
1st workshop of ”Quantify Uncertainty and Hallucination in Foundation Models: The Next Frontier
in Reliable AI” at ICLR’25

SAMPLE-FOCUSED APPROACH TO ROBUST UNCER-
TAINTY QUANTIFICATION FOR LLMS

Roman Vashurin∗

Mohamed bin Zayed University of AI
Abu Dhabi, UAE

Maiya Goloburda∗
Mohamed bin Zayed University of AI
Abu Dhabi, UAE

Artem Shelmanov
Mohamed bin Zayed University of AI
Abu Dhabi, UAE

Preslav Nakov
Mohamed bin Zayed University of AI
Abu Dhabi, UAE

Maxim Panov
Mohamed bin Zayed University of AI
Abu Dhabi, UAE

ABSTRACT

Uncertainty quantification (UQ) methods for Large Language Models (LLMs)
encompass a variety of approaches, with two major types being particularly promi-
nent: information-based, which focus on model confidence expressed as token
probabilities, and consistency-based, which assess the semantic relationship be-
tween multiple outputs generated using repeated sampling. Several recent methods
have combined these two approaches and shown impressive performance in various
applications. However, they sometimes fail to outperform much simpler baseline
methods. Our investigation reveals distinctive characteristics of LLMs as prob-
abilistic models, which help to explain why these UQ methods underperform in
certain tasks. Based on these findings, we propose a new way of synthesizing model
confidence and output consistency that leads to a family of efficient and robust
UQ methods. We evaluate our approach across a variety of tasks such as question
answering, abstractive summarization, and machine translation, demonstrating
sizable improvements over state-of-the-art UQ approaches.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized natural language processing (NLP), enabling
advancements in information retrieval, question answering, machine translation, and other language-
driven applications. As these models become an integral part of everyday life, ensuring the reliability
of their outputs is crucial, especially in high-stakes scenarios where errors or uncertainty can have
serious consequences. One way to address this challenge is through uncertainty quantification
(UQ), which measures how confident a model is in its outputs, and makes possible the rejection of
generations with a high risk of being incorrect.

UQ for LLMs is a rapidly advancing research area, with new methods for estimating uncertainty
emerging each year. The large portion of novel techniques is based on two fundamental approaches:
information-theoretic analysis and the assessment of output consistency.

Information-theoretic methods quantify the confidence of a model by analyzing the probability
distributions it induces for predictions (Malinin & Gales, 2021; Fomicheva et al., 2020). A key
limitation of these methods is that they cannot account for the semantic variability across multiple
possible outputs for the same input. Specifically, the model may generate answers with the same
meaning but with very different assigned probabilities; see Figure 1. LLMs are trained to predict the

∗Equal contribution.

1



1st workshop of ”Quantify Uncertainty and Hallucination in Foundation Models: The Next Frontier
in Reliable AI” at ICLR’25

Tybalt is a character in which
of Shakespeare's plays?

romeo and juliet

romeo & juliet

romeo and juliet,

Sampled answers Probability

0.687

0.045

0.030

Figure 1: Example of inconsistent probabilities assigned to semantically identical answers by an
LLM, demonstrating the limitation of relying solely on sequence-level information.

next token in a sequence based on patterns observed in vast amounts of data, resulting in varying
probabilities for semantically equivalent output sequences.

Consistency-based methods, on the other hand, analyze the semantic relationships between the
sampled outputs (Lin et al., 2024; Fomicheva et al., 2020), disregarding subjective model confidence.
Information-theoretic and consistency-based methods have complementary strengths: the former
provides insights into the model’s internal confidence, while the latter captures the uncertainty as
objective variability of meaning among sampled outputs. For this reason, recent state-of-the-art
methods aimed to unify these approaches (Kuhn et al., 2023; Duan et al., 2024). Although such
methods show good performance in various applications, they sometimes fail to outperform their
simpler counterparts in certain scenarios (Vashurin et al., 2024).

Our investigation revealed distinctive characteristics of LLMs as probabilistic models, shedding
light on why current state-of-the-art UQ methods that attempt to integrate both approaches often
underperform in certain tasks. Specifically, we highlight the complexity of the token prediction
process and the absence of a unified framework that simultaneously addresses model confidence
and output variability, both of which can limit the effectiveness of existing UQ techniques. This
insight drives our proposal for a novel family of methods that integrate model confidence with output
consistency, resulting in more efficient and robust UQ techniques. Our approach combines the
strengths of both information-based and consistency-based methods, providing a more comprehensive
and accurate assessment of uncertainty.

Our main contributions can be summarized as follows:

• We identify key limitations in current UQ methods for LLMs, particularly in addressing
both token- and sequence-level confidence and output consistency.

• We present a family of Confidence and Consistency-based Approaches (CoCoA) to UQ,
offering a new way to merge information- and consistency-based measures for uncertainty
quantification in LLMs.

• We evaluate our approaches across a variety of NLP tasks, including question answering,
summarization, and translation. Our experiments demonstrate sizable improvements in the
reliability and robustness of UQ compared to state-of-the-art methods.

2 BACKGROUND

In this section, we introduce key concepts related to uncertainty quantification for LLMs, outline
existing methods, discuss their limitations, and highlight the motivation for our approach. First and
foremost, it is important to establish the concept of an uncertainty function. Let y = f(x) denote the
output of an LLM given an input sequence x. The model defines a probabilistic output distribution
p(y | x), from which outputs can be sampled. An uncertainty function U is a mapping that quantifies
the level of uncertainty u associated with the output of a model y, conditioned on the input sequence
x, which we denote as

u = U(y | x). (1)

2.1 SINGLE-SEQUENCE INFORMATION-BASED METHODS

Information-based methods rely on a single sample from the LLM and estimate the uncertainty of the
generated sequence by aggregating the uncertainty scores of individual tokens. One of the simplest
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techniques of this kind is Maximum Sequence Probability (MSP). Several other measures fall into this
category, including Perplexity and Mean Token Entropy (Fomicheva et al., 2020); see Appendix C.1
for details. While using only a single sample makes these techniques computationally efficient, they
face three major challenges. First, LLMs provide the probability of a specific answer, even though
the same meaning can often be expressed in multiple ways. To obtain a proper probability for the
conveyed meaning, one would need to marginalize over various possible rephrasings, which is not
feasible with only a single generated sample. Second, LLMs are trained to maximize likelihood at the
token level rather than for complete answers. Consequently, their probability estimates may not align
well with how uncertainty should be measured at the sequence level. For example, longer responses
typically have lower probabilities simply due to length effects, making direct interpretation of these
probabilities difficult. Third, these methods do not leverage any information about the flatness or
variability of the distribution over possible answers.

2.2 CONSISTENCY-BASED METHODS

The aforementioned issues lead to the development of consistency-based methods based on repet-
itive sampling from the LLM. Consider that we have sampled a set of outputs

{
y(i)
}M
i=1

, where
y(i) ∼ p(y | x). Consistency-based uncertainty quantification methods rely only on the diversity
of answers y(i) sampled from the LLM. The idea is that if the model outputs similar answers for
the same prompt over and over again, it is confident in its predictions; otherwise, it is uncertain.
These techniques do not require knowledge about the probability distribution of the tokens and can
be applied in the black-box setting, when only the generated tokens are available. This case is quite
common when LLMs are deployed as a service and are accessible through a limited API.

Formally, given M samples from the model, consistency-based methods compute a similarity matrix
G, where each element gij represents some form of similarity between the sampled outputs y(i) and
y(j):

g
(
y(i),y(j)

)
∈ [0, 1]. (2)

The value g
(
y(i),y(j)

)
= 1 indicates the complete equivalence between y(i) and y(j), and

g
(
y(i),y(j)

)
= 0 indicates that there is no similarity.

Similarity could be computed in various ways. Lexical Similarity (Fomicheva et al., 2020) is the
surface form similarity, which calculates the overlap of words or phrases in the generations. More
advanced techniques propose various methods for taking into account the semantic similarity of
the generated answers by hard or soft clustering (Lin et al., 2024). The Degree Matrix approach
considers a similarity matrix G, which is computed using a model for Natural Language Inference
(NLI), which predicts the probabilities of entailment, pentail(y,y′) and contradiction, pcontra(y,y′),
between pairs of sentences y and y′. The similarity between two sequences is then defined as either
gentail(y,y

′) = pentail(y,y
′) or gcontra(y,y

′) = 1− pcontra(y,y
′).

