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Abstract
The g-formula can be used to estimate causal effects of sustained treatment strate-
gies using observational data under the identifying assumptions of consistency,
positivity, and exchangeability. The non-iterative conditional expectation (NICE)
estimator of the g-formula also requires correct estimation of the conditional dis-
tribution of the time-varying treatment, confounders, and outcome. Parametric
models, which have been traditionally used for this purpose, are subject to model
misspecification, which may result in biased causal estimates. Here, we propose
a unified deep learning framework for the NICE g-formula estimator that uses
multitask recurrent neural networks for estimation of the joint conditional distribu-
tions. Using simulated data, we evaluated our model’s bias and compared it with
that of the parametric g-formula estimator. We found lower bias in the estimates
of the causal effect of sustained treatment strategies on a survival outcome when
using the deep learning estimator compared with the parametric NICE estimator
in settings with simple and complex temporal dependencies between covariates.
These findings suggest that our Deep Learning g-formula estimator may be less
sensitive to model misspecification than the classical parametric NICE estimator
when estimating the causal effect of sustained treatment strategies from complex
observational data.

1 Introduction
The g-formula (or g-computation algorithm formula) identifies the causal effect of sustained
treatment strategies under the conditions of consistency, positivity, and exchangeability[9]. Unlike
previously proposed methods for causal inference, the g-formula is valid even in the presence of
treatment-confounder feedback, i.e., when time-varying confounders are affected by past treatment
as commonly occurs in medical settings [2].

A common representation of the g-formula is a non-iterative conditional expectation (NICE) of the
outcome weighted by the joint density of covariate history[12]. The NICE g-formula estimator has 2
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stages: (i) estimation of the conditional distributions of time-varying confounders, treatments, and
outcome, and (ii) calculation of an integral (or sum) over all possible covariate histories, which is
usually approximated via Monte Carlo simulation.

In realistic settings that require adjustment for a high-dimensional set of confounders, nonparametric
estimation of the components of the NICE g-formula is usually not possible. Therefore, in real-world
applications[6][11][1][4], the NICE g-formula estimator has been based on parametric models such
as generalized linear models (GLMs).
Because correct specification of parametric models may be difficult [10][7], an alternative is the
use of more flexible deep neural networks (aka "deep learning") that do not require an explicit
specification of the functional form of covariates. Specifically, recurrent neural networks, such as
long short-term memory (LSTM) models[3], were developed to model longitudinal data, and thus
are well suited to model evolving covariate trajectories with potentially long-range dependencies
between them. Therefore, LSTMs can be used to jointly predict all covariate trajectories in stage (i)
of the NICE g-formula estimator. A previous study [5] found that g-formula estimates based on
LSTMs were less biased than those based on GLMs. However, this study implemented GLMs that
are too simplistic for most practical applications. Therefore, it is unclear whether LSTMs would
similarly outperform the traditional parametric approach when compared with sufficiently complex
and richly parameterized GLMs.

Here we describe a deep learning (DL) NICE g-formula estimator that uses LSTMs to estimate
the joint distribution of covariates and outcomes. Using simulated data that mimics real-world
data, we compare the bias of g-formula estimates between this DL-NICE g-formula estimator and
the parametric NICE g-formula estimator when targeting the causal effect of sustained treatment
strategies on a survival outcome.

2 Methods

2.1 Simulated data

We simulated a cohort of people with HIV who started antiretroviral treatment for the first time. We
used this simulated dataset to mimic a recent study that estimated the effect of integrase inhibitors
(INSTI; a class of antiretrovirals) on the risk of cardiovascular events[8] in the HIV-CAUSAL
Collaboration, a consortium of observational studies from Europe and North America[6].

The data simulation procedures are described in the supplementary material (see Section A.1).
Briefly, we simulated data for each individual at months k = 0, 1, 2, . . . ,K, where k = 0 is baseline
and K = 60 is the end of the follow-up. For each individual and month, we simulated a time-varying
indicator Ak for initiation of an antiretroviral combination regimen containing an INSTI drug during
k, a vector of time-varying confounders Lk measured at the start of month k, and a time-varying
indicator Yk of experiencing a cardiovascular event (myocardial infarction, stroke, or invasive
cardiovascular procedure) during month k. No individual was lost to follow-up.

We simulated datasets with two different dependencies between variables across time. First, we used
a ’simple’ time-dependency between covariates: the value of every variable at k does not depend
on covariate values before time k − 1. Second, we used a ’complex’ time-dependency between
covariates: the value of every variable at k depends on a function of the entire history of all covariates
through k. For each type of dependency, we simulated datasets of 1,000 and 10,000 individuals.

