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ABSTRACT

Centralized Training and Decentralized Execution (CTDE) is a widely adopted
paradigm to solve cooperative multi-agent reinforcement learning (MARL) prob-
lems. Despite the successes achieved with CTDE, partial observability still limits
cooperation among agents. While previous studies have attempted to overcome this
challenge through communication, direct information exchanges could be restricted
and introduce additional constraints. Alternatively, if an agent can infer the global
information solely from local observations, it can obtain a global view without
the need for communication. To this end, we propose the Multi-Agent Masked
Auto-Encoder (MA2E), which utilizes the masked auto-encoder architecture to
infer the information of other agents from partial observations. By employing
masking to learn to reconstruct global information, MA2E serves as an inference
module for individual agents within the CTDE framework. MA2E can be easily
integrated into existing MARL algorithms and has been experimentally proven to
be effective across a wide range of environments and algorithms.

1 INTRODUCTION

In cooperative multi-agent tasks, the environments are typically partially observable, where individual
agents do not have complete access to the global information. For instance, consider a motivating
scenario where allied and enemy forces are engaged in combat as illustrated in Figure 1. An ally agent
1 might perceive the current situation as favorable by observing only one enemy, while ally agents 2
and 3 observe four and five enemies, respectively, and therefore assess the situation as unfavorable.
This discrepancy makes it difficult for the agents to make cooperative decisions. Therefore, addressing
partial observability is a crucial challenge in the field of cooperative Multi-Agent Reinforcement
Learning (MARL) (Nguyen et al., 2020; Canese et al., 2021; Ning & Xie, 2024).

One straightforward approach is fully centralized training and control of a joint policy for all agents
which simplifies the MARL problem into a single-agent one. However, the centralized setting suffers
from scalability and heavy computational costs as the number of agents increases due to the curse of
dimensionality (Gronauer & Diepold, 2022; Du & Ding, 2021; Canese et al., 2021).

Centralized Training and Decentralized Execution (CTDE) paradigm provides a structured frame-
work for mitigating aforementioned issues (Canese et al., 2021; Ning & Xie, 2024; Du & Ding,
2021; Gronauer & Diepold, 2022), but still fails to fully resolve the problem of partial observability.
Although the global information is used during training, each agent relies solely on its local observa-
tions during execution. Such discrepancies between learning and execution can limit collaborative
decision-making (Shao et al., 2022; Yuan et al., 2022; Guan et al., 2022).

Previous works have explored the strategies to relieve drawback of decentralized execution. Relaxing
CTDE with communication by allowing direct messaging among agents have been extensively studied,
but it faces limitations in real-world scenarios where inter-agent communication is not permitted or is
constrained by various factors such as limited bandwidth and noisy channels (Zhu et al., 2022; Ning
& Xie, 2024). Without communication, shared structures such as common knowledge (Schroeder de
Witt et al., 2019) or an one-hot consensus (Xu et al., 2023) have been proposed to foster cooperation.
However, such abstractly encoded representations may be lossy in complex environments.
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Figure 1: A motivating combat scenario. The solid
circles and red triangles denote the ally agents and
enemies, respectively. The dotted circles are obser-
vation ranges of each ally agent. While the current
global state st is identical, each agent perceives the
situation differently due to the discrepancy among
their partial observations o1t , o

2
t , o

3
t .

Masked modeling, which learns to reconstruct
original data from masked input, has shown
notable achievements in the language (Devlin
et al., 2018; Liu, 2019; Clark, 2020), the vision
(Chen et al., 2020; Bao et al., 2021; He et al.,
2022), and even in the single-agent reinforce-
ment learning (RL) domains (Seo et al., 2023;
Liu et al., 2023a; Wu et al., 2023). Inspired
by those successes, in this paper, we propose
Multi-Agent Masked AutoEncoder (MA2E)
which enables agents to infer the global in-
formation based solely on partial observations.
Our key idea is to use a masked autoencoder
(MAE) (He et al., 2022), which masks a sub-
set of the input and is trained to recover the
missing (masked) data using the visible (un-
masked) regions, to reconstruct full trajectories
of all agents from local observations. While
such masked modeling usually targets to solve
the downstream tasks with complete data after
training from incomplete input, our focus is to utilize MAE’s capability to handle partially observable
data to infer the entire information. In MA2E, MAE performs masking on a per-agent basis and
reconstructs the original global input, allowing the inference of global information from partial
observations. This enhances the agent’s ability to deduce the situations of other agents and aids
in making appropriate decisions. Furthermore, by separately training MA2E from agents’ policies,
MA2E can be easily plugged into existing MARL algorithms as backbone networks and the learned
MAE can be transferred to other backbone policies.

We experimentally evaluate our approach on the Starcraft Multi-agent Challenge (SMAC) (Samvelyan
et al., 2019), SMACv2 (Ellis et al., 2023), and Google Research Football (GRF) (Kurach et al., 2020)
environments. The experimental results consistently demonstrate that MA2E achieves faster con-
vergence and higher sample efficiency compared to fine-tuned QMIX (Hu et al., 2021), which is
the state-of-the-art MARL algorithm. Additionally, MA2E shows comparable or superior perfor-
mance compared to the cases where full observations are provided or communication is employed,
substantiating the ability of MA2E to effectively infer full observations from partial observations.
Furthermore, employing MA2E achieves performance gains for various value-based and policy-based
MARL methods as a backbone algorithm. Finally, to effectively integrate MA2E into the backbone
MARL algorithms, we propose an appropriate configuration for applying MA2E across different
hyperparameters and masking strategies in ablation studies.

