
Pattern Recognition 166 (2025) 111684 

A
0

 

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr  

Dual-function discriminator for semantic image synthesis in variational 
GANs
Aihua Ke a , Bo Cai a,∗, Yujie Huang a, Jian Luo a, Yaoxiang Yu a, Le Li b
a Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan 
University, Wuhan, China
b School of Mathematics and Statistics, Central China Normal University, Wuhan, China

A R T I C L E  I N F O

Keywords:
Semantic image synthesis
Generative adversarial networks
Conditional residual attention module
Dual-function discriminator

 A B S T R A C T

Semantic image synthesis aims to generate target images conditioned on given semantic labels, but existing 
methods often struggle with maintaining high visual quality and accurate semantic alignment. To address these 
challenges, we propose VD-GAN, a novel framework that integrates advanced architectural and functional 
innovations. Our variational generator, built on an enhanced U-Net architecture combining a pre-trained Swin 
transformer and CNN, captures both global and local semantic features, generating high-quality images. To 
further boost performance, we design two innovative modules: the Conditional Residual Attention Module 
(CRAM) for dimensionality reduction modulation and the Channel and Spatial Attention Mechanism (CSAM) 
for extracting key semantic relationships across channel and spatial dimensions. Additionally, we introduce a 
dual-function discriminator that not only distinguishes real and synthesized images, but also performs multi-
class segmentation on synthesized images, guided by a redefined class-balanced cross-entropy loss to ensure 
semantic consistency. Extensive experiments show that VD-GAN outperforms the latest supervised methods, 
with improvements of (FID, mIoU, Acc) by (5.40%, 4.37%, 1.48%) and increases in auxiliary metrics (LPIPS, 
TOPIQ) by (2.45%, 23.52%). The code will be available at https://github.com/ah-ke/VD-GAN.git.
1. Introduction

Recent advances in deep-generative models have significantly pro-
pelled both unconditional and conditional generation. Unconditional 
generation involves random noise as input, while conditional gener-
ation uses additional conditions, such as descriptive text [1], scene 
images [2,3], or semantic labels [4]. When the condition is a semantic 
label, the process is known as label-to-image synthesis, focusing on 
generating high-fidelity, semantically accurate images from segmented 
labels, as shown in Fig.  1. This technique is useful for applications 
like content creation, image editing, and data augmentation, where 
new similar samples can be generated to improve the training of deep 
learning models.

Methods for semantic image synthesis are typically divided into 
supervised and unsupervised approaches. Unsupervised methods use 
unpaired data to generate realistic images from semantic maps, often 
employing loss of cycle consistency to maintain image relationships [2,
5]. Supervised methods, using labeled data, tend to produce higher 
quality images, focusing on areas such as normalization functions [4], 
attention mechanisms [6], and discriminator networks [7]. Although 
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diffusion models, compared to GANs, offer good generative perfor-
mance, they involve complex noise sampling, slower generation, and 
higher resource consumption. Additionally, aligning synthesized im-
ages with semantic labels remains challenging, especially when dealing 
with imbalanced datasets and large image volumes.

Despite their successes, GAN models still face challenges in image 
quality and semantic alignment. The key issues that contribute to these 
challenges include the following. First, many GAN models use CNN-
based decoders as generators for image synthesis from semantic labels, 
but the limitations of CNNs can hinder the extraction of global features 
and slow down training. Second, earlier GAN models often combine 
the given semantic layout with 3D Gaussian noise as inputs to the 
UNet structure, which can lead to suboptimal use of the available 
input information. Third, in previous residual modules, the output 
of the pre-layer is directly added to the input of the post-layer via 
shortcut connections, potentially passing redundant information that 
increases the network’s computational load. Lastly, while existing GAN 
models prioritize enhancing the photo-realism of synthesized images, 
they often overlook the importance of maintaining strong semantic 
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Fig. 1. (a) Image semantic segmentation: The segmentation network 𝑁𝑠𝑒𝑔 generates a semantic label from a real image, marking different classes with different colors. (b) Semantic 
Image Synthesis: The semantic label serves as the input condition for the synthesis network 𝑁𝑠𝑦𝑛 to generate a high-quality image. (c–e) Example Application: Demonstrates semantic 
control synthesis using our method.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
alignment between the generated images and the provided semantic 
labels.

To address these limitations, we propose a novel supervised GAN-
based method, VD-GAN. Our approach introduces a variational gener-
ator that enhances image quality by building upon an improved U-Net 
structure, which integrates both the pre-trained Swin Transformer and 
CNN. Specifically, CNN excels at capturing local features such as edges 
and textures, while the Swin Transformer effectively models global se-
mantic information through its self-attention mechanism. By combining 
these two components, our generator captures both local details and 
global context simultaneously, resulting in images with improved visual 
coherence and quality. In addition, we introduce two novel modules to 
further enhance the generator’s performance: the Conditional Residual 
Attention Module (CRAM) and the Channel and Spatial Attention Mech-
anism (CSAM). Traditional models often struggle to capture semantic 
relationships across different channels and spatial dimensions, which 
can lead to inefficient feature extraction. CSAM addresses this by 
dynamically focusing on the most relevant channels and spatial re-
gions, thereby improving the capture and utilization of critical semantic 
information. CRAM refines the reduction of dimensions while pre-
serving essential semantic details. Beyond distinguishing between real 
and synthesized images, our dual-function discriminator also performs 
multi-class segmentation. This multi-task feature improves semantic 
alignment by incorporating a redefined class-balanced cross-entropy 
loss and a multi-scale strategy, which enhances the discriminator’s 
ability to accurately guide the generator.

In summary, our approach introduces several key innovations: the 
integration of Swin Transformer and CNN into the U-Net architecture 
for enhanced hierarchical feature extraction, the Conditional Resid-
ual Attention Module and Channel and Spatial Attention Mechanism 
for refined dimensionality reduction and improved semantic relations, 
and the dual-function discriminator for better semantic alignment. 
Extensive experiments on the Cityscapes [8], ADE20K [9], and COCO-
Stuff [10] datasets demonstrate that VD-GAN outperforms state-of-the-
art methods in both visual quality and semantic alignment.

2. Related work

2.1. Generative adversarial networks

Semantic image synthesis methods primarily rely on Generative 
Adversarial Networks (GANs) [6], which consist of a generator and a 
discriminator. The generator produces high-quality images from seman-
tic labels, while the discriminator distinguishes between synthesized 
and real images. Recent advancements in conditional GANs, such as 
SPADE [11] and OCGAN [4], have enhanced image generation by 
incorporating perceptual losses and more complex input mechanisms 
2 
for better semantic consistency. However, these methods still face 
challenges, such as more difficult training and limitations in multi-scale 
semantic extraction.