2.2 The g-formula and the plug-in NICE estimator

The risk by K had all individuals received treatment according to an intervention distribution
f int(ak|Yk = 0, l̄k, āk−1) is identified by the g-formula (see equation S21 in supplementary material)
under exchangeability, positivity and consistency[9]. For a deterministic treatment strategy (i.e.
f int(ak|Yk = 0, l̄k, āk−1) either equals 0 or 1 for all (l̄k, āk−1)) the joint density g-formula equals
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E(Y g
K) and is given by: ∑

∀l̄K−1

K∑
k=1

P (Yk = 1|Yk−1 = 0, L̄k−1 = l̄k−1, Āk−1 = āgk−1)×

k−1∏
s=0

P (Ys = 0||Ys−1 = 0, L̄s−1 = l̄s−1, Ās−1 = āgs−1)f(ls|Ys = 0, l̄s−1, ā
g
s−1),

(1)

where X̄k = (X0, ..., Xk) denotes the history of random variable X , through k. By definition,
Y0 = 0 and L̄−1 = Ā−1 = ∅.

The plug-in parametric estimator of the NICE g-formula has often been implemented with the
following steps:
1. Fit models for each component in Expression 1. Specifically,
(a) Fit a pooled (over persons and time) model for the conditional distribution of each confounder in
Lk at time k as a function of k, past treatment, and confounder history based on those who are alive
at k.
(b) Fit a pooled logistic regression model for the probability of experiencing the outcome of interest
by time k + 1 as a function of k, past treatment, and confounder history based on those who are alive
at k.
2. Approximate the integral in expression 1 via Monte Carlo simulation. For each simulation sample
m = 1, ..., n, baseline confounders at k = 0 are sampled from observed values, and treatment at
k = 0 is assigned according to the intervention rule. For k > 0:
(a) Simulate confounders from the fitted models in Step 1(a) using previously simulated confounders
and assigned treatment values through time k − 1. Assign treatment according to the intervention
based on simulated confounders and assigned treatment values through time k − 1.
(b) Compute the discrete-time hazard of the outcome at time k + 1 from the fitted model in Step 1(b)
using previously simulated confounders and assigned treatment values through time k.
3. Calculate the average cumulative probability of failure by time K over all generated intervention
histories.

2.3 Deep learning NICE algorithm
The DL-NICE g-formula algorithm replaces the parametric models for covariates and outcomes by a
single multitask recurrent neural network for joint prediction of all covariates and a recurrent neural
network for the outcome. The recurrent neural networks do not require specification of the functional
form of the models (i.e., the relationships between covariates), which may be complex and unknown.
The DL-NICE algorithm has the following steps depicted in Figure 1:

LSTM

𝐿𝑘 𝐴𝑘

(1.a) Fit joint covariate model 
for 𝐿𝑘+1

𝑘 = 0𝐿𝑘 𝐴𝑘

𝑌𝑘+1

(1.b) Fit outcome model for 𝑌𝑘+1 

…

(2) Monte Carlo simulation

𝐿𝑘=𝐿𝑘,  sampled values
𝐴𝑘= መ𝐴𝑘,  intervened values

{𝐿0, 𝐴0, 𝑌1}

{𝐿1, መ𝐴1, 𝑌2}

{𝐿K−1, መ𝐴K−1, 𝑌K}

{𝐿K, መ𝐴K,  𝑌K+1}

(3) Risk calculation

Sequential structure

LSTM G-formula

𝑘 = 1

𝑘 = K

LSTM

𝐿𝑘+1

𝐿~𝑁 𝜇, 𝜎

Figure 1: Deep Learning NICE g-formula framework

Step 1: Representation learning
by the recurrent neural network
(a) Fit a recurrent neural network
(we fit a LSTM in the present
study but other recurrent neural
networks could be considered) to
jointly estimate the conditional
distributions of the confounders.
The model receives as input all
covariate and treatment values up
to and including at time k − 1
(i.e. the entire history of treat-
ment and confounders). (b) Fit
a recurrent neural network (here,
LSTM) to estimate the probabil-
ity of experiencing the outcome
of interest at each time k + 1
based on those who are alive at k. The model receives as input all covariate and treatment val-
ues up to and including at time k; i.e. the entire history of treatment and confounders).
Step 2: Monte Carlo simulation of covariate trajectories and computation of outcome hazards Monte
Carlo simulation is performed for n number of times based on the intervention of interest. The
covariate values are sequentially simulated by assuming a normal distribution for the mean µ of the
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covariate distributions estimated by the LSTM. The procedure for computation of the hazards is the
same as in the classic parametric g-formula algorithm described above.
Step 3: Calculate the cumulative incidence of the outcome Calculate the average cumulative probabil-
ity of failure by time K over all generated intervention histories as is done in the classical g-formula
algorithm.

