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Abstract

Input-dependent activation sparsity is a notable property of deep learning models,
which has been extensively studied in networks with ReLU activations and is asso-
ciated with efficiency, robustness, and interpretability. However, the approaches
developed for ReLU-based models depend on exact zero activations and do not
transfer directly to modern large language models (LLMs), which have abandoned
ReLU in favor of other activation functions. As a result, current work on acti-
vation sparsity in LLMs is fragmented, model-specific, and lacks consensus on
which components to target. We propose a general framework to assess sparsity
robustness and present a systematic study of the phenomenon in the FFN layers of
modern LLMs, including diffusion LLMs. Our findings reveal universal patterns
of activation sparsity in LLMs, provide insights into this phenomenon, and offer
practical guidelines for exploiting it in model design and acceleration.

1 Introduction

An intriguing property of deep learning models is activation sparsity [22], i.e., the tendency of hidden
states to contain mostly zero (or near-zero) values with input-dependent patterns. This phenomenon
can be used to improve model efficiency through skipping computations [25} 28]], and has been linked
to robustness [[7,122]] and interpretability [2} 14} [11} 14} 48]]. Activation sparsity has been extensively
studied for ReLU-based networks, including MLPs [l [15], CNNs [17,133]], and vanilla Transformer
feed-forward networks (FFN) [22, 147]. Modern LLMs [5, 16, [13| 27, 131} [32, 42], however, use
SiLU/GELU activations and GLU-based FFNs [34], and do not produce exact zero activations.

Although activations of such LLMs still exhibit substantial sparsity, approaches developed to study
and exploit it in ReLU-based networks often fail to transfer directly [[10, 138, 41]]. While some works
explored retrofitting LLMs to use ReL U activations to introduce exact sparsity [28 37,138}, 47], such
approaches sacrifice model quality [[10,|37]] and come with additional costs and constraints.

Therefore, recent works developed tailored techniques to exploit activation sparsity for acceleration
of modern LLMs [3} [10} [18, 23| 25]. However, these methods are typically model- or module-
specific and require extra steps such as additional training [28} 41]], sparsity prediction [25}47]], or
calibration on held-out data [18| 23|]. There is also no consensus on which FFN components to
focus on, with approaches targeting inputs [[10} |23} 24]], gate [[18]], or intermediate states [25]. Given
these rapid advances, we argue that a systematic study of activation sparsity in modern LLMs can
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provide valuable insights into their inner workings, network embedding geometry, and model design.
Therefore, we provide a consolidated discussion of activation sparsity characteristics in widely used
LLMs and propose a simple and universal approach to determine the robustness of Transformer
activations to sparsity. Using this framework, we analyze sparsity patterns across FFN components,
model families, and sizes, and examine how data and training affect sparsity robustness. Finally,
we discuss how our findings relate to the existing body of work on activation sparsity. Our work
highlights universal patterns in activation sparsity and provides practical guidelines for practitioners
seeking to understand activation sparsity or leverage this curious phenomenon for model acceleration.

2 Activation Sparsity in Modern Transformers

Gated Feedforward Transformer Layers. Transformer blocks consist of attention and feed-
forward (FFN) sub-blocks [43]. While the FFN in the original Transformer was composed
of two projection layers separated by an activation function, modern LLMs typically employ
FFNs based on the Gated Linear Unit (GLU) architecture [34], which can be expressed as:
FFN(z) = Wq((Wuz) ® (Wgz)), where: = € R" is the input vector, W, € R"*? is
the up-projection matrix, Wy € R"* is the gating projection matrix, Wgq € R?*" is the down-
projection matrix, and o is an activation function, usually SiLU or GELU. We use h and d to denote
the model’s hidden and intermediate dimensions, respectively. In the subsequent sections, we refer

to the above-mentioned activation vectors in the FFN as « - input , uw = Wy - up-projection ,

g =0(Wgz) - gate and i = (Wyx) © 0(Wg) - intermediate vectors.