2.2. Semantic image synthesis

Semantic image synthesis [12] involves generating high-quality 
images from provided semantic labels, often leveraging GANs. For 
instance, GauGAN [11] modulates normalization layers with affine 
transformations based on the input semantic layout, while SAFM [7] 
introduces a shape-aware position descriptor to represent object shapes 
and pixel positions. In addition to GAN-based approaches, non-GAN 
methods, such as variational models (e.g., VAE [13] and VASIS [14]) 
and newer diffusion-based techniques [15], have also emerged as al-
ternatives. Variational models excel in capturing latent distributions 
but often suffer from blurriness and semantic misalignment. Despite 
these challenges, advancements in these models highlight the need for 
more efficient strategies to better extract and utilize critical semantic 
information.

2.3. Discriminator network architectures

In GAN models, the discriminator is crucial for guiding the gen-
erator’s learning. As semantic image synthesis has progressed, dis-
criminator designs have evolved. Pix2Pix [16] introduced PatchGAN, 
which uses a convolutional structure to classify image patches as real 
or fake. Pix2PixHD [17] enhanced this with a multi-scale approach, 
while CC-FPSE [18] added a feature pyramid semantic embedding 
discriminator using both images and label maps. OASIS [19] introduced 
a segmentation-based discriminator for better semantic alignment. De-
spite these improvements, limitations remain, indicating the need for 
further refinement.

3. Method

3.1. Overall framework

We present VD-GAN, a variational generative adversarial network 
equipped with a dual-function discriminator (Fig.  2). The model con-
sists of two main components: a variational generator and a dual-
function discriminator. The generator leverages a pre-trained Swin 
transformer combined with CNNs to ensure faster, more stable conver-
gence. It incorporates a Conditional Residual Attention Module (CRAM) 
in each decoder layer to optimize feature extraction and improve 
the utilization of input information. The dual-function discriminator 
performs two key tasks: distinguishing between real and synthesized 
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Fig. 2. The overall framework of the proposed VD-GAN method is depicted. (A) The variational generator network employs an enhanced U-Net structure to synthesize high-quality 
images conditioned on semantic labels, incorporating the Conditional Residual Attention Module (CRAM). (B) The dual-function discriminator network 𝐷 operates in a multi-scale 
manner to implement true/false distinguishing and multi-class segmentation prediction on the synthesized image.
images and conducting multi-class segmentation on the generated im-
ages. A class-balanced cross-entropy loss reduces the gap between 
predicted and semantic labels, while a multi-scale strategy further 
improves performance. VD-GAN is trained end-to-end in a supervised 
manner through a mini-max game. Further details on both networks 
are provided in the following sections.

3.2. Variational generator network

As shown in Fig.  2(A), our variational generator 𝐺 employs an 
enhanced U-Net architecture [16] to generate high-fidelity images from 
semantic labels. The U-Net consists of an encoder and a decoder. 
The encoder extracts hierarchical features from the combined input 
of the semantic label and 3D Gaussian noise. To address the discrete 
nature of semantic labels, we apply one-hot encoding [9] to map the 
input to a continuous latent space. In the encoder (𝐸𝐿𝑖), we replace 
traditional convolution and down-sampling with the Swin transformer 
for improved global feature extraction and dependency modeling. As 
the network deepens, the encoder captures features with higher di-
mensionality and lower resolution, preserving more spatial information 
from the input labels.

The decoder reconstructs the synthesized image by combining fea-
tures from the encoder layer (𝐸𝐿𝑖) and the previous decoder layer 
(𝐷𝐿𝑖−1). These features are processed by the Conditional Residual At-
tention Module (CRAM) to reduce dimensionality while preserving key 
information. We replace deconvolution and up-sampling with a Swin 
transformer block and patch expansion [20], addressing checkerboard 
artifacts and improving detail recovery. The final output is generated 
through an ImageBlock operation, consisting of a convolution block 
followed by a tanh activation. Further details on CRAM are provided 
in subsequent sections.

3.2.1. Conditional residual attention module
In our U-Net decoder, shallow and deep features are combined along 

the channel axis to address information loss during encoding. However, 
this increases computational demands due to high-dimensional fea-
tures. To reduce this, we introduce the Conditional Residual Attention 
Module (CRAM), which replaces the standard 1 × 1 convolution [16]. 
CRAM preserves spatial and semantic information by reducing dimen-
sionality through a shortcut connection and conditional features. As 
shown in Fig.  3(a), CRAM consists of two BasicBlock functions with 
3 
Conditional Batch Normalization (CBN), Leaky ReLU, and a 3 × 3 
convolution. The BasicBlock update is described by Eq.  (1): 
𝑅𝑖+1 =  (𝑅𝑖), (1)

where 𝑅𝑖+1 is the updated residual feature, and  is the feature update 
function. This update is computed as shown in Eq.  (2): 
 (𝑅𝑖) = (𝐹𝑠, 𝛿(𝜓(𝑅𝑖))), (2)

where  represents the CBN operation, 𝛿 is the activation function, 
and 𝜓 denotes the convolution operation. 𝐹𝑠 refers to the conditional 
features that help adapt the CBN based on the semantic input, improv-
ing feature extraction efficiency. After two BasicBlock functions, CRAM 
combines the outputs through element-wise addition: 
𝑅𝑖+2 =  (𝑅𝑖+1) + 𝜉(𝑅𝑖), (3)

where 𝜉(𝑅𝑖) is the Channel and Spatial Attention Mechanism (CSAM) 
embedded in CRAM. This mechanism refines important features and 
suppresses irrelevant ones, ensuring improved semantic representation.

The Conditional Batch Normalization (CBN) layer structure is shown 
in Fig.  3(b). CBN normalizes input activations ℎ and scales and shifts 
them with learned parameters 𝛾 and 𝛽, as described in Eq.  (4): 

(𝐹𝑠, ℎ) =
ℎ𝑛,𝑐,𝑥,𝑦 − 𝜇𝑐

𝜎𝑐
𝛾𝑐,𝑥,𝑦(𝐹𝑠) + 𝛽𝑐,𝑥,𝑦(𝐹𝑠), (4)

where 𝜇𝑐 and 𝜎𝑐 are the mean and standard deviation of activations, cal-
culated across spatial dimensions. The parameters 𝛾 and 𝛽 are learned 
using depth-wise separable convolutions 𝜓𝑑𝑝, as shown in Eqs. (5) and 
(6): 
𝛾 = 𝜓𝑑𝑝(𝛿(𝜓𝑑𝑝(𝐹𝑠))), (5)

𝛽 = 𝜓𝑑𝑝(𝛿(𝜓𝑑𝑝(𝐹𝑠))), (6)

Overall, CRAM enhances both computational efficiency and semantic 
alignment in image synthesis, improving photorealism and accuracy. In 
the next subsection, we will discuss the CSAM structure, which plays a 
critical role in semantic refinement.