2 RELATED WORK

Partial Observability in MARL: Partial observability is a fundamental challenge in cooperative
MARL. As a naïve adoption of a fully centralized setting results in an intractable computational com-
plexity (Canese et al., 2021; Du & Ding, 2021; Gronauer & Diepold, 2022), alternative strategies have
been explored. Centralized Training and Decentralized Execution (CTDE) is a popular framework to
solve partial observability (Canese et al., 2021; Ning & Xie, 2024; Du & Ding, 2021; Gronauer &
Diepold, 2022). In value-based CTDE algorithms, value decomposition which factorizes a joint value
function into individual ones is dominant (Sunehag et al., 2017; Rashid et al., 2018; Lowe et al., 2017;
Foerster et al., 2018; Yu et al., 2022). Another major branch is policy-based CTDE methods, where
actor-critic approach is widely-adopted (Lowe et al., 2017; Foerster et al., 2018; Yu et al., 2022). We
aim to alleviate the limitation of fully decentralized execution solely with local observations while
following the CTDE paradigm. Subsequent to some pioneer works (Sukhbaatar et al., 2016; Foerster
et al., 2016), communication among agents has been extensively studied in cooperative MARL (Yuan
et al., 2022; Hu et al., 2021; 2024). Although communication can mitigate partial observability, it
may not be possible in target environments or constrained by diverse factors (Zhu et al., 2022; Ning
& Xie, 2024). Li et al. (2023) gradually shifts from communication to tacit collaboration, but it
requires communication during exploration. Our goal is to remove the dependence on communication.
Another line of research is to utilize shared structures dependent only on local information during
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Figure 2: The architecture of MA2E. During centralized training, MA2E masks out k agents’ trajecto-
ries from all agents’ trajectories τnt−T+1:t and learns to reconstruct them. The positional encoding
is applied considering both the time and the agent information. During decentralized execution,
trajectories of other agents are masked except the trajectories of current agent.

execution. MACKRL (Schroeder de Witt et al., 2019) employs common knowledge among groups of
agents with a hierarchical policy tree. COLA (Xu et al., 2023) infers the same one-hot consensus
for all agents from different local observations. Compared to those limited abstractions, our method
enables each agent to recover the global trajectories of all agents from its local observations.

Masked Modeling in Reinforcement Learning: Masked modeling to reconstruct original data from
masked ones emerges as a powerful technique in diverse domains including vision (Chen et al., 2020;
Bao et al., 2021; He et al., 2022) and NLP (Devlin et al., 2018; Liu, 2019; Clark, 2020). Recently,
the idea has been extended to the RL field. Masked World Model (Seo et al., 2023) is trained to
reconstruct pixels from masked convolutional features to learn a latent dynamics model. MaskDP
(Liu et al., 2023a) and MTM (Wu et al., 2023) apply masking to a portion of input trajectories
and learn to reconstruct them. They show generalization abilities on diverse tasks by manipulating
masking patterns desired for the target task. Aforementioned methods aim to solve the single-agent
RL tasks. In contrast, we explore MARL problems with masked modeling. MA2CL (Song et al.,
2023) deploys masked modeling with contrastive loss. The policy and the reconstruction module are
jointly trained to obtain encoder representation for the policy with enhanced collaboration. In contrast,
MA2E separately trains the policy and the reconstruction module, and its main focus is to recover
global information rather than encoder representation. MaskMA (Liu et al., 2023b) treats MARL as a
sequence modeling problem and masking is used to predict next action, rather than reconstructing the
inputs. In contrast, our aim is to recover global information using MAE for decentralized execution.

3 METHOD

Problem Formulation: We consider a cooperative MARL task which can be described as a Dec-
POMDP (Oliehoek et al., 2016). Dec-POMDP is defined as a tuple G = ⟨S,U, P, r, Z,O, n, γ⟩
where s ∈ S denotes the global environment state. At each time step, each agent i ∈ {1, ..., n}
chooses an action ui ∈ U which consists a joint action u = {u1, · · · , un} ∈ Un. The environment
follows the transition function P (s′|s,u) : S × Un × S → [0, 1]. All the agents share the common
reward function r(s,u) : S × Un → R. Each agent only obtains an individual partial observation
oi ∈ Z with the observation function O(s, i) : S ×N → Z, and has an observation-action history
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Figure 3: Incorporating MA2E into individual agents. Given a backbone MARL algorithm, MA2E is
integrated into the backbone individual network of each agent during decentralized execution. MA2E
serves as a global information inference module by only using local observations of the current agent
and inferring other agents’ information.

τ i ∈ T ≡ (Z×U)∗ and an individual policy πi(ui|τ i) : T×U → [0, 1]. The objective is to maximize
the expected return Est+1:∞,ut+1:∞ [

∑∞
m=0 γ

mrt+m|st,ut] with a discount factor γ ∈ [0, 1).

Masking: While random masking to states and actions is commonly adopted in single agent RL
(Liu et al., 2023a; Wu et al., 2023), our aim is to infer other agents’ information only with local
observations hence we apply masking at the agent level. During centralized training, we can access all
agents’ trajectories τnt−T+1:t = {τnt−T+1, . . . , τ

n
t } where τ it = (oit, u

i
t). As illustrated in Figure 2, we

randomly select k agents and mask out all trajectories of these agents. Then MA2E learns to recover
the entire trajectories from the masked trajectories that it outputs τ̃1:nt−T+1:t where τ̃ it represents a
recovered trajectory for the agent i at time step t.

In decentralized execution (for exploration during training or deployment after training), apart
from the local observations and actions of the agent (τ it−T+1:t−1, o

i
t), other information such as

observations from other agents cannot be obtained. The agent only utilizes its local observations for
the action selection and MA2E infers global information from local observations by restoring masked
areas during execution, as depicted in Figure 3. The comparison between agent level and random
masking strategies can be found in Section 4.4 and Appendix H.4.

Architecture: The detailed architecture of MA2E is described in Figure 2. MA2E follows an
auto-encoder architecture (Bank et al., 2020), with the encoder and decoder structured similarly to
Transformer (Vaswani et al., 2017), using Multi-Head Attention (MHA) and feedforward networks.
The decoder does not use masked MHA. Instead, a separate layer is utilized for masking before
the input data is fed into the encoder and decoder. In other words, observations and actions are
embedded in the embedding layer, undergo masking and positional encoding layers, then are fed
into the encoder and decoder. For positional encoding, the orders of both time steps and agents are
valuable information as MA2E takes histories of multiple agents. Therefore, we apply positional
encoding considering Agent and Time dimensions, and the related results are presented in Section 4.4
and Appendix H.4.