2.4 Analysis
We investigated the 5-year risk of cardiovascular events under two deterministic static treatment
strategies (see section A.3 in the supplementary material for a formal definition of treatment strategies):
(1) “initiate ART containing INSTI at time 0 and continue to treat with this combination during the
study” (or “always treat with INSTI”), and (2) “initiate ART not containing INSTI at time 0 and
continue with this strategy throughout the study” (or “never treat with INSTI”). We first estimated
the absolute risk under no intervention on treatment (the "natural course") and under the "always
treat" and "never treat" strategies and then estimated the causal contrast (risk ratio and risk difference)
comparing the "always treat" and "never treat" strategies using first the classical parametric g-formula
estimator and then our DL-NICE estimator. We then evaluated the absolute bias in the estimated
risks over time under each strategy and the bias in the estimates of the causal effect (risk ratio and
risk difference) under both methods and averaged the bias across all time points. We obtained the
’ground truth’ risks from simulated datasets with 1 million observations for the ’simple’ and ’complex’
time dependency scenario. Let R̂method

k denote the estimated risk at time k obtained using either
the DL-NICE estimator or the classical parametric g-formula estimator, and let Rtrue

k represent the
’ground truth’ risk at time k. The bias in the estimated risk at time k is then defined as:

Bias(R̂method
k ) = R̂method

k −Rtrue
k .

Similarly, for the causal effect estimates, the risk ratio (RR) and risk difference (RD), the biases were
calculated as the differences between the estimates obtained from the methods and the corresponding
ground truth values. For the risk ratio, the bias is defined as:

Bias(R̂R
method
k ) = R̂R

method
k − RRtrue

k .

For the risk difference, the bias is defined as:

Bias(R̂D
method
k ) = R̂D

method
k − RDtrue

k .

We conducted these analyses in both the dataset with the ’simple’ and ’complex’ time dependency
scenario and for both sample sizes (1,000 and 10,000). To optimize hyperparameter values for each
LSTM, we used the ’hyperopt’ Python package with 50 trials for each search. The hyperparameter
search strategy and settings that we used for the LSTMs are shown in the supplementary material in
section A.4.
For the classic parametric g-formula, we fit different parametric models. For the simple time
dependency scenario, we fit parametric models for the covariates and outcome that were equal to the
data generating process (i.e. each covariate depends on covariate values at time k−1; see supplemetary
material A.1) except for not including the unmeasured covariate U . For the complex time dependency
scenario, we fit two parametric models that differed in the complexity of covariate histories included:
1. Least flexible: We fit models for Lk and Yk that include terms for the lagged value of Lk and Ak

(i.e. the values of Lk−1 and Ak−1).
2. Moderately flexible: We fit models for Lk and Yk that include terms for the lagged value as well as
the lagged cumulative average of the covariate values from k = 0 up to k − 1.

3 Results
3.1 Simple time-dependency scenario
Figure 2 shows the ground truth and predicted (using both DL-NICE and parametric NICE) risk of
the outcome over time under no intervention (the natural course) and suggests that the risk predicted
using the DL-NICE estimator is closer to the ground truth risk. Tables 1 and 2 show the absolute
bias averaged across all 60 time points in the estimates of the risk under natural course, the ’always
treat’ and ’never treat’ interventions and the bias in the risk ratio and risk difference comparing the
always and never treat interventions (see the supplementary material, section A.5.1, for the risks
under intervention, effect estimates and bias over time). In both sample sizes, the bias in the risk
estimates was lower when using the DL-NICE method compared to the parametric method. However,
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when using the DL-NICE method, the bias in the effect estimates (risk difference and risk ratio) was
somewhat higher in the smaller dataset with sample size of 1,000, while it was lower compared to the
parametric NICE method in the larger dataset.

(a) Sample size = 1,000 (b) Sample size = 10,000

Figure 2: Ground truth and estimated risk under the ’natural course’ using the parametric and DL-
NICE methods on ’simple’ time-dependency data

Method Bias in risk estimates (↓ is better) Bias in causal effect estimates (↓ is better)
Natural course Always treat Never treat Risk difference Risk ratio

Parametric 0.024 0.036 0.014 0.022 0.096
DL-NICE (Ours) 0.008 0.029 0.004 0.032 0.156

Table 1: Bias in risk and causal effect estimates (comparing always vs. never treat; averaged over all
60 time points) using the parametric and DL-NICE methods on ’simple’ time-dependency data with
1,000 individuals.

Method Bias in risk estimates (↓ is better) Bias in causal effect estimates (↓ is better)
Natural course Always treat Never treat Risk difference Risk ratio

Parametric 0.035 0.042 0.029 0.013 0.047
DL-NICE (Ours) 0.003 0.003 0.004 0.006 0.031

Table 2: Bias in risk and causal effect estimates (comparing always vs. never treat; averaged over all
60 time points) using the parametric and DL-NICE methods on ’simple’ time-dependency data with
10,000 individuals.