3.2.2. Channel and spatial attention mechanism
In previous residual modules, the pre-layer output is added directly 

to the post-layer input, leading to redundant information and increased 
network load. Traditional attention mechanisms [6], such as channel 
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Fig. 3. (a) The architecture of the Conditional Residual Attention Module (CRAM) integrated into the generator’s decoder. CRAM reduces dimensionality while preserving spatial and 
semantic information. (b) The Conditional Batch Normalization (CBN) layer dynamically modulates activations using two learnable hyperparameters derived from the conditioning 
input 𝐹𝑠. These parameters scale and shift the feature responses, enabling adaptive feature transformation. The symbols ⊗ and ⊕ denote element-wise multiplication and addition, 
respectively.
Fig. 4. The structure of the Channel and Spatial Attention Mechanism (CSAM), designed to refine representations with significant semantic and spatial layout information. The 
CSAM, integrated into the shortcut connection, comprises (a) channel-wise attention operation and (b) spatial-wise attention operation. Symbols ⨂, c⃝, and 𝜎⃝ denote element-wise 
multiplication, channel concatenation, and the sigmoid function, respectively.
or spatial attention, address this by emphasizing specific features, but 
still allow some redundancy. To solve this, we introduce a Channel 
and Spatial Attention Mechanism (CSAM) at the shortcut connection 
(Fig.  4), which more effectively extracts important features before 
combining them with the post-layer input. CSAM is a lightweight, 
efficient mechanism that enhances semantic and spatial information.

CSAM consists of two parts: channel-wise and spatial-wise attention. 
The channel-wise attention (Fig.  4(a)) uses a 1 × 1 convolution, fol-
lowed by adaptive average pooling and sigmoid activation, to create 
a weight vector for each channel, emphasizing semantically relevant 
ones. The spatial-wise attention (Fig.  4(b)) focuses on spatial relation-
ships by combining adaptive average and max pooling, then using 1 × 1 
convolution and sigmoid activation to generate a weight matrix for 
each pixel, highlighting significant spatial areas. CSAM combines these 
weighted features to produce a refined representation with stronger 
object boundaries and enhanced feature quality.

3.3. Dual-function discriminator network

In GAN-based semantic image synthesis, the discriminator’s goal is 
to distinguish between real and fake images while ensuring semantic 
alignment with given labels. To improve semantic alignment, we in-
troduce a multi-class segmentation function within the discriminator. 
This allows the discriminator to not only assess image authenticity but 
4 
also perform detailed semantic analysis. Additionally, our multi-scale 
strategy enhances both discrimination and segmentation performance, 
improving synthesized image quality and semantic accuracy.

As shown in Fig.  2(B), the dual-function discriminator processes 
input images at multiple scales using adaptive average pooling. Each 
scaled image passes through a discriminator with convolutional blocks, 
instance normalization, and Leaky ReLU activation. The Dis layer out-
puts a matrix at each scale, with the output at the 𝑖th scale defined as 
Eq. (7): 
𝑀𝑖(x) = dis𝑖

(

𝐷𝑖
(

𝜙𝑖(x)
))

, (7)

where x is the ground-truth image, 𝜙𝑖 is the scaling operation, and dis𝑖
applies a convolutional operation. The discriminator uses a hinge-based 
adversarial loss function to distinguish real and fake images, as shown 
in Eqs. (8) and (9): 
𝑖hadv = −E𝑥

[

min
(

−1 +𝑀𝑖(x), 0
)]

−E(1,z)
[

min
(

−1 −𝑀𝑖(𝐺(l, z)), 0
)]

(8)

ℎ𝑎𝑑𝑣 =
1
𝑛

𝑛
∑

𝑖=1
𝑖ℎ𝑎𝑑𝑣 (9)

where (l, z) is the concatenation of the semantic label and Gaussian 
noise.

For the segmentation function, the Seg layer generates a multi-
class prediction map at each scale, which is up-sampled to the original 
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Fig. 5. Distribution in amount of images corresponding to each semantic classes on the public datasets of Cityscapes, ADE20K and COCO-Stuff. The figure highlights the imbalanced 
nature of semantic class distributions in these datasets.
resolution, as shown in Eq.  (10): 

𝑃 (x)𝑥,𝑦,𝑐 =
1
𝑛

𝑛
∑

𝑖=0
𝜙0

(

 seg𝑖
(

𝐷𝑖
(

𝜙𝑖(x)
)))

, (10)

Here, 𝜙0 represents the up-sampling operation, and  seg𝑖  applies a 
segmentation layer with up-sampling and a 3 × 3 convolution. The 
prediction map includes a ‘false’ class for synthesized images. The 
discriminator is trained to align the generated images with semantic 
labels using a class-balanced cross-entropy loss:

𝑐𝑒 = −E(x,l)

[ 𝑁
∑

𝑐=1
𝛼𝑐

𝐻×𝑊
∑

𝑥,𝑦
l𝑥,𝑦,𝑐 log𝑃 (x)𝑥,𝑦,𝑐

]

− E(l,z)

[𝐻×𝑊
∑

𝑥,𝑦
log𝑃 (𝐺(l, z))𝑥,𝑦,𝑐=𝑁+1

]

, (11)

𝛼𝑐 = El

[

𝐻 ×𝑊
∑𝐻×𝑊
𝑥,𝑦 l𝑥,𝑦,𝑐

]

. (12)

Considering the typical imbalance among the 𝑁 semantic classes (as 
shown in Fig.  5), the class balancing weight 𝛼𝑐 is calculated as the in-
verse of the per-pixel class frequency to mitigate the risk of overfitting.

