is considered. This indicates that global information is crucial in
image-to-image matching. However, relying on global information
alone poses a limitation for performance. Therefore, it is indispens-
able to simultaneously learn both global and local information as
our method for G2GAL’task. Based on the above results, we choose
the ratio of dimensions between global and local descriptors to 7:1.

4.4 Visualization
T-SNE visualization. We use Sample4Geo and our MFRGN (both
training on CVUSA) without Pre-processing and Sampling to
obtain representation features of CVUSA and CVACT testing data.
Fig. 8 visualizes the same-area and cross-area testing distribution
by projecting the features onto a 2D space through t-SNE [37].
In Sample4Geo (a), the feature distributions of the same area and
the cross area have a clear discrepancy. Our MFRGN (b) shows a
coincidence between the cross-area distribution and the same-area
distribution in both shape and scope. This proves that MFRGN
can learn robust representation descriptors and effectively maps
similar samples from same-area datasets and cross-area datasets
to a similar feature representation space, which hence reduces the
content distribution discrepancy between the two areas.

Heatmap visualization. Fig. 9 visualizes response maps gen-
erated by the two methods following the same settings as above.
Sampel4Geo only focuses on certain local regions, owing to its
pure CNN architecture. Our method allows the response to simul-
taneously concentrate on both global and local regions, such as
the highway with a large coverage area and the local area of the
roof. Such a property is attributed to the fact that MFRGN explic-
itly models both global and local features, allowing the model to
achieve better representation ability against variations in cross-area
scenarios.

(a) Sample4Geo (b) MFRGN (our)

Same-area features

Cross-area features

Figure 8: T-SNE visualization of the same-area and cross-area
testing distribution. The proposed MFRGN effectively maps
similar samples from cross-area and same-area datasets to
similar feature representation spaces and reduces the content
distribution discrepancy between the two areas.

Satelite image Sample4Geo MFRGN (our)

Figure 9: Response visualization of Sample4Geo and the pro-
posed MFRGN. MFRGN is more discriminative and its re-
sponse is concentrated in both the global region and local
region, e.g. the highway with a large coverage area and the
local area of the roof.

5 CONCLUSION
In our work, we present a simple and effective method, i.e. MFRGN,
to solve cross-area generalization for G2AGL by explicitly joint
learning global and local representation from multi-scale features.
We introduce a lightweight ViT-based Self and Cross AttentionMod-
ule (SCAM) to efficiently learn global embedding from multi-scale
features. Then, we utilize learned global embedding as prompts to
boost local representation by the proposed Global-Prompt Atten-
tion Block (GPAB). Besides, we introduce a lightweight Transformer
encoder and pyramid pooling sampling strategy to alleviate model
burden and feature redundancy. Extensive experiments demon-
strate competitive same-area performance and SOTA cross-area
generalization of the proposed method without requiring strict as-
sumptions that are unmet in real-life settings, or any task-specific
techniques.

Future work will design a more effective multi-scale feature
exploitation model to achieve better performance in terms of same-
area and cross-area evaluation. We also aim to generalize this par-
adigm to other cross-view geo-localization frameworks, such as
UAV-to-satellite geo-localization, which enjoys widespread popu-
larity within the community of UAVs in Multimedia 1.
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