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Abstract

The scalability of recurrent neural networks (RNNs) is hindered by the sequential1

dependence of each time step’s computation on the previous time step’s output.2

Therefore, one way to speed up and scale RNNs is to reduce the computation3

required at each time step independent of model size and task. In this paper, we4

propose a model that reformulates Gated Recurrent Units (GRU) as an event-based5

activity-sparse model that we call the Event-based GRU (EGRU), where units6

compute updates only on receipt of input events (event-based) from other units.7

When combined with having only a small fraction of the units active at a time8

(activity-sparse), this model has the potential to be vastly more compute efficient9

than current RNNs. Notably, activity-sparsity in our model also translates into sparse10

parameter updates during gradient descent, extending this compute efficiency to11

the training phase. We show that the EGRU demonstrates competitive performance12

compared to state-of-the-art recurrent network models in real-world tasks, including13

language modeling while maintaining high activity sparsity naturally during14

inference and training. This sets the stage for the next generation of recurrent15

networks that are scalable and more suitable for novel neuromorphic hardware.16

1 Introduction17

Large scale models such as GPT-3 [8], switch transformers [17] and DALL-E [52] have demonstrated18

that scaling up deep learning models to billions of parameters cannot just improve the performance19

of these models but lead to entirely new forms of generalisation. For example, GPT-3 can do20

basic translation and addition even though it was trained only on next word prediction. While it is21

unknown if scaling up recurrent neural networks can lead to similar forms of generalisation, the22

limitations on scaling them up preclude studying this possibility. The dependence of each time step’s23

computation on the previous time step’s output is the source of a significant computational bottleneck,24

preventing RNNs from scaling well. Therefore, in recent years, RNNs, despite their many desirable25

theoretical properties [15] such as the ability to process much longer context and their computational26

power [57, 60], have been supplanted by feedforward network architectures.27

By reducing the computation required at each time step, independent of model size and task, we can28

speed up and better scale RNNs. We propose to do this by designing a general-purpose event-based29

recurrent network architecture that is naturally activity-sparse. Dubbed the Event-based Gated30

Recurrent Unit (EGRU), our model is an extension of the Gated Recurrent Unit (GRU) [12]. With31

event-based communication, units in the model can decide when to send updates to other units, which32

then trigger the update of receiving units. Therefore, network updates are only performed at specific,33

dynamically determined event times. With activity-sparsity, most units do not send updates to other34

units most of the time, leading to substantial computational savings during training and inference.35

We formulate the gradient updates of the network to be sparse using a novel method, extending the36

benefit of the computational savings to training time.37
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The biological brain, which relies heavily on recurrent architectures and is at the same time extremely38

energy efficient [43], is a major source of inspiration for the EGRU. One of the brain’s strategies39

to reach these high levels of efficiency is activity-sparsity. In the brain, (asynchronous) event-based40

communication is just the result of the properties of the specific physical and biological substrate on41

which the brain is built. Biologically realistic piking neural networks and neuromorphic hardware also42

aim to use these principles to build energy-efficient software and hardware models [53, 58]. However,43

despite progress in recent years, their task performance has been relatively limited for real-world tasks44

compared to state-of-the-art recurrent architectures based on LSTM and GRU. We view the EGRU as45

a generalisation of spiking neural networks, moving away from modeling biological dynamics toward46

a more general-purpose recurrent model for deep learning.47

In this paper, we first introduce a version of EGRU based on a principled mathematical approach that for-48

mulates the dynamics of the internal states of the network in continuous time. The units of the network49

communicate solely through message events triggered when the internal state of a unit reaches a thresh-50

old value. This allows us to derive exact gradient descent update equations for the network analogous51

to backpropagation-through-time (BPTT) that mirrors the activity-sparsity of the forward pass.52

