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ABSTRACT

We introduce region-based explanations (RbX), a novel, model-agnostic method
that uses only query access to quantify the sensitivity of the scalar predictions
from a black-box model to local feature perturbations. RbX is based on a greedy
algorithm for building a convex polytope that approximates a region of feature
space where predictions are close to the prediction at some target point x0. The
geometry of the learned polytope — specifically the change in each coordinate
necessary to escape the polytope — then explains the local importance of each
feature in changing the model predictions. In particular, these “escape distances”
can be standardized and ordered to rank the features by local importance. The RbX
method is informed by a goal of detecting as many relevant features as possible in
locally sparse prediction models, without including any features that do not enter
in to the model. We provide a real data example and synthetic experiments to
illustrate the encouraging performance of RbX in this respect.

1 INTRODUCTION

Suppose we have a prediction model f̂(x) to estimate a scalar outcome y given a set of features
x ∈ Rd. We assume we do not have any knowledge about the functional form of f̂ . Rather, we
consider f̂ as a black-box function to which we only have query access, meaning we may compute
the value of f̂(x) for any desired input x.

After making a prediction at a target point x0, we seek to quantify the local importance of each
feature on the prediction. Perturbations in certain features will be more influential than others in
changing predictions from f̂ near x0. We would like a systematic way of identifying these features.

We distinguish our problem, which we call local prediction importance, from the questions of
feature selection and feature importance. Feature selection methods, such as the LASSO for linear
models (Tibshirani, 1996) and modern extensions like LassoNet for black-box models (Lemhadri et al.,
2021), aim to select a small subset of features to generate a predictive model with greater accuracy
and/or interpretability. In our setting, the prediction model f̂ is fixed, and we seek only to faithfully
explain the predictions of that model, without regard to the unknowable data-generating process that
created the features and response. Feature importance methods include popular permutation-based
approaches introduced by Breiman (2001) for random forests, which were extended to generic
black-box models by Fisher et al. (2019) and to a local method by Casalicchio et al. (2018). These
approaches also fix the prediction function f̂ , but provide importance measures based on changes in
the predictive performance of f̂ as various features are ignored, permuted, or otherwise perturbed.
That is, they consider the extent to which changing features impacts the ability of f̂ to approximate
some ground truth function f . By contrast, the term prediction importance emphasizes the singular
role of the numerical outputs of f̂ , setting aside how well these predictions approximate reality.

The distinction between local prediction importance and local feature importance is not always made
in the literature. However, it is relevant for a user who only cares about understanding the output of
a given black-box model, and does not want prediction explanations conflated with the underlying
signal the model is trying to approximate.

Our proposed approach to local prediction importance is via region-based explanations (RbX). The
method is “model-agnostic," meaning it does not use any knowledge about the structure of f̂ , relying
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only on query access. We defer a detailed description of the algorithm to Section 3.1, but the main
idea is to construct a polytope that approximates the region in feature space with prediction values
“close“ to the prediction at a target point x0 (Section 2.1). We then argue that distances from x0 to the
boundaries of this polytope in directions parallel to the coordinate axes inform the local sensitivities
of f̂ to each feature in desirable ways according to our evaluation properties defined in Section 2.

1.1 PREVIOUS WORK

Existing approaches to local prediction importance can be broadly divided into two categories:
surrogate methods and gradient-based methods. Surrogate methods locally approximate f̂ by fitting
a simpler prediction model that treats the predictions of f̂ in a region near x0 as the response. The
weights assigned to each feature in this model are then used for local importance. For instance, LIME
(Ribeiro et al., 2016) draws feature instances from a density centered at the target point x0 and uses
a linear surrogate. Lundberg & Lee (2017) propose Kernel SHAP (hereafter just SHAP), which
they showed is an algorithmic approximation to fitting an additive surrogate model with weights
corresponding to Shapley values.

Gradient-based methods consider infinitesimal regions on the decision surface and use the resulting
first-order approximation to derive local feature importance. For example, Baehrens et al. (2010)
provide local prediction importances based on the absolute value of the components of the gradient
vector∇f̂(x0); their approach for estimating this gradient is by fitting a global surrogate model using
Parzen windows. Integrated gradients (Sundararajan et al., 2017) considers the line integral of the
components of the gradient of f̂ over a straight line path in feature space from a baseline point x to
x0. Other gradient methods are not model-agnostic. For instance, DeepLIFT (Shrikumar et al., 2017)
relies on backpropagation to estimate gradients in neural networks.