4. Experiments

4.1. Experimental settings

In this paper, the specifics of the experimental settings will be 
presented in terms of three aspects: datasets, evaluation metrics and 
implementation details. Further details are as follows:

4.1.1. Datasets
To validate the superiority of the proposed VD-GAN method, we 

conducted extensive experiments on three public datasets: Cityscapes 
[8], ADE20K [9], and COCO-Stuff [21]. The Cityscapes dataset con-
tains 2975 training images and 500 validation images, as well as 
35 semantic classes. The ADE20K is composed of 20,210 images for 
training and 2000 images for validation, as well as 150 semantic 
classes. The COCO-Stuff comprises 118,287 images for training and 
5000 images for validation, along with 182 semantic classes. Fig.  5 
exhibits the distribution of the number of images corresponding to each 
semantic class on the cityscape, ADE20K and COCO-Stuff datasets. It is 
obviously appreciated from the figure that there is an in-homogeneous 
distribution of semantic classes. In order to verify the robustness of the 
proposed VD-GAN under different image resolutions, we additionally 
adjusted the resolutions of the images in the Cityscapes, ADE20K, 
and COCO-Stuff datasets to 256 × 512, 256 × 256, and 256 × 256, 
respectively.
5 
4.1.2. Evaluation metric
In this paper, the semantic image synthesis task has two main goals: 

generating photo-realistic and diverse images, and aligning them well 
with given semantic labels. Referring to previous work [4], we adopt 
the Fréchet Inception Distance (FID) [22] as an image generation score 
to assess the perceptual quality and diversity of the synthesized images. 
FID compares the feature distributions of real and generated images, 
with a lower score indicating higher visual fidelity and diversity. More-
over, we also utilize both the mean Intersection over Union (mIoU) and 
the pixel Accuracy (Acc) as semantic segmentation scores to measure 
the alignment accuracy of the synthesized image with the semantic 
labels. mIoU computes the overlap between the predicted and ground 
truth regions across all classes, where higher values indicate better 
segmentation alignment. Pixel Accuracy (Acc) measures the percentage 
of correctly classified pixels in the image, providing an additional 
metric for the precision of label alignment. To calculate the semantic 
segmentation scores, we employ the advanced segmentation networks 
for each experimental dataset: DRN-D-105 for Cityscapes, UperNet101 
for ADE20K, and DeepLabV2 [23] for COCO-Stuff.

4.1.3. Implementation details
We utilize the adam optimizer [24] with 𝛽1 = 0 and 𝛽2 = 0.999. 

The learning rates for the generator, 𝑙𝑟𝑔 , are set to 0.0002, 0.0004, 
and 0.0001 for the Cityscapes, ADE20K, and COCO-Stuff datasets, 
respectively, while the learning rates for the discriminator, 𝑙𝑟𝑑 , are 
set to 0.0002, 0.0004, and 0.0004 for these datasets, respectively. To 
optimize these learning rates, we use a dynamic adjustment mechanism 
that linearly decays the learning rate based on the number of training 
epochs. This mechanism helps stabilize training by gradually reducing 
the learning rate. Additionally, we follow best practices from related 
research and use a control variable approach to adjust other parameters 
according to our specific experimental needs. We train the model for 
200 epochs on the Cityscapes and ADE20K datasets to identify the 
optimal settings, and for 100 epochs on the COCO-Stuff dataset due to 
its larger number of images. A batch size of 32 is employed across all 
datasets, and the random seed is set to 1024 to ensure reproducibility. 
To enhance the model’s robustness and evaluation metrics, we apply 
an exponential moving average [24] to the model parameters with a 
decay rate of 0.9999. The model is built on the PyTorch deep learning 
framework, leverages CUDA version 11.6, and is trained in parallel on 
four NVIDIA Tesla A100 GPUs, each with 40 GB of video memory.

4.2. Quantitative results

Previous semantic image synthesis methods can be broadly clas-
sified into two categories: unsupervised and supervised. Accordingly, 
Tables  1 and 2 present the quantitative comparison results of our 
method against unsupervised and supervised approaches, respectively, 
based on image generation scores (FID) and semantic segmentation 
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Table 1
Quantitative comparison of our method with the unsupervised methods in image 
generation score (FID) and semantic segmentation score (mIoU) on three public 
datasets. ‘‘↓’’ denotes the lower the performance the better, while ‘‘↑’’ denotes the 
higher the performance the better.
 Method Cityscapes ADE20K COCO-Stuff

 FID↓ mIoU↑ FID↓ mIoU↑ FID↓ mIoU↑ 
 DistanceGAN [25] 78 17.6 80 0.035 92.4 0.014  
 DRIT [26] 164 9.5 132.2 0.016 135.5 0.008  
 GCGAN [27] 80 8.4 92 0.07 99.8 0.019  
 CUT [2] 57.3 29.8 79.1 6.9 85.6 2.21  
 USIS [5] 53.7 44.8 33.2 17.38 27.8 14.06  
 Ours 44.1 74.7 27.3 52.1 16.8 43.8  

scores (mIoU and Acc) across all experimental datasets. In Table  1, a 
lower FID score and a higher mIoU score indicate better performance. 
It is evident from the table that our approach achieves significant 
improvements in both FID and mIoU scores across the three pub-
lic datasets, demonstrating that our method generates more realistic 
and semantically well-aligned images than previous unsupervised ap-
proaches. Furthermore, the quantitative comparison of our method 
with recent supervised semantic image synthesis approaches is sum-
marized in Table  2. Most of the baseline models in this table are 
GAN-based, except for the diffusion-based image synthesis method 
(SDM [15]) and the Conditional Guided Stable Diffusion Model (Con-
trolNet [1]). The GAN-based models can be further categorized by 
their improvement directions, including general GANs [6], normaliza-
tion techniques [11], attention mechanisms [4,28], and discriminator 
enhancements [7]. Compared to unsupervised approaches, supervised 
semantic image synthesis methods generally produce higher-quality 
images by utilizing input data that includes both semantic labels and 
Gaussian noise. As shown in the table, our method achieves signif-
icantly lower FID scores and higher mIoU and Acc scores on the 
ADE20K and COCO-Stuff datasets compared to previous supervised 
methods. Although ControlNet [1] leverages a conditional guided sta-
ble diffusion model to achieve better generation results on the smaller 
Cityscapes dataset, its synthesized images are less effective than ours in 
terms of semantic alignment. Overall, our approach delivers superior 
quantitative results compared to both unsupervised and supervised 
methods.

To further highlight the advantages of our proposed method in su-
pervised adversarial learning, we quantitatively compare our approach 
with other methods using various evaluation metrics. Specifically, we 
use Learned Perceptual Image Patch Similarity (LPIPS) [30], Peak 
Signal-to-Noise Ratio (PSNR) [31], and Topological Image Quality 
(TOPIQ) [32]. LPIPS measures perceptual similarity between images, 
focusing on the high-level features that align with human visual per-
ception, where lower values indicate closer perceptual similarity. PSNR 
assesses the structural integrity of images by comparing pixel-level 
differences, with higher values indicating better reconstruction qual-
ity. TOPIQ evaluates overall image quality, including aspects of both 
visual perception and topological accuracy, where higher scores reflect 
superior diversity and structural consistency. As shown in Table  3, our 
approach demonstrates notable advantages in these areas, indicating 
superior performance in image synthesis. Furthermore, we evaluate the 
transferability of our method across datasets. Specifically, we use the 
pretrained model on ADE20K and perform inference on COCO-Stuff, 
comparing the Image Quality Assessment (IQA) [29] metrics across 
different methods. IQA provides an overall assessment of image quality 
by evaluating both structural and perceptual aspects. The results, pre-
sented in Table  4, showcase our method’s superior performance and 
generalization ability across different datasets. This further emphasizes 
the robustness and effectiveness of our approach in diverse scenarios.