Incorporating MA2E into Individual Agent: MA2E is integrated into individual agents as illustrated
in Figure 3. Following this procedure, we note that MA2E can be easily plugged into existing MARL
algorithms. Depending on the selected MARL algorithm, each agent has a backbone network E
corresponding to the value function Q̄i or policy π̄i. MA²E is integrated internally within each agent
in addition to E. Each agent only takes its own local observations to determine actions; hence, inputs
for both E and MA2E are also local observations. Then MA2E reconstructs trajectories of all agents
from its local trajectories, where the output for the agent i at the current time t is replaced by (oit, ū

i
t)

since oit is already observed. The recovered trajectory for the current time t, τ̃1:nt = (τ̃1t , ..., τ̃
n
t ), is
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fed into the self-attention layers. The self-attention layers use a self-attention mechanism (Vaswani
et al., 2017) to selectively focus on other agents’ information for the agent’s current situation τ̃ it . For
the agent i and j, the attention weight wi,j is calculated as:

wi,j =
exp(τ̃Ti WT

k Wq τ̃j)∑i+1,··· ,n
j=1,··· ,i−1 exp(τ̃

T
i WT

k Wq τ̃j)
(1)

Wq and Wk are weight matrices such as fully connected layers for the query q and and key k,
respectively. Then a relevance-weighted value is computed by taking the weighted sum of the
attention weights and values as shown below:

Atteni(τ̃
1:n
t ) =

i+1,··· ,n∑
j=1,··· ,i−1

wi,jWv τ̃
j
t , (2)

where Wv is another weight matrix. From the backbone network E, we take the outputs before the
last layer E(τ it−T+1:t−1, o

i
t) as latent variables, and both E(τ it−T+1:t−1, o

i
t) and Atteni(τ̃

1:n
t ) are

fed into the aggregation network. Finally, the aggregation network produces the individual value Qi

or policy πi from which the agent chooses the action ui. This framework enables fully decentralized
execution for each agent without access to global information.

Training: The training of MA2E is divided into two stages: MA2E pre-training and MA2E fine-
tuning. During the pre-training stage, MA2E is trained using samples collected by a random policy
before the policy training begins. If we train MA2E from scratch and agents’ policy concurrently, the
generated information from MA2E would be a noise that interferes with the policy training. Hence,
the pre-training is needed to ensure that MA2E can properly infer unobserved information. The
objective of MA2E, defined in Eq. (3), is to minimize the Mean Squared Error (MSE) loss between
masked and true histories. Pre-training continues until the loss falls below a specified threshold.

LMA2E =
1

nT

T∑
t=1

n∑
i=1

(τ it − τ̃ it )
2. (3)

After pre-training of MA2E, the policy training begins. In this stage, fine-tuning of MA2E also takes
place. However, the policy is independently trained according to the chosen MARL method, and
MA2E is periodically updated with the loss defined in Eq. (3) after updating the policy sufficient
times. Both the agents’ policy and MA2E are trained using collected trajectories in a replay buffer.

4 EXPERIMENT AND RESULT

Environment and Setup We evaluate MA2E on the StarCraft Multi-agent Challenge (SMAC)
(Samvelyan et al., 2019), SMACv2 (Ellis et al., 2023), and Google Research Football (GRF) (Kurach
et al., 2020) environments. SMAC is one of the most popular MARL benchmark, which covers a
wide range of cooperative microcontrol scenarios. We conduct the experiments on SMAC HARD and
SuperHARD scenarios. SMACv2 complements the deterministic property of SMAC by randomizing
start positions and unit types, and changing the units’ sight and attack ranges. In GRF, multiple agents
cooperate to play a football game. All the experiments are conducted during 2× 106 time steps for
each run, and we report the average win rates with the shaded standard error from three different
random seeds. More experimental details can be found in Appendix A.

4.1 IMPROVING PERFORMANCE BY INCORPORATING MA2E INTO MARL ALGORITHMS

Firstly, we investigate the effectiveness of integrating MA2E into existing MARL methods to improve
the performance. We employ a fine-tuned QMIX (Hu et al., 2021), which achieves SOTA performance
through parameter fine-tuning from the vanilla QMIX (Rashid et al., 2018), as a backbone algorithm
to apply MA2E. We compare MA2E with various MARL algorithms including VDN (Sunehag et al.,
2017), QMIX (Rashid et al., 2018), OW-QMIX (Rashid et al., 2020), CW-QMIX (Rashid et al.,
2020), QPLEX (Wang et al., 2020), MAC2L(Song et al., 2023), COLA(Xu et al., 2023) as baselines.

The performance comparison between the model with MA2E and the baselines is illustrated in
Figure 4 and Figure 5. QMIX+MA2E is our proposed model, which is a fine-tuned QMIX (Hu
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Figure 4: Performance comparison with baselines in SMAC scenarios. The blue line represents the
model where MA2E is plugged into QMIX, while the other colored lines correspond to baselines.
The proposed model performs better in both HARD and SuperHARD scenarios in SMAC.

Figure 5: Performance comparison with baselines in SMACv2 scenarios. The blue line represents the
model where MA2E is plugged into QMIX, while the other colored lines correspond to baselines.

et al., 2021) with the addition of MA2E. In the HARD and SuperHARD scenarios of SMAC and
in SMACv2, QMIX+MA2E exhibits higher sample efficiency and superior win rates compare to
all baselines. In scenarios with higher difficulty levels, such as corridor and 6h_vs_8z, the
performance difference between the proposed model and the baselines becomes more pronounced
compared to relatively easier scenarios like 2c_vs_64zg. Specifically, in challenging scenarios
such as corridor and 6h_vs_8z, baselines struggle to achieve victories even after two million
time steps, whereas QMIX+MA2E attains high win rates. In addition, even when compared to QMIX,
which is a fine-tuned version showing state-of-the-art performance in MARL, the proposed method
shows superior performance. Even in the 10gen_terran scenario in SMACv2, QMIX+MA2E
demonstrates higher performance compared to the baselines. Additional results are in Appendix H.