2 WHY REGION-BASED EXPLANATIONS?

In general, the “ground truth" local prediction explanation for a given model f̂ and target point x0 is
ill-defined. While the explanations from procedures like SHAP and IG are derived based on some
particular set of axioms, evidently there is not a consensus as to which axioms are more “desirable".
Thus, we choose to develop RbX based on two less restrictive but likely less controversial properties
which we call sparsity and detection power:
Property 1. (Sparsity) A feature not involved in the prediction model f̂ is assigned no importance.
Property 2. (Detection power) The locally relevant features for f̂ are assigned highest importance.

Sparsity requires that any feature that cannot change the predictions from f̂ is assigned no importance.
Of course, sparsity is not sufficient for a good local prediction importance method, though we view
it as necessary. Conversely, a method that always assigns zero importance to every feature trivially
satisfies sparsity, but fails to specify any potentially important features, hence the need for detection
power. In designing RbX, we seek to maximize detection power while preserving sparsity.

Ideas similar to Property 1 and 2 are not new. Indeed they are used by the authors of LIME and
L2X (Chen et al., 2018), a method that computes local feature scores by maximizing a variational
relaxation of the mutual information between y and the features x encoded by a classifier f̂ , to
evaluate their methods. For instance, the experiments in Ribeiro et al. (2016) show that LIME does
a better job than some baseline methods in finding the features used in sparse logistic regression
models and decision trees.

SHAP, IG, and other gradient methods satisfy sparsity axiomatically, yet LIME and L2X do not.
While there is some subjectivity in the definition of locally relevant, we believe a reasonable sufficient
condition for local relevance of feature j is for the j-th component of ∇f̂(x0), the gradient of the
prediction at x0, to be nonzero. Then in the case that f̂ is an additive regression model, Property 1
corresponds to assigning zero importance to all features with zero coefficients, while Property 2
means assigning nonzero importance to all other features. A simple gradient-based method using
finite differences would then always perfectly satisfy both properties, as the set of features with
nonzero gradients would always be precisely the relevant features. By contrast, LIME only does this
90%-92% of the time in the experiments from Ribeiro et al. (2016).
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What remains is to improve detection power in nonlinear prediction models without sacrificing
sparsity. In such models, a feature might be locally relevant near the target point x0, even if
∇f̂(x0) = 0. Sundararajan et al. (2017) motivate IG in this way, noting that gradient methods fail
when f̂ has zero gradient with respect to a particular feature, but still varies in that direction within a
non-infinitesimal neighborhood that is considered locally relevant.

IG addresses this zero-gradient issue by accumulating gradients along the entire line segment between
some baseline feature values x and the target point x0. However, this still only detects features
with respect to which f̂ varies infinitesimally somewhere along this line segment. There are a lot of
additional areas of the feature space near x0 where f̂ could depend on a given feature. Our approach,
RbX, examines the sensitivity of f̂ in a large number of directions, while ensuring sparsity from a
finite differences gradient method. It does so in a non-infinitesimal neighborhood of x0, adapting the
search space to cover a much larger portion of the region the user specifies as “close" to x0, which
we describe next.

2.1 CLOSE REGIONS

RbX asks the user to specify, for any given target point x0, the values of predictions from f̂ that are
“close" to f̂(x0), the prediction at the target point. There are often natural choices. For example, if f̂
is a class probability from a binary classifier, the close region might contain all prediction values on
the same side of the decision boundary. If f̂ predicts a numeric medical outcome, and x0 corresponds
to a healthy patient, then the region might be the accepted range of healthy outcomes. For ease of
exposition we assume the close region is an interval I of the form [f̂(x0)− ϵL, f̂(x0) + ϵH ]. The
interval I then depends on the user’s choice of two nonnegative parameters ϵ = (ϵL, ϵH), which can
vary with x0. For instance, f̂ predicts body mass index, for which the healthy range is 18-25, we
might take ϵL = 4 and ϵL = 3 when the target patient satisfies f̂(x0) = 22, while for f̂(x0) = 26
we’d take ϵL = 1 and ϵH =∞. The close region E = {x ∈ Rd | x ∈ I} will hereafter be referred to
as the “ϵ-close" region to emphasize the dependence on ϵ. Points outside E are said to be “ϵ-far" and
the boundary of E is referred to as the “ϵ-boundary."

We view the specification of closeness on the scale of the outcome as an advantage relative to methods
like IG and SHAP which require specification of a “baseline" feature value x. The sum of all feature
explanation scores from these methods at any target x0 is constrained to equal to f̂(x0) − f̂(x).
While Sundararajan et al. (2017) note that natural baselines exist in settings like image classification
and sentiment analysis, for a general prediction or classification setting there may not be a canonical
choice, and the feature attributions will be sensitive to the choice of baseline. SHAP’s reliance on a
baseline is eliminated by the cohort Shapley method of Mase et al. (2019), though cohort Shapley
still retains an additivity constraint that all feature attributions must add up to f̂(x0)− f̄ , where f̄ is
the mean prediction on a set of n observations. If f̄ is not a meaningful value then the individual
feature scores do not have a direct interpretation.

