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ABSTRACT

Predicting 3D geometry and motion from videos is crucial for various applica-
tions. Most existing methods adopt a two-stage reconstruct-then-tracking pipeline,
which first perceives 3D geometry and then exploits this 3D information to track
each pixel. They usually employ the conventional iterative tracking strategy and
are thus inefficient, especially for dense motion estimation. Moreover, they fail
to leverage the complementary motion information for better dynamic reconstruc-
tion. To address these limitations, we propose MotionVGGT, an end-to-end uni-
fied transformer architecture that simultaneously perceives dense 3D geometry,
camera pose, and motion. We introduce a set of geometry, camera, and motion
tokens to represent each frame and interact with each other through interleaved
frame attention and global attention layers. We then employ multiple heads to de-
code point maps, camera poses, and 3D motions from the corresponding tokens.
Specifically, we design a conditional dense prediction head and use the motion to-
kens as conditions to modulate the decoding process of geometry tokens to trans-
form them into motions. Our model directly generates dense per-pixel 3D motion
fields in a single forward pass without external trackers. By unifying geometry
and motion modeling, MotionVGGT further equips visual geometry foundation
models with motion awareness. Our MotionVGGT shows a strong generalization
ability across diverse visual geometry perception tasks, establishing a practical
and universal paradigm for more comprehensive scene understanding.

1 INTRODUCTION

The physical world is essentially a dynamic three-dimensional (3D) environment. Embodied agents
observe the world through continuous video streams, where objects move, deform, interact, and
occlude one another over time. For accurate and safe perception and planning, it is crucial to under-
stand both 3D geometry and dynamic motion from videos, demanding an evolving dynamic scene
representation that is coherent across frames (Zhu & Tang, 2025; Shao et al., 2023; Choe et al.,
2023; Tretschk et al., 2024).

Recent years have witnessed rapid progress in geometry foundation models. 3D reconstruction
methods (Wang et al., 2025b) predict a set of 3D attributes, including camera parameters and
depth/point maps in a single forward pass, achieving competitive or state-of-the-art results across
multiple 3D tasks. 2D Point tracking methods (Karaev et al., 2024) jointly track large sets of pixels
in long videos, modeling inter-point dependencies to improve accuracy and robustness under oc-
clusion and out-of-view re-entries. Building on top of them, 3D point tracking methods (Karaev
et al., 2024; Xiao et al., 2024; Ngo et al., 2025) adopt a pipeline that proceeds from 3D reconstruc-
tion to tracking, thereby sequentially extracting motion information. However, their obtained tracks
are usually sparse and are only anchored to the source frame, leading to incomplete motion model-
ing. Moreover, it fails to exploit the rich motion cues that could otherwise enhance dynamic scene
reconstruction, thus facing drawbacks in performance and inefficiency.

Motivated by this, we introduce MotionVGGT, an end-to-end unified transformer architecture that
simultaneously perceives dense 3D geometry and motion. It only takes as inputs RGB video or
image sequences and predicts both geometry (camera, depth, point maps) and dense 3D motion
fields in a single forward pass, as shown in Figure 1. We introduce a set of geometry, camera,
and motion tokens to represent each frame, which interact through interleaved frame attention and
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Figure 1: Overview of our proposed MotionVGGT. MotionVGGT achieves unified geometry and
motion perception in world space in an-end-to-end manner.

global attention layers. Multiple decoding heads are then employed to recover point maps, camera
poses, and 3D motions from the corresponding tokens. In particular, we design a conditional dense
prediction head, where motion tokens serve as conditions to modulate the decoding of geometry
tokens, effectively transforming them into motion representations. Our method requires no optical
flow, no external tracker, and no extra geometric inputs, yielding image-wide dense 3D motion
and aligning naturally with dynamic scene reconstruction. With MotionVGGT, we extend visual
geometry foundation models from static geometry reconstruction to dynamic unified perception,
offering a simple, scalable, and training-friendly path toward general scene understanding and broad
deployment in autonomous driving, embodied Al, and AR/VR.

2 RELATED WORK

Classical SfM/MVS. Early methods reconstruct 3D geometry from unordered image collections by
alternating correspondence discovery, camera pose estimation, and dense multi-view supervision.
COLMAP (Schonberger & Frahm, 2016) remains a widely used, high-quality baseline with mature
Structure-from-Motion (SfM) and Multi-View Stereo (MVS) modules. DeepMVS (Huang et al.,
2018) has progressively shifted from hand-crafted matching to learned cost volumes and transform-
ers, improving accuracy and scalability.

