

000 SINGLE-STEP BIDIRECTIONAL UNPAIRED IMAGE 001 TRANSLATION USING IMPLICIT BRIDGE CONSIS- 002 TENCY DISTILLATION 003 004

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Unpaired image-to-image translation has seen significant progress since the
014 introduction of CycleGAN. However, methods based on diffusion models or
015 Schrödinger bridges have yet to be widely adopted in real-world applications
016 due to their iterative sampling nature. To address this challenge, we propose a
017 novel framework, Implicit Bridge Consistency Distillation (IBCD), which en-
018 ables single-step bidirectional unpaired translation without using adversarial loss.
019 IBCD reformulates consistency distillation by using a diffusion implicit bridge
020 model that connects PF-ODE trajectories between distributions, with a novel de-
021 sign parametrization to enable effective translation in a single step. Additionally,
022 we introduce two key improvements: 1) distribution matching for consistency dis-
023 tillation and 2) adaptive weighting method based on distillation difficulty. Experi-
024 mental results demonstrate that IBCD achieves state-of-the-art performance on
025 benchmark datasets in a single generation step.

026 1 INTRODUCTION

028 Unpaired image-to-image (I2I) translation (Zhu et al., 2017a), which transfers images between do-
029 mains while preserving content without supervision, has gained continuous attention in academia
030 and industry. This approach is particularly useful in real-world scenarios where paired data is hard to
031 obtain, such as in medical and scientific imaging (Kaji & Kida, 2019; Chen et al., 2023). Despite the
032 recent advances in modern zero-shot image editing methods (Parmar et al., 2023; Hertz et al., 2023;
033 2022), their applicability remains limited due to challenges such as the lack of domain-specific adap-
034 tation and the difficulty of preserving fine-grained details. Even the latest foundational models, such
035 as GPT-Image-1, consistently underperform without domain-specific adaptation (Tab. 2). Therefore,
036 unpaired I2I translation remains essential for applications like image enhancement, artifact removal,
037 and cross-modality translation in modern computer vision (Safayani et al., 2025).

038 Traditionally, CycleGAN (Zhu et al., 2017a) and its variants form the foundation for unpaired I2I
039 translation (Choi et al., 2018; Park et al., 2020a; Fu et al., 2019; Zheng et al., 2022). These meth-
040 ods use bidirectional generators for domain translation, along with domain-specific discriminators.
041 Training combines adversarial loss, guided by discriminators, and cycle consistency loss from the
042 bidirectional structure. While CycleGAN-based methods have advanced unpaired I2I translation,
043 they still rely on adversarial loss, which can cause instability, convergence issues, and mode col-
044 lapsed (Saad et al., 2024). Moreover, their performance lags behind that of modern generative models.

045 The recent emergence of diffusion models (DMs) has significantly advanced unpaired I2I translation,
046 thanks to their exceptional generative capabilities through iterative denoising. SDEdit (Meng et al.,
047 2022) performs image translation by solving the reverse SDE with a diffusion model trained on the
048 target domain. This is achieved by introducing noise to the source image or mapping it to a noisy
049 space using an inversion method (Wu & De la Torre, 2023). Additional regularizers balance the
050 inherent realism-faithfulness tradeoff (Zhao et al., 2022; Sun et al., 2023).

051 On the other hand, Schrödinger Bridge (Schrödinger, 1932) offers a promising approach for translat-
052 ing between two arbitrary distributions using entropy-regularized optimal transport. Various meth-
053 ods have been developed for translating between data distributions, such as those proposed in (Wang
et al., 2021; Chen et al., 2021; Liu et al., 2022; He et al., 2024), though many of these methods are

Model	Single-step	Unpaired	Bi-direction	Discr.
SDEdit	✗	✓	✗	✗
EGSDE	✗	✓	✗	✗
CycleDiff	✗	✓	✓	✗
DDIB	✗	✓	✓	✗
DDBM	✗	✗	✓	✗
UNSB	✗	✓	✗	✓
CDBM	✓	✗	✗	✗
IBCD (Ours)	✓	✓	✓	✗

Table 1: A systematic comparison of IBCD with other diffusion-based image-to-image translation models highlights several key advantages.

limited to paired settings. In contrast, DDIB (Su et al., 2023) addresses I2I translation by concatenating the ODE trajectories of two distinct DMs, making it suitable for unpaired settings, yet it still relies on numerous iterative steps. More recently, UNSB (Kim et al., 2024a) has been introduced to directly tackle unpaired I2I translation by regularizing Sinkhorn paths. Despite the aforementioned advancements in diffusion-based approaches, there still exist challenges encountered by the inference cost associated with their fundamental iterative nature, which limits their practical usability.