[ Value-based activation sparsity ]

Computational Benefits of Activation Sparsity. Activation sparsity - Wa B -
refers to models relying on a small, input-dependent subset of neurons mm ® B © omm
and leaving most activations effectively unused. This enables skipping -

parts of FFN matrix multiplications, reducing both computation and iewd mmamam JeRH
weight loading costs (Figure[T), with potential additional hardware- o000 ® 20 © o
specific gains [[10]. Activation sparsity approaches usually differ along

two axes: 1) value-based vs. predictor-based: directly using activa- [ Predictor-based activation sparsity ]
tions to skip computation in other modules versus predicting masks - [R” N N Eg’g‘
with auxiliary networks, and 2) column-wise vs. row-wise: skipping

computation in the matrix columns or in the matrix rows. Value-based W, € R
approaches usually either sparsify the computation column-wise in ceRh HH ieR?
the linear layers based on their input [[10} 23| 24]] or use gate values o @ HHEE O e
to determine which computation to skip in a row-wise manner in up- S

and down-projection layers [[L8]. Predictor-based approaches focus iR T R
on determining sparsity in the intermediate activations [25, 41| 47], == @ HHHHO

which allows for row-wise sparsification of all three FFN matrices.
While these methods potentially achieve much higher sparsity, these  Fjgyre 1: Model accelera-
gains come at the cost of additional predictor computations. tion approaches.

Determining Activations to Sparsify in Non-ReLU LLMs. Modern LLM architectures lack
components that explicitly produce zero activations, which makes it difficult to study activation
sparsity directly. However, prior work [3} 23| [24] has shown that some activation vectors v € R"”
in such models can be sparsified to a certain degree without incurring a significant performance
loss. To study the general impact of sparsification on FFN layers, we propose to use a simple top-p
sparsification rule, where we obtain a sparsity mask m,, from the largest-magnitude entries in v
whose absolute values sum to at least a fraction p of the vector’s total L1 norm:

top-p(v) = mp ® v; m, = argmin ||m||o s.t. [[m O |1 > p-||v|[r and m € {0,1}".
m

The induced sparsity is then the fraction of zeros in m,,. By evaluating model performance over a
range of p values, we can obtain a sparsity-performance trade-off curve and assess the functional
activation sparsity of the model — the level of sparsity at which the model still performs similarly
to the densely activated original. Our approach is simple, general, easy to interpret, and provides
a reasonably good activation sparsity in practice. Crucially, it can be applied to any FFN module
without auxiliary training or calibration, which allows us to fairly compare models and modules. See
Appendix [B|for further discussion and comparison between the top-p approach and the alternatives.
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Figure 2: Average accuracy across downstream tasks normalized by the original performance with
different induced activation sparsity for base Gemma3 models. (top) Sparsity for different FFN
modules at various model sizes. (bottom) Sparsity for different models at various modules. We
denote the highest (critical) sparsity where at least 99% performance is retained with a marker.
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Figure 3: a) Critical sparsity across model families, scales, and modules. b) Per-task sparsity KDA
across Gemma3 experiments. c¢) Critical sparsities for pretrained and Instruction-Tuned Gemma3
models. d) Activation sparsity with LLaMA-8B and LLaDA-8B, with critical sparsity points marked.

3 Experiments

To study the effects of activation sparsity in LLMs, we use the task suite from Mirzadeh et al. [28] and
evaluate Gemma3, Llama3.1/3.2, and Qwen2.5 models with 1m-eval-harness [12] in a zero-shot
setting. For each experiment, we fix a threshold p and apply the top-p rule uniformly to one of
four activation types across all model layers. We then measure the average induced sparsity and the
resulting performance drop. Unless stated otherwise, we report the average sparsity and performance
across all the tasks. To explicitly tie sparsity with accuracy, we use the concept of critical sparsity -
the highest empirical sparsity level at which models still retain at least 99% of their accuracy.

Which parts of the FFN are most robust to sparsity? We evaluate Gemma3 models by plotting
performance degradation under increasing sparsity in Figure [2| Sparsity robustness generally
improves with model size, barring small fluctuations in up-projections. Although intermediate
activations show the greatest sparsity, they offer limited use for FEN acceleration, since they directly
allow sparsifying around one-third of FFN operations. However, intermediate activations allow for
the highest efficiency gains when sufficient predictors are available. Despite its simplicity, the
input-based method achieves sparsity levels comparable to the gate-based approach often favored in
the literature [18]. Gate sparsity is typically no higher than input sparsity, and up-projection sparsity
performs similarly to gates, despite the latter applying an activation function. Input-based sparsity
appears the most practical for predictor-free methods, as it matches gate sparsity while allowing
the acceleration of all FFN modules. Gate-based sparsification, contrary to intuition, offers no clear
advantage at our scale, though for models larger than ~30B parameters it may surpass input sparsity.