Pairwise and multi-view geometric priors. A growing family of methods reframes correspondence
and reconstruction as direct point-map regression, reducing reliance on calibration and optimization
and providing strong geometric priors for downstream tasks. DUSt3R (Wang et al., 2024) regresses
dense point maps from uncalibrated and unposed image pairs and recovers accurate scene geome-
try with a single forward pass. MASt3R (Leroy et al., 2024a) augments this paradigm with dense
local features and a 3D-grounded matching head, improving robustness under extreme viewpoint
changes and accelerating matching. Recent works extend these ideas from pairs to multi-view set-
tings. Fast3R (Yang et al., 2025) processes hundreds to thousands of unposed images jointly in a
single forward pass for efficient multi-view reconstruction. Point3R (Wu et al., 2025) targets dense
streaming reconstruction with an explicit spatial pointer memory that integrates incoming observa-
tions into a global coordinate frame.

Visual geometry transformers. VGGT (Wang et al., 2025b) predicts camera parameters, depth
and point maps, and queried point tracks from one to hundreds of views in a single forward
pass, and it often matches or exceeds methods that rely on heavy post-optimization. Recent vari-
ants improve scalability and latency. VGGT-Long (Deng et al., 2025) targets kilometer-scale se-
quences by chunking long videos and aligning overlapping segments with lightweight loop closure.
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StreamVGGT (Zhuo et al., 2025) processes frames online with a causal transformer and cached
memory for low-latency streaming reconstruction. FastVGGT (Shen et al., 2025) accelerates infer-
ence through a training free token-merging strategy and reports up to four times faster throughput on
long sequences. However, most geometry-aware models are trained and evaluated on static scenes
and do not natively output dense 3D motion fields over time, which motivates architectures that
unify geometry with motion.

Query-based 2D/2.5D tracking. Point tracking studies motion by tracing queried points across
long videos. TAP-Vid (Doersch et al., 2022) established a benchmark for this problem, empha-
sizing visibility changes and long horizons. TAPIR (Doersch et al., 2023) introduced a two-stage
matcher-refiner that tracks arbitrary points efficiently and robustly. CoTracker (Karaev et al., 2024)
demonstrated that jointly modeling inter-point dependencies markedly improves robustness to occlu-
sions and out-of-view re-entries and enables simultaneous tracking of thousands of points. However,
these methods follow selected points (often in 2D image space), not an image-wide dense 3D motion
field. To achieve per-pixel coverage would require tracking vast numbers of queries, which increases
computation and memory substantially.

Dense 3D tracking. DELTA (Ngo et al., 2025) proposes per-pixel 3D trajectories from monocu-
lar video with a coarse-to-fine design, reporting state-of-the-art accuracy and substantially higher
throughput. Although DELTA outputs dense 3D tracks, it typically does not estimate explicit scene
geometry jointly within the same model. Moreover, 3D tracking task is different with 3D motion.
In the literature, “3D motion” often refers to per-point trajectories expressed in a world coordinate,
representing how points move globally over time. In contrast, “3D tracking” is defined in each cam-
era’s per-frame coordinate system. Thus, even when DELTA recovers dense 3D tracks per frame,
these tracks cannot be directly used for dynamic scene reconstruction in the world coordinate frame
unless camera poses are provided.

Dynamic Scene Reconstruction. Dynamic scene reconstruction remains less explored compared
with static scene reconstruction. Dynamic Point Map proposes a time invariant point map across
timestamps. DynaDUSt3R (Jin et al., 2024) adds pixel level motion supervision to model dynamic
geometry. Driv3R (Fei et al., 2024), applies a DUSt3R-based streaming 4D reconstruction frame-
work to autonomous driving scenes. It regresses per-frame point maps, uses a temporal-spatial
memory to reason dynamics, and aligns all frames into a consistent world coordinate system in an
optimization-free manner. CUT3R (Wang et al., 2025d) maintains a persistent state and updates a
global point map from streaming video for static and dynamic scenes. It predicts metric-scale point
maps online and can even infer unseen views. More recently, D2ZUSt3R has been proposed to extend
DUSt3R into dynamic scenes by regressing 4D pointmaps that simultaneously capture static geom-
etry and per-frame motion, thereby embedding spatio-temporal dense correspondences directly into
the reconstruction process (Han et al., 2025).