To address the limitations, we aim at the development of a *bidirectional single-step* generator that enables translation between two arbitrary distributions in *unpaired* settings without relying on adversarial losses (Tab. 1). Specifically, we propose Implicit Bridge Consistency Distillation (IBCD), a reformulation of the concept of consistency distillation (CD) (Song et al., 2023) that incorporates a diffusion implicit bridge model for translating between arbitrary data distributions. Unlike CD, which learns paths from Gaussian noise to data, IBCD connects trajectories from one arbitrary distribution to another one using a Probability Flow Ordinary Differential Equation (PF-ODE), allowing for flexible and efficient distribution translation.

However, simply extending CD can lead to increased distillation error due to error accumulation, as well as challenges related to model capacity and training scheme, which arise from integrating two trajectories and introducing bidirectionality. To address this, we propose a regularization method called Distribution Matching for Consistency Distillation (DMCD). Furthermore, we introduce a novel weighting scheme based on distillation difficulty, which applies a stronger DMCD penalty specifically to samples where the consistency loss alone proves insufficient. By integrating additional cycle translation loss with these advanced components, our approach significantly enhances the realism-faithfulness trade-off, achieving state-of-the-art performance in a single step, as shown in Fig. 1. The main contributions of our work are as follows:

- Propose Implicit Bridge Consistency Distillation (IBCD), a novel unpaired image translation framework that enables bidirectional translation with a single NFE and achieves state-of-the-art results.
- Introduce regularizing components, including Distribution Matching for Consistency Distillation (DMCD), an adaptive weighting scheme based on distillation difficulty, and cycle translation loss to mitigate inherent distillation errors.
- Demonstrate the effectiveness of IBCD through extensive experiments on toy, natural, and medical images, covering a range of diverse modalities.

2 PRELIMINARIES

2.1 IMAGE TRANSLATION WITH DIFFUSION MODELS

Diffusion Models (DM). In DMs (Ho et al., 2020; Song et al., 2021), the predefined forward process with the time variable $t \in [0, T]$ progressively corrupts data into pure Gaussian noise over a series of steps T . Specifically, given a data distribution $\mathbf{x}_0 \sim p(\mathbf{x}_0) := p_{\text{real}}(\mathbf{x})$, the distribution $\mathbf{x}_T \sim p(\mathbf{x}_T)$ approaches an isotropic normal distribution as noise is added according to the process $p(\mathbf{x}_t \mid \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_0, t^2 \mathbf{I})$. The reverse of this process can be described by an SDE or a PF-ODE (Song et al., 2021) as follows:

$$\frac{d\mathbf{x}_t}{dt} = -t \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t) = \frac{\mathbf{x}_t - \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]}{t}, \quad (1)$$

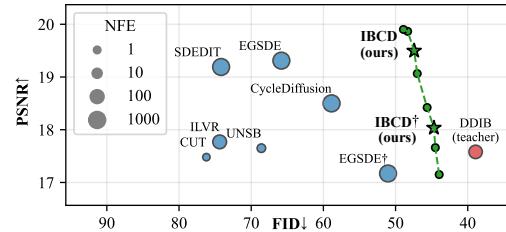


Figure 1: PSNR-FID trade-off comparison with baselines on the Cat→Dog task. Marker size represents NFE.