These improvements are not just theoretical but have practical im-
plications in real-world tasks. For instance, when our method is applied 
as a data augmentation tool in semantic segmentation, the enhanced 
6 
image quality directly translates into better model performance. This 
is substantiated by the new Table  5, which compares our method 
with the latest baseline methods for data augmentation in semantic 
segmentation. In this table, ‘‘Ground Truth’’ represents the baseline 
performance of the segmentation network trained on existing datasets 
without augmentation. When used to augment the training data, our 
method significantly improves performance metrics compared to the 
baselines. For example, on the Cityscapes dataset, our method reduces 
the Top-1 error rate, a metric that measures the percentage of the most 
likely predictions being incorrect, from 19.3% to 18.1%. This indi-
cates a reduction in misclassification. Similarly, the mean Intersection 
over Union (mIoU), which measures the overlap between predicted 
and ground truth regions across all classes, increases from 47.2% to 
50.4%. Higher mIoU values reflect better segmentation accuracy and 
alignment with ground truth. Additionally, the pixel Accuracy (Acc), 
which calculates the percentage of correctly classified pixels, improves 
from 38.2% to 41.6%, indicating a more accurate pixel-level prediction. 
These results provide concrete evidence that the gains in image quality 
and diversity achieved by our method have direct and significant 
benefits in practical applications, reinforcing its effectiveness as a data 
augmentation tool.

4.2.1. Human perceptual evaluation
To further validate our method’s performance in semantic image 

synthesis, we conducted a human perceptual evaluation [33] across the 
Cityscapes, ADE20K, and COCO-Stuff datasets, comparing our approach 
with the latest baseline methods [1,4]. We employed a rigorous random 
sampling approach to ensure representativeness and minimize bias: 200 
semantic labels were randomly selected from each dataset’s validation 
set using Python’s random library, ensuring a diverse and unbiased 
selection. For participant selection, we randomly chose 20 individuals 
with expertise in image processing and computer vision, ensuring a 
broad range of opinions and enhancing the evaluation’s reliability. The 
evaluation was conducted under standardized conditions, with images 
presented in a randomized order to prevent bias. Statistical analysis 
was performed to calculate the average probability of our method’s 
images being selected as more photo-realistic, with p-values indicating 
the statistical significance of the observed differences, as summarized 
in Table  6. Smaller p-values indicate the robustness and reliability of 
our method’s superior performance compared to the baseline methods.

4.2.2. Result with dual-function discriminator
We compared the discriminator of our method with those of GAN-

based benchmarks in terms of network structure, parameters, innova-
tion, and functionality, as shown in Table  7. Previous GAN-based mod-
els for semantic image synthesis typically use discriminators like ‘‘Mul-
tiscalePatchGAN’’, ‘‘Semantics-embedding’’, ‘‘Segmentation-based’’,
and ‘‘MultiscaleSESAME’’. The ‘‘MultiscalePatchGAN’’ from Pix2PixHD 
[17] is based on PatchGAN [16], while CC-FPSE [18] introduced the
‘‘Semantics-embedding’’ discriminator, which reduces the number of 
parameters. As shown in Fig.  6, although OASIS employs a segmentation
based discriminator, its main focus is on differentiating real from fake 
images, which has only an indirect and limited impact on semantic 
alignment. In contrast, ‘‘MultiscaleSESAME’’ in SAFM [7], built on 
SESAME [34], incorporates a complex SegNet structure to assist in 
prediction. Our proposed dual-function discriminator, however, not 
only distinguishes between real and fake images but also performs 
multi-class segmentation. It uses fewer parameters than both OASIS and 
SAFM, and the improvements in semantic alignment are evident in the 
per-class IoU scores for Cityscapes, as shown in Table  8. Our method 
achieves higher IoU scores across all object classes, with particularly 
significant gains for larger classes such as utility poles, traffic lights, 
buses, trains, and motorcycles, resulting in a +6 obj-mIoU improvement 
over the state-of-the-art OCGAN [4] model.
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Table 2
Quantitative comparison of our method with supervised baseline methods based on image generation scores (FID) and semantic 
segmentation metrics (mIoU and Acc) across all datasets. ’n/a’ indicates that the visual result is not provided on the model’s 
official website. Boldface highlights the best performance.
 Method Cityscapes ADE20K COCO-Stuff

 FID↓ mIoU↑ Acc↑ FID↓ mIoU↑ Acc↑ FID↓ mIoU↑ Acc↑ 
 DAGAN [6] 60.3 66.1 82.6 31.9 40.5 81.6 n/a n/a n/a  
 LGGAN [28] 57.7 68.4 83.0 31.6 41.6 81.8 n/a n/a n/a  
 SPADE [11] 71.8 62.3 81.9 33.9 38.5 79.9 22.6 37.4 67.9 
 SAFM [7] 49.5 70.4 83.1 32.8 50.1 86.6 24.6 43.3 73.4 
 SDM [15] 42.1 72.8 93.7 27.5 43.5 82.4 23.5 39.8 68.7 
 ControlNet [1] 42.0 73.1 93.9 27.8 45.6 84.0 21.3 42.7 70.2 
 OCGAN [4] 43.8 73.8 94.8 28.3 51.2 86.8 17.0 43.2 73.8 
 Ours 44.1 74.7 95.4 27.3 52.1 87.3 16.8 43.8 74.0 
Table 3
Quantitative comparison of our method with supervised baseline approaches using other evaluation metrics for assessing image quality and diversity.
 Method Cityscapes ADE20K COCO-Stuff

 LPIPS PSNR TOPIQ LPIPS PSNR TOPIQ LPIPS PSNR TOPIQ  
 DAGAN 0.3927 16.191 0.3840 0.5175 11.766 0.5405 n/a n/a n/a  
 LGGAN 0.3830 11.766 0.3526 0.5138 11.840 0.5317 n/a n/a n/a  
 SPADE 0.3953 15.848 0.4103 0.5178 11.731 0.5572 0.6520 11.200 0.5904  
 SAFM 0.3824 14.095 0.4571 0.5018 12.046 0.5100 0.6346 10.088 0.6103  
 SDM 0.3812 15.370 0.4594 0.5032 11.921 0.6419 0.5571 10.352 0.6845  
 ControlNet 0.3857 15.936 0.4826 0.4963 12.082 0.6107 0.5492 10.310 0.7061  
 OCGAN 0.3792 16.243 0.4380 0.5031 12.109 0.6741 0.5381 11.063 0.7119 
 Ours 0.3775 15.578 0.5273 0.5192 12.173 0.6975 0.5364 11.209 0.7093  
Fig. 6. Comparison of semantic alignment between our method and baseline approaches, highlighting improvements in spatial consistency and structure preservation.
Table 4
The comparison results of cross-dataset transferability, with the metric being Image 
Quality Assessment (IQA) values.
 Metric SPADE [11] SAFM [7] SDM [15] ControlNet [1] OCGAN [4] Ours 
 IQA [29] 0.75 0.78 0.80 0.82 0.79 0.85 