3 A POLYTOPE APPROXIMATION ALGORITHM

We are now ready to describe the RbX algorithm, which approximates the ϵ-close region E by a
polytope P . It does so by approximating the ϵ-boundary at various points by affine hyperplanes.

Definition 1. A polytope P ⊂ Rd is any finite intersection of affine halfspaces, i.e.

P ≡ ∩1≤k≤KHk,

where Hk = {x ∈ Rd : xTuk ≤ ck} is defined by its normal vector uk ∈ Rd and intercept ck ∈ R.

The use of a polytope approximation, as opposed to a smooth shape like an ellipsoid, enables sparsity.

3.1 A POLYTOPE APPROXIMATION ALGORITHM

RbX is a greedy procedure that constructs the polytope approximation P of the ϵ-close region E one
halfspace at a time (Algorithm 1). The algorithm requires a set of context samples X = {xi}1≤i≤n
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that form the basis of the sampling procedure. These should be a dense collection of representative
feature values, for instance from a possibly unlabeled training or validation set. To make the polytope
P scale equivariant, all the features are scaled to have standard deviation 1 across the context samples.
Only ϵ-far context points are used by the remainder of the procedure.

Algorithm 1 The RbX Algorithm

1: Input: target x0 ∈ Rd, closeness thresholds ϵ ⪰ 0, prediction model f̂ with query access,
context samples {xi}1≤i≤n, maximum number of splits K.

2: Compute s, the vector of standard deviations of the d features across the context samples
{xi}1≤i≤n.

3: Standardize xi ← diag(s)−1xi for i = 0, 1, . . . , n.
4: for i ∈ [1 : n] if xi is ϵ-far do
5: Shrink xi onto the ϵ-decision boundary using line search: x̃i ← Line-Search(xi, f̂ , ϵ, x0)
6: end for
7: InitializeR ← {x̃i}
8: Initialize the set of support vectors S ← ∅
9: Initialize k ← 1

10: whileR ≠ ∅ and k ≤ K do
11: Find x̃(k) ← argmin

x̃∈R
||x̃− x0||22

12: Estimate gradient of f̂ at x̃(k): gk ← Estimate-Grad(x̃(k); f̂ , δ, r,m)
13: Compute halfspace: Hk ← {x ∈ Rd | xT gk ≤ (x̃(k))T gk}
14: Update region: R ← R∩ int Hk

15: Update support vectors: S ← S ∪ {x̃(k)}
16: Increment k: k ← k + 1
17: end while
18: return {Hk}1≤k≤n, the collection of halfspaces defining the polytope P
19: Notation: Line-Search is defined in Algorithm 3. Estimate-Grad is given in Algorithm 2.

The first step in the RbX algorithm is to shrink each (standardized and ϵ-far) context point xi along
the line segment in Rd between xi and x0 to a point on the ϵ-boundary. This can be done quickly to
exponential accuracy via a standard bisection-based line search (see Algorithm 3 in the Appendix for
an example), noting that x0 is always ϵ-close.

Next, RbX finds x(1), the context point whose shrunken counterpart x̃(1) is closest to x0 in Euclidean
distance. The first halfspace H1 of the polytope P is chosen to pass through x̃(1) and have normal
vector equal to an estimate of the gradient of f̂ , computed using finite differences (Algorithm 2)
at x̃(1). This is motivated by the fact that in the case that f̂ is differentiable, H1 is a first-order
approximation of a level set of f̂ . Finally, all shrunken context points outside the interior of H1

are discarded, and the process is iterated with the remaining shrunken context points until either K
halfspaces have been learned, or there are no more shrunken context points remaining.

Note that x̃(k), the shrunken context point chosen on the k-th iteration of the algorithm, lies outside
the interior of the k-th halfspace Hk by construction. Thus the number of remaining shrunken context
points decreases by at least one after each iteration, and so the algorithm terminates in at most n
iterations. In practice, far fewer iterations are often needed. To further reduce computation, one can
impose early stopping by specifying a maximum number of halfspaces K < n to be learned.