The detailed formulation of these methods can be found in Appendix C.2. The advantage of these
techniques is that by generating multiple samples and analyzing their semantic similarity, they can
obtain empirical probabilities for meanings instead of individual answers. The main drawback is that
they discard the useful information that comes from the probability distribution represented by the
LLM, including estimates of the probabilities of specific answers.

2.3 INFORMATION-BASED METHODS WITH REPEATED SAMPLING

The natural idea is to somehow benefit from having multiple samples from the model while using
important information contained in the output probabilities estimated by an LLM. Below, we examine
several approaches that have sought to achieve this.

Averaging uncertainties. The uncertainty scores can be aggregated using simple Monte Carlo
averaging:

uMC =
1

M

M∑
i=1

ui. (3)

3



1st workshop of ”Quantify Uncertainty and Hallucination in Foundation Models: The Next Frontier
in Reliable AI” at ICLR’25

CoCoA: 0.739

It's Friday

The day is Friday

Evaluated sequence

Alternative answers

LLM 0.1

0.15

Prompt: "Vendredi" is French
for which day of the week?

Friday

CoCoA: 0.052

Vauxhall

Aston Martin

Evaluated sequence

Alternative answers

LLM 0.85

0.89

Prompt: Which motor
manufacturer builds the
'Movano' range of vans and
mini-buses?

Toyota

Figure 2: Illustration of the method: the LLM generates a response, evaluates the similarity to alter-
natives, computes the uncertainty, and combines the uncertainty score with the similarity measures.
High similarity to alternatives reduces the uncertainty, while low similarity keeps it high.

For the case when using the MSP uncertainty measure, i.e., when ui = − log p
(
y(i) | x

)
, we

obtain uMC = − 1
M

∑M
i=1 log p

(
y(i) | x

)
. The other notable example is the Monte Carlo Sequence

Entropy (Kuhn et al., 2023).

While simple averaging represents a natural way to aggregate uncertainties, it has certain issues
related to the nature of LLMs. First of all, in the vast majority of applications, an LLM-based system
should produce a single output y∗ for an input query. When we consider uMC, we essentially perform
averaging of uncertainties of different sequences, thus somewhat assessing the uncertainty related to
the entire generative distribution p(y | x) for the input x, but not for a particular generated sequence
y∗. This averaged uncertainty might not be adequate for this particular sequence and, remarkably,
often performs worse than the uncertainty u∗ = U(y∗ | x), which is related solely to the output
y∗. Moreover, although intuitive, this naı̈ve aggregation method assumes that all outputs contribute
equally to the final uncertainty estimate, regardless of their semantic relationships. This can lead
to inconsistencies when semantically equivalent outputs have varying uncertainty scores or when
outputs with low similarity are treated as equally important.

Semantically weighted averaging. The basic idea of aggregation approaches like Semantic En-
tropy Kuhn et al. (2023) or SAR Duan et al. (2024) is to perform a weighted averaging of output
probabilities and give more weight to sequences semantically similar to the response shown to a
user. All recently proposed techniques, such as SAR and Semantic Entropy, can be unified into a
semantically-aware Generalized Monte Carlo uncertainty estimate, defined as

uGMCU =
1

M

M∑
i=1

h

(
M∑
j=1

gij pj

)
. (4)

Here, the inner summation aggregates sequence probabilities pj weighted by their semantic similarity
to the i-th output, and the outer summation averages these contributions across all samples. The
function h(·) provides an additional layer of flexibility, transforming the reweighted uncertainty
scores, making the method a generalized framework for uncertainty quantification. Existing methods,
such as Semantic Entropy and SAR, can be considered as special cases of this more comprehensive
approach, where the functions h and g are chosen appropriately.

Unfortunately, methods that fall under GMCU, while offering benefits, also inherit the aforementioned
issues from both categories of methods. (1) The term

∑M
j=1 gij pj aims to average the probabilities

of semantically similar sequences to obtain a more robust estimate of the probability. However, due
to the extreme instability of the LLM probabilities, as shown in Figure 1, the aggregated probabilities
often perform worse than non-aggregated baselines. (2) The outer summation in equation 4, similarly
to the case of simple Monte Carlo averaging equation 3, often fails to outperform the uncertainty
u∗ = U(y∗ | x) of a single generated sequence y∗.
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It is important to note that all uncertainty functions discussed in this section possess two key properties.
First, Non-Negativity ensures that the uncertainty function produces nonnegative values, meaning
U(y) ≥ 0 for all y. Second, Monotonicity dictates that higher values of the uncertainty function U
correspond to higher uncertainty. Specifically, if output y(1) is deemed more uncertain than output
y(2), then U

(
y(1)

)
≥ U

(
y(2)

)
. These properties are crucial for performing the type of synthesis of

confidence and consistency that will be outlined in the following section.

3 COCOA: BRIDGING CONFIDENCE AND CONSISTENCY FOR BETTER
UNCERTAINTY QUANTIFICATION

We start by summarizing the benefits and drawbacks of various UQ approaches discussed above:

1. Both information-based and (semantic) consistency-based methods provide grounded and
useful uncertainty quantification measures.

2. Output probabilities p(y(j) | x), j = 1, . . . ,M might have substantially different values
for semantically equivalent outputs, which questions the usefulness of (weighted) averaging
these probabilities for uncertainty quantification.

3. For various methods based on the aggregation over multiple samples, the result might be
suboptimal due to the noise related to the averaging over all generated outputs. Focusing
solely on a particular output sequence and its relation to other generated outputs might be
beneficial.

In what follows, we present a family of UQ Confidence and Consistency-based Approaches (CoCoA),
offering a new way to merge information- and consistency-based measures for uncertainty quantifica-
tion in LLMs.

Let us consider an actual output sequence y∗ and a set of sampled sequences y(i), i = 1, . . . ,M .
Here, y∗ might be one of the sequences y(i) or might be generated separately. In what follows, we
will consider several possible cases, including y∗ being a random sequence from a set {y(i)}, y∗
being a sequence from a set {y(i)} having the highest probability, and, finally, y∗ being a sequence
found via the beam search procedure.

First, consider an information-based uncertainty score of the output y∗:

uinfo
∗ = U info(y∗ | x), (5)

where U info might be MSP, perplexity, mean token entropy, or another uncertainty measure related
solely to the generated sequence y∗.

We quantify the consistency-based uncertainty via a direct measurement of the semantic similarity of
generated sequence y∗ to sampled sequences:

ucons
∗ =

1

M

M∑
i=1

(1− g∗i), (6)

where g∗i = g
(
y∗,y

(i)
)
. This formulation satisfies the desired properties of the uncertainty function

– that is, their values are nonnegative and their values increase with increased inconsistency (de-
creasing value of g∗i). In our ablation study, we will show that such an uncertainty measure reliably
outperforms consistency-based measures that aggregate the pairwise similarities of all the samples
(see Appendix B.3).

Finally, we need to aggregate uinfo
∗ and ucons

∗ into a single uncertainty measure. We propose to
aggregate them in a multiplicative way:

uCoCoA∗ = uinfo
∗ · ucons

∗ (7)

This formulation preserves the non-negativity and the monotonicity properties while integrating
both global (semantic) and local (model-specific) uncertainty signals. It ensures that uncertainty is
amplified for sequences that are both intrinsically uncertain (high uinfo

∗ ) and semantically inconsistent
with the dataset (high ucons

∗ ), while keeping it low for the opposite scenario (see Figure 2).
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Although the choice of the multiplicative aggregation function CoCoA is heuristic, it provides a
practical and effective way to combine information- and consistency-based uncertainty signals in
LLMs. In our ablation study, we also compare the multiplicative formulation in equation 7 to a
simpler additive variant, uinfo

∗ +ucons
∗ (see Appendix B.3). Empirically, the multiplicative combination

is better at capturing the joint impact of both information-based and consistency-based uncertainty,
yielding more reliable estimation across all tasks.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To evaluate the effectiveness of the proposed method, we extended the LM-Polygraph li-
brary (Vashurin et al., 2024; Fadeeva et al., 2023) by implementing our approach within its framework.
Since the library already includes tools for calculating other uncertainty scores, it provided a conve-
nient and efficient environment for setting up and running experiments. The primary objective of
our experiments is to evaluate whether our method offers improved performance in key tasks such
as question answering (QA), summarization (SUM), and machine translation (MT), compared to
existing baselines.