We then introduce a discrete simplification of this continuous-time model that is also event-based53

and activity-sparse while being easier to implement on today’s prevailing machine learning libraries54

and thus directly comparable to existing implementations of GRU and LSTM. The backwards pass55

here uses an approximate version of BPTT, and these updates are also sparse.56

The sparsity of the backward-pass overcomes one of the major roadblocks in using large recurrent57

models, which is having enough computational resources to train them. We demonstrate the task58

performance and activity sparsity of the model implemented in PyTorch, but this formulation will59

also allow the model to run efficiently on off-the-shelf hardware, including CPU-based nodes60

when implemented using appropriate software paradigms. Moreover, an implementation on novel61

neuromorphic hardware like [13, 27], that is geared towards event-based computation, can make the62

model orders of magnitude more energy efficient [48].63

In summary, the main contributions of this paper are the following:64

1. We introduce the EGRU, an event-based continuous-time variant of the GRU model.65

2. We derive an event-based form of the error-back-propagation algorithm for EGRU.66

3. We introduce a discrete-time version of EGRU that can be directly compared to current67

LSTM/GRU implementations.68

4. We demonstrate that the EGRU exhibits task-performance competitive with state-of-the-art69

recurrent network architectures (based on LSTM, GRU) on real-world machine learning70

benchmarks.71

5. We show that EGRU exhibits high levels of activity-sparsity during both inference and72

learning.73

2 Related work74

Activity sparsity in RNNs has been proposed previously in various forms [28, 46, 47], but only75

focusing on achieving it during inference. Conditional computation is a form of activity sparsity76

used in [17] to scale to 1 trillion parameters. This architecture is based on the feedforward transformer77

architecture, with a separate network making the decision of which sub-networks should be active [59].78

An asynchronous event-based architecture was recently proposed specifically targeted towards graph79

neural networks [56]. QRNNs [7], SRUs[38] and IndRNNs [39] target increasing the parallelism in a80

recurrent network without directly using activity-sparsity. Unlike [17], our architecture uses a unit-local81

decision making process for the dynamic activity-sparsity, specifically for recurrent architecture. The82

cost of computation is lower in an EGRU compared to [47], and can be implemented to have parallel83

computation of intermediate updates between events, while also being activity sparse in its output.84

Models based on sparse communication [64] for scalability have been proposed recently for85

feedforward networks, using locality sensitivity hashing to dynamically choose downstream86

units for communicating activations. This is a dynamic form of parameter-sparsity [25]. But,87

parameter/model-sparsity is, in general, orthogonal to and complementary with our method for88

activity-sparsity, and can easily be combined for additional gains.89
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Biologically realistic spiking networks [41] are often implemented using event-based updates and have90

been scaled to huge sizes [33], albeit without any task-related performance evaluation. Models for91

deep learning with recurrent spiking networks [3, 55] mostly focus on modeling biologically realistic92

memory and learning mechanisms. Moreover, units in a spiking neural network implement dynamics93

based on biology and communicate solely through unitary events, while units in an EGRU send94

real-valued signals to other units, and have more general dynamics. A sparse learning rule was recently95

proposed [4] that is a local approximation of backpropagation through time, but not event-based.96

The event-based learning rule for the continuous time EGRU is inspired by, and a generalization of,97

the event-prop learning rule for spiking neurons [63]. As in that paper, we use the adjoint method98

for ordinary differential equations (ODEs) to train the continuous time EGRU [10, 50] combined with99

sensitivity analysis for hybrid discrete/continuous systems [11, 19]. Using pseudo-derivatives for back-100

propagating through the non-differential threshold function, as we use for our discrete-time EGRU, was101

originally proposed for feedforward spiking networks in neuromorphic hardware in [16] and developed102

further in [3, 65]. The sparsity of learning with BPTT when using appropriate pseudo-derivatives103

in a discrete-time feed-forward spiking neural network was recently described in [49].104

A continuous time version of sigmoidal RNNs was first proposed in [2] and for GRUs in [14]. The105

latter used a Bayesian update for network states when input events were received, but the network itself106

was not event-based. As in [37, 46], the focus there was on modeling irregularly spaced input data,107

and not on event-based network simulation or activity-sparse inference and training. [9] also recently108

proposed a continuous time recurrent network for more stable learning, without event-based mechanics.109

GRUs were formulated in continuous time in [32], but purely for analyzing its autonomous dynamics.110

3 Event-based GRU111

3.1 Time-sparse GRU formulation112

Figure 1: Illustration of EGRU. A: A single unit of the original GRU model adapted from [12]. B:
EGRU unit with event generating mechanism. C,D: Dynamics of EGRU internal state variables for
the delay-copy task with input (1,0) (C) and (0,1) (D). Colors are matched for neurons in both plots.