3.2 Complex time-dependency scenario

Figure 3 shows the ground truth and predicted outcome risk over time under the natural course on
the complex time-dependency data, again suggesting that the risk predicted using the DL-NICE
estimator is closer to the ground truth risk than that predicted using parametric NICE. Tables 3 and 4
show the absolute bias averaged over all 60 time points in the risk and effect estimates (risk ratio
and risk difference) in the datasets with sample sizes of 1,000 and 10,000, respectively (see section
A.5.2 in the supplementary material for the estimated risks under the interventions, effect estimates
and bias over time). In both sample sizes, the bias in the risk estimates was highest when using the
parametric g-formula with the least flexible models for the covariates and the outcome (covariate
history includes lagged values only), followed by the parametric g-formula with moderately flexible
models (covariate history includes lagged values and the lag of the cumulative average of values over
time) and was lowest when using the DL-NICE estimator. However, this difference in bias comparing
the parametric and DL-NICE estimator was more pronounced in the larger dataset. The bias in the
effect estimates was also lower when using the DL-NICE method for both sample sizes, except for
the risk ratio bias in the larger sample size.
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(a) Sample size = 1,000 (b) Sample size = 10,000

Figure 3: Ground truth and estimated risk under the ’natural course’ using the parametric and DL-
NICE methods on ’complex’ time-dependency data

Method Bias in risk estimates (↓ is better) Bias in causal effect estimates (↓ is better)
Natural course Always treat Never treat Risk difference Risk ratio

Parametric 1* 0.066 0.079 0.053 0.026 0.175
Parametric 2** 0.037 0.093 0.036 0.131 0.661
DL-NICE (Ours) 0.008 0.005 0.014 0.019 0.112

Table 3: Bias in risk and causal effect estimates (comparing always vs. never treat; averaged over
all 60 time points) using the parametric and DL-NICE methods on ’complex’ time-dependency data
with 1,000 individuals. * Parametric 1: Least flexible, ** Parametric 2: Moderately flexible.

Method Bias in risk estimates (↓ is better) Bias in causal effect estimates (↓ is better)
Natural course Always treat Never treat Risk difference Risk ratio

Parametric 1* 0.074 0.081 0.065 0.016 0.079
Parametric 2** 0.051 0.102 0.023 0.124 0.672
DL-NICE (Ours) 0.006 0.012 0.003 0.014 0.089

Table 4: Bias in risk and causal effect estimates (comparing always vs. never treat; averaged over
all 60 time points) using the parametric and DL-NICE methods on ’complex’ time-dependency data
with 10,000 individuals. * Parametric 1: Least flexible, ** Parametric 2: Moderately flexible.

4 Conclusion
We introduced a deep learning NICE g-formula estimator for causal inference from complex observa-
tional data that uses LSTMs to estimate the joint distribution of covariates and outcomes over time.
This approach eliminates the need to fit separate parametric models for the conditional distribution
of each covariate and specification of the functional form of covariate relationships. Our results
showed that the DL-NICE estimator generally achieved lower bias in risk and causal effect estimates
compared to parametric NICE, particularly in settings with complex temporal dependencies. Even in
simpler settings, the DL-NICE estimator generally showed less bias.
However, the reduction in bias under the DL-NICE estimator was not uniform across scenarios, with
the bias in the effect estimates being marginally higher in the ’simple’ data with smaller sample
size when using DL-NICE compared to parametric NICE. This finding suggests that the relative
performance of the DL-NICE estimator may be sensitive to sample size and the complexity of the
underlying data structure. Future work should explore statistical inference under the DL-NICE
method, the conditions under which it may provide the most benefit over parametric NICE and model
selection strategies.

A Supplementary Material
A.1 Data simulation design
In our motivating example, baseline (k = 0) was defined as meeting the following eligibility criteria
for the first time: at least 18 years old, diagnosis of HIV-1 infection, starting ART for the first
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time, an HIV-RNA measurement while treatment-naïve that had to be detectable (>50 copies/ml)
and no history of a cardiovascular event (myocardial infarction, stroke, or invasive cardiovascular
procedure) or cancer. At baseline, L0 included sex (binary, 1=male, 0=female), age (continuous) and
smoking status (categorical, 0=never smoked, 1=currently smoking, 2=ex-smoker). The time-varying
confounders in Lk included a person’s HIV-RNA viral load, CD4 cell count, and an indicator of
being overweight or obese at time k based on a person’s body mass index (BMI >25). The binary
treatment Ak is an indicator for whether a person is using an ART regimen with an INSTI (Ak = 1)
or using an ART regimen without an INSTI (Ak = 0). The outcome Yk is an indicator of whether the
person experienced a cardiovascular event (Yk = 1). For each individual, data were simulated for up
to 60 observation months. If and when an individual experienced an event (Yk+1 = 1), follow up
ends and there will be no subsequent observation months for that individual. The data generating
processes in both the ’simple’ and ’complex’ time-dependency datasets are detailed below.

A.1.1 Data generating processes for the "simple time dependency" dataset
We first drew an unmeasured variable U and simulated the time-fixed covariates sex (L10), age (L20)
and smoking (L30). We then generated the time-varying covariates in Lk and Ak and the survival
outcome Yk at each time point. To generate increasing and decreasing trends in the time-varying
covariates CD4 count and HIV-RNA, respectively, that would be observed over the first six months
after ART is initiated, we used different data generating equations for the first six observation months
and for the months after for these variables. For all time-varying covariates we also generated values
at time k = −1 (pre-baseline), so that these could be used to generate the covariate values at time
k = 0 (baseline). The data generating functions for each variable are shown below.