How does activation sparsity behave across models? To assess the generality of our previous
findings across families and scales, we consider pretrained LLaMA3.1/3.2 and Qwen2.5 models and
plot their critical sparsity in Figure 3, fitting trends with least squares (see Appendix [A]for numerical
results). The trends outlined in the previous section remain roughly consistent across models:
intermediate activations are generally the most sparse, with input and up-projection activations
achieving higher sparsity than the gate until the larger model sizes. Slight deviations in the trends
can be attributed to non-uniform depth—width scaling, especially in Qwen, where dimensions grow



disproportionately with parameter count. Overall, activation sparsity tends to increase with model
size, though it cannot be directly determined based on the model size alone.

Is activation sparsity task-dependent? Activation sparsity patterns are dynamic and input de-
pendent, raising the question of whether robustness also varies across tasks. To examine this, we
analyze the kernel density estimate (KDA) [36] of critical sparsities obtained for different tasks across
Gemma3 modules and model sizes in Figure 3p. Critical sparsity differs widely across the tasks,
which indicates that the phenomenon of activation sparsity is also highly task dependent. This
supports prior work advocating task-specific acceleration approaches [8, |49].

Does training affect activation sparsity? Critical sparsity depends on the model architecture and
size, sparsification method, and task. An interesting question is also whether changing the model
training recipe affects the sparsity. To investigate this, we compare the average performance of
pretrained and instruction-tuned Gemma 3 models in Figure [3t. At larger sizes, instruction-tuned
models show higher tolerance to activation sparsity, indicating that training influences robustness
to sparsity even with identical architectures. We observe variance between instruction-tuned and
pretrained models across all the evaluated architectures (see Appendix [A]for numerical results), which
aligns with prior work suggesting that training schemes significantly influence model robustness 16}
39] and underscores activation sparsity as a complex, training-dependent phenomenon.

Is activation sparsity also prevalent in diffusion LLMs? Investigating training dependence
further, we ask whether activation sparsity also arises in diffusion LLMs. While prior work has
examined sparsity and caching in image diffusion [19} 26| 35,46, to our knowledge, this is the first
analysis of the phenomenon in diffusion-based LLMs (as discussed in Appendix [C)). We compare
two models with identical architectures that differ by training paradigms: the masked diffusion
LLaDA-8B [29] and the autoregressive LLaMA3.1-8B. Using our evaluation framework and the
official LLaDA implementation, we apply independent sparsification at each diffusion step and
evaluate on four different tasks. As shown in Figure [3d, LLaDA also exhibits significant activation
sparsity, with even slightly more favorable sparsity—performance characteristics. Our findings suggest
that activation sparsity can also be a promising tool for accelerating diffusion LLMs.

4 Discussion

Despite lacking any architectural bias toward explicitly sparse activations, modern LLMs consistently
exhibit functional sparsity. We argue that functional sparsity is a universal property of LLMs
and advocate for its wider adaptation when designing efficient models.

We find that larger models tend to exhibit higher sparsity, suggesting that frontier models will become
sparser as scaling continues. Therefore, activation sparsity stands out as a promising tool for
accelerating ever-growing LLMs, and we already see its adoption in models such as Gemma3n [43].

Our work is the first to examine functional sparsity in diffusion LL.Ms, a rapidly growing research area.
We highlight sparsity as a promising avenue for improving their efficiency, and expect that activation
sparsity could see increasing adoption in diffusion LLMs as their development advances.

Our results show that input activations match or exceed the sparsity of gates and up-projections.
Computing gates to choose sparsity patterns [18]] is wasteful if they are no sparser than inputs, and
newer work [10} 23], 24] demonstrates stronger acceleration with purely input sparsity. Overall, our
results suggest that input sparsification is the most efficient approach.

The high variance of critical sparsity across evaluation tasks and training recipes calls into question
methods that rely on extra training [25] |41} 147]] or threshold calibration [18} 23l 24]] on auxiliary
datasets. Our results suggest that sparsification methods should be truly data-free, as both
functional sparsity levels and resulting patterns can be prone to overfitting.

Our results should be seen as a lower bound on activation sparsity, as we adopt a simple, broadly
applicable framework. While layer- or module-specific methods may achieve higher sparsity, our
top-p approach already reaches practical levels comparable to existing work. Given this and our earlier
arguments on overfitting, we argue that sparsification method design should favor simplicity.

We follow the evaluation setting of Mirzadeh et al. [28] and focus on likelihood-based evaluations
of pretrained LLMs. Although we do not test reasoning models directly, the consistency of our



findings across instruction-tuned and diffusion LLMs strongly suggests that activation sparsity
will also benefit reasoning models, which rely on the same architectures as studied in our work.