The “greedy" nature of the RbX algorithm refers to how it chooses the closest shrunken context
points first. This helps enforce a better approximation of the parts of the ϵ-decision boundary closer
to x0. In general, any given shrunken context point may not be the closest point to x0 that lies on
the ϵ-boundary and also along the ray from x0 to the original context point. Thus, the algorithm
may miss parts of the ϵ-boundary extremely close to f̂ . But such an issue is mitigated by having a
sufficiently dense set of context samples covering the full range of plausible feature values. Then
the greediness ensures the closer parts of the decision boundary — among those corresponding to
plausible feature values, where we are most interested in the predictions — are prioritized.
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3.2 FINITE DIFFERENCES GRADIENT ESTIMATION AND SPARSITY

The gradient of f̂ is estimated at each shrunken context point using finite differences (Algorithm 2).
We allow the user to average gradient estimates at m “jittered" points that are the original points
corrupted by a small amount of Gaussian noise. This jittering is designed to smooth the gradient
estimate when f̂ has discontinuities on the ϵ-boundary. If f̂ has no dependence on the i-th feature,
it is clear that the i-th component of ∇f̂(x) will be 0 according to Algorithm 2, regardless of
the parameters used. Note this would not be the case if Algorithm 2 were replaced by a smooth
gradient estimator, such as the Parzen windows used by Baehrens et al. (2010). Having zero gradient
estimates for irrelevant features ensures that our local importance scores satisfy sparsity, as described
in Section 4. All results in this paper are presented with parameters r = 0.01, δ = 0.1, and m = 10.

Algorithm 2 Estimate-Grad Algorithm - Finite Differences

1: Input: point x ∈ Rd, prediction model f̂ , step size δ, jitter radius r, number of jitter samples m
2: for j ∈ [1 : m] do
3: Generate z ∼ r · N (0, Id)
4: v ← x+ z

5: g
(j)
i ← f̂(v+δei)−f̂(v−δei)

2δ , i = 1, . . . , d
6: end for
7: return ∇f̂(x) = 1

m

∑m
j=1(g

(j)
1 , ..., g

(j)
d )

3.3 TOY EXAMPLE

We briefly illustrate the RbX algorithm in Fig. 1, in a toy example with d = 2, f̂(x) = x1 · x2,
x0 = (0, 0), and ϵ = (0.5, 0.5). 500 context points generated from a standard bivariate Gaussian
distribution were used.

Each iteration of the algorithm approximates a plane tangent to the ϵ-boundary at the closest shrunken
context point. All context points on the side of the plane not containing x0 are then discarded. The
resulting P at termination (after 4 splits) is a diamond-shaped region that truncates the true ϵ-close
region, which is non-convex and extends infinitely along the coordinate axes in both directions.

Figure 1: An illustration of the RbX algorithm for the pairwise interaction model f̂(x) = x1 ·x2 with
ϵ = (0.5, 0.5) and target point x0 = (0, 0), highlighted in the center of each plot. The smaller dots
are the context points, colored by whether they are ϵ-far. Each panel shows the additional halfspace
constructed in one iteration of the RbX algorithm. The lines are the halfspaces learned at each step of
the algorithm; the larger dots along these lines are the shrunken context points used.

4 FROM POLYTOPES TO LOCAL PREDICTION IMPORTANCE

Given the polytope P output by the RbX algorithm, we derive local prediction importance scores
Sj(P) using “feature escape distances" for each feature j ∈ {1, . . . , d}:

S+
j (P) = inf{α > 0 | x0 + αej /∈ P}; S−

j (P) = inf{α > 0 | x0 − αej /∈ P};
Sj(P) = min(S+

j (P), S−
j (P)) · sign(S+

j (P)− S−
j (P))
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Here ej is the j-th standard basis vector in Rd. Then Sj(P) is the minimum signed distance needed
to escape the RbX polytope P by varying only the j-th feature from the target point x0. As argued
by Mase et al. (2019), predictions from f̂ at feature values that are implausible should likely not be
trusted. Thus, whenever the “escape path" out of the polytope P in the direction of feature j passes
outside the region T where predictions from f̂ are “trustworthy," we set Sj(P) to∞. Appendix A.2
provides some methods and examples to determine how to construct T based on the context points.

Note that the escape distances Sj(P) are reported on the original scales of each feature (before
standardization in step 3 of Algorithm 1), which enables them to be interpreted individually without
reference to the escape distances of the other features. Alternatively, we can report the escape
distances S̃j(P) on the standardized scale. Sorting these standardized distances (from smallest to
largest) enables us to obtain a ranking of the local importance of the features (from most important to
least important).

If f̂ doesn’t depend on a feature xj , then all of the halfspaces defining P will have normal vectors
with 0 component in the xj direction. This implies that the corresponding Sj(P) will be∞, and thus
such features will have no importance, showing our procedure satisfies sparsity.