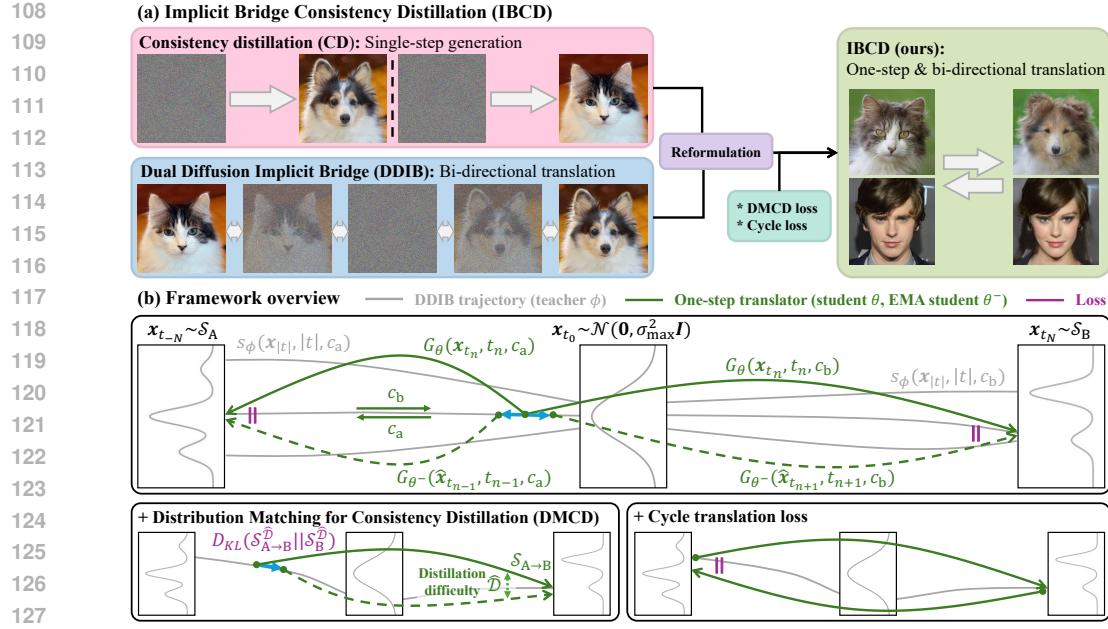


Figure 2: (a) IBCD performs single-step bi-directional translation using a distillation framework that reformulates consistency distillation with a diffusion implicit bridge and introduces regularizers. (b) The IBCD framework bridges two distributions by connecting the PF-ODE paths of two pre-trained diffusion models through bidirectionally extended consistency distillation. To mitigate distillation errors, we introduce distribution matching for consistency distillation and a cycle translation loss.

where the second equality follows from Tweedie’s formula, $\mathbb{E}[\mathbf{x}_0|\mathbf{x}_t] = \mathbf{x}_t + t^2 \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t)$ (Efron, 2011; Kim & Ye, 2021). In practice, the neural network is trained to approximate the ground truth score function $\mathbf{s}_\phi(\mathbf{x}_t, t) \approx \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t)$ or the denoiser $D_\phi(\mathbf{x}_t, t) \approx \mathbb{E}[\mathbf{x}_0|\mathbf{x}_t]$ by denoising score matching (Vincent, 2011). By substituting the trained neural networks into Eq. (1), we can obtain the denoised sample by numerically integrating from T to 0:

$$\mathbf{x}_0 = \mathbf{x}_T + \int_T^0 -t \cdot \mathbf{s}_\phi(\mathbf{x}, t) dt = \mathbf{x}_T + \int_T^0 \frac{\mathbf{x}_t - D_\phi(\mathbf{x}_t, t)}{t} dt. \quad (2)$$

To solve Eq. (2), an ODE solver, denoted as $\text{Solve}(\mathbf{x}_T; \phi, T, 0)$ (with an initial state \mathbf{x}_T at time T and ending at time 0, DM parameterized by ϕ) can be applied. Examples include the Euler solver (Song et al., 2021; Ho et al., 2020), DPM-solver (Lu et al., 2022), or the second-order Heun solver (Karras et al., 2022). The sampling process typically requires dozens to hundreds of neural function evaluations (NFE) to effectively minimize discretization error during ODE solving.

Dual Diffusion Implicit Bridge (DDIB). DDIB (Su et al., 2023) is a simple yet effective method for I2I translation that leverages the connection between DMs and Schrödinger bridge problem (SBPs), where DMs act as implicit optimal transport models. DDIB requires training two individual DMs for the two domains A and B, denoted as \mathbf{s}_{ϕ^a} and \mathbf{s}_{ϕ^b} . The sampling process involves sequential ODE solving as follows:

$$\mathbf{x}^1 = \text{Solve}(\mathbf{x}^a; \phi^a, 0, T), \quad \mathbf{x}^b = \text{Solve}(\mathbf{x}^1; \phi^b, T, 0). \quad (3)$$

Here, \mathbf{x}^1 represents the latent code in the pure Gaussian noise domain, \mathbf{x}^a is the image in the source domain, and \mathbf{x}^b is the estimated image in the target domain. Thanks to the intermediate Gaussian distribution, DDIB automatically satisfies the cycle consistency property without any explicit regularization term (Zhu et al., 2017b; Choi et al., 2018).