Datasets. For QA, we selected diverse datasets to capture a variety of challenges: TriviaQA (Joshi
et al., 2017), an open-domain factual QA dataset; CoQA (Reddy et al., 2019), a conversational QA
benchmark requiring multi-turn contextual understanding; MMLU (Hendrycks et al., 2021), a multi-
task dataset spanning 57 topics to test broad knowledge; and GSM8k (Cobbe et al., 2021), which
focuses on grade-school math problems requiring logical reasoning. For translation, we evaluated
our method on WMT14 French-English (Bojar et al., 2014) and WMT19 German-English (Barrault
et al., 2019). Finally, for summarization, we used XSum (Narayan et al., 2018), a dataset of complex
documents paired with concise abstractive summaries. For all datasets, we follow (Vashurin et al.,
2024) for selecting the subsets, for prompt formatting, and for the number and sourcing of few-shot
examples.

Models. We evaluated our method using the base versions of three open-weight language models:
LLaMA 3.1 8B (Touvron et al., 2023), Mistral 7B (Jiang et al., 2023), and Falcon 3 7B (Team, 2024).
The open-source nature of these models provides full access to their token probabilities, which are
essential for implementing our UQ method. For all models, we consider base versions, without
instruction tuning.

Metric Llama Mistral Falcon

QA MT SUM QA MT SUM QA MT SUM

MCSE 0.357 0.380 0.192 0.453 0.406 0.162 0.460 0.409 0.128
MCNSE 0.380 0.429 0.186 0.466 0.489 0.196 0.530 0.424 0.153
Semantic Entropy 0.397 0.411 0.194 0.482 0.438 0.164 0.479 0.440 0.134
SAR 0.479 0.506 0.159 0.542 0.576 0.175 0.590 0.488 0.193
DegMat 0.422 0.342 0.191 0.465 0.425 0.205 0.543 0.386 0.177
EigValLaplacian 0.388 0.274 0.190 0.426 0.366 0.197 0.498 0.336 0.174

MSP 0.395 0.376 0.464 0.444 0.252 0.330 0.343 0.381 0.099
CoCoAMSP 0.484 ↑ 0.607 ↑ 0.484 ↑ 0.526 ↑ 0.721 ↑ 0.366 ↑ 0.529 ↑ 0.631 ↑ 0.210 ↑

PPL 0.532 0.563 0.458 0.587 0.686 0.365 0.627 0.589 0.275
CoCoAPPL 0.571 ↑ 0.617 ↑ 0.450 0.613 ↑ 0.745 ↑ 0.372 ↑ 0.647 ↑ 0.648 ↑ 0.310 ↑

MTE 0.477 0.469 0.449 0.559 0.637 0.350 0.602 0.492 0.186
CoCoAMTE 0.548 ↑ 0.579 ↑ 0.451 ↑ 0.600 ↑ 0.720 ↑ 0.373 ↑ 0.641 ↑ 0.614 ↑ 0.289 ↑

Table 1: Results for Evaluated Sequence – Best Sample: Mean PRR across datasets for each task. The
best performing method is in bold, and the second-best is underscored. Arrows indicate improvement
in CoCoA over the base version.

Similarity Function. To measure the similarity, we use the RoBERTa-large cross-encoder model,
fine-tuned on the Semantic Textual Similarity benchmark dataset (Liu et al., 2019; Reimers &
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Gurevych, 2019; Cer et al., 2017). This model is widely regarded as one of the most reliable and
commonly used approaches for evaluating sentence similarity. The cross-encoder processes two
sequences jointly and directly outputs a similarity score ranging from 0 to 1, providing a nuanced
measure. Appendix B.2 contains comparative experiments with cross-encoder and other choices of
the similarity function, substantiating this choice.

Baselines. We compare the performance of the proposed method against a diverse set of baseline and
state-of-the-art UQ scores, including confidence-based, consistency-based, and hybrid approaches.
Information-based methods include Maximum Sequence Probability (MSP), Perplexity (PPL), Mean
Token Entropy (MTE), Monte Carlo Sequence Entropy (MCSE), and Monte Carlo Normalized
Sequence Entropy (MCNSE). Consistency-based methods include the Degree Matrix (DegMat) and
the Sum of Eigenvalues of the Graph Laplacian (EigValLaplacian). Finally, Hybrid methods include
Semantic Entropy and SAR. All formulations for these baselines can be found in Appendix C.

Evaluation measure. As our evaluation measure, we choose the Prediction Rejection Ratio (PRR),
which measures the effectiveness of the uncertainty scores for identifying high-quality predic-
tions (Malinin & Gales, 2021) (see Appendix D)

Quality Measures. The Predictive Rejection Ratio (PRR) requires an appropriate quality measure
for each specific task to effectively evaluate the model output. For question-answering tasks, we use
Accuracy to directly evaluate whether the generated answers match the ground truth in short-form
QA tasks (e.g., MMLU), and we use the AlignScore between correct answer and generated sequence
for assessing the performance for long-form QA tasks (Zha et al., 2023). For summarization tasks,
we use AlignScore to measure the alignment between the output summary and the input document.
For translation tasks, we use COMET (Rei et al., 2020).

Generation Setup. We discuss the generation parameters, the decoding strategy and sample selection
procedure in depth in Appendix F. In short, we report evaluation results in two distinct setups: greedy
decoding and stochastic sampling with focus on the most probable sequence among the generated
outputs (best-sample). These two setups offer the highest-quality outputs and are the most reasonable
generation approaches in practice.

4.2 RESULTS

Main results. Table 1 shows the PRR scores for the best-sample generation. Results for greedy
generation setup can be found in Appendix E. We calculate a single representative PRR for each task
– question answering, machine translation (MT), and summarization (SUM) – by averaging the results
across all relevant datasets (e.g., TriviaQA, MMLU, CoQA, GSM8k for QA). This aggregated score
provides a concise measure of the performance for each model for each task. Detailed results for
each dataset separately can be found in Appendix F.

We can see that our CoCoA methods are the best across all tasks and models in our experiments. They
outperform existing consistency-based and hybrid state-of-the-art approaches, like Semantic Entropy
and SAR. In addition, our proposed CoCoA approach consistently surpasses the baseline UE metrics:
for example, CoCoAPPL outperforms standard Perplexity, illustrating the advantage of combining
token-level confidence with semantic consistency. This pattern holds for other information-based
metrics as well, demonstrating that using the consistency between multiple sampled outputs reliably
enhances uncertainty quantification.

Ablation study. As a part of our ablation study (see Appendix B.1), we evaluate the performance of
the average dissimilarity component (ucons

∗ ) independently to assess its effectiveness as a standalone
uncertainty measure and to investigate whether it could potentially outweigh the contribution of the
information-based component (uinfo

∗ ) in the enriched uncertainty measure. This evaluation enables
us to isolate and better understand the complementary roles and the relative importance of each
component. Our experiments demonstrate that the combination of consistency- and confidence-
based metrics outperforms the pure consistency-based measure on a vast majority of tasks. Notably,
in the few cases where the pure consistency measure outperforms the combined approach, the
performance difference is minimal. It is possible that a more suitable choice of a similarity measure
or confidence-based metric for the task could further improve the performance.

This leads us to the next part of our ablation study, where we investigate the impact of different
similarity measures (see Appendix B.2). We find that for some tasks, the similarity score computed
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by the Cross-encoder does not yield optimal performance. For example, for question-answering tasks
on CoQA and Trivia, NLI-derived similarity performs better than the Cross-encoder similarity and
outperforms the pure consistency-based uncertainty discussed above.

The next section of our ablation study focuses on alternative forms of combining model confidence
uinfo
∗ and consistency ucons

∗ (see Apendix B.3). First, we consider an additive form of combining them:
UAdditiveCoCoA = uinfo

∗ + ucons
∗ . The results show that this additive formulation does not perform as

well compared to the multiplicative one. The additive form tends to underemphasize the interaction
between the two components, which is critical for capturing the nuanced relationships between
confidence and consistency.

We also consider an alternative formulation of the consistency term ucons
∗ , as the average of the

full pairwise dissimilarity. In this formulation, ucons
∗ represents the average inconsistency across all

samples rather than focusing solely on the dissimilarity of the evaluated sequence with the other
samples. Our experiments demonstrate that this formulation is not very strong. By distributing the
consistency computation across all samples, it loses focus on the specific sequence being evaluated.

Lastly, in Appendix B.3, we consider alternative formulations of the information-based metric that do
not rely on logarithmic transformations. While we primarily use logarithms due to their numerical
stability, we explore an alternative approach by converting these values back to probabilities and
analyzing their impact on uncertainty estimation. Our findings indicate that both formulations exhibit
consistent performance and yield similar results. This suggests that the choice between log-based and
probability-based formulations does not affect much the overall performance.