We base our model on the GRU [12], illustrated for convenience in Fig. 1A. It consists of internal113

gating variables for updates (u) and a reset (r), that determine the behavior of the internal state y.114

The state variable z determines the interaction between external input x and the internal state. The115

dynamics of a layer of GRU units, at time step t, is given by the set of vector-valued update equations:116

u⟨t⟩=σ
(
Wu

[
x⟨t⟩,y⟨t−1⟩

]
+bu

)
, r⟨t⟩=σ

(
Wr

[
x⟨t⟩,y⟨t−1⟩

]
+br

)
,

z⟨t⟩=g
(
Wz

[
x⟨t⟩,r⟨t⟩⊙y⟨t−1⟩

]
+bz

)
, y⟨t⟩=u⟨t⟩⊙z⟨t⟩+(1−u⟨t⟩)⊙y⟨t−1⟩,

(1)
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where Wu/r/z , bu/r/z denote network weights and biases, ⊙ denotes the element-wise (Hadamard)117

product, andσ(·) is the vectorized sigmoid function. The notation
[
x⟨t⟩,y⟨t−1⟩] denotes vector concate-118

nation. The function g(·) is an element-wise nonlinearity (typically the hyperbolic tangent function).119

We introduce an event generating mechanisms by augmenting the GRU with a rectifier and a clearing120

mechanism (see Fig. 1B for an illustration). This introduces an event-based variant of the internal121

state variable y
⟨t⟩
i , that is nonzero when the internal dynamics reach a threshold ϑi and is cleared122

immediately afterwards. Formally, this can be included in the model by adding an auxiliary internal123

state c⟨t⟩i , and replacing y⟨t⟩=(y
⟨t⟩
1 ,y

⟨t⟩
2 ,...) with the event-based form124

y
⟨t⟩
i = c

⟨t⟩
i H

(
c
⟨t⟩
i −ϑi

)
with c

⟨t⟩
i = u

⟨t⟩
i z

⟨t⟩
i +(1−u

⟨t⟩
i )c

⟨t−1⟩
i −y

⟨t−1⟩
i , (2)

where H (·) is the Heaviside step function and ϑi > 0 is a trainable threshold parameter. This form125

is well suited for time sparsity, since H (·) acts here as a gating mechanism, by generating a single126

non-zero output when c
⟨t⟩
i crosses the threshold ϑi. That is, at all time steps t with c

⟨t⟩
i <ϑi,∀i, we127

have y⟨t⟩i =0. The −y
⟨t−1⟩
i term in Eq. (2) makes emission of multiple consecutive events by the same128

unit unlikely, hence favoring overall sparse activity. With this formulation, each unit only needs to129

be updated when an input is received either externally or from another unit in the network. This is130

because, if both x
⟨t⟩
i = y

⟨t−1⟩
i =0 for the i-th unit, then u

⟨t⟩
i , r

⟨t⟩
i , z

⟨t⟩
i are essentially constants, and131

hence the update for y⟨t⟩i can be retroactively calculated efficiently on the next incoming event.132

3.2 Limit to continuous time133

The discrete time model Eq. (1) considers the GRU dynamics only at integer time points,134

t0=0, t1=1, t2=2,.... However, in general it is possible to express the GRU dynamics for an arbitrary135

time step ∆t, with tn = tn−1+∆t. The discrete time GRU dynamics can be intuitively interpreted136

as an Euler discretization of an ordinary differential equation (ODE) [32] (see Supplement), which137

we extend further to formulate the EGRU. This is equivalent to taking the continuous time limit ∆t→0138

to get dynamics for the internal state c(t) starting from the discrete time EGRU model outlined above.139