2.2 EXISTING SINGLE-STEP ACCELERATION APPROACHES

Consistency Distillation (CD). The aim of the consistency distillation (CD) (Song et al., 2023) is to learn the direct mapping from noise to clean data. Specifically, the model is designed to predict $f_\theta(\mathbf{x}_t, t) = \mathbf{x}_0$, and is constrained to be *self-consistent*, meaning that outputs should be the same

for any time point input within the same PF-ODE trajectory, *i.e.*, $f(\mathbf{x}_t, t) = f(\mathbf{x}_{t'}, t')$ for all $t, t' \in [\epsilon, T]$, with the boundary condition $f_\theta(\mathbf{x}_\epsilon, \epsilon) = \mathbf{x}_\epsilon$. Here, ϵ is a small positive number, to avoid numerical instability at an $t = 0$. By discretizing the time interval $[\epsilon, T]$ into $N - 1$ sub-interval with boundaries $t_1 = \epsilon < t_2 < \dots < t_N = T$, the resulting objective function for CD is given by:

$$\mathcal{L}_{\text{CD}}(\theta; \phi) = \mathbb{E}[\lambda(t_n)d(f_\theta(\mathbf{x}_{t_{n+1}}, t_{n+1}), f_{\theta^-}(\hat{\mathbf{x}}_{t_n}, t_n))], \quad (4)$$

where $n \sim \mathcal{U}[1, N - 1]$ and $\lambda(t_n)$ is weight hyperparameter, $d(\cdot, \cdot)$ measures the distance between two samples. θ^- is the exponential moving average (EMA) of the student parameter θ , and ϕ represents the pre-trained teacher model, and $\mathcal{U}[\cdot]$ refers to the uniform distribution. The target $\hat{\mathbf{x}}_{t_n}$ is obtained by solving one-step ODE solver, *i.e.*, $\hat{\mathbf{x}}_{t_n} = \text{Solve}(\mathbf{x}_{t_{n+1}}; \phi, t_{n+1}, t_n)$, from $\mathbf{x}_{t_{n+1}} \sim \mathcal{N}(\mathbf{x}_0, t_{n+1}^2 \mathbf{I})$.

Distribution Matching Distillation (DMD). DMD (Yin et al., 2024; Wang et al., 2023) minimizes the Kullback-Leibler (KL) divergence between the real data distribution, p^{real} , and the student sample distribution, p_θ^{fake} to distill the diffusion model $\mathbf{s}_\phi^{\text{real}}$ into a single-step generator $f_\theta(\mathbf{x}_T) = \mathbf{x}_0$. Additionally, DMD introduces an auxiliary “fake” DM, s_ψ^{fake} , to approximate the score function of the student-generated sample distribution. This estimator is trained with denoising score matching, adapting in real-time as the student model progresses through training. The gradient of the DMD loss is then approximated as the difference between the two score functions:

$$\nabla_\theta D_{\text{KL}}(p_\theta^{\text{fake}} || p^{\text{real}}) \approx \nabla_\theta \mathcal{L}_{\text{DMD}} = \mathbb{E}_{\mathbf{x}_t, t, \mathbf{x}_T} [w_t(s_\psi^{\text{fake}}(\mathbf{x}_t, t) - s_\phi^{\text{real}}(\mathbf{x}_t, t)) \nabla_\theta f_\theta(\mathbf{x}_T)], \quad (5)$$

where $\mathbf{x}_t \sim \mathcal{N}(f_\theta(\mathbf{x}_T), t^2 \mathbf{I})$, $t \sim \mathcal{U}(T_{\min}, T_{\max})$, $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, T^2 \mathbf{I})$ and w_t is a scalar weighting factor. DMD serves as an effective distillation loss that optimizes the student model from the view of the distribution, without relying on unstable adversarial loss (Goodfellow et al., 2014).