5 LIMITATIONS

While our proposed CoCoA approach demonstrates robust empirical performance, several important
considerations remain.

Task and Domain Dependency. Our method relies on both an information-based confidence score
and a semantic similarity function. The effectiveness of each can vary across models, tasks, and
domains. For open-ended tasks with multiple equally valid outputs (e.g., creative generation),
consistent rephrasing may inflate the perceived certainty. Conversely, in domains that demand highly
precise factual or logical correctness (e.g., math problem solving), small deviations in reasoning
can lead to large outcome differences that are not fully captured by a generic similarity measure.
Adapting both the confidence measure and the similarity function to specific domains or prompt types
is an important direction for future work.

Limited Sample Size. CoCoA estimates the model’s consistency by sampling multiple outputs and
comparing them. In practice, generating a large number of samples can be computationally expensive
and may increase the inference latency. Consequently, our experiments (like many sampling-based
approaches) rely on relatively small sample sets. Although even a handful of samples can provide a
meaningful estimate of consistency, it may not fully capture the diversity of the underlying distribution
for certain tasks or for more complex prompts.

Quality Metric. Finally, the CoCoA’s performance assessment depends on quality metrics (e.g.,
COMET for machine translation, and Accuracy for QA) that may not capture every nuance of
textual outputs. Automatic metrics can have blind spots, particularly in evaluating coherence, factual
correctness, or subtle aspects of style. Further refining or extending quality metrics to account for
deeper reasoning, factual faithfulness, and stylistic appropriateness would better align uncertainty
scores with real-world perceptions of model correctness.

6 CONCLUSION

We presented CoCoA, a unified approach that integrates Confidence and Consistency for uncertainty
quantification in LLMs. By combining token-level confidence scores with semantic similarity between
multiple sampled outputs, CoCoA offers a more holistic view of uncertainty than either approach
alone. In extensive evaluations on question answering, summarization, and translation, our approach
outperformed existing baselines and state-of-the-art UQ methods. Moreover, CoCoA’s flexible design
allows easy adaptation to a variety of tasks and settings.
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Moving forward, several directions are open for further exploration. These include incorporating
more adaptive sampling strategies that efficiently capture the model output space, refining semantic
similarity functions for domain-specific tasks, and improving calibration techniques to strengthen the
confidence metrics of the model.
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Loı̈c Barrault, Ondřej Bojar, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Yvette
Graham, Barry Haddow, Matthias Huck, Philipp Koehn, Shervin Malmasi, Christof Monz, Mathias
Müller, Santanu Pal, Matt Post, and Marcos Zampieri. Findings of the 2019 conference on
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A DECODING STRATEGY AND SAMPLE SELECTION

Modern LLMs are capable of producing output using a wide range of decoding strategies, and it is
not readily apparent which one to use as a foundation for UQ experiments. On top of that, when
sampling multiple outputs stochastically, one has to decide which sample to select for comparison
with the target sequence and UQ purposes.

To facilitate the choice of decoding and sample selection strategies for our experiments, we conducted
an evaluation of model performance with different approaches to both. Table ?? shows average
values of corresponding quality metrics for all combinations of models and datasets. We considered 4
approaches for the selection of output that subsequently is used to calculate the quality of generation.

• Greedy decoding produces single output by selecting top-1 candidate token at each genera-
tion step, thus not further selection of sample is needed.

• Random sample corresponds to the case where random output is selected among the number
of samples produced by repeatedly prompting the model with the same question. In practice
we use first generated sample, highlighting model performance when stochastic decoding is
done only once.

• Best (normalized) sample selects the output with highest model-assigned (length-
normalized) probability among several sampled outputs.

We note that selecting a random sample from the model outputs incurs a decrease in the quality of
results on several datasets, most prominently on GSM8k. Based on these observations, we evaluate
the efficacy of UE on two setups: greedy decoding and stochastic sampling with a focus on the
highest-probability sample.

In all experiments, we performed stochastic sampling with temperature t = 1.0, top-k equal to 50,
and top-p equal to 1.0.

Method Metric Generation setup

Greedy Random Best Best Normalized

Mistral7b-Base

Trivia Algin Score 0.743 0.655 0.750 0.751
MMLU Accuracy 0.633 0.558 0.632 0.632
CoQa Algin Score 0.574 0.403 0.591 0.528
GSM8k Accuracy 0.382 0.169 0.190 0.290
Xsum Align Score 0.803 0.578 0.775 0.777
WMT14FrEn Comet 0.863 0.812 0.830 0.855
WMT19DeEn Comet 0.864 0.805 0.836 0.851

Llama8b-Base

Trivia Algin Score 0.686 0.625 0.687 0.689
MMLU Accuracy 0.590 0.430 0.597 0.587
CoQa Algin Score 0.499 0.359 0.529 0.462
GSM8k Accuracy 0.548 0.234 0.261 0.432
Xsum Align Score 0.848 0.608 0.825 0.830
WMT14FrEn Comet 0.863 0.819 0.852 0.859
WMT19DeEn Comet 0.870 0.816 0.854 0.860

Falcon7b-Base

Trivia Algin Score 0.557 0.473 0.568 0.562
MMLU Accuracy 0.713 0.639 0.713 0.713
CoQa Algin Score 0.512 0.408 0.560 0.471
GSM8k Accuracy 0.776 0.313 0.205 0.593
Xsum Align Score 0.842 0.734 0.782 0.809
WMT14FrEn Comet 0.867 0.833 0.857 0.863
WMT19DeEn Comet 0.846 0.807 0.826 0.838

Table 2: Base quality metrics for models for different evaluated sequence choice.
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B ABLATION

B.1 AVERAGE DISSIMILARITY AS UNCERTAINTY MEASURE

Tables 3 and 4 report PRRs of CoCoA-family methods with uncertainty estimates based solely on
average dissimilarity of samples, as proposed in equation equation 6 We observe that it is still widely
beneficial to synthesize consistency of outputs with model confidence, even when limiting consistency
evaluation to the particular sample to be scored.

Method Dataset

XSum WMT14FrEn WMT19DeEn CoQa Trivia MMLU GSM8k

Mistral7b-Base

AveDissimilarity 0.051 0.285 0.500 0.379 0.647 0.423 0.435
CoCoAMSP 0.330 0.396 0.598 0.383 0.670 0.466 0.517
CoCoAPPL 0.286 0.375 0.568 0.369 0.674 0.466 0.467
CoCoAMTE 0.288 0.374 0.564 0.355 0.673 0.447 0.491

Llama8b-Base

AveDissimilarity 0.024 0.389 0.453 0.375 0.614 0.392 0.368
CoCoAMSP 0.378 0.456 0.582 0.349 0.597 0.485 0.372
CoCoAPPL 0.387 0.448 0.514 0.338 0.593 0.452 0.433
CoCoAMTE 0.380 0.446 0.511 0.337 0.601 0.402 0.447

Falcon7b-Base

AveDissimilarity 0.226 0.337 0.496 0.408 0.656 0.485 0.426
CoCoAMSP 0.257 0.433 0.578 0.396 0.684 0.529 0.436
CoCoAPPL 0.229 0.436 0.580 0.406 0.677 0.529 0.478
CoCoAMTE 0.228 0.439 0.577 0.395 0.685 0.517 0.510

Table 3: Comparison of PRRs of CoCoA-family methods with similarity of greedy output and other
samples taken in isolation.

Method Dataset

XSum WMT14FrEn WMT19DeEn CoQa Trivia MMLU GSM8k

Mistral7b-Base

AveDissimilarity 0.071 0.670 0.708 0.405 0.614 0.423 0.846
CoCoAMSP 0.366 0.712 0.730 0.430 0.644 0.466 0.562
CoCoAPPL 0.372 0.735 0.755 0.402 0.648 0.466 0.937
CoCoAMTE 0.373 0.708 0.732 0.373 0.645 0.447 0.935

Llama8b-Base

AveDissimilarity 0.030 0.473 0.598 0.395 0.600 0.353 0.795
CoCoAMSP 0.484 0.529 0.685 0.384 0.587 0.452 0.513
CoCoAPPL 0.450 0.544 0.689 0.364 0.573 0.422 0.925
CoCoAMTE 0.451 0.520 0.638 0.346 0.582 0.363 0.900

Falcon7b-Base

AveDissimilarity 0.282 0.491 0.651 0.416 0.627 0.484 0.979
CoCoAMSP 0.210 0.564 0.698 0.428 0.659 0.530 0.498
CoCoAPPL 0.310 0.579 0.717 0.415 0.644 0.530 1.000
CoCoAMTE 0.289 0.551 0.678 0.402 0.646 0.517 0.998

Table 4: Comparison of PRRs of CoCoA-family methods with similarity of samples with best sample
taken in isolation.
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B.2 CHOICE OF SIMILARITY FUNCTION

For sample consistency estimation, one could come up with a variety of similarity functions g(y,y′).
We perform a comparison of the effectiveness of CoCoA-family methods using several such functions.
We consider the following functions:

• AlignScore Zha et al. (2023) with AlignScore-large model
• RougeL Lin (2004)
• NLI He et al. (2021) based on microsoft/deberta-large-mnli model
• CrossEncoder Liu et al. (2019) based on cross-encoder/stsb-roberta-large

model.