In the resulting dynamical system equations inputs cause changes to the states only at the event times,140

whereas the dynamics between events can be expressed through ODEs. To arrive at the continuous141

time formulation we introduce the neuronal activations au(t), ar(t) and az(t), with142

u(t) = σ(au(t)), r(t) = σ(ar(t)), z(t) = g(az(t)),

with dynamics τsȧX =−aX −bX, X∈{u,r,z}
(3)

and143

τmċ(t) = u(t)⊙(z(t)−c(t)) = F (t,au,ar,az,c) , (4)

where τs and τm are time constants, c(t), u(t) and z(t) are the continuous time analogues to c⟨t⟩,144

u⟨t⟩ and z⟨t⟩, and ȧX denotes the time derivative of aX. The boundary conditions are defined for t=0145

as aX(0)=c(0)=0. The function F in Eq. (4) determines the behavior of the EGRU between event146

times, i.e. when x(t)=0 and y(t)=0. Nonzero external inputs and internal events cause jumps in147

c(t) and aX(t).148

Furthermore, the formulation of the event generating mechanisms Eq.(2) introduced above can be149

expressed in a straightforward manner in continuous time. Note that in continuous time the exact time150

s at which the internal variable ci(s) reaches the threshold (ci(s)=ϑi) can be determined with very151

high precision. Therefore, the value of ci(s) and the instantaneous amplitude of yi(s) simultaneously152

approach ϑi at time point s, so that the −yi term in Eq. (2) effectively resets ci(s) to zero, right after153

an event was triggered. To describe these dynamics we introduce the set of internal events e, ek ∈e,154

ek = (sk,nk), where sk are the continuous (real-valued) event times, and nk denotes which unit got155

activated. An event ek is triggered whenever cnk
(t) reaches ϑ. More precisely:156

(sk,nk) : c
−
nk
(sk)=ϑnk

, (5)

where the superscript .− (.+) denotes the quantity just before (after) the event. Immediately after157

an event has been generated the internal state is cleared: c+nk
(sk) = 0. At the time of this event, the158
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activations of all the units m ̸=nk connected to unit nk experiences a jump in its state value. The jump159

for aX,m is given by:160

a+X,m(sk)=a−X,m(sk)+wX,mnk
rX,nk

c−nk
(sk), (6)

where X ∈{u, r, z}, rX =0 when X ∈{u,z} and rX = r when X = {r}. This is equivalent to yi= c−nk
161

being the output of each network unit. A similar jump is experienced on arrival of an external input,162

using the appropriate input weights instead (see Supplement for specifics).163

The continuous time event-based state update is illustrated in Fig. 1C and D for the delay-copy task164

described in Section 4.1. Two EGRU units are used here and states ci(t) and event times sk are shown.165

At the beginning of the trial an input pattern (x1 = 1, x2 = 0, and x1 = 0, x2 = 1 in Fig. 1C and D,166

respectively) has to be memorized in the network and retrieved again after the recall cue (x3 = 1)167

was given. The parameters are trained with the event-based updates described in Section 3.3. The168

required memory is stored in the internal events and state dynamics. State updates can be performed169

in an event-based fashion, i.e. by jumping from one event time sk to the next sk+1. In-between state170

values follow the state dynamics Eq.(4) and their values are not needed to perform the updates (but171

are shown here for the sake of illustration). By construction, the state updates for external and internal172

events only happen on receipt of event. Since Eqs. (3), (4) are linear ODEs, the intermediate updates173

due to autonomous state dynamics can also be performed cumulatively and efficiently just at event174

times, hence avoiding any computation in the absence of incoming events.175

3.3 Event-based gradient-descent using adjoint method176

To derive the event-based gradient updates for the EGRU we define the loss over duration T as177 ∫ T