3 METHOD

MotionVGGT is designed to capture and describe the 3D geometry and motion in dynamic scenes
from videos or image sequences, a capability that prior geometry-aware models trained on static 3D
scenes do not provide. To achieve this, we propose a novel motion head that disentangles 3D motion
information from the geometry tokens produced by a pretrained geometry-aware backbone and pre-
dicts dense, per-pixel 3D motion fields. In this section, we first introduce the unified 3D geometry
and motion perception task in Section 3.1. Subsequently, we describe our proposed architecture in
Section 3.2. Finally, we provide the details of our training setup in Section 3.3.

3.1 UNIFIED GEOMETRY AND MOTION PERCEPTION

Most existing methods decompose dynamic scene understanding into two steps: first reconstruct-
ing geometry, and then applying tracking to model the motion of dynamic objects. This setup is
inherently limited, as contemporary tracking methods generally rely on sparse query points or ob-
ject instances, not dense matches, hindering fine-grained motion modeling. Moreover, conventional
tracking is usually formulated in the camera coordinate system of each frame, which only provides
per-frame trajectories. In contrast, 3D motion should be expressed in a consistent world coordinate
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Figure 2: Comparisons on 3D point tracking paradigms. Our methodology directly obtains 3D
motion information in world space, excelling in efficiency and simplicity.

system. The difference lies in the presence of camera pose:

3D Motion: V, ,;(u,v) € R* in world coordinates, (1
3D Tracking: 7 : O, — O; in camera coordinates, 2)

where Vs_,;(u, v) denotes the dense 3D displacement of pixel (u, v) from frame s to frame ¢ in the
world coordinate system, while 7 provides correspondences of sparse objects or points Oy to Oy
within per-frame camera spaces.

While VGGT (Wang et al., 2025b) can predict geometry and 2D tracks jointly (thus indirectly infer-
ring 3D motion via camera pose and depth), it still depends on an external tracker. Scaling sparse
tracking to dense coverage would demand a huge number of queries, causing excessive memory and
computational costs. To overcome these limitations, we propose a unified framework that jointly
predicts geometry and motion in a single forward pass. Built on a geometry-aware backbone, it uses
geometry heads and a motion head to simultaneously decode geometry and dense 3D motion, rather
than the cascaded pipeline in Fig. 2.

Formally, given an input video or an image sequence Z € R¥*3XHxW ‘our goal is to estimate both
scene geometry (camera intrinsics K, extrinsics £, depth maps D, and point maps P) and dense 3D
motion fields V. Specifically:

{K.€,D,P,V} = fo(2), 3)
where fp denotes our unified network. For each source frame s € {1,..., S} and target query frame
t € {1,...,T}, the motion field is defined as:

Vs%t(uav) = (x7yaz)s—>ta V(U,’U) € {177H} X {177W} (4)

This formulation yields dense world-coordinate 3D motion for every pixel, enabling fine-grained
modeling of dynamic interactions across the entire scene.

3.2 GEOMETRY-AWARE BACKBONE WITH MOTION HEAD

As illustrated in Figure 3, we present the overall architecture of our MotionVGGT, which comprises
a geometry-aware backbone and a novel motion head. Given videos or image sequences captured
within the same scene, our model not only reconstructs scene geometry, but also predicts dense,
per-pixel 3D motion for all objects, which broadens the scope of visual geometry foundation models
from 3D static scenes to 4D dynamic environments.
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Figure 3: Architecture of MotionVGGT. It is composed of geometry-aware backbone and task-
specific heads. The motion head takes the aggregated feature and time embedding as input.

Geometry-Aware Backbone. Given an input video or an image sequence Z € RI*3xHXW ‘(e

first patchfy each input image I, and extract their features Fy € R™V*C via a pretrained DINO
encoder. For each frame, we append a learnable camera token ¢, € R® and K motion tokens
M, € REXC to the image tokens, then feed the sequence through a geometry-aware backbone
that enables global cross-frame interactions and produces tokens enriched with 3D geometric cues.
All these generated geometry tokens G € RS*(1+K+N)XC are then utilized for predicting dense
3D motion of objects in dynamic scenes. We adopt the pretrained VGGT as our geometry-aware
backbone, as it is trained to predict core 3D attributes, including camera intrinsics and extrinsics,
depth maps, point maps, and 3D point tracks, from one to hundreds of views in a single forward
pass. This multi-task, multi-view supervision forces intermediate representations to encode epipolar
geometry and cross-frame consistency, yielding features that are naturally aligned with 3D scene
structure.