3 MAIN CONTRIBUTION

We aim to develop a one-step distillation method for bidirectional mapping between arbitrary distributions in an unpaired setting, using pretrained diffusion models. Specifically, given two domains \mathcal{X}_A and \mathcal{X}_B with unpaired datasets \mathcal{S}_A and \mathcal{S}_B , our translator f_θ performs two translations: $f_\theta(\mathbf{x}^a, c_b)$ for $A \rightarrow B$ and $f_\theta(\mathbf{x}^b, c_a)$ for $B \rightarrow A$, where c_a and c_b are class embeddings for the target domain. The concept of our method is illustrated in Fig. 2 by contrasting it to CD and DDIB. In the following, we describe a novel distillation approach with distribution matching, adaptive weighting, and a cycle loss for bidirectional reconstruction.

3.1 IMPLICIT BRIDGE CONSISTENT DISTILLATION

Definition. Our model architecture and diffusion process are based on the PF-ODE using EDM (Karras et al., 2022). To handle both domains with one generator, a pre-trained class conditional DMs, $\mathbf{s}_\phi(\mathbf{x}_t, t, c)$, is jointly trained for each domain with class conditions c_a and c_b . Specifically, the teacher model \mathbf{s}_ϕ is trained using denoising score matching (DSM) for continuous-time $t = \sigma \sim \text{Lognormal} \in (0, \infty)$ without any modification from EDM. The timestep discretization for the sampling process is defined as $[t_0, t_1, \dots, t_i, \dots, t_N] = [\sigma_{\max}, \sigma_{\max-1}, \dots, \sigma_{\min}, 0]$. Since DDIB concatenates two independent ODEs into a single ODE, duplicated timesteps must be redefined for consistency distillation (CD). We introduce a unique discretized timestep index i and redefine the timestep t for the concatenated trajectory ($\mathcal{X}_A \leftrightarrow \mathcal{X}_B$) as follows:

$$i = \underbrace{[-N, -N + 1, \dots, -1]}_{\mathcal{X}_A}, \underbrace{[0, 1, \dots, N - 1, N]}_{\mathcal{X}_A \cap \mathcal{X}_B}, \underbrace{[N]}_{\mathcal{X}_B} \quad (6)$$

$$t_i = [-0, -\sigma_{\min}, \dots, -\sigma_{\max-1}, +\sigma_{\max}, +\sigma_{\max-1}, \dots, +\sigma_{\min}, +0] \quad (7)$$

Boundary Condition. Given that the student model’s output is enforced to be *self-consistent* with respect to timesteps in Eq. (7), we define the student as $f_\theta(\mathbf{x}_t, t, c)$, where t is a non-zero real-valued timestep and $c \in c_a, c_b$ represents the target domain condition. For simplicity, we denote the opposite class embedding as c' , such that when $c = c_b$, $c' := c_a$. To enable bidirectional translation, we redefine the boundary condition to depend on the target domain condition c :

$$f(\mathbf{x}_{\epsilon(c)}, \epsilon(c), c) = \mathbf{x}_{\epsilon(c)}, \quad \text{where } \epsilon(c) = \begin{cases} t_{-N+1} & = -\sigma_{\min}, \quad \text{for } c = c_a \\ t_{N-1} & = +\sigma_{\min}, \quad \text{for } c = c_b \end{cases}. \quad (8)$$

This boundary condition, along with the IBCD loss introduced later, allows translation by injecting the desired domain condition: $f(\mathbf{x}_{\epsilon(c)}, \epsilon(c), c') = \mathbf{x}_{\epsilon(c')}$, where $f(\mathbf{x}_t, t, c_b)$ transforms \mathbf{x}_t at any t between \mathcal{X}_A and \mathcal{X}_B into a clean domain \mathcal{X}_B image $\mathbf{x}_{t_{N-1}}$ belonging to the same ODE trajectory, and vice versa. Since EDM/CD is not defined for negative t values and does not directly align with our new boundary conditions, we introduce a non-trivial reformulation of the EDM/CD formulation, involving a novel parametrization tailored to the student model.¹. For more details on this extension, please refer to Appendix B (App. B).