0
ℓc(c(t),t)dt, where ℓc(c(t),t) is the instantaneous loss at time t. T is a task-specific time duration178

within which the training samples are given to the network as events, and the outputs are read out. In179

general ℓc(c(t),t)may depend arbitrarily on c(t), however in practice we choose the instantaneous loss180

to depend on the EGRU states only at specific output times to adhere to our fully event-based algorithm.181

The loss is augmented with the terms containing the Lagrange multipliers λc,λaX
to add constraints182

defining the dynamics of the system from Eqs. (3), (4). The total loss L thus reads183

L=

∫ T

0

ℓc(c(t),t)+λc ·(τmċ(t)−F (t,au,ar,az,c))+
∑

X∈{u,r,z}

λaX
·(τsȧX+aX)

dt . (7)

The Lagrange multipliers are referred to as the adjoint variables in this context, and may be chosen184

freely since both τmċ(t)−F (t,au,ar,ax,c) and τsȧX+aX are everywhere zero by construction.185

We can choose dynamics and jumps at events for the adjoint variables in such a way that they can186

be used to calculate the gradient dL
dwji

. Calculating the partial derivatives taking into account the187

discontinuous jumps at event times depends on the local application of the implicit function theorem,188

which requires event times to be a differentiable function of the parameters. See [10, 19, 63] for a189

description of applying the adjoint method for hybrid discrete/continuous time systems with further190

theoretical background, and the Supplement for a derivation specific to the EGRU.191

The time dynamics of the adjoint variables is given by the following equations with a boundary192

condition of λc(T )=λaX
(T )=0:193 (

∂F

∂c

)T

λc−τmλ̇c=0, λaX
+

(
∂F

∂aX

)T

λc−τsλ̇aX
=0, (8)

for X∈{u,r,z}, and MT denoting the transpose of the matrix M . The event updates for the adjoints194

are described in the Supplement. In practice, the integration of λ is done backwards in time.195

For the recurrent weights wX,ij from the different parameter matrices WX for X∈u,r,z, we can write196

the weight updates using only quantities calculated at events ek as:197

∆wX,ij =
∂

∂wX,ij
L(W) =

∑
k

ξX,ijk. (9)

The corresponding value of ξX,ijk=(ξX,k)ij is given by the following formula, written in vector form198

for succinctness:199

ξX,k =−τs
(
r−X (sk)⊙c

−(sk)
)
⊗λ+

aX
(sk) , (10)
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where ⊗ is the outer product, c− refers to the value of c(t) just before event ek, r−X =0 for X∈{u,z}200

and equal to the value of r(t) just before event ek for X = {r}, λ+
aX

refers to the value of the adjoint201

variable λaX
(t) just after the event ek. Thus, the values of r(t),c(t) needs to be stored only at event202

times, and λaX
(t) needs to be calculated only at these times, making the gradient updates event-based.203

See the Supplement for the update rules for the input weights and biases.204

3.4 Sparse approximate BPTT in discrete time205

Figure 2: Illustrate the discrete time state dynamics for two EGRU units (i and j). A: Forward
dynamics. Information only propagates from units that generate an event. B: Activity-sparse backward
dynamics. Insets show threshold function H(c) and pseudo derivative thereof.

In discrete time, the network uses a threshold activation functionH(c) to decide whether to emit an event206

as described in Eq. (2). SinceH(c) is not differentiable at the thresholdϑi, we define a pseudo-derivative207

at that point for calculating the backpropagated gradients. The pseudo-derivative is defined as a piece-208

wise linear function that is non-zero for values of state ci between ϑi+ε and ϑi−ε as shown in the inset209

in Fig. 2B. Since the pseudo-derivative is zero whenever the internal state of the unit is below ϑi−ε, the210

backpropagated gradients are also 0 for all such units, making the backward-pass sparse (see Fig.2 for211

an illustration). Note that the case where the internal unit state is above ϑi+ε tends to occur less often,212

since the unit will emit an event and the internal state will be cleared (Eq. (2)) at the next simulation step.213

3.5 Computation and memory reduction due to sparsity214

For the forward pass of the discrete time EGRU, an activity sparsity of α (i.e. an average of α events215

per simulation step) leads to the reduction of multiply-accumulate operations (MAC), by factor α.216