Table 5
Comparison of the proposed method with the latest baseline methods as data augmen-
tation tools for semantic segmentation tasks.
 Method Cityscapes ADE20K COCO-Stuff

 Top-1 Top-5 mIoU Acc mIoU Acc  
 Ground Truth 20.6 5.5 42.0 80.7 34.8 65.8 
 ControlNet [1] 20.0 5.1 44.1 83.5 36.0 66.9 
 OCGAN [4] 19.3 4.4 47.2 84.9 38.2 70.1 
 Ours 18.1 3.9 50.4 86.8 41.6 73.5 

Table 6
Human perceptual evaluation. These values reflect the average probability of our 
method being approved by the workers compared to the baseline methods in image 
synthesis. p-values indicate the statistical significance of the observed differences.
 Method Cityscapes ADE20K COCO-Stuff p-values 
 Ours > ControlNet 63.28% 57.36% 57.04% 0.018  
 Ours > OCGAN 58.17% 51.90% 52.67% 0.026  
7 
Table 7
Comparative results of our discriminator with that of the GAN-based benchmarks in 
terms of structure, number of parameters, innovation and functionality.
 Method Discriminator structure Parameters Innovation True/False Prediction 
 LGGAN MultiscalePatchGAN 5.6 × ✓ ×  
 SPADE MultiscalePatchGAN 5.6 × ✓ ×  
 OCGAN MultiscalePatchGAN 5.6 × ✓ ×  
 CC-FPSE Semantics-embedding 5.2 ✓ ✓ ×  
 OASIS Segmentation-based 22.3 ✓ ✓ ✓  
 SAFM MultiscaleSESAME 33.4 ✓ ✓ ✓  
 Ours Dual-function 8.1 ✓ ✓ ✓  

4.2.3. Analysis of method efficiency
In Table  9, we present a comparison of the network parameters 

and model efficiency between our approach and several representative 
competing models. Our GAN-based model stands out with the smallest 
total number of trainable parameters, totaling just 92.7 million, thanks 
to the lightweight design of both the generator and discriminator. This 
allows us to reduce the number of parameters without compromising 
the quality of image synthesis. Moreover, we assess the model’s per-
formance in terms of inference time and frames per second (fps) on 
a single GeForce RTX 3090 GPU. The results reveal that our model 
reduces inference time by more than 3.3% and increases fps by over 
3.3% compared to the latest OCGAN [4]. These findings highlight that 
our method not only achieves superior image synthesis quality but 
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Table 8
Per-class IoU for the Cityscapes dataset. Classes corresponding to objects, i.e. the object, human, and vehicle 
groups in Cityscapes, are underlined. The obj-mIoU refers to the mIoU calculated only for these object
classes.
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 DAGAN 97 80 89 60 53 41 39 46 88 65 92 66 45 89 71 75 57 25 60 56 
 LGGAN 97 83 89 59 56 42 42 50 89 70 92 69 48 90 72 80 52 38 64 59 
 SPADE 97 80 88 54 50 40 39 41 88 69 92 66 41 89 64 73 42 29 61 53 
 SAFM 99 92 95 79 80 56 73 65 97 91 96 87 68 98 81 88 40 56 84 72 
 SDM 97 82 88 58 62 44 42 50 85 69 85 60 49 89 66 71 47 41 63 57 
 ControlNet 98 80 87 72 65 42 52 51 87 91 79 66 55 89 67 81 65 55 65 69 
 OCGAN 97 90 92 79 78 46 60 58 93 89 89 80 58 93 84 73 47 60 72 73 
 Ours 99 92 95 79 82 58 77 73 97 90 96 87 72 97 88 93 57 66 89 79 
Fig. 7. High-resolution image synthetic results on the Cityscapes dataset. Our approach generates more photo-realistic and semantically well-aligned images.  (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 9
Comparison of network parameters and model efficiency among different methods. The 
best performance in each category is highlighted in **bold**.
 Method Network parameters (M) Model efficiency
 Total Generator Discriminator Inference time (s) ↓ FPS ↑ 
 LGGAN [28] 117.2 111.6 5.6 0.2650 3.77  
 SPADE [11] 98.6 93.0 5.6 0.6062 1.63  
 CC-FPSE [18] 133.3 128.1 5.2 0.0913 10.95 
 OASIS [19] 93.4 71.1 22.3 0.0875 11.43 
 SAFM [7] 129.6 96.2 33.4 0.0963 10.38 
 OCGAN [4] 97.5 91.9 5.6 0.0879 11.38 
 Ours 92.7 84.3 8.1 0.0850 11.76 

also demonstrates enhanced computational efficiency, outperforming 
state-of-the-art models in both aspects.

4.3. Qualitative results

Figs.  7, 8, and 9 present the qualitative comparison between our 
proposed method and the competing approaches on the Cityscapes, 
ADE20K, and COCO-Stuff datasets. Our findings show that the images 
synthesized by our method not only exhibit superior perceptual quality 
but also more closely match the ground truth images in terms of overall 
color and texture distribution. Notably, the complex real-world scenes 
generated by our method demonstrate significant improvements on the 
Cityscapes dataset. Although OCGAN [4] is the current state-of-the-art 
GAN-based approach, its synthesized images tend to be overly bright 
and even exhibit color distortion. In contrast, our method produces 
photo-realistic images that faithfully adhere to the input semantic 
labels, and it excels in generating challenging scenes with high image 
fidelity.