The Method. To generate data pairs $(\mathbf{x}_{t_1}, \hat{\mathbf{x}}_{t_2})$ that lie on the same PF-ODE trajectory, we perform forward diffusion on the dataset and predict the next data point one step ahead using a suitable teacher model and ODE solver. For simplicity, we denote the teacher model ϕ conditioned on class c as ϕ^c . The data pair generation process in the direction of $\mathcal{X}_A \rightarrow \mathcal{X}_B$ (i.e. $c = c_b$) for each domain is as follows:

$$\hat{\mathbf{x}}_{t_{i+1}} = \text{Solve}(\mathbf{x}_{t_i}; \phi^a, |t_i|, |t_{i+1}|), \quad \hat{\mathbf{x}}_{t_j} = \text{Solve}(\mathbf{x}_{t_j}; \phi^b, |t_j|, |t_{j+1}|), \quad (9)$$

where $i \sim \mathcal{U}[-N+1, -1]$, $j \sim \mathcal{U}[0, N-2]$, $\mathbf{x}_{t_i} \sim \mathcal{N}(\mathbf{x}^a, t_i^2 \mathbf{I})$, $\mathbf{x}_{t_j} \sim \mathcal{N}(\mathbf{x}^b, t_j^2 \mathbf{I})$. Similarly, in the direction $\mathcal{X}_B \rightarrow \mathcal{X}_A$ (i.e. $c = c_a$), the data pair for each domain can be generated as:

$$\hat{\mathbf{x}}_{t_{i-1}} = \text{Solve}(\mathbf{x}_{t_i}; \phi^a, |t_i|, |t_{i-1}|), \quad \hat{\mathbf{x}}_{t_{j-1}} = \text{Solve}(\mathbf{x}_{t_j}; \phi^b, |t_j|, |t_{j-1}|), \quad (10)$$

where $i \sim \mathcal{U}[-N+2, 0]$, $j \sim \mathcal{U}[1, N-1]$. Given these distillation targets, our objective function of IBCD is defined as follows:

$$\mathcal{L}_{\text{IBCD}}(\theta; \phi) = \mathbb{E}_{\mathbf{t}_1, \mathbf{x}_{\mathbf{t}_1}, c} [\lambda(\mathbf{t}_2) d(f_\theta(\mathbf{x}_{\mathbf{t}_1}, \mathbf{t}_1, c), f_{\theta^-}(\hat{\mathbf{x}}_{\mathbf{t}_2}, \mathbf{t}_2, c))], \quad (11)$$

$$\text{where } \mathbf{x}_{\mathbf{t}_1} = [\mathbf{x}_{t_i}; \mathbf{x}_{t_j}], \hat{\mathbf{x}}_{\mathbf{t}_2} = [\hat{\mathbf{x}}_{t_{i\pm 1}}; \hat{\mathbf{x}}_{t_{j\pm 1}}], c \in \mathcal{U}[\{c_a, c_b\}], \\ \mathbf{t}_1 = [t_i; t_j], \mathbf{t}_2 = [t_{i\pm 1}; t_{j\pm 1}], \theta^- = \text{sg}(\mu\theta^- + (1 - \mu)\theta).$$

$n_{(\cdot)\pm 1}$ denotes time index for each distillation direction in Eqs. (9), (10) and sg indicates the stop-gradient operator. For a detailed explanation, see Algo. 1 in App. A.

Using a single domain-independent teacher model instead of two reduces memory and provides an effective initializer for the student model, acting as a unified model for both domains. By sharing the class condition in the teacher and the target domain condition in the student as a unified embedding, we can leverage the student’s initialization weights, as $f(\mathbf{x}_t, t, c)$ is designed to output a clean image for domain c . This approach differs from methods in the literature (Kim et al., 2024b; Li & He, 2024), which extend CD in both directions or specify a target timestep, but don’t fully integrate domain conditions into a cohesive framework.

3.2 OBJECTIVE FUNCTION

While our proposed vanilla IBCD lays a foundation for one-step bidirectional transport, there remain areas for refinement. First, the consistency loss is a local strategy (categorized by Kim et al. (2024b)), aligning consistency only with adjacent timesteps using the student’s recursive output. This can accumulate local errors, leading to growing discrepancies between the student’s prediction $f_\theta(\mathbf{x}_t, t, c)$ and the true boundary $\mathbf{x}_{\epsilon(c)}$, especially given IBCD’s doubled trajectory.

Second, the student must handle bidirectional tasks and learn two distinct ODE trajectories. Although the teacher ODEs share timesteps, their differing output targets by target domain direction increase the complexity, placing additional demands on model capacity and making training more difficult, as also observed in CD by Li & He (2024). Finally, unlike EGSDE (Zhao et al., 2022), which balances realism and fidelity via expert weighting, vanilla IBCD lacks such a control mechanism, limiting its flexibility.