Baseline Covariates
• Age ∼ TruncatedNormal(µ = 50, σ = 12, a = 18, b = 80)

• Sex ∼ Ber(p = 0.8)

• Smoking ∼ Multinomial(1, [0.45, 0.4, 0.15])
• U ∼ U(0.0, 1.0)

Time-Varying Covariates
CD4 Count:
Pre-baseline value at time k = −1:

CD4k=−1 ∼ TruncatedNormal(µ = 450, σ = 100, a = 350, b = 800) (S1)

Time 0 ≤ k ≤ 5:

CD4k ∼ TruncatedNormal(µ, σ = 100, a = 350, b = 800)

µ ∼ −0.8 · U + 0.7 · Sex− 0.8 ·Age− 0.05 ·Age2 + 0.6 · Smoking

+ 2 · CD4k−1 + 0.005 · CD42k−1 − 1 ·RNAk−1 − 0.1 ·HighBMIk−1

+ 0.05 · Instik−1 + 0.1 ·HighBMIk−1 ·RNAk−1

+ 0.08 ·HighBMIk−1 · Sex− 0.1 · CD4k−1 ·Age

(S2)

At time k = 0, the coefficient for Instik−1 was set to 0 as there is no treatment before baseline.

From time k ≥ 6:

CD4k ∼ TruncatedNormal(µ, σ = 80, a = 400, b = 800)

µ ∼ −0.8 · U + 0.7 · Sex− 0.8 ·Age− 0.05 ·Age2 + 0.6 · Smoking

+ 1.8 · CD4k−1 + 0.008 · CD42k−1 − 1 ·RNAk−1 − 0.1 ·HighBMIk−1

+ 0.05 · Instik−1 + 0.1 ·HighBMIk−1 ·RNAk−1

+ 0.08 ·HighBMIk−1 · Sex− 0.1 · CD4k−1 ·Age

(S3)

HIV RNA:
Pre-baseline value at time k = −1:

RNAk=−1 ∼ TruncatedNormal(µ = 60, σ = 30, a = 40, b = 90) (S4)
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Time 0 ≤ k ≤ 5:

RNAk ∼ TruncatedNormal(µ, σ = 30, a = 40, b = 80)

µ ∼ 0.5 · U + 0.5 · Sex+ 0.3 ·Age+ 0.006 ·Age2 + 0.8 · Smoking

− 0.5 · CD4k−1 − 0.0001 · CD42k−1 + 2 ·RNAk−1 + 0.3 ·HighBMIk−1

+ 0.05 · INSTIk−1 + 0.08 ·HighBMIk−1 ·RNAk−1

+ 0.1 ·HighBMIk−1 · Sex− 0.01 · CD4k−1 ·Age

(S5)

From time k ≥ 6:

RNAk ∼ TruncatedNormal(µ, σ = 20, a = 20, b = 70)

µ ∼ 0.5 · U + 0.5 · Sex+ 0.3 ·Age+ 0.006 ·Age2 + 0.8 · Smoking

− 0.5 · CD4k−1 − 0.0001 · CD42k−1 + 1.8 ·RNAk−1 + 0.3 ·HighBMIk−1

+ 0.05 · INSTIk−1 + 0.08 ·HighBMIk−1 ·RNAk−1

+ 0.1 ·HighBMIk−1 · Sex− 0.01 · CD4k−1 ·Age

(S6)

BMI > 25:
HighBMIk ∼ Ber (expit(µ))

µ ∼ −8− 2 · U + 0.03 · Sex+ 0.01 ·Age+ 0.0001 ·Age2 + 0.04 · Smoking

− 0.0001 · CD4k−1 + 0.001 ·RNAk−1 + 10 ·HighBMIk−1

+ 5 · INSTIk−1 + 0.001 ·HighBMIk−1 ·RNAk−1

+ 0.004 ·HighBMIk−1 · Sex+ 0.00001 · CD4k−1 ·Age

(S7)

Treatment
INSTIk ∼ Ber (expit(µ))

µ ∼ −4.5 + 0.5 · Sex+ 0.01 ·Age+ 0.0001 ·Age2 + 0.1 · Smoking

+ 0.001 · CD4k + 0.01 ·RNAk − 7 ·HighBMIk
+ 10 · INSTIk−1 + 0.0001 ·HighBMIk ·RNAk

+ 0.001 ·HighBMIk · Sex+ 0.00001 · CD4k ·Age

(S8)

Outcome
Yk ∼ Ber (expit(µ))

µ = −0.08 · U + 0.005 · Sex+ 0.015 ·Age+ 0.00000005 ·Age2 + 0.025 · Smoking

− 0.015 · CD4k + 0.03 ·RNAk + 0.0000004 ·RNA2
k + 0.1 ·HighBMIk

+ 0.09 · INSTIk

(S9)