4.2 COMPARISON WITH THE FULL STATE AND COMMUNICATION METHODS
We evaluate whether MA2E can accurately infer full observations from partial observations. We
compare the results of the model when using full state with the results of the model using MA2E.
The fully observable model replaces the MA2E of individual agents which is Figure 3 with full
observation and utilizes the output obtained through the self-attention layer. The results are depicted
in Figure 6. The comparison across four SMAC scenarios shows a similar pattern between using full
observation and using MA2E. Moreover, it is evident that the performance is better when using full
observation or using MA2E compared to using only partial observations. Especially in scenarios like
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Figure 6: Performance comparison between using full observation and utilizing MA2E in different
SMAC scenarios. Green line represents the case where QMIX is used with the full state, the blue
line corresponds to our proposed model, and the red line represents the fine-tuned QMIX which is a
baseline model in the experiment. The win rates of the model using the full state and the model with
MA2E applied exhibit similar patterns.

Table 1: Comparison of MA2E observation inference accuracy based on training progress

Type Before
Pre-Training MA2E

After
Pre-Training MA2E

After
Fine-Tuning MA2E

Discrepancy
Distance (L2 norm) 0.9933 0.3989 0.3588
Health (L1 norm) 0.6606 0.5585 0.4766

All Info (L1 norm) 0.5661 0.3984 0.3584

3s_vs_5z, where inter-agent information sharing is crucial and the difficulty is higher compared to
other scenarios, the differences become more pronounced.

Table 1 compares the inference accuracy according to the training progress of MA2E. It shows the
results of agent 1 inferring the observations of agent 2 in the 3s_vs_5z scenario in SMAC. From
left to right in the table, the results are from models at progressively advanced stages of training, and
the figure displays the inferred relative positions of agents from the observation inference results of
other agents, plotted on a two-dimensional plane. In the figure, red and blue icons represent true
values and the inferred values, respectively, indicating that as learning progresses, the inferred values
become closer to the actual values. In addition, the values in the table mean the differences between
the actual values and the MA2E’s deduced values for position, health, and the entire observation
values of other agents. The discrepancies decrease as MA2E learns, demonstrating that MA2E can
infer values closer to the real values through training. Based on the results, we can conclude that
MA2E can successfully infer information similar to full states.

Another way to utilize information over partial observations is information exchange among agents
through communication. We compare MA2E with communication methods in MARL domain
including MAIC (Yuan et al., 2022), QMIX-att (Hu et al., 2021) and CommFormer (Hu et al., 2024).
The learning curves can be found in Appendix H.3. As shown in Table 2, QMIX+MA2E demonstrates
performance that is comparable to or better than communication methods. Since MA2E does not rely
on direct information exchange, its performance highlights the strengths of our method.

4.3 EXTENSIBILITY AND TRANSFERABILITY OF MA2E

To explore the applicability of MA2E to various MARL algorithms in a general context, we conduct
experiments by applying MA2E to various value-based models such as VDN and QPLEX. The
experimental results are as shown in the Figure 7. The results across scenarios in both SMAC and
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Table 2: Comparison of MA2E with communication-based methods

Scenario Steps QMIX+MA2E (ours) MAIC QMIX-att CommFormer

3s_vs_5z 2M 0.99 ± 0.01 0.86± 0.05 0.41± 0.37 0.06± 0.04

2c_vs_64zg 1M 0.97 ± 0.03 0.76± 0.18 0.34± 0.31 0.59± 0.06

5m_vs_6m 2M 0.48± 0.08 0.69± 0.07 0.81 ± 0.04 0.61± 0.05

corridor 2M 0.91 ± 0.10 0.0± 0.0 0.30± 0.23 0.0± 0.0

6h_vs_8z 2M 0.53 ± 0.08 0.0± 0.0 0.14± 0.04 0.0± 0.0

MMM2 2M 0.79± 0.08 0.97 ± 0.07 0.20± 0.08 0.0± 0.0

Figure 7: Performance comparison between the model incorporating MA2E in QPLEX and VDN
and baselines in SMAC and SMACv2 scenarios. (Left): Comparing the performance of the model
with MA2E applied to VDN and the performance of VDN. (Middle): Comparing the performance
of the model with MA2E applied to QPLEX and the performance of QPLEX. (Right): Comparing
the performance of the model with MA2E applied to RIIT and the performance of RIIT to assess
whether MA2E leads to performance improvement when applied to a policy-based method.

SMACv2 indicate that the addition of MA2E improves performance compared to the baselines. MA2E
not only enhances sample efficiency but also converges to higher win rates in fewer time steps.

Figure 8: Performance comparison between
transferred MA2E and default MA2E in differ-
ent SMAC scenarios.

Furthermore, to confirm the applicability of MA2E
to policy-based algorithms, we conduct experi-
ments by incorporating MA2E into the policy-
based algorithm RIIT (Hu et al., 2021). The right
figures in Figure 7 illustrate that RIIT with MA2E
exhibits better performance compared to the base-
line models. The experimental results demonstrate
that MA2E can be seamlessly integrated into both
value-based and policy-based algorithms.

In order to confirm whether MA2E can be trans-
ferred to other backbone networks, MA2E is first
trained with QMIX. Then the trained MA2E is
transferred to the VDN network and only MA2E
finetuning is performed as training progresses, with-
out pre-training. Figure 8 compare the transferred
MA2E with the MA2E that goes through the pre-training process. The model equipped with trans-
ferred MA2E performs better in the HARD scenario and shows comparable performance in the
SuperHARD scenario, which demonstrates the transferability of MA2E.
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Figure 9: Performance comparison between the model incorporating MA2E in VDN and baselines in
Google Research Football scenarios

To further verify the effectiveness of MA2E across diverse environments, additional experiments
are conducted in GRF. We apply MA2E to VDN. As in Figure 9, integrating MA2E significantly
improves performance in three different scenarios. Consequently, the above results demonstrate the
extensibility of MA2E for various MARL algorithms and domains. We evaluated the performance of
VDN, QPLEX, RIIT, and another policy-based algorithm, IPPO (de Witt et al., 2020) with MA2E
in diverse scenarios and the results are illustrated in Appendix C. MA2E consistently improves the
performance across different algorithms and tasks.