It is natural to compare the feature escape distances Sj(P) with the “simple feature escape distances"
Sj(E), which use the original ϵ-close region E in place of the polytope P . They can be computed
via a line search similar to Algorithm 3, without running RbX. Clearly, a feature ranking based on
the Sj(E) would also satisfy sparsity. Furthermore, it would have better detection power than a
gradient-based method. This is because the Sj(E) look beyond an infinitesimal neighborhood of
x0, instead focusing on a typically larger region defined in terms of the prediction values of f̂ to be
meaningful. However, it still cannot capture changes in f̂ near x0 that cannot be detected when only
one feature is changed at a time from its value at x0.

Since the polytope P looks in many directions around x0, using the RbX distances Sj(P) provides
better detection power. A simple example of this can be seen in Fig. 1. For x0 = (0, 0) we have
S1(E) = S2(E) =∞ since all points along the coordinate axes are ϵ-far. Yet S1(P) ≈ S2(P) ≈ 1.4,
giving the two features equal and nonzero importance. Further examples are in the next section.

5 DATA EXAMPLE AND SYNTHETIC EXPERIMENTS

We begin by comparing RbX to existing methods for local prediction importance on a credit scoring
example, considering sparsity, detection power, and robustness across similar target points. Then we
consider simulated experiments designed to more systematically evaluate detection power.

5.1 CREDIT SCORING EXAMPLE

The home equity line of credit (HELOC) dataset from the FICO xML Challenge
(community.fico.com/s/xml) contains the RiskPerformance of 2,502 credit applicants.
This is a binary indicator of whether they were ever more than 90 days past due in the first two years
after account opening. The goal is to interpretably classify each individual as having either “Bad"
or “Good" RiskPerformance based on 23 quantitative or ordered categorical predictors. We
consider the local prediction importance of a shallow and sparse decision tree. In Appendix A.3
we consider a sparse gradient boosted tree ensemble fit to the same data. After splitting the dataset
randomly into 1,751 training observations and 751 test observations, the tree classifier is fit to the
training observations to have depth 3. The final classifier f̂ is visualized in Fig. 2. The scalar
prediction output is taken to be the predicted probability of a “Good" RiskPerformance.

We begin by examining a specific target point, corresponding to the individual labeled 5,238 in the
dataset. Selected feature values for that individual (who has prediction value 0.191) are given in
Table 1, along with feature scores from various local importance methods. For LIME and SHAP,
we compute the scores from the open-source implementations and default hyperparameter settings,
except that for LIME we do not discretize the features, which greatly improves its performance. For
RbX we assume a decision boundary of {x | f̂(x) = 0.5}, and take E to be the set of points on the
same side of this decision boundary as x0. All training observations are used as context points.
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ExternalRiskEstimate <= 72.5
gini = 0.469

samples = 1751
value = [1092, 659]

class = Bad

MSinceMostRecentInqexcl7Days <= 0.5
gini = 0.42

samples = 1370
value = [959, 411]

class = Bad

True

MSinceMostRecentInqexcl7Days <= 0.5
gini = 0.454

samples = 381
value = [133, 248]
class = Good

False

MSinceOldestTradeOpen <= 253.0
gini = 0.354

samples = 905
value = [697, 208]

class = Bad

ExternalRiskEstimate <= 63.5
gini = 0.492

samples = 465
value = [262, 203]

class = Bad

gini = 0.309
samples = 686

value = [555, 131]
class = Bad

gini = 0.456
samples = 219
value = [142, 77]
class = Bad

gini = 0.409
samples = 206
value = [147, 59]
class = Bad

gini = 0.494
samples = 259

value = [115, 144]
class = Good

MSinceMostRecentDelq <= 21.5
gini = 0.498

samples = 195
value = [91, 104]
class = Good

AverageMInFile <= 48.5
gini = 0.35

samples = 186
value = [42, 144]
class = Good

gini = 0.451
samples = 61
value = [40, 21]
class = Bad

gini = 0.471
samples = 134
value = [51, 83]
class = Good

gini = 0.42
samples = 10
value = [7, 3]
class = Bad

gini = 0.319
samples = 176
value = [35, 141]
class = Good

Figure 2: A visualization of a classification tree fit to the HELOC data from the FICO xML Challenge.

Table 1: Feature values and various local prediction importance scores for the sample target point
analyzed in the main text, with the prediction model f̂ as in Fig. 2. Note the scores from LIME and
SHAP (for all features) are on the scale of the outcome, whereas the unnormalized escape distances
Sj(P) from RbX are on the scale of each feature j.