A.1.2 Data generating processes for the "complex time dependency" dataset
The data generation functions for the unmeasured confounder U and the baseline covariates in
L0 were the same as in the simple time dependency scenario. The time-varying covariates in Lk,
treatment Ak and the outcome Yk were generated to depend on a function of the entire history of
covariates and treatment, defined as the cumulative average of values over the previous 6, 7-24 and
over >24 time points from the current time point k for Lk and the cumulative average over all previous
time points after baseline for Ak. As in the ’simple’ time-dependency dataset, we used different data
generating equations for the first six observation months and for the months after for the time-varying
covariates CD4 count and HIV-RNA. For all time-varying covariates we also generated values for
30 pre-baseline observation months (k = −30tok = −1) to be used to generate the covariate values
from time k = 0 (baseline) onwards. The data generating functions for each covariate Lk, Ak and
the outcome Yk are shown below.

Time-Varying Covariates
CD4 Count:
Initial value at time k = −30:

CD4k=−30 ∼ TruncatedNormal(µ = 450, σ = 100, a = 350, b = 800) (S10)
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Value evolution from k = −30 to k = −1:

CD4k = CD4k−1 · 0.995 for k = −29 to k = −1 (S11)

Time 0 ≤ k ≤ 5:

CD4k ∼ TruncatedNormal(µ, σ = 100, a = 350, b = 800)

µ = −2 · U + 0.1 · Sex− 1 ·Age− 0.05 ·Age2 + 0.3 · Smoking

+ 1 · CD4k−1 + 0.005 · CD42k−1 + 0.8 · mean(CD4k−6:k−1)

+ 0.6 · mean(CD4k−24:k−7) + 0.5 · mean(CD4k−25:k=−30)

− 0.8 ·RNAk−1 − 0.5 · mean(RNAk−6:k−1)− 0.3 · mean(RNAk−24:k−7)

− 0.1 · mean(RNAk−25:k=−30)− 0.1 ·HighBMIk−1 − 0.08 · mean(HighBMIk−6:k−1)

− 0.04 · mean(HighBMIk−24:k−7)− 0.02 · mean(HighBMIk−25:k=−30)

+ 0.05 · INSTIk−1 + 0.02 · mean(INSTIk−1:k=0) + 0.1 ·HighBMIk−1 ·RNAk−1

+ 0.08 ·HighBMIk−1 · Sex− 0.1 · CD4k−1 ·Age
(S12)

From time k ≥ 6:

CD4k ∼ TruncatedNormal(µ, σ = 80, a = 400, b = 800)

µ = −2 · U + 0.1 · Sex− 1 ·Age− 0.05 ·Age2 + 0.3 · Smoking

+ 1.8 · CD4k−1 + 0.008 · CD42k−1 + 1 · mean(CD4k−6:k−1)

+ 0.5 · mean(CD4k−24:k−7) + 0.2 · mean(CD4k−25:k=−30)

− 0.8 ·RNAk−1 − 0.5 · mean(RNAk−6:k−1)− 0.3 · mean(RNAk−24:k−7)

− 0.1 · mean(RNAk−25:k=−30)− 0.1 ·HighBMIk−1 − 0.08 · mean(HighBMIk−6:k−1)

− 0.04 · mean(HighBMIk−24:k−7)− 0.02 · mean(HighBMIk−25:k=−30)

+ 0.05 · INSTIk−1 + 0.02 · mean(INSTIk−1:k=0) + 0.1 ·HighBMIk−1 ·RNAk−1

+ 0.08 ·HighBMIk−1 · Sex− 0.1 · CD4k−1 ·Age
(S13)

HIV RNA:
Initial value at time k = −30:

RNAk=−30 ∼ TruncatedNormal(µ = 60, σ = 30, a = 40, b = 90) (S14)

Value evolution from k = −30 to k = −1:

RNAk = RNAk−1 · 1.01 for k = −29 to k = −1 (S15)

Time 0 ≤ k ≤ 5:

RNAk ∼ TruncatedNormal(µ, σ = 30, a = 40, b = 80)

µ = 2 · U + 1 · Sex+ 1.5 ·Age+ 0.006 ·Age2 + 0.5 · Smoking

− 0.5 · CD4k−1 − 0.0001 · CD42k−1 − 0.2 · mean(CD4k−6:k−1)

− 0.05 · mean(CD4k−24:k−7)− 0.01 · mean(CD4k−25:k=−30)

+ 6 ·RNAk−1 + 5 · mean(RNAk−6:k−1) + 3 · mean(RNAk−24:k−7)

+ 2 · mean(RNAk−25:k=−30) + 0.3 ·HighBMIk−1 + 0.1 · mean(HighBMIk−6:k−1)

+ 0.06 · mean(HighBMIk−24:k−7) + 0.03 · mean(HighBMIk−25:k=−30)