4.4 ABLATION STUDIES

To identify a suitable structure and hyper-parameters of MA2E, we conduct ablation studies across var-
ious settings. The comparison is conducted in the 3s_vs_5z scenario of SMAC. The experimental
results for comparison are illustrated in Figure 10 and in Appendix H.4.

Masking Strategy: We compare two masking strategies: agent-based and random masking. Random
masking removes a random portion of the input data, irrespective of the agents. The masking ratio is
randomly chosen from 0.15, 0.35, 0.5, 0.75, and 0.95, with the masking point also being randomly
determined. This ratio follows the suggestion from Liu et al. (2023a). Figure 10 (a) compares
win rates based on different masking strategies and agent-based masking is superior because it can
effectively capture correlations between agents.

The Number of Trajectories: To test the appropriate trajectory length, we conduct a comparison of
the number of trajectories in five different settings : 1, 3, 5, 7, and 9. Figure 10 (b) compares perfor-
mance based on the number of trajectories. The performance does not show a consistent difference
among the different number of trajectories. However, it can be observed that the performance is at its
best when the number of trajectories is 5, and it deteriorates as the number becomes smaller or larger
than 5. Therefore, to achieve good performance with MA2E, it is necessary to set appropriate number
of trajectories depending on the scenario or environment.

Positional Encoding: To test the effect of the positional encoding design, we compare positional en-
coding using three different encoding methods : Agent, Time, and Both. Agent encoding distinguishes
encoding based on agents, while Time encoding sets different values based on the trajectories. In the
Both setting, encoding takes both Agent and Time into account. For example, half of the embedding
space is dedicated to agent-based encoding, and the remaining half is utilized for time-based encoding.
Figure 10 (c) compares performance based on the positional encoding design. As we can see, the
performance is significantly better when considering both time and agent, as opposed to either of them
individually. When considering only one of either time or agent, there is not a significant difference
in performance compared to the case where MA2E is not used. In particular, when considering only
time, there are intervals where the performance is even worse than without MA2E.

MA2E Training: As mentioned in Section 3, MA2E training is divided into two stages. To verify
the importance of both stages, we report the performance of MA2E without pre-training (w/o PT)
and without fine-tuning (w/o FT). As shown in Figure 10 (d), employing both pre-training and
fine-tuning achieves the best performance. Moreover, there is a tendency for the performance of the
case without pre-training (w/o PT) to be better than the case with pre-training only (w/o FT), but
the variance of w/o PT is very high. This indicates that when MA2E is underfitted and its outputs

9
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(a) (b) (c) (d)

Figure 10: Performance comparison based on hyper parameter settings or strategies. (a): Performance
comparison based on masking strategies. The agent-based masking strategy applied model outper-
forms both the random masking strategy applied model and the default model. (b): Performance
comparison of MA2E based on the number of trajectories. (c): Performance comparison of MA2E
based on the positional encoding strategies. When considering both agent and time, it shows the best
performance. (d): Performance comparison of MA2E with or without pre-training and fine-tuning.

used in decision making are likely to act as noise. Therefore, pre-training is necessary to reliably
improve the performance and fine-tuning is required to align MA2E with the policy.

5 CONCLUSION AND LIMITATIONS

In this paper, we propose a novel method MA2E, which utilizes the masked auto-encoder to address
partial observability in the context of multi-agent reinforcement learning. MA2E empowers agents
to derive global insights solely from own local information, thereby enhancing their collaborative
decision-making capabilities. The proposed method seamlessly integrates with both value-based
and policy-based MARL algorithms. Through extensive experimentation, we have substantiated
its effectiveness in enhancing sample efficiency and elevating task-solving proficiency across a
diverse set of scenarios within the SMAC, SMACv2, and GRF environments. We posit that the
incorporation of MA2E into MARL, which extends the observational horizon of agents, stands as a
pivotal advancement in MARL research. By introducing a methodology that addresses the challenge
of partial observability in MARL, MA2E has emerged as a cornerstone in the field.

Nonetheless, our proposed model exhibits limitations. When agents are positioned far apart such
that there is no overlap in their observations, the capacity to infer information about other agents
is severely restricted, potentially resulting in the inference outcomes of MA2E being not useful. A
more comprehensive delineation of these limitations can be found in Appendix E. Additionally, the
structural characteristics of MA2E make it relatively difficult to scale to a varying number of agents.
In future work, we plan to investigate approaches that enable scalability, such as team composition.

REPRODUCIBILITY STATEMENT

For the details of environments and hyperparameters, please refer Section 4 and Appendix A. To run
our method, please download the supplementary material and follow the instructions in README
files. We employed pymarl2 (Hu et al., 2021) or the official codes from the authors for baselines.
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A EXPERIMENTAL DETAILS

In this section, we introduce the environments used in the experiments, the baseline algorithms, as
well as the hyperparameters and computational resources. Experiments are carried out on NVIDA
A6000 and GTX3090 GPUs and AMD EPYC 7313 CPU.

A.1 ENVIRONMENTS

We conduct experiments in the following environments:

• StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019) from https://
github.com/oxwhirl/smac which is licensed under MIT license.

• SMACv2 (Ellis et al., 2023) from https://github.com/oxwhirl/smacv2 which
is licensed under MIT license.

• Google Research Football (GRF) (Kurach et al., 2020) from https://github.com/
google-research/football which is licensed under Apache License 2.0.

All algorithms are implemented based on the open-source framework pymarl2 (Hu et al., 2021) from
https://github.com/hijkzzz/pymarl2 which is an augmented version of pymarl from
https://github.com/oxwhirl/pymarl. Both are licensed under Apache License 2.0.

A.1.1 SMAC

The StarCraft Multi-Agent Challenge (SMAC) is one of the benchmarks widely utilized in research to
evaluate MARL algorithms. Units from the strategy video game StarCraft II engage in confrontations
with each other in diver scenarios. The objective is for multiple agents to collaborate in defeating the
enemies. There are multiple scenarios, each categorized into difficulty levels such as EASY, HARD,
and SuperHARD. We primarily conduct experiments in HARD, and SuperHARD scenarios. Table 3
provides a detailed description of the scenarios we used in our experiments.