Feature Feature value Sj(P) S̃j(P) LIME SHAP
ExternalRiskEstimate 61.0 2.8 0.37 0.12 -0.13
MSinceOldestTradeOpen 149.0 ∞ ∞ 0.018 0

MSinceMostRecentInqexcl7Days 0.0 0.5 0.12 0.084 -0.23
MSinceMostRecentDelq 3.0 ∞ ∞ 0.0067 0

AverageMInFile 49.0 ∞ ∞ 0.016 0
NumTrades60Ever2DerogPubRec 1 ∞ ∞ 0.0011 0

The gains to detection power provided by the polytope P constructed by the RbX algorithm is
seen by noting that the simple feature escape distances Sj(E) are infinite for every feature, as
changing any single feature in the target point — and keeping all others fixed — cannot change
the target individual’s classification from Bad to Good under the tree model. Thus simple feature
importance is fully uninformative. By contrast, we have finite feature escape distances Sj(P) of
2.8 for ExternalRiskEstimate and 0.5 for MSinceMostRecentInqexcl7Days. This is
sensible, as we can see from Fig. 2 that increasing both of these features simultaneously by these two
amounts is close to the shortest path for the individual to change their classification to Good.

Next, we evaluate the stability of the various local importance methods across parameter choices.
We consider 100 randomly chosen target points from the training data. At each target point we run
259 iterations of SHAP, LIME, and RbX. Each SHAP iteration corresponds to a different choice of
baseline among those points in the leaf of the tree classifier with gini impurity score 0.494 (Fig. 2).
One such baseline is used for Table 1. Each LIME iteration corresponds to an independent run of the
LIME sampling procedure, and each RbX iteration uses a different set of context samples. Each set
of context samples is generated by adding independent Gaussian noise to each feature dimension of
the points in the training set. The standard deviation of this noise is taken to be the (marginal) sample
standard deviation of the relevant dimension across the 259 baselines used for SHAP.

We consider the standard deviation of the ranks of the 5 features that enter into the tree classifier
across iterations for each target point. The rank of any feature assigned zero importance is defined to
be one greater than the number of features with nonzero importance. We then average these standard
deviations across target points and the dimensions. The result is 0.225 for SHAP, 0.193 for RbX, and
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0.316 for LIME, demonstrating RbX predictions are quite stable with respect to the choice of context
samples. We also note that for LIME, one of the 18 features not entering into the tree classifier at all
is assigned greater importance than one of the other 5 features in 7.9% of all iterations across the
target points. Note this cannot occur for SHAP and RbX thanks to sparsity.

5.2 DETECTION POWER EXPERIMENTS

We now evaluate the detection power of various local prediction importance methods on locally
sparse models, where the “ground truth" set of locally relevant features is clear. One closely
related evaluation framework would be that proposed by Zhou et al. (2022), which involves cleverly
introducing noise into a training dataset and then fitting various non-sparse prediction models to such
a dataset. If these models have sufficiently high performance, then it is clear they must place primary
importance on the noisy features. They evaluate (global) feature attribution methods based on the
relative importance of such features. While such a method enables measuring the performance of
more complex, truly black-box models that might be used in high signal-to-noise applications like
image classification, it is not necessary for the simpler models examined here.

We consider the following four synthetic data generating scenarios, inspired by Chen et al. (2018):

1. Generate (X1, . . . , X9) from a spherical standard Gaussian distribution. Generate X10

independently from an equally weighted mixture of two Gaussian distributions with standard
deviation 1, centered at +3 and −3.

2. Let X = (X1, . . . , X10). Then an outcome Y is generated as follows:
• XOR: E(Y | X = x) = (1 + x1x2)

−1 = pX(x1, x2)

• Orange skin: E(Y | X = x) =
(
1 + exp

(∑4
i=1 x

2
i − 4

))−1

= pO(x1, x2, x3, x4)

• Nonlinear additive: E(Y | X = x) = (1 + exp(−100 sin(2x1) + 2|x2| + x3 +
exp(−x4)))

−1 = pN (x1, x2, x3, x4)
• Feature switching: E(Y | X = x) = pO(x1, . . . , x4)r(x10) + pN (x5, . . . , x8)(1 −
r(x10))

where r(x10) = exp
(
− (X10−3)2

2

)
/
(
exp

(
− (X10−3)2

2

)
+ exp

(
− (X10+3)2

2

))
Feature switching can be conceptualized as the following method of generating Y given X . If X10 is
drawn from the Gaussian component with center +3, Y is generated according to the orange skin
process with features X1, . . . , X4. Otherwise, Y is generated according to the nonlinear additive
process with features X5, . . . , X8. The function r(x10) is the posterior probability that X10 was
drawn from the component with center +3, given X10 = x10.

For each scenario we consider two prediction models — the Bayes prediction model f̂(x) = E(Y |
X = x) and a K-nearest neighbors (KNN) regressor. The KNN regressor for each scenario is fit to a
random sample of 1,000 training points with K = 5, considering only the locally relevant features.
For feature switching, features 1-4 and 10 are considered locally relevant for a target point with
x10 ≥ 0; otherwise, features 5-8 and 10 are locally relevant. In the other scenarios, the locally
relevant features for all target points are the ones that can affect predictions in the Bayes classifier,
e.g. 1-4 for the orange skin and nonlinear additive settings.