We focus on MAC operations, since they are by far the most expensive compute operation in these217

models. If optimally implemented an activity sparsity of 80% will require 80% fewer MAC operations218

compared to a GRU that is not activity-sparse. Computation related to external input is only performed219

at input times, and hence is as sparse as the input, both in time and space. During the backward pass, a220

similar factor of computational reduction is observed, based on the backward-pass sparsity β which is,221

in general, less than α. This is because, when the internal state value is not within ±ε of the threshold222

ϑ, the backward pass is skipped, as described in section 3.4. Since our backward pass is also sparse, we223

expect to need to store only β fraction of the activations for later use, hence also reducing the memory224

usage. In all our experiments, we report activity-sparsity values calculated through simulations.225

4 Results226

4.1 Delay-copy task227

To illustrate the behavior of the continuous-time EGRU model (Fig. 1C,D) we used a simple delay-copy228

task (also called the copy memory task [24]). A binary vector was presented to the network at the input229

time. This was followed by a delay period, after which the network was given a cue input indicating230

that it should recall the input seen before. A small network with only two EGRU units was used here,231

trained with the event-based learning rules described in Section 3.3. Right after the cue input, the232

network had to report the memorized input pattern. EGRU outputs yi emitted at network event times233

were convolved with an exponential kernel to retrieve output traces, which were then used to retrieve234
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the stored binary patterns based on their relative magnitudes. The kernel time constant was chosen235

to be significantly lower than the delay time such that the network had to retain the memory in the event236

dynamics. The binary cross-entropy loss was used to train this model until it reached perfect (100%)237

bitwise accuracy on this task. Fig. 1C,D shows the dynamics of the continuous-time model after238

training, as well as the output trace and events. The network has learned to generate events such that239

output traces reliably encode the stored input patterns. Supplemental Table S1 shows the robustness240

of the training for different sizes of inputs, networks, delay periods, all for multiple runs.241

4.2 Gesture prediction242

Figure 3: A: Illustration of DVS gesture classification data for an example class (right hand wave).
On (red) and off (blue) events are shown over time and merged into a summary image for illustration
(not presented to the network). B: Sparse activity of input and EGRU units (random subset of 30 units
shown for each layer).

We next evaluate our model on gesture prediction, which is a popular real-world benchmark for RNNs.243

Here and in the remainder of the experiments we used the discrete time version of EGRU, since it is244

easier to implement and use while retaining most of the advantages of the continuous time model. We245

use the DVS128 Gesture Dataset [1], where the inputs are defined as events. This dataset is widely used246

in neuromorphic research and enables us to demonstrate our model’s performance and computational247

efficiency on event-based data. The dataset contains 11 gestures from 29 subjects recorded with a248

DVS128 event camera [40]. Each event encodes a relative change of illumination and is given as249

spatio-temporal coordinates of X/Y position on the 128×128-pixel sensor and time stamp. Raw event250

times were combined into ‘frames’ by binning them over time windows of 25 ms. Frames were then251

downscaled to 32×32 pixels using a maxpool layer.

reference architecture para- effective accu- activity backward
(# units) meters MAC racy sparsity sparsity

He et al. [23] LSTM (512) 7.35M 7.34M 86.81% - -
Innocenti et al. [30] AlexNet+LSTM+DA 9.99M 638.25M 97.73% - -

ours GRU (1024) 15.75M 15.73M 88.07% 0% -
ours EGRU (512) 5.51M 4.19M 88.02% 83.79% 53.55%
ours EGRU (1024) 15.75M 10.54M 90.22% 82.53% 56.63%
ours EGRU+DA (1024) 15.75M 10.77M 97.13% 78.77% 58.20%

Table 1: Model comparison for the DVS Gesture recognition task. Effective number of MAC
operations as described in section 3.5.