Tables 5 and 6 report these results. There exists a considerable variation of relative effectiveness of
proposed methods with various similarity function choices, depending on the task at hand. We opt
to report all results in other sections with CrossEncoder-based similarity as it by itself provides an
improvement over baselines, and for consistency and ease of comparison reasons. However, when
applying these methods to a particular task, we encourage users to select the appropriate underlying
similarity function for the best results.
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Method Dataset

XSum WMT14FrEn WMT19DeEn CoQa Trivia MMLU GSM8k

Mistral7b-Base

CoCoAMSP

AlignScore 0.334 0.293 0.445 0.354 0.655 0.466 0.550
RougeL 0.289 0.358 0.546 0.369 0.649 0.466 0.536
NLI 0.308 0.313 0.477 0.403 0.677 0.470 0.568
CrossEncoder 0.327 0.397 0.595 0.381 0.671 0.466 0.505

CoCoAPPL

AlignScore 0.307 0.308 0.489 0.373 0.666 0.466 0.536
RougeL 0.226 0.369 0.531 0.352 0.653 0.466 0.466
NLI 0.233 0.316 0.501 0.376 0.682 0.470 0.480
CrossEncoder 0.281 0.371 0.565 0.365 0.674 0.466 0.465

CoCoAMTE

AlignScore 0.302 0.299 0.477 0.366 0.664 0.450 0.555
RougeL 0.212 0.377 0.528 0.345 0.652 0.449 0.497
NLI 0.219 0.313 0.488 0.362 0.681 0.453 0.490
CrossEncoder 0.282 0.368 0.560 0.351 0.673 0.448 0.486

Llama8b-Base

CoCoAMSP

AlignScore 0.367 0.331 0.452 0.308 0.596 0.484 0.401
RougeL 0.336 0.393 0.545 0.321 0.563 0.474 0.375
NLI 0.344 0.352 0.467 0.364 0.606 0.478 0.419
CrossEncoder 0.375 0.454 0.583 0.350 0.598 0.480 0.367

CoCoAPPL

AlignScore 0.422 0.346 0.450 0.337 0.596 0.453 0.446
RougeL 0.370 0.408 0.486 0.319 0.552 0.441 0.418
NLI 0.374 0.354 0.438 0.348 0.600 0.446 0.409
CrossEncoder 0.380 0.444 0.514 0.339 0.593 0.447 0.429

CoCoAMTE

AlignScore 0.419 0.340 0.438 0.339 0.605 0.411 0.459
RougeL 0.362 0.417 0.481 0.319 0.560 0.390 0.440
NLI 0.366 0.342 0.428 0.340 0.612 0.396 0.420
CrossEncoder 0.374 0.441 0.511 0.337 0.601 0.394 0.444

Falcon7b-Base

CoCoAMSP

AlignScore 0.278 0.306 0.475 0.361 0.677 0.528 0.470
RougeL 0.205 0.394 0.499 0.378 0.678 0.527 0.417
NLI 0.236 0.361 0.511 0.407 0.684 0.532 0.532
CrossEncoder 0.253 0.436 0.577 0.396 0.685 0.529 0.428

CoCoAPPL

AlignScore 0.252 0.340 0.523 0.410 0.678 0.528 0.521
RougeL 0.170 0.409 0.537 0.389 0.668 0.527 0.439
NLI 0.193 0.364 0.531 0.408 0.680 0.532 0.499
CrossEncoder 0.226 0.437 0.579 0.405 0.677 0.529 0.474

CoCoAMTE

AlignScore 0.253 0.337 0.519 0.403 0.683 0.515 0.554
RougeL 0.170 0.426 0.540 0.382 0.673 0.514 0.472
NLI 0.190 0.364 0.525 0.398 0.687 0.521 0.514
CrossEncoder 0.223 0.438 0.575 0.395 0.685 0.517 0.505

Table 5: Comparison of PRRs of CoCoA-family methods with different choices of similarity function
with greedy sample taken in isolation.
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Method Dataset

XSum WMT14FrEn WMT19DeEn CoQa Trivia MMLU GSM8k

Mistral7b-Base

CoCoAMSP

AlignScore 0.393 0.448 0.491 0.399 0.626 0.467 0.476
RougeL 0.344 0.602 0.597 0.420 0.622 0.466 0.538
NLI 0.340 0.615 0.604 0.445 0.651 0.470 0.456
CrossEncoder 0.366 0.712 0.730 0.430 0.644 0.466 0.562

CoCoAPPL

AlignScore 0.474 0.619 0.657 0.408 0.638 0.467 0.910
RougeL 0.362 0.710 0.717 0.391 0.627 0.466 0.950
NLI 0.370 0.677 0.684 0.414 0.657 0.470 0.941
CrossEncoder 0.372 0.735 0.755 0.402 0.648 0.466 0.937

CoCoAMTE

AlignScore 0.492 0.547 0.590 0.383 0.633 0.449 0.914
RougeL 0.355 0.695 0.684 0.366 0.624 0.448 0.959
NLI 0.364 0.656 0.658 0.387 0.656 0.453 0.918
CrossEncoder 0.373 0.708 0.732 0.373 0.645 0.447 0.935

Llama8b-Base

CoCoAMSP

AlignScore 0.520 0.332 0.491 0.354 0.587 0.457 0.401
RougeL 0.471 0.470 0.588 0.362 0.551 0.446 0.499
NLI 0.466 0.442 0.577 0.386 0.597 0.446 0.470
CrossEncoder 0.484 0.529 0.685 0.384 0.587 0.452 0.513

CoCoAPPL

AlignScore 0.546 0.406 0.561 0.376 0.577 0.429 0.875
RougeL 0.452 0.518 0.639 0.352 0.532 0.417 0.931
NLI 0.458 0.466 0.597 0.365 0.583 0.418 0.912
CrossEncoder 0.450 0.544 0.689 0.364 0.573 0.422 0.925

CoCoAMTE

AlignScore 0.561 0.325 0.497 0.365 0.589 0.380 0.821
RougeL 0.448 0.496 0.598 0.336 0.539 0.361 0.921
NLI 0.449 0.446 0.565 0.344 0.598 0.359 0.881
CrossEncoder 0.451 0.520 0.638 0.346 0.582 0.363 0.900

Falcon7b-Base

CoCoAMSP

AlignScore 0.181 0.378 0.473 0.410 0.654 0.528 0.239
RougeL 0.122 0.531 0.581 0.420 0.655 0.528 0.426
NLI 0.120 0.496 0.607 0.437 0.658 0.533 0.458
CrossEncoder 0.210 0.564 0.698 0.428 0.659 0.530 0.498

CoCoAPPL

AlignScore 0.384 0.454 0.586 0.440 0.648 0.528 0.994
RougeL 0.280 0.565 0.668 0.410 0.637 0.528 1.000
NLI 0.283 0.515 0.671 0.424 0.647 0.533 0.998
CrossEncoder 0.310 0.579 0.717 0.415 0.644 0.530 1.000

CoCoAMTE

AlignScore 0.292 0.386 0.498 0.435 0.648 0.515 0.972
RougeL 0.222 0.545 0.607 0.400 0.633 0.515 0.998
NLI 0.201 0.498 0.636 0.415 0.645 0.521 0.987
CrossEncoder 0.289 0.551 0.678 0.402 0.646 0.517 0.998

Table 6: Comparison of PRRs of CoCoA-family methods with different choices of similarity function
with best sample taken in isolation.
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B.3 DIFFERENT WAYS OF COMBINING CONFIDENCE AND CONSISTENCY

We justify the particular form of equation equation 7 by considering alternative ways to combine
sample-focused confidence with consistency estimation. Results are presented in Tables 7 and 8. In
particular, we investigate the performance of the additive approach (AdditiveCoCoA):

UAdditiveCoCoA = uinfo
∗ + ucons

∗ , (8)

and the same multiplicative combination, replacing sample-focused dissimilarity from equation 6
with the average of the full pairwise dissimilarity matrix equation 16:

UFullSampleCoCoA = uinfo
∗ · UDeg. (9)

It is evident that on average the multiplicative form proposed in equation equation 7 with both
confidence and consistency terms focused on a single sample is the better performing variant.