Motion Head. We reckon that the geometry tokens produced by a pretrained VGGT already en-
code rich motion information, as evidenced by the strong performance of VGGT features when
coupled with CoTracker. However, reliance on an external tracker confines predictions to sparse
2D correspondences and cannot explicitly produce a dense 3D motion field. When scaled to dense
tracking task, the number of query points grows dramatically, resulting in extremely high compu-
tational overhead. To simplify and generalize this architecture, we introduce a novel motion head
that directly consumes the geometry-aware tokens and decodes them into dense, per-pixel 3D mo-
tion for all objects in a single forward pass. Specifically, we design a conditional Dense Prediction
Transformer (DPT) head (Ranftl et al., 2021) that enhances geometry and temporal awareness dur-
ing motion decoding. For each source frame I in the input sequence, the per-frame motion tokens
My, along with the query target time ¢4, are injected into the image tokens F; through adaptive layer
normalization (AdaLLN) (Peebles & Xie, 2023) before applying DPT convolutions. As a result, for .S
source frames and 7' target query time, the motion head outputs a dense 3D motion field V of shape
[S,T,3, H,W]. This conditional decoding process can be formulated as:

V = DPTHead (AdaLN(F, R, t,)), )

where F' = {F,}5_, denotes image tokens from source frames, M = {M,}5_, denotes the cor-
responding motion tokens, and ¢, = {t1,t2,...,tr} is the set of query target times. This design
eliminates reliance on external tracking modules while preserving motion-perception capability and
extends visual geometry foundation models from static 3D perception to dynamic 4D understanding.

3.3 MULTI-STAGE TRAINING

We adopt a three-stage training strategy to exploit diverse supervision signals.
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Stage 1: Supervised pretraining with 2D tracking. We start with datasets providing 2D tracking
annotations. Given tracked correspondences between source and target frames, we reconstruct per-
frame 3D point clouds using the pretrained VGGT backbone, then compute ground-truth 3D motion
vectors. These serve as supervision for the motion head:

1 . 1 . A
»Cmotion = |Q| § )\pt”Vi - Vi”l + |Q|2 E AdislHVi . V;r —Vi- V;r”l' (6)
1€ (,7)€QXQ

where v; € R? is the predicted 3D motion vector for point i, v; € R? is the corresponding ground-
truth motion vector, £ is the set of visible and matched points between two frames, Ay and Ag;s are
balancing weights. To complement the direct ¢; loss , we follow (Lin et al., 2025) and introduce
a distribution loss Lgis that encourages the predicted motion vectors to preserve relative pairwise
distances within each frame, ensuring consistency and stability even under sparse supervision.

Stage 2: Self-supervised learning with reprojection. We further train on large-scale dynamic
videos without explicit 2D tracks, using a reprojection-based consistency loss:

Q

1 I s
Erepmjection = ﬁ Z ||Ii‘(7r (Xi + vl)) - IG(pv)HQ ’ )
i=1
Lona = — v v
= 4 T (550 4 [7vn] ).
peEN
Etotal = Ereprojection + )\grad Acgrad; (9)

where x; € R3 is the 3D coordinate of the i-th source-frame point, v; € R? is the predicted 3D
motion vector from source to target, 7(-) projects 3D world coordinates to 2D using target intrin-
sics/extrinsics, I;(-) and I(-) return RGB values from the target and source frames, respectively,
p5 is the 2D source location corresponding to x;, €2 is the number of valid (visible and projectable)
points, N is the total number of per-frame pixels and p € N indexes a pixel, V(p) €R3 denotes the
predicted 3D motion vector at pixel p, V,, V,, are first-order forward differences, Agr,q is a weight-
ing factor; and Lg,q serves as a regularizer enforcing local spatial coherence of the motion field (a
physical prior that encourages neighboring pixels to have consistent motion).