4.3.1. Average power spectrogram
It reflects the distribution of energy from low to high frequencies in 

images, and the extent to which low-frequency energy is concentrated 
8 
Table 10
Similarity matching results of the average power spectrograms between Ground Truth 
(GT) images and those synthesized by deep learning methods.
 Power spectrograms ORB similarity Hist similarity 
 GT vs. SPADE [11] 0.64330 0.59132  
 GT vs. SAFM [7] 0.71308 0.62461  
 GT vs. ControlNet [1] 0.78143 0.71036  
 GT vs. OCGAN [4] 0.81325 0.78934  
 GT vs. Ours 0.87059 0.84062  

in the center of the spectrum. Therefore, we furthermore conducted a 
qualitative comparison of the average power spectrum for synthesized 
images on the ADE20K dataset, whose result is shown in Fig.  10. The 
average power spectrum of the images generated by the competing 
methods presents more significant peaks and distortions. Moreover, the 
visual comparison in terms of color, shape and texture also confirms 
that the average power spectrum is more similar between the ground 
truth images and the images generated by our approach. Table  10 re-
ports the similarity matching result of the average power spectrograms 
between ground truth images and synthesized images. Specifically, the 
similarity of the two average power spectrograms is calculated by the 
ORB [35] and histogram algorithms. And the higher the calculated 
value, the more similar. The similarity matching results also helpful to 
confirm that the distribution of the images synthesized by our method 
is closer to the ground truth images.

4.3.2. Visualization of predicted semantic maps
Following OASIS [19], we employ a pre-trained segmentation net-

work to produce predicted semantic maps from the synthesized images. 
Details of the specific pre-trained networks used for each dataset are 
provided in Section 4.1, such as DRN-D-105 [36] for Cityscapes, Uper-
Net101 [37] for ADE20K. Fig.  11 shows a visual comparison between 
the semantic labels and the predicted semantic maps generated by our 
method versus those produced by the latest OCGAN [4]. Our results 
indicate that the images generated by our method are of higher quality, 
and the predicted semantic maps are more accurately aligned with the 
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Fig. 8. Visual comparison results on the ADE20K dataset. Though very diverse categories and small structures, our method can work well and generate high-fidelity results.  (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Visual comparison results on the challenging COCO-Stuff dataset. It shows that images synthesized by our approach are more realistic than baselines.  (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)
given semantic labels compared to those from OCGAN. Particularly, our 
method delivers improved predictions for small objects, such as ‘‘pole’’ 
and ‘‘trolley’’ in the Cityscapes dataset. This highlights the effectiveness 
of incorporating a segmentation function into our discriminator to 
enhance semantic alignment.

4.3.3. Visualization of learned attention heatmaps
To analyze the proposed CSAM (Fig.  4), we randomly selected its 

position in the generator (e.g., at 𝐷𝐿1) and displayed the input and 
output feature heatmaps in columns 1 and 6 of Fig.  12. The output 
heatmap from CSAM not only reduces channel dimensions (from 96 
to 64) but also enhances attention intensity and object contours. For 
example, the grass, bed, and chair, highlighted by black dashed lines 
in column 6, show brighter heatmaps and clearer contours compared 
9 
to column 1. This suggests that CSAM improves feature quality for 
synthesizing high-quality images. As shown in Fig.  4, CSAM combines 
channel-wise and spatial-wise attention. The output heatmap is a fusion 
of these attentions. For the channel attention heatmap (column 4), we 
display attention maps from two channels (𝑁1th and 𝑁2th) in columns 
2 and 3. Differences in channel attention weights are evident; for 
instance, the 63th channel map is brighter than both the 6th, indicating 
it contains more significant information. Column 5 displays the spatial 
attention heatmap, highlighting the importance of different regions by 
visualizing the attention weights across them. Moreover, the output 
heatmaps (in column 6) are more focused on significant information 
than those from the channel (column 4) and spatial attention maps 
(column 5).
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Fig. 10. Qualitative comparison of the average power spectrograms drawn from ground truth images and synthetic images on the ADE20K dataset. Coordinate axes are on a 
logarithmic scale.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Visualization of predicted semantic maps for the synthesized images compared with those from SAFM on the Cityscapes (left) and ADE20K (right) datasets. Semantic 
image synthesis results of our method and latest SAFM. ‘‘SM’’ is an abbreviation for Semantic Map.
Fig. 12. Heatmap visualization of the Channel and Spatial Attention Mechanism (CSAM) on ADE20K. Columns 1 and 6 show the feature heatmaps of the input and output of 
CSAM (as illustrated in Fig.  4). The output heatmap (column 6) results from the fusion of the channel attention heatmap (column 4) and the spatial attention heatmap (column 
5). The channel attention heatmap consists of multiple channels, with the attention weight for the 𝑁1th channel represented in a color scale, where darker colors indicate stronger 
attention.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
4.4. Ablation study

We propose VD-GAN, a novel GAN-based approach that enhances 
both image generation and semantic segmentation. An ablation study 
will be conducted to validate the effectiveness of the novel module in 
semantic image synthesis.

4.4.1. Ablation study on the generator network
Our generator network is based on a variational U-Net structure, 

consisting of an encoder and decoder. The encoder uses Swin Trans-
former blocks and a patch embedding layer, while the decoder in-
corporates Swin Transformer blocks, a patch expanding layer, and 
10 
a Conditional Residual Attention Module (CRAM). This architecture 
combines the Swin Transformer (SwinT) with CNNs, leveraging pre-
trained (PT) weights for improved performance. We conducted an 
ablation study (denoted as ‘‘SwinT w/ PT + CNN ’’) to demonstrate the 
effectiveness of our approach, as detailed in Table  11. The experimental 
setups include: ‘‘RNN-UNet ’’, a generator that integrates Recurrent 
Neural Networks (RNN) into the UNet architecture to enhance fea-
ture extraction by capturing temporal dependencies; ‘‘CNN-UNet ’’, a 
fully convolutional generator with an encoder and decoder structure 
incorporating CRAM; and ‘‘SwinT w/ PT ’’, our generator without the 
CRAM module, which fuses shallow and deep features. The comparison 
of our method with these alternatives highlights the advantages of 
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Table 11
Ablation study on the generator network.
 Method LPIPS↓ FID↓ mIoU↑ Acc↑ 
 RNN-UNet 0.5402 47.9 68.5 88.3 
 CNN-UNet 0.4274 48.4 69.2 90.8 
 SwinT w/ PT 0.3927 45.1 72.0 94.7 
 SwinT w/o PT + CNN 0.3953 46.3 71.9 93.2 
 SwinT w/ PT + CNN 0.3775 44.1 74.7 95.4 

Table 12
Ablation study on the conditional residual attention module (CRAM) and the conditional 
batch normalization (CBN). The bold font indicates our settings.
 Config. CRAM Conv [16] CBN BN [38] SPADE [11] FID mIoU Acc  
 A1 ✓ × ✓ × × 44.1 74.7 95.4 
 A2 ✓ × × ✓ × 45.0 73.1 94.8 
 A3 ✓ × × × ✓ 44.0 74.5 95.0 
 A4 × ✓ ✓ × × 44.7 73.6 94.5 

Table 13
Ablation study of our CSAM on Cityscapes. ‘‘CAM’’ and ‘‘SAM’’ represents the channel-
wise and spatial-wise attention operation in the proposed CSAM, respectively. For all 
metrics except FID, higher is better.
 Settings FID↓ mIoU↑ Acc↑ 
 B1 Ours 44.1 74.6 95.4 
 B2 B1-CAM 45.1 73.9 95.3 
 B3 B1-SAM 44.7 74.2 95.4 
 B4 B2-SAM 47.0 73.5 94.9 

a Transformer-based network for semantic image synthesis and the 
improved performance from combining the Transformer with CNNs. 
We also evaluated a version of our network with randomly initialized 
parameters (‘‘SwinT w/o PT + CNN’’), and the results underline the 
critical role of pre-trained weights in the Swin Transformer.