+ 0.05 · INSTIk−1 + 0.01 · mean(INSTIk−1:k=0) + 0.08 ·HighBMIk−1 ·RNAk−1

+ 0.1 ·HighBMIk−1 · Sex− 0.01 · CD4k−1 ·Age
(S16)
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From time k ≥ 6:
RNAk ∼ TruncatedNormal(µ, σ = 20, a = 20, b = 70)

µ = 2 · U + 1 · Sex+ 1.5 ·Age+ 0.006 ·Age2 + 0.5 · Smoking

− 0.5 · CD4k−1 − 0.0001 · CD42k−1 − 0.2 · mean(CD4k−6:k−1)

− 0.05 · mean(CD4k−24:k−7)− 0.01 · mean(CD4k−25:k=−30)

+ 6 ·RNAk−1 + 5 · mean(RNAk−6:k−1) + 3 · mean(RNAk−24:k−7)

+ 2 · mean(RNAk−25:k=−30) + 0.3 ·HighBMIk−1 + 0.1 · mean(HighBMIk−6:k−1)

+ 0.06 · mean(HighBMIk−24:k−7) + 0.03 · mean(HighBMIk−25:k=−30)

+ 0.05 · INSTIk−1 + 0.01 · mean(INSTIk−1:k=0) + 0.08 ·HighBMIk−1 ·RNAk−1

+ 0.1 ·HighBMIk−1 · Sex− 0.01 · CD4k−1 ·Age
(S17)

BMI > 25:
HighBMIk ∼ Ber (expit(µ))

µ = −6.5− 1 · U − 0.6 · Sex+ 0.01 ·Age+ 0.0001 ·Age2 − 0.04 · Smoking

− 0.0001 · CD4k−1 + 0.000001 · CD42k−1 − 0.001 · mean(CD4k−6:k−1)

− 0.0001 · mean(CD4k−24:k−7)− 0.001 · mean(CD4k−25:k=−30)

+ 0.01 ·RNAk−1 + 0.01 · mean(RNAk−6:k−1) + 0.007 · mean(RNAk−24:k−7)

+ 0.006 · mean(RNAk−25:k=−30) + 4.5 ·HighBMIk−1 + 3 · mean(HighBMIk−6:k−1)

+ 1.6 · mean(HighBMIk−24:k−7) + 1 · mean(HighBMIk−25:k=−30)

+ 2 · INSTIk−1 + 1 · mean(INSTIk−1:k=0)
(S18)

Treatment
INSTIk ∼ Ber (expit(µ))

µ = −4 + 0.5 · Sex+ 0.05 ·Age+ 0.00005 ·Age2 + 0.2 · Smoking

− 0.001 · CD4k + 0.0000001 · CD42k − 0.0001 · mean(CD4k−6:k−1)

+ 0.001 ·RNAk + 0.0003 · mean(RNAk−6:k−1)

− 3 ·HighBMIk − 2 · mean(HighBMIk−6:k−1)

− 1.3 · mean(HighBMIk−24:k−7)− 0.8 · mean(HighBMIk−25:k=−30)

+ 6 · INSTIk−1 + 4 · mean(INSTIk−1:k=0)

(S19)

Outcome
Yk ∼ Ber (expit(µ))

µ = −0.05 · U + 0.007 · Sex+ 0.02 ·Age+ 0.00000005 ·Age2 + 0.03 · Smoking

− 0.009 · CD4k − 0.008 · mean(CD4k−6:k−1)− 0.006 · mean(CD4k−24:k−7)

− 0.004 · mean(CD4k−25:k=−30) + 0.045 ·RNAk + 0.0000004 ·RNA2
k

+ 0.03 · mean(RNAk−6:k−1) + 0.025 · mean(RNAk−24:k−7) + 0.02 · mean(RNAk−25:k=−30)

+ 0.14 ·HighBMIk + 0.11 · mean(HighBMIk−6:k−1) + 0.08 · mean(HighBMIk−24:k−7)

+ 0.06 · mean(HighBMIk−25:k=−30) + 0.13 · INSTIk + 0.11 · mean(INSTIk−1:k=0)
(S20)

A.2 Identifying assumptions and the g-formula
Let Y g

k and Lg
k denote the counterfactual outcome and vector of confounders, respectively, at time k

had an individual followed a deterministic strategy g (∀k = 1, . . . ,K). For simplicity, we will again
ignore censoring. Consider the following assumptions for a particular strategy g:
1. Exchangeability:

(Y g
k+1, ..., Y

g
k ) ⊥ (Ak)|L̄k = l̄k, Āk−1 = āgk−1, Yk = 0

2. Positivity:
fL̄k,Āk−1,Yk

(l̄k, ā
g
k−1, 0, 0) > 0 ⇒ fAk|L̄k,Āk−1,Yk

(agk|l̄k, ā
g
k−1, 0, 0) > 0

10



3. Consistency: If Āk = Āg
k then Ȳ g

k+1 and L̄k = L̄g
k.