Stage 3: Joint finetuning of geometry and motion. Finally, we finetune all heads (camera, depth,
point map, motion) on all dynamic datasets. Geometry losses follow VGGT (Wang et al., 2025b),
while the motion loss combines the supervised objective from Stage 1 (when annotations exist) and
the reprojection loss from Stage 2. This joint optimization allows geometry and motion information
to be mutually reinforced, improving performance across multiple tasks under dynamic scenarios.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

The geometry-aware backbone of MotionVGGT is built upon a pretrained VGGT model consisting
of 24 layers of global and frame attention modules. During training, the backbone is kept frozen
while the Motion Head is trained using the AdamW optimizer for 10 epochs in Stage I, II, and
III, respectively. The total number of trainable parameters in MotionVGGT is approximately 200
million. Following VGGT, we adopt a cosine learning rate scheduler with a peak learning rate of
0.0002. Each training batch consists of 8 consecutive frames sampled from diverse training scenes.
The input RGB images are resized to a maximum dimension of 518 pixels. Training is conducted
on 4 NVIDIA A800 GPUs over 4 days. To optimize GPU memory usage and computational speed,
we employ bfloat16 precision and gradient checkpointing.

4.2 TRAINING DATASETS

MotionVGGT is trained on a selected multi-domain dataset collection consisting of 8 dynamic
datasets. For training stage 1, we use Kubric (Greff et al., 2022), DynamicReplica (Karaev et al.,
2023), and PointOdessey (Zheng et al., 2023), while stage 2 appends Waymo (Sun et al., 2020),
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Table 1: Training Dataset Description. ¥ and X indicate the actual usage in our training process.

Composition Utilization

Dataset RGB Depth Track Pose | Stagel StageIl Stage III

PointOdessey (Zheng et al., 2023)
DynamicReplica (Karaev et al., 2023)
Kubric (Greff et al., 2022) X X

Waymo (Sun et al., 2020)
VKitti2 (Cabon et al., 2020)
TUM-Dynamics (Sturm et al., 2012)
Bonn (Palazzolo et al., 2019)
Sintel (Butler et al., 2012)

x % %
* % X % %
x % %
* % % X X

Table 2: Video depth evaluation on Sintel, Bonn, and KITTTI datasets.

Method Sintel Bonn KITTI
AbsRel (1) 9125 (1) | AbsRel () d1.25 (1) | AbsRel ()  d1.25 (1)

DUSt3R-GA (Wang et al., 2024) 0.656 45.2 0.155 83.3 0.144 81.3
MASt3R-GA (Leroy et al., 2024b) 0.641 439 0.252 70.1 0.183 74.5
MonST3R-GA (Zhang et al., 2024) 0.378 55.8 0.067 96.3 0.168 74.4
VGGT (Wang et al., 2025b) 0.298 68.1 0.057 96.8 0.061 97.0
Spann3R (Wang & Agapito, 2024) 0.622 42.6 0.144 81.3 0.198 73.7
CUT3R (Wang et al., 2025¢) 0.421 47.9 0.078 93.7 0.118 88.1
Point3R (Wu et al., 2025) 0.452 48.9 0.060 96.0 0.136 84.2
StreamVGGT (Zhuo et al., 2025) 0.323 65.7 0.059 97.2 0.173 72.1
MotionVGGT (Ours) | 0.294 69.3 | 0.056 974 | 0.065 97.5

VKitti2 (Cabon et al., 2020), Bonn (Palazzolo et al., 2019), TUM-Dynamics (Sturm et al., 2012),
and Sintel (Butler et al., 2012). These datasets cover a wide range of visual domains, including both
indoor and outdoor dynamic scenes, as well as varying temporal scales. This diversity ensures that
the model generalizes well across different levels of geometric complexity and varying viewpoints.
Since the additional datasets introduced in training stage 2 lack tracking annotations, we apply a
reprojection loss for these data.

4.3 PERFORMANCE EVALUATION

We evaluate our proposed MotionVGGT framework across multiple downstream tasks in motion
perception, including 3D motion prediction, video depth estimation, and 4D reconstruction in real-
world dynamic environments. We compare against state-of-the-art methods, ranging from optical
flow models to recent video foundation models and 3D reconstruction systems. All metrics are
reported using standard benchmarks and evaluation protocols.