We evaluate the detection power of each local importance method across 1,000 randomly chosen
target points by computing the average proportion of locally relevant features recalled among the top
M most important features. Here M is the true number of locally relevant features. Ties in importance
scores are broken randomly but features with zero importance are never selected. We compare the
RbX escape distances Sj(P) with the local importance scores from the following methods, which
have well-documented public implementations or are trivial to code: simple feature importance (SFI),
a gradient method using Algorithm 2 (“Gradient"), IG, LIME, and SHAP. For RbX we use 1,000
independently sampled context points. Only LIME does not satisfy sparsity among the approaches
considered. The ϵ-close region for each target point consists of all points on the same side of the
decision boundary {x | f̂(x) = 0.5}. For SHAP the baseline point is the origin.

For all scenarios, RbX shows the highest recall among the methods considered, as the only procedure
with perfect performance on both classifiers for all scenarios besides feature switching (Fig. 3).
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Figure 3: (Left) Recovery rates, based on 1,000 random target points, of the locally relevant features
for various local prediction importance methods, using the smooth, sparse Bayes prediction model
for each of the 4 simulated scenarios described in the main text. (Right) Same as the left panel, but
for the nonsmooth KNN prediction model.

The gradient-based and simple feature importance methods particularly struggle with the nonlinear
additive model since there are regions where the classifiers are locally flat — for instance, wherever
sin(2X1) is sufficiently greater than zero so that the predictions in a neighborhood are all numerically
equivalent to 1. RbX overcomes this by examining a non-infinitesimal neighborhood around x0.

6 DISCUSSION, LIMITATIONS, AND FUTURE WORK

We have proposed region-based explanations (RbX) as a novel, model-agnostic approach for local
prediction importance. The idea is to successively refine polytope approximations to a region of
feature space with similar predictions to the target point. The user can directly specify what prediction
values are “similar" based on context. By contrast, existing methods specify a “locally relevant"
region in terms of the values of the features. When the number of features is moderate and there
are interactions between them, specifying such a region becomes difficult. We’ve argued that RbX
a strong ability to detect locally relevant features compared to existing methods while preserving
sparsity, i.e. a guarantee that features not used for prediction are assigned zero importance.

Whereas many local prediction importance methods like LIME and SHAP were designed with
binary or unordered categorical features in mind, RbX is motivated by numeric or ordered categorical
features. Further work is needed to extend the ideas to settings with one or more unordered categorical
features, such as image classification. In such cases the feature space becomes a zero-volume subset
of Rd, and estimating gradients is no longer meaningful. Also, while our data example suggests that
RbX may be reasonably robust to the choice of context points, the number of context points needed
to adequately cover the space of plausible feature values increases drastically with dimension d due
to the curse of dimensionality. The sampling procedure for LIME and the computational complexity
of SHAP suffer from similar issues, while the gradient based methods do not but at the expense of
only examining f̂ in a small number of directions, which we have argued hurts detection power.

Finally, there may also be other ways in which the polytope P constructed by Algorithm 1 or a
variant thereof could be useful for local prediction importance, such as escape distances from P
in directions not parallel to the coordinate axes. We also believe theoretical work on polytopic
approximation (Bronstein, 2008; Arya et al., 2012) could be leveraged in future study to develop
mathematical guarantees about how well P approximates E . Any such guarantee would require some
prior knowledge about the structure of f̂ , such as smoothness or local monotonicity; for a completely
generic f̂ , the level sets can be arbitrarily non-convex. Requiring knowledge of such structure would
deviate from the strict model-agnostic paradigm, but would be practically useful in a setting where
some information about f̂ can be made known to the party interested in local prediction importance.
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A APPENDIX

A.1 LINE SEARCH ALGORITHM

Here we provide a sample line search algorithm for shrinking the context points given to the RbX
algorithm to the ϵ-boundary.

Algorithm 3 Line-Search Algorithm

1: Input: ϵ-far point x ∈ R to be shrunk, thresholds ϵ ⪰ 0, prediction model f̂ , target x0 ∈ Rd,
and maximum number of iterations M .