Finally, we emphasize that activation sparsity should be viewed as complementary to other
acceleration methods such as quantization or speculative decoding. FEN sparsity can only be pushed
to moderate levels before performance degrades, capping efficiency gains at about 1.3—1.5x [118|,
23 124]), far below 4x speedups achievable with other methods [20} 21]. Given this, we argue that
evaluations of activation sparsity methods should prioritize performance preservation, since
degradation occurs at very different levels depending on the model and task. We therefore advocate
for a focus on reachable sparsity that does not harm performance, as shown in our notion of critical
sparsity.

We hope our work sheds light on the universal phenomenon of activation sparsity in LLMs, character-
izes its potential for practical acceleration, and provides useful insights for future model design.
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Appendix

A Critical Activation Sparsity of Pretrained and Instruction-Tuned models

In Table [T} we report the exact numerical values of the critical activation sparsity for all models
considered in our experiments, including both pretrained and instruction-tuned variants. The metrics
Sinters Sinput> Sgate, and Sy, denote the critical sparsity levels for the intermediate, input, gate,
and up-projection activations, respectively.

For completeness, we also include key model hyperparameters such as the number of layers (Np,),
hidden dimension (dimy,), and intermediate dimension (dim;). While we do not observe clear, direct
relationships between these hyperparameters and the achieved critical sparsity, the general trend
of sparsity increasing with model size remains evident. Notably, the Qwen family exhibits some
fluctuations, which may stem from the non-uniform scaling of its architectural hyperparameters
across model sizes.

Table 1: Critical activation sparsity for pretrained and instruction-tuned models. Sipter, Sinputs Sgates
and Sy, _, refer to intermediate, input, gate, and up-projection activation sparsity, respectively.

Pretrained Instruction-Tuned
Model NL di,’nh dsz Sinte’r‘ Sinput Sgu,te Supip Sinte'l‘ Sinput Syate Sup?p

Gemma3-1B 26 1152 6912 5022 2853 2283 3296 4998 32.14 23.23 30.27
Gemma3-4B 34 2560 10240 58.56 34.63 2850 39.72 62.82 4229 35.99 40.82
Gemma3-12B 48 3840 15360 69.46 43.03 42.05 42.03 78.77 50.74 55.45 54.26
Gemma3-27B 62 5376 21504 74.12 50.83 53.03 42.01 84.05 59.88 68.15 56.95

LLaMA32-1B 16 2048 8192 4444 28.09 26.51 2882 45.02 29.65 24.30 29.70
LLaMA3.2-3B 28 3072 8192 4958 3591 2552 37.14 58.07 3328 2890 44.72
LLaMA3.1-8B 32 4096 14336 51.89 37.31 28.04 30.52 6196 3934 3438 41.76

Qwen2.5-0.5B 24 896 4864 4654 4201 17.16 2920 4392 32.80 24.60 32.12
Qwen2.5-1.5B 28 1536 8960 5049 40.12 2593 3550 5293 3250 27.63 32.99
Qwen2.5-3B 36 2048 11008 71.16 3940 39.58 4346 59.80 44.16 36.90 36.32
Qwen2.5-7B 28 3584 18944 6098 47.89 3725 43.05 5995 47.01 32.58 40.62
Qwen2.5-14B 48 5120 13824 71.66 47.39 48.04 5225 6935 50.10 41.87 49.04
Qwen2.5-32B 64 5120 27648 65.66 54.08 4020 5246 68.77 55.17 40.54 57.35




B How To Induce Activation Sparsity in FFNs?

B.1 Alternative sparsification rules

In Section |2 we propose to use the top-p sparsification rule to induce the sparsity in the activation
vectors of the models. We opt for a simple sparsification rule to avoid any data dependency or bias
towards a specific model or FFN module. However, top-p is not the only possible way to perform
sparsification, and many other works opted for alternative methods to extract the sparse subsets of
neurons, such as top-k [47] or max-p [41]].

Assuming vector v € R™, top-k finds k largest neurons in the vector and can be formally defined
as a transformation that multiplies v with a subset of £ neurons which maximizes the norm of the
sparsified vector:

top-k(v) = mg © v; my, = argmax ||m © vl||; s.t. ||m|lo =k and m € {0,1}".

Similarly, max-p finds the subset of the neurons that satisfy the condition that their absolute values
are at least p - max(v):

max-p(v) = mp © v; m, = argmin ||m||o s.t. |v;|-m; > p-||v]||s Vi andm € {0,1}",
m

where ||v||co = max; |v;| denotes the maximum absolute entry of v, and the mask m,, retains exactly
those coordinates ¢ for which |v;| > p - ||v||o. Notably, the mask always selects the largest entry in
the activation vector.