4.3.1 VIDEO DEPTH EVALUATION

We evaluated monocular video depth estimation on three diverse benchmarks: KITTI (Geiger et al.,
2013), TUM Dynamics (Sturm et al., 2012), Bonn RGB-D (Palazzolo et al., 2019), Sintel (Butler
et al., 2012), and an averaged metric across datasets. We report AbsRel (absolute relative error) and
0125, following standard practice.

Table 2 summarizes the results. Following the protocol of CUT3R, our MotionVGGT excels in
both accuracy and consistency across domains. It achieves the lowest AbsRel and highest d; o5 on
average, indicating that joint motion-depth learning within a unified transformer backbone enhances
depth reasoning in dynamic scenes.
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Table 3: Quantitative dynamic scene reconstruction results on TUM-dynamics.

Ace (}) Comp (1) NC (1)
Method Type Mean Med | Mean Med | Mean Med
VGGT (Wang et al., 2025b) Dense-view | 0.050 0.008 | 0.055 0.017 | 0.622 0.695
CUT3R (Wang et al., 2025d) Streaming | 0.105 0.012 | 0.060 0.007 | 0.582 0.624
StreamVGGT (Zhuo et al., 2025)  Streaming | 0.085 0.011 | 0.058 0.007 | 0.617 0.690
MotionVGGT (Ours) Dense-view | 0.047 0.007 | 0.035 0.011 | 0.582 0.626
Table 4: Optical flow results on CVO dataset.
Method CVO Clean CVO Final
EPE | (allivis/occ) 1oU? | EPE | (all/vis/occ) ToU 1

RAFT (Teed & Deng, 2020) 2.48/1.40/7.42 57.6 2.63/1.57/7.50 56.7

MFT (Neoral et al., 2024) 2.91/1.39/9.93 194 3.16/1.56/10.3 19.5

TAPIR (Doersch et al., 2023) 3.80/1.49/14.7 73.5 4.19/1.86/15.3 72.4

CoTracker (Karaev et al., 2024) 1.51/0.88/4.57 75.5 1.52/0.93/4.38 75.3

DOT (Le Moing et al., 2024) 1.29/0.72/4.03 80.4 1.34/0.80/3.99 80.4

SceneTracker (Wang et al., 2025a) 4.40/3.44/9.47 - 4.61/3.70/9.62 -

SpatialTracker (Xiao et al., 2024) 1.84/1.32/4.72 68.5 1.88/1.37/4.68 68.1

DOT-3D (Le Moing et al., 2024) 1.33/0.75/4.16 79.0 1.38/0.83/4.10 78.8

DELTA-2D (Ngo et al., 2025) 0.89/0.46/2.96 78.3 0.97/0.55/2.96 77.7

DELTA-3D (Ngo et al., 2025) 0.94/0.51/2.97 78.7 1.03/0.61/3.03 78.3

MotionVGGT (Ours) 9.14/6.21/17.18 40.0 | 9.19/5.99/17.53 40.0

4.3.2 RECONSTRUCTION IN DYNAMIC SCENARIOS

To evaluate 3D reconstruction quality in dynamic environments, we conducted experiments on the
TUM-Dynamics dataset (Sturm et al., 2012), which contains real-world scenes with moving objects
and articulated motions. We assess both geometric accuracy and completeness using point-to-mesh
distance metrics: Accuracy (Acc), Completeness (Comp), and Normal Consistency (NC).

As shown in Table 3, our method achieves satisfying performance in reconstructing dynamic scenes
from monocular video. This demonstrates that integrating motion perception directly into the recon-
struction pipeline leads to more coherent and stable geometry reconstruction.

4.3.3 2D POINT TRACKING

We assessed motion prediction accuracy on the CVO dataset (Wu et al., 2023; Le Moing et al.,
2024), which provides dense ground-truth flow annotations under both clean and complex motion
conditions. Following prior work, we report two primary metrics: End Point Error (EPE) in pixels
({), broken down into overall (all), visible (vis), and occluded (occ) regions; and Intersection over
Union (IoU) for motion segmentation (1), which evaluates the consistency of predicted motion
clusters.

As shown in Table 4, MotionVGGT demonstrates generalization in handling object motions. It
leverages global and frame-wise attention with explicit motion modeling, enabling robust tracking.