Scenario Difficulty Ally Units Enemy Units Type

2s_vs_1sc EASY 2 Stalkers 1 Spine Crawler micro-trick: alternating fire

3s_vs_3z EASY 3 Stalkers 3 Zealots micro-trick: kiting

3s_vs_5z HARD 3 Stalkers 5 Zealots micro-trick: kiting

2c_vs_64zg HARD 2 Colossi 64 Zerglings micro-trick: positioning

MMM HARD
1 Medivac

2 Marauders
7 Marines

1 Medivac
2 Marauders
7 Marines

heterogeneous & symmetric

corridor Super HARD 6 Zealots 24 Zerglings micro-trick: wall off

6h_vs_8z Super HARD 6 Hydras 8 Zealots micro-trick: focus fire

MMM2 Super HARD
1 Medivac

2 Marauders
7 Marines

1 Medivac
3 Marauders
8 Marines

heterogeneous & asymmetric

1o_2r_vs_4r - 1 Overload
2 Roaches 4 Roaches communication

Table 3: A detailed description of the SMAC scenario used in the experiment

A.1.2 SMACV2

SMACv2 is proposed to address the shortcomings of SMAC, particularly in terms of its lack of
stochasticity and partial observable characteristics (Ellis et al., 2023). Therefore, SMACv2 differs
from SMAC in three main aspects.
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First, the unit composition is randomly determined. In SMAC, the generated units are fixed, whereas
in SMACv2, different types of units are randomly generated based on probabilities. The second
difference lies in the observation probability of agents. In SMAC, when one agent observes an
enemy, other agents can also observe the same enemy simultaneously. In contrast, in SMACv2, if one
agent observes an enemy first, other agents within their observation range may not identify the same
enemy, even if it is present. The last distinction involves adding randomness to the location where
units are spawned. The location where units are spawned is determined by one of two types: one is
surround and the other is reflect. surround entails the creation of units in a formation where allied
units surround enemy units, while reflect involves units being spawned in a facing and confronting
manner.

(a) surround (b) reflect

Figure 11: Two different types of start positions in SMACv2

We conduct experiments in SMACv2 under conditions that encompass all three aforementioned
aspects, and additionally, we fixed the last condition to investigate performance differences in MA2E
based on the spawning locations. To elaborate further, when comparing the results between the
surround and reflect, we assumed that surround , where agent observations already sufficiently
overlap, would render global information less significant. On the other hand, in the case of reflect,
agents are spawned at an appropriate distance, allowing for the assumption that through the inference
of global information, they could acquire useful information about agents at long range.

Figure 11 provides examples of the reflect and surround positions. The light gray circles represent
the observation range of allied agents. In the case of surround, most areas overlap. In contrast, reflect
shows a relatively smaller overlap compared to surround. Therefore, we believe that MA2E can better
infer global information in the reflect position than in the surround position.

A.1.3 GOOGLE RESEARCH FOOTBALL (GRF)

Google Research Football (GRF) is one of the widely used benchmark in multi-agent reinforcement
learning research. Multiple agents cooperate to play a football game in GRF and GRF offers various
scenarios. We experiment with our model in three different scenarios of GRF.

• academy_3_vs_1with_keeper: The objective is for three allied agents to score goals in a
soccer half-court field against an opposing goalkeeper.

• academy_counterattack_easy: The scenario consists of four allied agents, one opposing
agent, and one goalkeeper. The objective is for the allied agents to execute a counter-attack.

• academy_counterattack_hard: The scenario consists of four allied agents, two opposing
agents, and one goalkeeper. The objective is for the allied agents to execute a counter-attack.

A.2 HYPERPARAMETERS

The hyperparameters for the baselines in our experiments are as listed in Table 4. The value-based
algorithms include VDN, QMIX, QPLEX, ow-QMIX, cw-QMIX, while the policy-based algorithms
include IPPO, RIIT. Moreover, the hyperparameters for MA2E are listed in Table 5.
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Table 4: The hyperparameter settings for the baseline algorithms

Algorithms Value-based Policy-based
Optimizer Adam Adam
Batch Size 128 64, 32

TD(λ) 0.6 -
Learning Rates 0.001 0.0005, 0.001

Replay Buffer Size 1000 64, 128
ϵ Anneal Steps 100000 100000

Gamma 0.99

Table 5: The hyperparameter settings for MA2E

Hyperparameters Value

Batch size 32
Input embedding 24
The number of heads 4
The number of encoder layer 3
The number of decoder layer 2
Steps for fine tuning 500
Pretraining threshold 0.015

B PSEUDOCODE

Algorithm 1 Model with Multi-Agent Masked Auto-Encoder (MA2E) Applied

1: Initialized value networks Qθind
and Qθtot or policy network πθ

2: Initialized MA2E parameters θma2e

3: Prepare replay buffer D
4: repeat
5: Run episodes through random policy and store trajectories in Buffer D
6: Update MA2E parameters θma2e using samples in D : LMA2E = 1

nT

∑T
t=1

∑n
i=1(τ

i
t − τ̃ it )

2

7: until When training has been done for a specific number of steps or when the loss is lower than
the threshold

8: Reset replay buffer D
9: repeat

10: for each episode do
11: Get initial state s
12: while episode is not terminated do
13: Sample actions at from Q with ϵ greedy or policy πθ

14: Execute actions and observe reward rt
15: Store transition (st, ot,ut, rt) in buffer D
16: end while
17: Update value networks Qθind

and Qθtot or policy network πθ

18: Update MA2E parameters θma2e

19: end for
20: until reaching maximum total environment steps
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C ADDITIONAL RESULTS OF MA2E WITH VDN, QPLEX, RIIT AND IPPO
ACROSS DIFFERENT ENVIRONMENT

We provide additional experimental results from SMAC, SMAC2, and GRF. All results were tested
with 3 random seeds.