We empirically compare the three sparsification strategies in Figure [ focusing on the spar-
sity—accuracy tradeoff averaged over our evaluation tasks for the smallest model in each family.
Overall, top-p and top-k produce very similar curves, whereas max-p underperforms in certain
settings. Therefore, we adopt top-p for our experiments, as it is more interpretable than top-k and
can more universally transfer across model sizes. In particular, larger models typically yield higher
sparsity, requiring k to be carefully chosen as most values of k£ have no effect until a critical sparsity
is reached. By contrast, with top-p performance degrades more smoothly and predictably, allowing
us to evaluate a fixed set of thresholds that transfer well across models.
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Figure 4: Comparison of sparsification rules for different models and different blocks.
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B.2 Sparsification rule transferability between the models

To further study the transferability and impact of the threshold selection in different models, we
investigate the activation sparsity induced in separate layers of Gemma3 and Qwen2.5 models. We
select a subset of p thresholds, and register the activation sparsity obtained at a given layer alongside
the average of the accuracy under the threshold. We plot the results as heatmaps in Figures [5|and [6]

Figure 5: Top-p threshold values and resulting sparsity induced in the gate activation vectors alongside
the accuracy with the given threshold across different layers of the Gemma3 and Qwen2.5 models.

First, we investigate the sparsity of gate activations in the Gemma and Qwen models of corresponding
sizes in Figure 5] Except for some early layers, the sparisty values obtained across the models appear
similar for a given threshold across the middle layers.

Figure 6: Top-p threshold values and resulting sparsity for Gemma3-27B and Qwen2.5-32B models.

Then, in Figure 5] we plot the sparsity of all four investigated activation vector types in the largest
models within each model family. Again, except for a few layers, the sparsities obtained for a given p
appear similar between the models.

Both of these results support the universality of our approach and our decision to choose top-p over
top-k, as using top-k would require more manual threshold selection to find the critical sparsity, as
outlined by the variance in the critical sparsity across different model sizes and types in Section 3]
While the resulting sparsity heatmaps show a few high outliers, particularly for Gemma3-27B gates,
we attribute the presence of these to the presence of massive activations [40], as for massive outlier
values, the magnitude of the vector norms that we use will concentrate around very few large values
and may even cause exact sparsity to appear at p = 1.0 as the nature of the numerical precision will
make the smallest entries in the activation vector appear like zeros since they basically contribute
nothing compared to the massive outlier. We do not investigate this phenomenon further and leave it
for future work. However, we note that it can have important implications for the design of activation
sparsity approaches, particularly those that rely on thresholding, as rules and thresholds devised for
such massive activations might be highly unstable when encountering out-of-distribution data.
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C Activation Sparsity for the Acceleration of Diffusion Models

Recent work has revealed strong activation sparsity and temporal redundancy in diffusion models
across modalities. In text-to-image models like Stable Diffusion, DeepCache [26] leverages the fact
that many neuron activations and feature maps change little between denoising steps by reusing
high-level U-Net activations across timesteps, achieving over 2x speedups with minimal quality
loss. Similarly, Chipmunk [35]] applies the same idea to diffusion Transformers, caching activations
and updating only the small set of neurons that change, which enables up to 3.7x faster video
generation. However, Zhang et al. [46] highlight the risks of naive caching, showing that it can
degrade diversity. Their Dynamics-Aware Token Pruning (DaTo) method selectively updates only
tokens with meaningful changes, preserving quality while achieving 7-9x acceleration. Together,
these results suggest that only a small, stable subset of neurons or tokens drives most of the generative
process in diffusion models for vision.

Sparsity has also been observed in the weights of diffusion models. Fang et al. [9] identify redundant
parameters over time using a Taylor-based method, pruning up to 50% of weights with minimal
quality degradation. Structured sparsity approaches such as SparseDM [44] and sparse-to-sparse
training [30] further demonstrate that diffusion models with 50-80% weight sparsity can match or
even outperform dense models, indicating the presence of robust sparse subnetworks.

While, to our best knowledge, neuron-level sparsity in diffusion LLMs remains underexplored, early
work by Li et al. [[19]] shows that temporal step pruning can significantly reduce the number of
inference steps with little quality loss, achieving up to 400x speedups while preserving fluency. This
points to significant redundancy in text diffusion models, similar to that observed in vision and video
diffusion models, and further supports the adoption of activation sparsity for their acceleration. Taken
together, prior work exploiting activation sparsity for acceleration, pruning, and compression and
our own analysis in Section [3] suggest that activation sparsity is a promising future direction for
acceleration of diffusion LLMs.
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