4.4.2. Ablation study on the CRAM and CBN
In order to compensate for the information loss resulting from 

the encoding stage, the extracted low-level features are concatenated 
to the high-level features output by the upper layer of the decoder. 
Nevertheless, the concatenation operation acquires higher dimensional 
features with spatial and semantic information. To reduce the feature 
dimensionality and extract important information, we propose a novel 
conditional residual attention module, abbreviated as CRAM. In order 
to highlight the superiority of our proposed CRAM, its baseline variant 
utilizes a conventional 1 × 1 convolution block as a comparison. 
Inspired by BN [38], we also design a Conditional Batch Normalization 
(CBN) layer in the structure of CRAM. To evaluate the importance of 
the innovated CBN, we employ two normalization layers available for 
replacement: a common Batch Normalization [38] layer (also known 
as ‘‘BN’’) and an advanced SPatially-Adaptive (DE)normalization [11] 
(denoted as ‘‘SPADE’’). As shown in Table  12, the selection of CRAM 
and SPADE only performs well in the image generation score (FID), 
while both CRAM and CBN used in our generator network obtain 
outstanding manifestation in the semantic segmentation scores (mIoU 
and Acc).

4.4.3. Ablation study on the CSAM
To evaluate the effectiveness of the proposed Channel and Spatial 

Attention Mechanism (CSAM) in VD-GAN, we conduct an ablation 
study by comparing the full VD-GAN model with three variants, each 
of which progressively removes specific components from the CSAM 
structure (as shown in Fig.  4). The variants are as follows: (B1) ‘‘Base-
line’’, which represents the VD-GAN model with the complete CSAM 
structure; (B2) ‘‘B1-CAM’’, where the channel-wise attention operation 
is removed; (B3) ‘‘B1-SAM’’, where the spatial-wise attention operation 
is excluded; and (B4) ‘‘B2-SAM’’, which omits the entire CSAM struc-
ture, thus lacking both channel and spatial attention mechanisms. The 
11 
Table 14
Comparison of the discriminator’s performance on the Cityscapes dataset with different 
𝑆𝑐𝑎𝑙𝑒𝐷 settings, including a multi-scale discriminator.
 Method FID mIoU Acc  
 𝑆𝑐𝑎𝑙𝑒𝐷 = 1 45.6 73.4 95.1 
 𝑆𝑐𝑎𝑙𝑒𝐷 = 2 44.1 74.6 95.4 
 𝑆𝑐𝑎𝑙𝑒𝐷 = 3 46.1 73.2 95.2 
 Multi-scale 45.5 69.4 94.8 

ablation study results, presented in Table  13, demonstrate the crucial 
role of both the channel-wise and spatial-wise attention operations 
in enhancing the quality of image synthesis conditioned on semantic 
labels.

4.4.4. Ablation on input information utilization
To assess the effectiveness of our approach in utilizing input in-

formation compared to previous GAN models, we compared feature 
heatmaps at critical network stages—specifically, the encoder layer 4 
(𝐸𝐿4) and decoder layer 2 (𝐷𝐿2). As shown in Fig.  13, the green 
boxes represent heatmaps from earlier GAN models, where input data is 
directly fed into the UNet structure, while the red boxes show heatmaps 
from our method, which uses semantic enhancement through one-hot 
encoding. This comparison highlights that our method achieves clearer 
and more distinct feature activations at these stages, demonstrating a 
more effective utilization of input information. Our approach enhances 
semantic representation and compensates for potential information loss 
during encoding, resulting in improved network performance and a 
better extraction and use of input data.

4.4.5. Ablation on the discriminator network
In addition, our discriminator adopts a multi-scale strategy to im-

prove the training of the network. To verify the effectiveness of this 
approach, we conducted experiments with discriminators set at differ-
ent scales, while keeping other parameters constant. The FID, mIoU, 
and Acc metrics on the Cityscapes dataset (Table  14) indicate that 
a two-scale discriminator, which operates at both the original scale 
and a downsampled scale of 1/2, leads to higher quality results and 
reduced training times. Additionally, we compared the performance of 
our dual-function discriminator against a conventional multi-scale dis-
criminator [17]. The results show that our dual-function discriminator 
significantly improves the photo-realism of the synthesized images and 
enhances semantic alignment, as evidenced by the metric scores.

5. Conclusion

In this paper, we propose a novel VD-GAN method to improve image 
quality and semantic consistency in image synthesis. By leveraging 
a U-Net-based generator with attention modules, the dual-function 
discriminator ensures consistency between the generated images and 
semantic labels. Experimental results demonstrate state-of-the-art per-
formance across three standard datasets, and Fig.  14 showcases our 
approach’s generalizability on the Helen [39] dataset, along with its 
potential in artistic applications such as multi-style image synthesis 
and semantic control synthesis. However, we recognize that the Helen 
dataset, consisting of 2330 facial images with detailed and consistent 
annotations, may introduce biases related to facial features, age, or 
expressions, which could impact model performance, particularly when 
applied to more diverse or complex scenarios. Additionally, ethical con-
siderations regarding the potential misuse of generated images or biases 
in synthetic content must be carefully addressed to ensure responsible 
application of our approach. Our method also faces challenges in han-
dling complex scenes with intricate backgrounds and fine details. For 
instance, scenarios involving ambiguous or incomplete semantic infor-
mation, low-quality input images, or complex background details may 
lead to less accurate or realistic image generation. These failure cases 
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Fig. 13. Comparison of feature heatmaps at different stages of the generator network.  (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)
Fig. 14. (a–b)Artistic applications of multi-style image synthesis and semantic control synthesis based on our method.(c) The generalizability of our approach across different 
domains.
highlight the need for further refinement in handling detailed features 
and more intricate scenes. To address these challenges, future work will 
focus on mitigating dataset biases, enhancing the model’s robustness, 
and improving its ability to handle such complexities. Moreover, we 
aim to explore real-world deployment opportunities in industries such 
as entertainment, virtual reality, and digital media, ensuring that our 
approach meets the specific needs of these applications while adhering 
to high ethical standards.
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