4.3.4 3D MOTION PREDICTION

We evaluate dense 3D motion prediction on the Kubric (Greff et al., 2022) test split generated by
DELTA (Ngo et al., 2025). The dataset has 143 synthetic videos with a length of 24 frames. Follow-
ing prior work, we report Average Jaccard (AJ) (1), which measures both occlusion and position
accuracy, APDg3p (1), which measures the percentage of points within the error thresholds, and
Occlusion Accuracy (OA) (1), which measures the accuracy of visibility/occlusion prediction.

8
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Table 5: Dense 3D tracking results on the

Kubric3D dataset.
ubrie atase Table 6: Impact of Reprojection-Based Self-

Supervision on Motion Perception.

Kubric-3D (24 frames)

Methods AJt  APDsp 1 OA?T

Kubric-3D (24 frames)

SpatialTracker | 42.7 51.6 96.5 Methods ‘ AJf  APD;p+ OA?
SceneTracker - 65.5 -

DOT-3D | 723 77.5 88.7 Ours (I) 13.8 24.5 78.6

DELTA | 81.4 88.6 96.6 Ours (I+1I) | 13.9 24.6 78.6

Ours | 13.9 24.6 78.6

. Table 8: Effect of Motion-Token Conditioning
Table 7: Stage-III Improves Geometry in on 3D Motion Perception.

Dynamic Scenes (TUM-Dynamics).

Kubric-3D (24 frames)

Acc (1) Comp (}) NC (1) Methods
Method Mean Med | Mean Med | Mean Med AJT APD3p T OAT
Ours (I+IT) 0.050 0.008 | 0.055 0.017 | 0.622 0.695 :
Ours (I+II+III) | 0.047  0.007 ‘ 0.035 0.011 ‘ 0.582  0.626 ours (W/O Motion Tokens) 13.4 23.8 78.6

Ours (W/ Motion tokens) 13.8 24.5 78.6

4.4 ABLATION STUDY

Multi-stage training strategy. To validate the effectiveness of multi-stage training strategy, we
conducted two additional studies. First, we examined the contribution of the reprojection—based
second training stage to 3D motion perception. We compared our model which was trained only
with the first stage against a counterpart further optimized with the second stage and evaluated both
on Kubric3D (Greff et al., 2022). As summarized in Table 6, the two-stage model achieves higher
accuracy in predicting 3D motion, confirming the utility of the reprojection loss. By contrast, in-
corporating the second stage with self-supervised training on driving-scene datasets enables reliable
motion prediction in this domain, underscoring the necessity of reprojection-based supervision. Sec-
ond, we evaluated the role of the third training stage, which integrates motion information to guide
geometry in dynamic scene reconstruction. As reported in Table 7, the model trained through the
third stage delivers consistently higher reconstruction fidelity in dynamic settings than the two-stage
baseline, demonstrating that leveraging motion information further improves geometry perception.

Motion tokens as conditions. To assess the efficacy of injecting motion tokens into our motion
head, we performed a controlled ablation on the Kubric3D (Greff et al., 2022) benchmark. We
compared the full model, where the motion tokens condition our motion head, against an otherwise
identical variant in which this conditioning is removed. As reported in Table 8, the conditioned
model achieves consistently higher 3D motion accuracy , demonstrating that motion tokens can
provide informative, discriminative cues about scene dynamics.

5 CONCLUSION

In this work, we proposed MotionVGGT, an end-to-end framework for unified dense 3d geometry
and motion perception. By injecting motion tokens into the conditional DPT head, features from the
geometry-aware backbone are decoded into dense motion fields in world coordinates, obviating the
need for cascaded pipelines and mitigating the sparse query design and first frame dependency that
characterize traditional tracking methods. Extensive experiments show that dense motion perception
improves reconstruction quality in dynamic scenes, underscoring the importance of motion informa-
tion for geometry understanding. These properties make MotionVGGT well-suited for autonomous
driving, embodied robotics, and AR/VR applications, where robust dynamic scene reconstruction is
essential.

Limitations. The model is trained on fixed-length sequences, leading to significant performance
degradation when applied to longer, dynamic sequences during inference. Besides, the model ex-
hibits insufficient capability in accurately tracking objects undergoing rapid movement. These re-
main to be investigated for us in the future. Meanwhile, due to the scarcity of samples, our method
underperforms in driving scenes.
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