2: Set tH ← 1, tL ← 0.
3: for iter ∈ [1 : M ] do
4: Compute tM ← 1

2 (tH + tL)
5: if x0 + tM (x− x0) ∈ E then
6: tL ← 1

2 (tH + tL)
7: else
8: tH ← 1

2 (tH + tL)
9: end if

10: end for
11: return 1

2 (tH + tL)

A.2 TRUSTWORTHY REGIONS

As discussed by Mase et al. (2019), a pitfall of baseline methods such as LIME, Kernel SHAP,
and IG is that they often rely on predictions at implausible combinations of feature values, such
as a graduation date before a birth date, due to interactions between features. Local prediction
explanations utilizing such information have questionable fidelity.

To prevent the feature escape distances Sj(P) from using information about the classifier near
implausible feature values, we can establish a “trustworthy region" T containing x0 that corresponds
to the set of plausible feature values. Then if S+

j (T ) < S+
j (P) — meaning that in order to escape P

by increasing the j-th feature from x0, we must leave the trustworthy region T — we set S+
j (P) =∞.

We do the same thing for the S−
j (P). We could also make the simple feature escape distances Sj(E)

more trustworthy in the same way.

In some settings, domain knowledge informs a reasonable choice for T . Otherwise, there are many
plausible ways to define T , assuming access to a large collection of plausible feature values, such as
the context points for the RbX algorithm. One such method is given in Appendix 5 of Mase et al.
(2019). Another, based on Section 14.2.4 of Hastie et al. (2009), would be to estimate r(x) = g(x)

g0(x)

where g(·) is viewed as an unknown joint density of the data generating process for the context
points, and g0(·) is a known baseline density that is positive at each context point, e.g. uniform over a
rectangular region containing the context points. This function r(x) can be estimated by any binary
classification procedure that outputs class probabilities. By generating a large number of i.i.d. points
from g0(·), we can learn the probability that a point at x came from g rather than g0, using both the
original context points and the feature combinations generated from g0(·). From this, an estimate
r̂(x) of r(x) follows via Bayes’ rule. Then we define T = {x | r̂(x) ≥ β} for some trustworthiness
threshold β > 0.

We illustrate the latter algorithm using a simple quadratic logistic regression classifier fit to the
popular Boston housing dataset (Harrison Jr & Rubinfeld, 1978). The goal, as in Mase et al. (2019),
is to predict whether median neighborhood value is less than $20,000 based on two features — CRIM
(crime rate) and RM (median number of rooms per home). We use the same target point as Mase et al.
(2019), marked with a red X in Fig. 4.

The trustworthiness classifier was fit with multivariate adaptive regression splines (Friedman, 1991)
using a logistic link, allowing for order-two interactions. The contours of this classifier are shown
in Fig. 4. If T is defined with any trustworthiness threshold β larger than about 0.15, the escape
distance in the positive CRIM direction is set to∞ because then it is impossible to escape the RbX
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Figure 4: An illustration of the trustworthiness region classifier for the Boston housing data example
described in the text. Its contours are indicated by the dashed lines. The solid lines indicate the
halfspaces defining the polytope P from the RbX algorithm for the target point x0, denoted with a
red X. The arrow indicates the “polytope escape path" from x0 in the CRIM direction. For any β
such that the arrow crosses the β-contour (or smaller) of the trustworthiness region classifier, we set
S+
CRIM(P) to∞. The dots are candidate context points from the entire dataset, colored by whether

they are ϵ-far.
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polytope without leaving T . As Mase et al. (2019) suggest, this is desirable since there are no context
points with similar RM values in the ϵ-far region but high values of CRIM.

A.3 RESULTS FOR BOOSTED TREE ENSEMBLE ON FICO DATASET

We replicate the results given in Table 1, but replacing the tree classifier in Fig. 2 with a sparse
gradient boosted ensemble fit using XGBoost (Chen & Guestrin, 2016) on the same training dataset.
Sparisty is enforced by only training on the 5 features that appear in the simple tree classifier of Fig. 2,
which are also the first 5 features in Table 1. The training loss is the negative logistic log likelihood
with early stopping after 10 iterations (chosen to roughly minimize out of sample classification error).
Table A.3 is an analog of Table 1 in the main text, for the same target point x0. Under the ensemble
classifier, the predicted probability of “Good" RiskPerformance is 0.241.

Table 2: Same as Table 1, but for the boosted tree ensemble classifier

Feature Feature value Sj(P) S̃j(P) LIME SHAP
ExternalRiskEstimate 61.0 0.48 0.062 -0.12 -0.21
MSinceOldestTradeOpen 149.0 27.5 0.30 -0.056 -0.020

MSinceMostRecentInqexcl7Days 0.0 4.16 0.97 -0.074 0
MSinceMostRecentDelq 3.0 5.17 0.25 -0.038 -0.022

AverageMInFile 49.0 41.4 1.54 -0.028 -0.090
NumTrades60Ever2DerogPubRec 1 ∞ ∞ -0.0004 0
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