252

Unlike previous approaches that focused on a feedforward/RNN hybrid approach [1, 20, 30], we focused253

on pure RNN based architectures following the work of [23]. A binary cross-entropy loss was applied254

with an additional regularization loss on the output gate to produce 5% activity and the state variable c to255

be slightly below the threshold. The models were trained using the Adam optimizer for 1000 epochs to256
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verify their stability but typically reached a plateau performance after 200 epochs (see Supplement for257

further details). Due to this, backward sparsity as described in Section 3.5 was calculated at epoch 100.258

Comparison of model performance on gesture prediction is presented in Table 1. The model had259

inherent activity-sparsity of 70% which the regularization increased to 90% without significant260

performance decrease. EGRU consistently outperformed GRU networks of the same size on this task261

by a small margin. Adding data augmentation (DA) by applying random crop, translation, and rotation,262

as previously done in [30], increased the performance to over 97% of this pure RNN architecture,263

coming close to state-of-the-art architectures that even include costly AlexNet pre-processing. Further264

experimental details, ablation studies and statistics over different runs can be found in the supplement265

sections D.1, D.1.1 and tables S3, S4 respectively.266

4.3 Sequential MNIST267

Next, we tested the EGRU on the sequential MNIST task [36], which is a widely used benchmark268

for recurrent networks. In this task, the MNIST handwritten digits were given as input one pixel at a269

time, and at the end of the input sequence, the network output was used to classify the digit. We trained270

a 1-layer EGRU with 590 units (matching the number of parameters with a 512 unit LSTM). We did271

not use any regularisation to increase sparsity in this task, so that we could test how much sparsity, both272

forward and backward, arises naturally in the EGRU. In Table 2, we report the results of discrete-time273

EGRU along with other state-of-the-art architectures. EGRU achieved a task performance comparable274

to previous architectures while using much fewer operations (more than an 5-fold reduction in effective275

MAC operations compared to GRU). Further experimental details, and statistics over different runs276

can be found in the supplement sections D.2 and table S5 respectively.277

reference architecture parameters effective test activity
(# units) MAC accuracy sparsity

Rusch and Mishra [54] coRNN (256) 134K 262K 99.4% -
Gu et al. [22] LSTM (512) 1M 1M 98.8% -

ours GRU (590) 1M 1M 98.8% -
ours EGRU (590) 1M 226K 98.3% 72.1%

Table 2: Model comparison on sequential MNIST task. Top-1 test scores, given as percentage
accuracy, where higher is better.

4.4 Language Modeling278

Natural language processing is a popular domain for benchmarking recurrent neural networks. We279

evaluated our model on a language modeling task based on the PennTreebank [42] dataset to validate280

the functionality of our model. While techniques such as neural cache models [21] or dynamic281

evaluation [35] have been shown to improve language models, we focused on the RNN model itself in282

this work, taking [45] as our baseline. Following [45], our models consists of a dense 400-dimensional283

embedding layer, and three stacked RNN cells with DropConnect applied to the hidden-to-hidden284

weights [61]. The weights of the final softmax layer were tied to the embedding layer [29, 51]. All285

our models are optimized with Adam for 1000 epochs, and parameters were tuned for each model286

individually. Details on training and model parameters can be found in the Supplement. Results are287

shown in Table 3. In our experiments, GRUs did not reach the performance of LSTM variants on288

this task, which, to the best of our knowledge, is consistent with recent RNN language modeling289

literature [44, 45]. At the same time, EGRU slightly outperformed GRU, while maintaining high levels290

of activity sparsity. Further experimental details, and statistics over different runs can be found in291

the supplement sections D.3 and table S6 respectively.292

5 Discussion293

We have introduced EGRU, a new form of a recurrent neural network that is competitive with current294

deep recurrent models yet can efficiently perform both inference and learning. To achieve this, we295

first formulated the GRU in continuous time and converted it to an event-based form that achieved296

activity-sparsity naturally. Furthermore, the gradient-descent updates on this time-continuous EGRU297

mirrored the activity sparsity of the inference. We then demonstrated a discrete-time simplification298

of this model that also exhibited event-based activity-sparse inference and learning while being easier299

to implement with popular ML frameworks such as PyTorch or Tensorflow.300
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reference architecture para- effective validation test activity
(# units) meters MAC * sparsity