Figure 12: Performance comparison in SMAC and SMACv2 scenarios

D ABLATION STUDIES ON OBSERVATION OVERLAP

Figure 13: Performance comparison according to the different starting position in SMACv2

SMACv2 offers different starting positions based on the configurations, with two main strategies
for positioning: surround, where the units are placed in a position surrounded by the enemy, and
reflect, where they are positioned head-on in a confrontation with the enemy. The extent of overlap in
agent observations varies depending on each position. (For more details, please refer to Appendix
A.1.2.) We utilize these two positions to compare the performance of MA2E based on the extent of
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observation overlap. In both cases, the performance is better than the baseline, but it is particularly
evident from Figure 13 that the performance is significantly better in the reflect compared to the
baseline. Therefore, it can be concluded that when the observation range overlaps at a reasonable
proportion, MA2E can better infer global information, as opposed to cases where the overlap is too
extensive.

E LIMITATIONS

(a) A Screenshot of 1o_2r_vs_4r scenario in
SMAC (b) Win rate comparison between using communica-

tion and using MA2E.

Figure 14: A scenario where MA2E fails to infer global information

An agent must use observations as clues to infer the actions or movements of other agents. Therefore,
if there is no information about other agents in the observation of an agent, MA2E cannot effectively
capture the information.

For example, in environments where agents are spread far apart due to a large map size, and their
observations do not overlap, MA2E may struggle to infer the information. Figure 14a shows a
screenshot of the 1o_2r_vs_4r scenario, and Figure 14b shows a comparing the win rates when
the model uses communication and when the model uses MA2E. In this map, enemies and allies
spawn at random locations among the four corners (top-left, bottom-left, top-right, bottom-right) of
the map. Allied agents consist of two attacking units and one observation unit, with the observation
unit spawning at the same location as the enemies.

If communication is possible, the observation unit can inform the attacking units of the enemy’s
location. On the other hand, since the observation unit is outside the observation range of the attacking
units, they cannot infer information about the observation unit. We compare our proposed model with
the communication method presented by Hu et al. (2021), called QMIX-Attention, to investigate this
situation. As shown in the Figure 14b, the performance of our proposed model is relatively lower
compared to the case where communication is used. Nevertheless, despite that, it can be confirmed
that using MA2E does not make lower performance compared to the default model.

We also compare with communication methods Commnet (Sukhbaatar et al., 2016), G2ANet (Liu
et al., 2020), MAIC (Yuan et al., 2022), and QMIX-att (Hu et al., 2021). The results are shown in
Figure 15. In 3s_vs_5z, appropriately overlapping observations allow MA2E to effectively infer
information, and the use of attention layers reduces the space size. Conversely, communication based
methods increase the space size and require communication overhead, leading to slower convergence
and sample inefficiency. However, in 1o_2r_vs_4r, MA2E struggles to perform effectively due
to a very little observation overlap among agents, while communication methods (QMIX-att and
Commnet) can still fully share the information hence achieves better performance. Thus, we note that
the need for communication vary depending on the environment.
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Figure 15: Performance comparison with communication based MARL algorithms in two SMAC
scenarios

F IS MA2E PERFORMING WELL BECAUSE IT IS OVERFITTED TO THE
ENVIRONMENT?

MA2E learns the dynamics of the environment during the training process and captures global
information through its ability to infer masked areas. Therefore, from one perspective, it can be
considered that MA2E performs well due to overfitting to the environment. Specifically, in the SMAC
environment, there is a significant performance difference between algorithms applying MA2E and
the baseline, but in the SMACv2 environment, this difference is not as pronounced. This suggests
that MA2E may be overfitting to the environment because SMAC is more deterministic compared to
SMACv2, making it easier for the model to overfit.

However, the issue of not performing well in SMACv2 is a common difficulty not only for MA2E
but also for existing MARL algorithms. In reflecting the stochastic characteristic of SMACv2, the
random properties can generate scenarios that are unwinnable from the start or turn each episode into
a completely different task, requiring a multi-task approach. Therefore, it is difficult to argue that
MA2E is overfitting just because it does not perform well in SMACv2.

(a) The spawn locations of enemy and ally agents in
the modified 3s_vs_5z scenario. (b) Win rate comparison between using MA2E and

without MA2E case

Figure 16: The experimental results in the environment with added stochastic characteristics

Nonetheless, to prove that MA2E is not overfitting to the environment, we created a non-deterministic
scenario by adding random characteristics to the 3s_vs_5z scenario of SMAC and used it for
experimentation. In the original 3s_vs_5z scenario, the positions where enemy and ally agents
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spawn are fixed. In contrast, in our modified scenario, the enemy and ally agents spawn at random
locations within the blue area shown on the Figure 16a. Thus, a stochastic property is added where
the spawn positions of the enemy and ally agents change in each episode.

The experimental results are shown on the Figure 16b. As a result, it can be seen that the model
using MA2E significantly outperforms the model without it. Therefore, it can be concluded that
MA2E does not overfit to the environment but appropriately infers global information according to
the situation.

G BROADER IMPACT

Our study introduces Multi-Agent Masked Auto-Encoder (MA2E) to enhance decision-making
in multi-agent systems. By addressing partial observability through a masking perspective, our
approach has broad applications in real-world scenarios such as military operations, autonomous
driving, traffic systems, and robotics, promising improved decision-making across diverse multi-agent
environments. While explicit communication can selectively send the messages, MA2E is trained
with full information. Hence the proposed method may cause privacy or security issues in some real
world applications, which would be mitigated by anonymizing data.
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H ADDITIONAL EXPERIMENT AND RESULTS FOR REBUTTAL

H.1 RESULTS IN SMAC

Figure 17: Additional experimental results comparing QMIX+MA2E with LDSA, CDS, and RODE
in SMAC. While each baselines suffers in several scenarios, QMIX+MA2E consistently performs
well across different scenarios.

Table 6: Comparison of QMIX+MA2E with the baselines, corresponding to Figure 17. The values in
the table represent average win rates with standard deviations. QMIX+MA2E outperforms baselines
on average across different scenarios.