Method Dataset

XSum WMT14FrEn WMT19DeEn CoQa Trivia MMLU GSM8k

Mistral7b-Base

AdditiveCoCoAMSP 0.290 0.319 0.459 0.351 0.654 0.471 0.472
FullSampleCoCoAMSP 0.319 0.385 0.590 0.357 0.668 0.467 0.505
ProbCoCoAMSP 0.059 0.302 0.520 0.390 0.671 0.461 0.435
CoCoAMSP 0.330 0.396 0.598 0.383 0.670 0.466 0.517

AdditiveCoCoAPPL 0.262 0.392 0.564 0.369 0.671 0.464 0.494
FullSampleCoCoAPPL 0.277 0.373 0.551 0.334 0.672 0.467 0.435
ProbCoCoAPPL 0.297 0.369 0.566 0.373 0.674 0.464 0.475
CoCoAPPL 0.286 0.375 0.568 0.369 0.674 0.466 0.467

AdditiveCoCoAMTE -0.279 -0.058 -0.072 0.098 0.312 0.079 0.187
FullSampleCoCoAMTE 0.274 0.368 0.543 0.309 0.668 0.442 0.456
CoCoAMTE 0.288 0.374 0.564 0.355 0.673 0.447 0.491

Llama8b-Base

AdditiveCoCoAMSP 0.330 0.345 0.462 0.301 0.566 0.502 0.326
FullSampleCoCoAMSP 0.358 0.434 0.564 0.333 0.589 0.488 0.354
ProbCoCoAMSP 0.031 0.405 0.471 0.371 0.612 0.461 0.368
CoCoAMSP 0.378 0.456 0.582 0.349 0.597 0.485 0.372

AdditiveCoCoAPPL 0.368 0.431 0.504 0.336 0.595 0.455 0.437
FullSampleCoCoAPPL 0.389 0.420 0.487 0.314 0.580 0.450 0.399
ProbCoCoAPPL 0.381 0.445 0.513 0.345 0.599 0.446 0.438
CoCoAPPL 0.387 0.448 0.514 0.338 0.593 0.452 0.433

AdditiveCoCoAMTE -0.331 -0.042 -0.122 0.089 0.321 -0.122 0.117
FullSampleCoCoAMTE 0.383 0.410 0.481 0.308 0.588 0.363 0.414
CoCoAMTE 0.380 0.446 0.511 0.337 0.601 0.402 0.447

Falcon7b-Base

AdditiveCoCoAMSP 0.203 0.318 0.409 0.350 0.674 0.533 0.379
FullSampleCoCoAMSP 0.225 0.423 0.571 0.388 0.678 0.533 0.404
ProbCoCoAMSP 0.226 0.367 0.515 0.416 0.680 0.526 0.426
CoCoAMSP 0.257 0.433 0.578 0.396 0.684 0.529 0.436

AdditiveCoCoAPPL 0.222 0.433 0.580 0.413 0.677 0.525 0.489
FullSampleCoCoAPPL 0.204 0.425 0.565 0.393 0.669 0.533 0.437
ProbCoCoAPPL 0.235 0.433 0.576 0.410 0.680 0.528 0.482
CoCoAPPL 0.229 0.436 0.580 0.406 0.677 0.529 0.478

AdditiveCoCoAMTE 0.001 -0.103 -0.106 0.114 0.041 0.138 0.221
FullSampleCoCoAMTE 0.201 0.425 0.557 0.377 0.675 0.519 0.470
CoCoAMTE 0.228 0.439 0.577 0.395 0.685 0.517 0.510

Table 7: Comparison of PRRs of CoCoA-family methods with alternative formulations with greedy
sample taken in isolation.
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Method Dataset

XSum WMT14FrEn WMT19DeEn CoQa Trivia MMLU GSM8k

Mistral7b-Base

AdditiveCoCoAMSP 0.333 0.239 0.310 0.406 0.631 0.472 0.311
FullSampleCoCoAMSP 0.354 0.543 0.565 0.412 0.643 0.468 0.428
ProbCoCoAMSP 0.076 0.684 0.721 0.428 0.643 0.464 0.846
CoCoAMSP 0.366 0.712 0.730 0.430 0.644 0.466 0.562

AdditiveCoCoAPPL 0.368 0.737 0.751 0.406 0.644 0.465 0.939
FullSampleCoCoAPPL 0.383 0.714 0.723 0.379 0.649 0.468 0.933
ProbCoCoAPPL 0.369 0.738 0.756 0.401 0.649 0.467 0.935
CoCoAPPL 0.372 0.735 0.755 0.402 0.648 0.466 0.937

AdditiveCoCoAMTE 0.368 0.723 0.702 0.332 0.643 0.452 0.942
FullSampleCoCoAMTE 0.380 0.661 0.653 0.331 0.643 0.442 0.929
CoCoAMTE 0.373 0.708 0.732 0.373 0.645 0.447 0.935

Llama8b-Base

AdditiveCoCoAMSP 0.466 0.349 0.425 0.333 0.555 0.473 0.285
FullSampleCoCoAMSP 0.476 0.462 0.619 0.363 0.574 0.464 0.379
ProbCoCoAMSP 0.035 0.491 0.617 0.398 0.598 0.433 0.795
CoCoAMSP 0.484 0.529 0.685 0.384 0.587 0.452 0.513

AdditiveCoCoAPPL 0.454 0.536 0.673 0.358 0.575 0.425 0.923
FullSampleCoCoAPPL 0.459 0.525 0.649 0.343 0.556 0.430 0.914
ProbCoCoAPPL 0.438 0.547 0.689 0.364 0.574 0.419 0.923
CoCoAPPL 0.450 0.544 0.689 0.364 0.573 0.422 0.925

AdditiveCoCoAMTE 0.457 0.496 0.579 0.304 0.561 0.361 0.901
FullSampleCoCoAMTE 0.455 0.464 0.577 0.313 0.563 0.341 0.878
CoCoAMTE 0.451 0.520 0.638 0.346 0.582 0.363 0.900

Falcon7b-Base

AdditiveCoCoAMSP 0.100 0.397 0.394 0.393 0.649 0.534 -0.156
FullSampleCoCoAMSP 0.144 0.531 0.607 0.416 0.654 0.533 0.189
ProbCoCoAMSP 0.282 0.522 0.670 0.434 0.658 0.529 0.978
CoCoAMSP 0.210 0.564 0.698 0.428 0.659 0.530 0.498

AdditiveCoCoAPPL 0.297 0.582 0.706 0.417 0.643 0.526 1.000
FullSampleCoCoAPPL 0.297 0.560 0.670 0.405 0.641 0.533 1.000
ProbCoCoAPPL 0.311 0.587 0.718 0.414 0.648 0.531 1.000
CoCoAPPL 0.310 0.579 0.717 0.415 0.644 0.530 1.000

AdditiveCoCoAMTE 0.253 0.554 0.634 0.383 0.630 0.523 0.997
FullSampleCoCoAMTE 0.237 0.502 0.554 0.383 0.636 0.519 0.989
CoCoAMTE 0.289 0.551 0.678 0.402 0.646 0.517 0.998

Table 8: Comparison of PRRs of CoCoA-family methods with alternative formulations of with best
sample taken in isolation.
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C DETAILED DESCRIPTION OF UNCERTAINTY QUANTIFICATION METHODS

In this section, we provide a detailed description of the uncertainty quantification methods used in
this study.

C.1 INFORMATION-BASED METHODS

Information-based methods are commonly used to estimate uncertainty by analyzing the probability
distributions of tokens within a given output. These methods examine different levels of model
generation, such as the model’s confidence in producing a specific sequence, its ability to predict
individual tokens at each generation step, and the variability in the token-level predictions across the
sequence.