Let G be the set of all deterministic interventions g. Provided that these assumptions hold for a subset
of g ∈ G that are observable under f int(ak|Yk = 0, l̄k, āk−1)(∀k = 0, ...,K − 1) then the risk by
K had all subjects been assigned treatment according to f int(ak|Yk = 0, l̄k, āk−1) can be estimated
from the observational data and written as the g-formula, an expectation weighted by the joint density
of covariates: ∑

∀āK−1

∑
∀l̄K−1

K∑
k=1

P (Yk = 1|Yk−1 = 0, L̄k−1 = l̄k−1, Āk−1 = āk−1)×

k−1∏
s=0

P (Ys = 0||Ys−1 = 0, L̄s−1 = l̄s−1, Ās−1 = ās−1)

f(ls|Ys = 0, l̄s−1, ās−1)f
int(as|Ys = 0, l̄s, ās−1)

(S21)

where P (Yk = 1|Yk−1 = 0, L̄k−1 = l̄k−1, Āk−1 = āk−1 and f(lk|Yk−1 = 0, l̄k−1, āk−1) are the
observed discrete-time hazards of the outcome and the joint density of the confounders at time k,
respectively, conditional on past treatment, confounders and survival through time k − 1 (as we are
ignoring censoring in this study, we are not additionally conditioning on being uncensored through
time k but this is typically included in the g-formula for survival outcomes). For notational simplicity,
the above expression assumes that all covariates are discrete; otherwise, the sum would be replaced
by an integral.

A.3 Treatment strategies and causal contrast
A treatment strategy is a rule that assigns treatment at each time k as an independent draw from an
intervention distribution f int(ak|Yk = 0, l̄k, āk−1) that may, at most, depend on (l̄k, āk−1), which is
a realization of (L̄k, Āk−1). Treatment strategies can be either deterministic or random. A treatment
strategy is deterministic if at each time point k(k = 0, . . . ,K), f int(ak|Yk = 0, l̄k, āk−1) either
equals 0 or 1 for all (l̄k, āk−1). Otherwise, the treatment strategy is random. We denote g as a
deterministic treatment strategy, and agk = gk(ā

g
k−1, l̄k) the value of treatment assigned at time k

under g(∀k = 0, ...,K − 1). In the present study, we consider a deterministic static treatment strategy.
A treatment strategy is static if the rule for assigning treatment at each time point does not depend
on past covariates. The treatment strategy in our study is “initiate ART containing INSTI at time 0
and continue to treat with this combination during the study” (or “always treat”), which corresponds
to agk = 1, for all k and for any (āk−1, l̄k). We estimate the causal effect on the risk (cumulative
incidence) by time K of the “always treat” treatment strategy compared to a “never treat” strategy
(agk = 0, for all k and for any (āk−1, l̄k)), which in our motivating example is defined as “initiate ART
not containing INSTI at time 0 and continue with this strategy during the study”. That is, we estimate
a contrast in the risk had all individuals been assigned treatment (i.e. initiated ART containing INSTI)
vs. had no one been assigned this treatment strategy (had no one taken ART containing INSTI).
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A.5 Estimated risks and bias in risk and effect estimates over time
A.5.1 ’Simple’ time-dependency scenario

(a) Risk under always treat (b) Risk under never treat

Figure S1: Ground truth and estimated risks under interventions in dataset with 1,000 individuals

(a) Bias in risk under natural course (b) Bias in risk under always treat

(c) Bias in risk under never treat

Figure S2: Bias in risk in dataset with 1,000 individuals
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(a) Bias in risk ratio (b) Bias in risk difference

Figure S3: Bias in effect estimates (always vs. never treat interventions) in 1,000 sample dataset

(a) Risk under always treat (b) Risk under never treat

Figure S4: Ground truth and estimated risks under interventions in dataset with 10,000 individuals
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(a) Bias in risk under natural course (b) Bias in risk under always treat

(c) Bias in risk under never treat

Figure S5: Bias in risk in dataset with 10,000 individuals

(a) Bias in risk ratio (b) Bias in risk difference

Figure S6: Bias in effect estimates (always vs. never treat interventions) in 10,000 sample dataset
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A.5.2 ’Complex’ time-dependency scenario

(a) Risk under always (b) Risk under never treat

Figure S7: Ground truth and estimated risks under interventions in dataset with 1,000 individuals

(a) Bias in risk under natural course (b) Bias in risk under always treat

(c) Bias in risk under never treat

Figure S8: Bias in risk in dataset with 1,000 individuals
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(a) Bias in risk ratio (b) Bias in risk difference

Figure S9: Bias in effect estimates (always vs. never treat interventions) in 1,000 sample dataset

(a) Risk under always treat (b) Risk under never treat

Figure S10: Ground truth and estimated risks under interventions in dataset with 10,000 individuals
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(a) Bias in risk under natural course (b) Bias in risk under always treat

(c) Bias in risk under never treat

Figure S11: Bias in risk in dataset with 10,000 individuals

(a) Bias in risk ratio (b) Bias in risk difference

Figure S12: Bias in effect estimates (always vs. never treat interventions) in 10,000 sample dataset
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