Scenario Difficulty Steps QMIX+MA2E (ours) QMIX LDSA RODE CDS
3s_vs_5z HARD 2M 0.99±0.01 0.89±0.03 0.0±0.0 0.89±0.11 0.98±0.01
2c_vs_64zg HARD 1M 0.97±0.02 0.9±0.03 0.01±0.0 0.94±0.04 0.03±0.03
5m_vs_6m HARD 2M 0.48±0.08 0.37±0.14 0.33±0.0 0.78±0.14 0.5±0.16
corridor SuperHARD 2M 0.9±0.03 0.0±0.0 0.0±0.0 0.04±0.06 0.71±0.13
6h_vs_8z SuperHARD 2M 0.52±0.08 0.0±0.0 0.0±0.0 0.04±0.05 0.64±0.1
MMM2 SuperHARD 2M 0.81±0.05 0.64±0.15 0.03±0.04 0.96±0.02 0.8±0.08

Avg. - - 0.78 0.47 0.06 0.61 0.61

Figure 18: Experimental results in additional SMAC scenarios.
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H.2 RESULTS IN SMACV2

Figure 19: Additional experimental results in SMACv2, with 10gen_zerg is added to the experiment
from the original manuscript. QMIX+MA2E outperforms the baselines across differnt scenarios.

H.3 LEARNING CURVE OF TABLE 2

We provide learning the curves of each algorithm in Table 2. For ease of reference, we include
here Table 7, which is the same as Table 2. As shown in Figure 20, QMIX+MA2E outperforms the
baselines in most scenarios.

Figure 20: Learning curves of each algorithm in Table 2.

Table 7: Comparison of MA2E with communication-based methods

Scenario Steps QMIX+MA2E (ours) MAIC QMIX-att CommFormer

3s_vs_5z 2M 0.99 ± 0.01 0.86± 0.05 0.41± 0.37 0.06± 0.04

2c_vs_64zg 1M 0.97 ± 0.03 0.76± 0.18 0.34± 0.31 0.59± 0.06

5m_vs_6m 2M 0.48± 0.08 0.69± 0.07 0.81 ± 0.04 0.61± 0.05

corridor 2M 0.91 ± 0.10 0.0± 0.0 0.30± 0.23 0.0± 0.0

6h_vs_8z 2M 0.53 ± 0.08 0.0± 0.0 0.14± 0.04 0.0± 0.0

MMM2 2M 0.79± 0.08 0.97 ± 0.07 0.20± 0.08 0.0± 0.0
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H.4 ABLATION STUDY

We provide additional ablation study in 2c_vs_64zg scenario. For ease of comparison, we include
here Figure 22, which is the same as Figure 10. We can draw a similar conclusion that: using
agent-level masking, an appropriate number of trajectories, positional encoding considering both
agent and time, and both pretraining and fine-tuning yield better results.

Figure 21: Additional ablation study in 2c_vs_64zg scenario. Along with Figure 22, we can draw
a similar conclusion.

(a) (b) (c) (d)

Figure 22: Performance comparison based on hyper parameter settings or strategies in 3s_vs_5z
scenario (same as Figure 10). (a): Performance comparison based on masking strategies. The
agent-based masking strategy applied model outperforms both the random masking strategy applied
model and the default model. (b): Performance comparison of MA2E based on the number of
trajectories. (c): Performance comparison of MA2E based on the positional encoding strategies.
When considering both agent and time, it shows the best performance. (d): Performance comparison
of MA2E with or without pre-training and fine-tuning.
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H.5 COMPARISON OF TRAINING COST AND MODEL SIZE WITH AND WITHOUT USING MA2E

3s_vs_5z MA2E+QMIX QMIX Difference
Time for pretraining 0.77h - +0.77h
Time to convergence 17.05h (faster) 18.22h -1.17h (93%)
Steps to convergence 2.03M (faster) 3.52M -1.49M (57%)
Steps per second 33.07 53.66 -20.59
The number of parameters 0.43M 0.12M 0.31M

Table 8: Comparison of training and execution time and the number of parameters for each method
in the SMAC 3s_vs_5z scenario. The values in parenthesis represent the relative ratio between
MA2E+QMIX and QMIX.

2c_vs_64zg MA2E+QMIX QMIX Difference
Time for pretraining 0.84h - +0.84h
Time to convergence 7.97h (faster) 8.76h -0.79h (90%)
Steps to convergence 0.639M (faster) 1.021M -0.382M (63%)
Steps per second 22 32 -10
The number of parameters 0.98M 0.65M 0.33M

Table 9: Comparison of training and execution time and the number of parameters for each method in
the SMAC 2c_vs_64zg scenario. The values in parenthesis represent the relative ratio between
MA2E+QMIX and QMIX.
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H.6 RESULTS IN SMAC UNDER THE SAME HYPERPARAMETER SETTING AND PYMARL2

Figure 23: Additional experimental results in SMAC. All the baselines are evaluated under the same
hyperparameter settings as MA2E and pymarl2. Again, QMIX+MA2E consistently performs well
across different scenarios.

Table 10: Comparison of QMIX+MA2E with the baselines, corresponding to Figure 23. The values in
the table represent average win rates with standard deviations. QMIX+MA2E outperforms baselines
on average across different scenarios.

Scenario Difficulty Steps QMIX+MA2E (ours) COLA RODE LDSA TransMIX
3s_vs_5z HARD 2M 0.99±0.01 0.60±0.16 0.34±0.4 0.31±0.10 0.91±0.04
2c_vs_64zg HARD 1M 0.97±0.02 0.86±0.07 0.86±0.13 0.22±0.16 0.32±0.05
5m_vs_6m HARD 2M 0.48±0.08 0.37±0.14 0.42±0.05 0.30±0.17 0.58±0.01
corridor SuperHARD 2M 0.9±0.03 0.46±0.37 0.08±0.11 0.0±0.0 0.35±0.11
6h_vs_8z SuperHARD 2M 0.52±0.08 0.05±0.05 0.0±0.0 0.0±0.0 0.0±0.0
MMM2 SuperHARD 2M 0.81±0.05 0.35±0.22 0.0±0.0 0.09±0.05 0.02±0.00

Avg. - - 0.78 0.46 0.26 0.16 0.36
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