Gal et al. [18] Variational LSTM 24M - 77.3 75.0 -
Melis et al. [44] 1 layer LSTM 24M - 61.8 59.6 -
Merity et al. [45] AWD-LSTM 24M 24M 60.0 57.3 -

ours GRU (1350) 24M 24M 71.2 68.8 -
ours EGRU (1350) 24M 4.7M 67.4 64.5 88.0%
ours EGRU (2000) 45M 6.6M 66.5 63.7 90.4%
ours EGRU (2700) 77M 8.1M 66.4 63.5 93.2%

Table 3: Model comparison on PennTreebank. Validation and test scores are given as perplexities,
where lower is better. Sparsity refers to activity-sparsity of the EGRU output, and effective MAC
operations consider the layer-wise sparsity in the forward pass. *

The EGRU achieved competitive task performance on various real-world tasks such as gesture301

recognition and language modeling while achieving a sparsity of up to 80% for the gesture recognition302

task and 90% on the language modeling task. Scaling up networks for language modeling has shown303

some of the most promising results in the last few years [8, 17] Hence our choice of task, albeit on304

a smaller scale, was to validate the functionality of the model. Considering the need for extensive305

hyperparameter search [44] for language modeling, our model achieved promising results while306

maintaining a high degree of activity-sparsity. For example, our EGRU with 1350 hidden units reached307

perplexities comparable with LSTM and GRU, while maintaining an activity-sparsity of 86 % (14%308

of the units active on average). The amount of computation used by an EGRU also scales sub-linearly309

with an increase in the size of the network and number of parameters, making it a scalable alternative310

to LSTM/GRU based architectures (see Supplement).311

While we use the GRU as the basis for our model due to its simplicity, this formulation can easily be ex-312

tended to any arbitrary network dynamics, including the LSTM, allowing specialized architectures for313

different domains. The adjoint method for hybrid systems that we use here is a powerful general-purpose314

tool for training event-based activity-sparse forms of various recurrent neural network architectures.315

Another novel outcome of this paper is that this theory can handle inputs in continuous time as events,316

which is very intuitive, hence providing an alternative to the more complex controlled differential317

equations [34]. The EGRU can also be used for irregularly spaced sequential data quite naturally.318

The compute efficiency of this model can directly translate into gains in energy efficiency when319

implemented using event-based software primitives. These same properties would also allow the320

model to work well on heterogenous compute resources, including pure CPU nodes, and neuromorphic321

devices such as Intel’s Loihi [13] and SpiNNaker 2 [27], that can achieve orders of magnitude higher322

energy efficiency. The EGRU model will also perform well in more mainstream deep learning323

hardware that is enabled for dynamic sparsity, such as the Graphcore system [31]. On neuromorphic324

devices with on-chip memory in the form of a crossbar array, the activity sparsity directly translates325

into energy efficiency. For larger models that need off-chip memory, activity-sparsity needs to be326

combined with parameter-sparsity to reduce energy-intensive memory access operations.327

In summary, starting with the motivation of building scalable, energy-efficient deep recurrent models,328

we demonstrated the EGRU, which reduces the required compute for both inference and learning by329

enhancing sparsity in the network. This approach lays the foundation for exploring novel capabilities330

that can emerge from scaling up RNNs similar to what has been seen for feed-forward architectures331

in recent years.332

Potential negative societal impact: The proposed model is a new variant of the previously published333

GRU and would therefore essentially inherit all potential negative societal impacts from that model,334

including the potential risks that come with automated surveillance systems, vulnerability to fraud and335

adversarial attacks, etc. (see [6] and [62] for critical reviews). However, the model also provides the336

potential societal benefit of making these models more energy-efficient and thus reducing the energy337

and carbon footprint of machine learning. Scaling this model to larger sizes, especially for language338

modeling, can lead to the same problems as current large language models [5]. The effect of activity339

sparsity on prediction bias needs to be studied further in the same way as for parameter sparsity [26].340
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