Maximum Sequence Probability (MSP) is one of the simplest and most direct methods for estimating
uncertainty. It measures the probability of the most likely output sequence given a specific input. Thus,
uncertainty is quantified by calculating the probability of the sequence with the highest likelihood,
under the assumption that the model is most confident in this output. It is defined as:

UMSP (y | x,θ) = − logP (y | x). (10)

Perplexity (PPL) is another widely used metric for estimating uncertainty in language mod-
els (Fomicheva et al., 2020). It measures the model’s confidence by evaluating the average likelihood
of generating the sequence tokens:

UPPL(y,x) = − 1

L
logP (y | x). (11)

Mean Token Entropy takes a broader view of uncertainty by considering the token-level predictions
across the entire sequence (Fomicheva et al., 2020). Instead of evaluating the model’s confidence in a
single output or individual token predictions, Mean Token Entropy calculates the average entropy of
the token probability distributions for each token in the sequence:

UHT
(y,x) =

1

L

L∑
l=1

H(yl | y<l,x), (12)

where H(yl | y<l,x) is an entropy of the token distribution P (yl | y<l,x).

The TokenSAR method, introduced in Duan et al. (2024), generalizes length-normalized log probability
by computing a weighted average of the negative log probabilities of generated tokens, where weights
are based on token relevance to the overall text. Using a similarity function g(·, ·) and token relevance
function RT (yk,y,x) = 1− g(x ∪ y,x ∪ y \ yk), the uncertainty estimate is calculated as:

UTokenSAR(y,x) = −
L∑

l=1

R̃T (yl,y,x) logP (yl | y<l,x), (13)

where

R̃T (yk,y,x) =
RT (yk,y,x)∑L
l=1 RT (yl,y,x)

. (14)

This measure is central for computing SAR uncertainty measure.

C.2 CONSISTENCY-BASED METHODS

Consistency-based methods assess the uncertainty of a language model by evaluating the semantic
consistency of its predictions across multiple outputs for the same prompt. The core idea is that
semantically similar outputs indicate higher confidence, while diverse or conflicting outputs suggest
greater uncertainty. Since language models can express the same meaning in different surface forms,
these methods construct a semantic similarity matrix G = (gij), where each entry represents the
degree of similarity between pairs of responses. By clustering responses into groups with equivalent
meanings, these methods provide a semantic measure of the model’s consistency.
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Lin et al. (2024) offers two similarity measures to evaluate the similarity of sequences. The first is
the Jaccard similarity, which treats sequences as sets of words and calculates the proportion of shared
words to the total number of unique words in both sequences: g(y,y′) = |y ∩ y′|/|y ∪ y′|.
Natural Language Inference (NLI) provides another method for computing similarity between
sequences. We use the DeBERTa-large NLI model He et al. (2021), following Kuhn et al. (2023). For
each pair of sequences, an NLI model predicts two probabilities: pentail(y,y′), indicating entailment,
and pcontra(y,y

′), indicating contradiction. Similarity is then defined as either gentail(y,y′) =
pentail(y,y

′) or gcontra(y,y′) = 1− pcontra(y,y
′).

Among the simplest consistency-based approaches are the Number of Semantic Sets and the Sum
of Eigenvalues of the Graph Laplacian (Lin et al., 2024). Number of Semantic Sets estimates
how many distinct “meanings” the model produces by clustering its outputs with an NLI model.
The number of semantic sets is initially equal to the total number of generated answers, M . Two
sentences are grouped into the same cluster if the following conditions are satisfied: pentail(y

i,yj) >
pcontra(y

i,yj) and pentail(y
j ,yi) > pcontra(y

j ,yi). This computation is performed for all pairs of
answers, and the final number of distinct clusters is denoted by UNumSemSets.

Sum of Eigenvalues of the Graph Laplacian examines global diversity: it constructs a similarity
matrix among the sampled outputs and computes a continuous uncertainty score from the eigenvalues
of the Laplacian of that similarity graph. Lin et al. (2024) proposes computing an averaged similarity
matrix as gij =

(
g
(
y(i),y(j)

)
+ g
(
y(j),y(i)

))
/2. The Laplacian for the matrix G is defined as

L = I −D− 1
2GD− 1

2 , where D is a diagonal matrix with elements Dii =
∑M

j=1 gij . Consequently,
the following formula is derived:

UEigV =

M∑
i=1

max(0, 1− λi). (15)

Both Number of Semantic Sets and Sum of Eigenvalues of the Graph Laplacian effectively capture
overall variation in generated text but cannot produce an individual uncertainty score for each output.
To address this, Lin et al. (2024) proposes to use the diagonal Degree Matrix D which represents the
total similarity of each answer with all others. The corrected trace of D provides an average pairwise
distance between answers, and uncertainty is computed as:

UDegMat = 1− trace(D)/M2. (16)

C.3 INFORMATION-BASED METHODS WITH REPEATED SAMPLING

In this section we detail methods that integrate model confidence with consistency.

We can compute the entropy on the sequence level E
[
− logP (y | x)

]
, where the expectation is

taken over the sequences y randomly generated from the distribution P (y | x). Unfortunately, while
for token level, we have an exact way of computing the entropy, for the sequence level, we need to
adhere to some approximations. In practice, we can use Monte-Carlo integration, i.e. generate several
sequences y(i), i = 1, . . . ,M via random sampling and compute Monte Carlo Sequence Entropy:

UHS
(x) = − 1

M

M∑
i=1

logP (y(i) | x). (17)

We can replace P (y(i) | x) with its length-normalized version P̄ (y(i) | x) leading to a more reliable
uncertainty measure in some cases.

Semantic Entropy Kuhn et al. (2023) addresses the issue of generated sequences with similar meanings
but differing probabilities according to the model, which can heavily influence the resulting entropy
value equation 17. The method clusters generated sequences y(i), i = 1, . . . ,M into semantically
homogeneous groups Ck, k = 1, . . . ,K (where K ≤ M ) using a bi-directional entailment algorithm.
Probabilities of sequences are averaged within each cluster. The entropy estimate is then defined as:

USE(x) = −
K∑

k=1

|Ck|
M

log P̂k(x), (18)
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where P̂k(x) =
∑

y∈Ck
P (y | x) represents the aggregated probability for cluster Ck.

SentenceSAR Duan et al. (2024) enhances the probability of sentences that are more relevant. It uses
a sentence relevance measure g

(
y(j),y(k)

)
to evaluate the relevance of y(j) with respect to y(k).

SentenceSAR is calculated as:

USentSAR(x) = − 1

M

M∑
i=1

log
(
P (y(i) | x) + 1

t
RS(y

(i),x)
)
, (19)

where t is a temperature parameter used to control the scale of shifting to relevance, and

RS(y
(j),x)=

∑
k ̸=j

g
(
y(j),y(k)

)
P
(
y(k) | x

)
. (20)

The combination of SentenceSAR and TokenSAR results in a unified method called SAR Duan et al.
(2024). In this approach, the generative probability P (y | x) in the SentenceSAR formula is replaced
with the token-shifted probability P ′(y | x) = exp

{
−TokenSAR(y,x)

}
, creating a comprehensive

measure that integrates both sentence- and token-level adjustments.
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D DETAILED DESCRIPTION OF EVALUATION METRIC

Figure 3: Prediction-Rejection Ratio (PRR) Curve. The curve illustrates the quality of the non-
rejected predictions as a function of the rejection rate. Oracle represents the optimal rejection strategy,
Random is a random rejection, and UE is rejection based on the evaluated uncertainty estimation
method.

PRR operates by progressively rejecting predictions with uncertainty scores above a threshold a and
observing how the average quality Q(f(xi),yi) of the remaining predictions changes. The metric
is calculated as the ratio of two areas: the area between the Prediction Rejection (PR) curves for
the evaluated uncertainty score and a random baseline, and the area between the oracle (the ideal
uncertainty score that perfectly ranks instances by quality) and the random baseline. Formally, PRR
is defined as follows:

PRR =
AUCunc − AUCrnd

AUCoracle − AUCrnd
. (21)

Higher PRR values indicate better alignment of uncertainty scores with prediction quality, approaching
the performance of an oracle. To ensure practical applicability, we compute PRR only up to a rejection
threshold of 50%, preventing cases where excessive rejection artificially inflates quality measures.
Figure 3 gives a visual representation of the PRR calculation, highlighting the relationship between
the uncertainty threshold and the quality measures.
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E RESULTS FOR EVALUATED SEQUENCE - GREEDY SEQUENCE

Metric Llama Mistral Falcon

QA MT SUM QA MT SUM QA MT SUM

MCSE 0.310 0.323 0.033 0.389 0.304 0.007 0.414 0.317 0.159
MCNSE 0.309 0.393 0.022 0.384 0.410 0.009 0.405 0.422 0.108
Semantic Entropy 0.356 0.343 0.033 0.423 0.327 0.008 0.439 0.348 0.164
SAR 0.414 0.455 0.077 0.462 0.435 0.094 0.481 0.458 0.144
DegMat 0.406 0.302 0.081 0.423 0.305 0.137 0.483 0.353 0.201
EigValLaplacian 0.375 0.238 0.079 0.391 0.267 0.132 0.459 0.312 0.201

MSP 0.409 0.399 0.328 0.475 0.383 0.287 0.475 0.356 0.201
CoCoAMSP 0.451 ↑ 0.519 ↑ 0.378 ↑ 0.509 ↑ 0.497 ↑ 0.330 ↑ 0.511 ↑ 0.505 ↑ 0.257 ↑

PPL 0.381 0.386 0.369 0.424 0.427 0.204 0.456 0.450 0.155
CoCoAPPL 0.454 ↑ 0.481 ↑ 0.387 ↑ 0.494 ↑ 0.472 ↑ 0.286 ↑ 0.523 ↑ 0.508 ↑ 0.229 ↑

MTE 0.353 0.382 0.357 0.417 0.438 0.182 0.456 0.473 0.152
CoCoAMTE 0.447 ↑ 0.478 ↑ 0.380 ↑ 0.492 ↑ 0.469 ↑ 0.288 ↑ 0.527 ↑ 0.508 ↑ 0.228 ↑

Table 9: Results for Evaluated Sequence – Greedy Sample: Mean PRR across datasets for each task.
The best-performing method is shown in bold, and the second-best is underscored. Arrows indicate
improvement in CoCoA over the base version.
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F DETAILED EXPERIMENTAL RESULTS

In this section, we present detailed experimental results, which were used for computing values in
Tables 1 and 9.

Method Dataset

XSum WMT14FrEn WMT19DeEn CoQa Trivia MMLU GSM8k

Mistral7b-Base

MCSE 0.007 0.257 0.350 0.247 0.496 0.337 0.475
MCNSE 0.009 0.342 0.478 0.238 0.540 0.356 0.401
Semantic Entropy 0.008 0.271 0.382 0.271 0.562 0.387 0.472
SAR 0.094 0.353 0.517 0.313 0.644 0.419 0.471
DegMat 0.137 0.229 0.382 0.336 0.646 0.410 0.299
EigValLaplacian 0.132 0.207 0.328 0.301 0.624 0.398 0.241

MSP 0.287 0.315 0.451 0.326 0.628 0.474 0.471
CoCoAMSP 0.330 0.396 0.598 0.383 0.670 0.466 0.517

PPL 0.204 0.365 0.489 0.281 0.632 0.474 0.311
CoCoAPPL 0.286 0.375 0.568 0.369 0.674 0.466 0.467

MTE 0.182 0.392 0.484 0.243 0.619 0.456 0.350
CoCoAMTE 0.288 0.374 0.564 0.355 0.673 0.447 0.491

Llama8b-Base

MCSE 0.033 0.293 0.354 0.237 0.482 0.171 0.351
MCNSE 0.022 0.370 0.415 0.219 0.501 0.170 0.344
Semantic Entropy 0.033 0.297 0.389 0.272 0.549 0.229 0.375
SAR 0.077 0.427 0.483 0.311 0.595 0.352 0.398
DegMat 0.081 0.250 0.355 0.353 0.622 0.342 0.309
EigValLaplacian 0.079 0.198 0.278 0.332 0.604 0.292 0.273

MSP 0.328 0.342 0.456 0.277 0.526 0.508 0.324
CoCoAMSP 0.378 0.456 0.582 0.349 0.597 0.485 0.372

PPL 0.369 0.351 0.422 0.253 0.507 0.461 0.303
CoCoAPPL 0.387 0.448 0.514 0.338 0.593 0.452 0.433

MTE 0.357 0.357 0.408 0.239 0.497 0.350 0.326
CoCoAMTE 0.380 0.446 0.511 0.337 0.601 0.402 0.447

Falcon7b-Base

MCSE 0.159 0.297 0.337 0.258 0.549 0.420 0.427
MCNSE 0.108 0.371 0.474 0.293 0.586 0.442 0.299
Semantic Entropy 0.164 0.307 0.389 0.294 0.581 0.463 0.418
SAR 0.144 0.398 0.517 0.381 0.649 0.508 0.387
DegMat 0.201 0.274 0.431 0.407 0.651 0.480 0.395
EigValLaplacian 0.201 0.229 0.394 0.381 0.645 0.454 0.358

MSP 0.201 0.312 0.400 0.321 0.662 0.539 0.377
CoCoAMSP 0.257 0.433 0.578 0.396 0.684 0.529 0.436

PPL 0.155 0.375 0.525 0.316 0.644 0.539 0.326
CoCoAPPL 0.229 0.436 0.580 0.406 0.677 0.529 0.478

MTE 0.152 0.409 0.537 0.291 0.633 0.533 0.367
CoCoAMTE 0.228 0.439 0.577 0.395 0.685 0.517 0.510

Table 10: Detailed experimental results with greedy sample taken in isolation.

24



1st workshop of ”Quantify Uncertainty and Hallucination in Foundation Models: The Next Frontier
in Reliable AI” at ICLR’25

Method Dataset

XSum WMT14FrEn WMT19DeEn CoQa Trivia MMLU GSM8k

Mistral7b-Base

MCSE 0.162 0.406 0.407 0.289 0.492 0.339 0.693
MCNSE 0.196 0.471 0.507 0.277 0.529 0.358 0.700
Semantic Entropy 0.164 0.434 0.442 0.312 0.554 0.389 0.675
SAR 0.175 0.563 0.590 0.347 0.620 0.421 0.780
DegMat 0.205 0.439 0.410 0.376 0.618 0.410 0.454
EigValLaplacian 0.197 0.388 0.344 0.342 0.600 0.399 0.361

MSP 0.330 0.212 0.291 0.388 0.607 0.476 0.307
CoCoAMSP 0.366 0.712 0.730 0.430 0.644 0.466 0.562

PPL 0.365 0.695 0.676 0.327 0.615 0.476 0.931
CoCoAPPL 0.372 0.735 0.755 0.402 0.648 0.466 0.937

MTE 0.350 0.668 0.606 0.254 0.594 0.457 0.932
CoCoAMTE 0.373 0.708 0.732 0.373 0.645 0.447 0.935

Llama8b-Base

MCSE 0.192 0.366 0.395 0.259 0.465 0.158 0.546
MCNSE 0.186 0.377 0.480 0.239 0.484 0.165 0.634
Semantic Entropy 0.194 0.371 0.451 0.286 0.528 0.213 0.559
SAR 0.159 0.441 0.571 0.327 0.578 0.340 0.668
DegMat 0.191 0.274 0.409 0.367 0.606 0.320 0.397
EigValLaplacian 0.190 0.216 0.333 0.340 0.587 0.274 0.351

MSP 0.464 0.339 0.413 0.304 0.514 0.483 0.281
CoCoAMSP 0.484 0.529 0.685 0.384 0.587 0.452 0.513

PPL 0.458 0.504 0.622 0.294 0.483 0.441 0.912
CoCoAPPL 0.450 0.544 0.689 0.364 0.573 0.422 0.925

MTE 0.449 0.437 0.501 0.239 0.458 0.326 0.884
CoCoAMTE 0.451 0.520 0.638 0.346 0.582 0.363 0.900

Falcon7b-Base

MCSE 0.128 0.399 0.419 0.285 0.535 0.421 0.598
MCNSE 0.153 0.395 0.452 0.318 0.588 0.443 0.771
Semantic Entropy 0.134 0.420 0.460 0.319 0.566 0.463 0.567
SAR 0.193 0.455 0.521 0.385 0.642 0.509 0.826
DegMat 0.177 0.350 0.422 0.422 0.637 0.480 0.633
EigValLaplacian 0.174 0.289 0.382 0.393 0.622 0.454 0.522

MSP 0.099 0.385 0.378 0.369 0.638 0.540 -0.175
CoCoAMSP 0.210 0.564 0.698 0.428 0.659 0.530 0.498

PPL 0.275 0.541 0.637 0.353 0.614 0.540 1.000
CoCoAPPL 0.310 0.579 0.717 0.415 0.644 0.530 1.000

MTE 0.186 0.475 0.510 0.317 0.573 0.534 0.984
CoCoAMTE 0.289 0.551 0.678 0.402 0.646 0.517 0.998

Table 11: Detailed experimental results with best sample taken in isolation.
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