Distribution Matching for Consistency Distillation. To address these issues, we propose Distribution Matching for Consistency Distillation (DMCD), which extends the DMD loss to fit within the CD framework. DMCD builds on the DMD loss by optimizing the KL divergence between the student’s output samples and the target domain data distributions across all timesteps in bidirectional tasks. Furthermore, it incorporates the distillation difficulty adaptive weighting factor $\hat{\mathcal{D}}(\cdot, \cdot)$. This

¹Note this formulation applies exclusively to the student model.

adaptive weighting scheme helps to focus the optimization on challenging samples, thereby enhancing the overall performance and stability of the student model during training. The resulting DMCD is given by:

$$\nabla_{\theta} \mathcal{L}_{\text{DMCD}}(\theta; \phi, \psi) = \mathbb{E}_{\mathbf{t}_1, \mathbf{x}_{\mathbf{t}_1}, c, i, \mathbf{x}_{t_i}} [w_{t_i} \hat{\mathcal{D}}(\text{sg}(\mathbf{x}_{\mathbf{t}_1}), c) (s_{\psi}(\mathbf{x}_{t_i}, t_i, c) - s_{\phi}(\mathbf{x}_{t_i}, t_i, c)) \nabla_{\theta} f_{\theta}(\mathbf{x}_{\mathbf{t}_1}, \mathbf{t}_1, c)]$$

where $i \sim \mathcal{U}[0, N - 1]$, $\mathbf{x}_{t_i} \sim \mathcal{N}(f_{\theta}(\mathbf{x}_{\mathbf{t}_1}, \mathbf{t}_1, c), t_i^2 \mathbf{I})$ (12)

where $\mathbf{t}_1, \mathbf{x}_{\mathbf{t}_1}, c$ are defined per from Eq. (11), and w represents a time-dependent weighting factor introduced in DMD. The term $s_{\psi}(\mathbf{x}_t, t, c)$ denotes a class-conditional fake diffusion model, jointly trained via DSM on outputs of student f_{θ} , adapting during training.

Unlike DMD, DMCD functions as a regularizer rather than the primary objective. This distinction is crucial in unpaired settings, where relying solely on the DMCD loss does not ensure a proper connection between two domains. Recently, a line of work (Rakitin et al., 2024) has similarly introduced DMD for I2I translation, where an additional L_2 regularization between the source and target is used to enforce domain mapping, while DMD itself focuses only on the target distribution matching. In contrast, IBCD constructs a trajectory between two distributions using consistency loss that enforces both domain mapping and target-distribution alignment, whereas DMCD handles the additional distribution matching component, serving as a regularizer to enhance realism. This integration allows for improved performance and stability without the drawbacks associated with adversarial training like Zhu et al. (2017b); Parmar et al. (2024); Kim et al. (2024a).

Distillation Difficulty Adaptive Weighting. DMCD effectively brings the translated distribution closer to the target data distribution, enhancing the realism of generated samples. However, this can also cause divergence from the teacher model’s estimations, reducing faithfulness to the source domain. Ideally, DMCD should be applied more intensively to challenging PF-ODE trajectories that the student struggles to translate accurately, especially those involving source data near the decision boundary (App. D.1).

To address this, we propose a *distillation difficulty adaptive weighting* strategy. We define the concept of *distillation difficulty*, $\mathcal{D}([\mathbf{x}_{t_{-N+1}}, \dots, \mathbf{x}_{t_{N-1}}], c) := d(f_{\theta}(\mathbf{x}_{\epsilon(c')}, \epsilon(c'), c), \mathbf{x}_{\epsilon(c)})$, which quantifies the challenge of distilling a given ODE trajectory generated by the teacher between domains. This allows DMCD to focus more aggressively on difficult trajectories, improving translation performance by targeting areas where the student struggles most. Such a strategy helps balance source faithfulness and realism by applying DMCD loss only where the IBCD loss is insufficient. However, estimating $\mathbf{x}_{\epsilon(c)}$ and $\mathbf{x}_{\epsilon(c')}$ from a given \mathbf{x}_t requires at least N NFEs with the teacher model for each DMCD loss calculation, which is computationally impractical. To address this, we propose a one-step approximation of the weighting factor $\mathcal{D}(\cdot, \cdot)$, defined:

$$\hat{\mathcal{D}}(\mathbf{x}_{\mathbf{t}_1}, c) = g(d(f_{\theta}(\mathbf{x}_{\mathbf{t}_1}, \mathbf{t}_1, c), f_{\theta}(\hat{\mathbf{x}}_{\mathbf{t}_2}, \mathbf{t}_2, c))) \quad (13)$$

where $\mathbf{t}_1, \mathbf{t}_2, \mathbf{x}_{\mathbf{t}_1}, \hat{\mathbf{x}}_{\mathbf{t}_2}$ are defined in Eqs. (11), (12), and g is any monotone increasing function. The validity of this weighting factor will be confirmed through experiments.

Cycle Consistency Loss. Similar to DDIB, our framework is designed to perform cycle translation and must therefore satisfy cycle consistency. The objective function of enforcing this requirement can be expressed as:

$$\mathcal{L}_{\text{cycle}}(\theta) = \mathbb{E}_{c, \mathbf{x}_{\epsilon(c)}} [d(f_{\theta}(f_{\theta}(\mathbf{x}_{\epsilon(c)}, \epsilon(c), c'), \epsilon(c'), c), \mathbf{x}_{\epsilon(c)})]. \quad (14)$$

Final Loss Functions. The final loss, weighted by λ_{DMCD} , λ_{cycle} , for training f_{θ} is given by:

$$\theta^* = \arg \min_{\theta} \mathcal{L}_{\text{IBCD}} + \lambda_{\text{DMCD}} \mathcal{L}_{\text{DMCD}} + \lambda_{\text{cycle}} \mathcal{L}_{\text{cycle}}. \quad (15)$$

Empirically, we found that the following adaptive training strategy further improves performance: the training process begins with only the IBCD loss; as the student model approaches convergence, the DMCD and cycle consistency losses are additionally introduced to further refine the model’s performance. The detailed final algorithm can be found in Algo. 2, App. A.

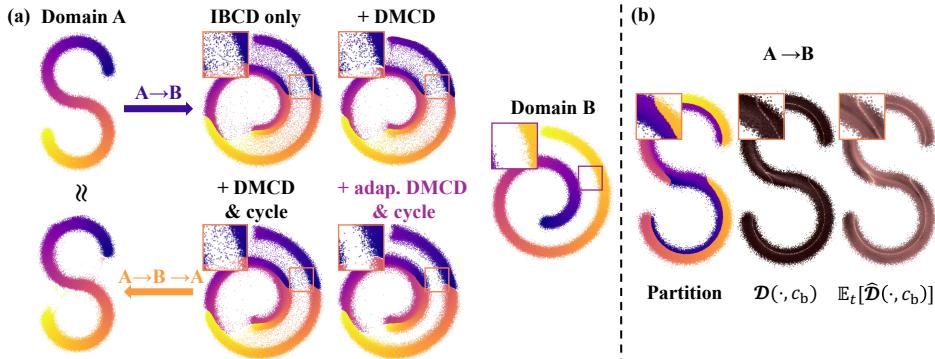


Figure 3: (a) Bidirectional translation results on a toy dataset, showing the contributions of each component. (b) Visualization of distillation difficulty $\mathcal{D}(\cdot, c_b)$ and its one-step approximation $\mathbb{E}_t[\hat{\mathcal{D}}(\cdot, c_b)]$ for $A \rightarrow B$ translation, with g selected as a logarithm.

4 EXPERIMENTS

4.1 TOY DATA EXPERIMENT

To evaluate the effectiveness of our framework in a controlled setting, we conducted bidirectional translation experiments on a two-dimensional synthetic toy dataset, where the domains A and B were represented by the S-curve and Swiss roll distributions, respectively.

Validity of the IBCD. Fig. 3(a) shows the translation results from domain $A \rightarrow B$ for various models, highlighting the cumulative effectiveness of each component in our framework. Distillation with only the IBCD loss achieves basic translation but incorrectly maps some points to low-density regions of the target domain, particularly from the source domain’s decision boundaries (Appendix D.1). Adding the DMCD loss improves translation by guiding more points toward high-density regions, but it fails to reposition points in low-density areas and reduces mode coverage by pushing points in high-density regions even further. Introducing a cycle loss alleviates the reduction in mode coverage caused by DMCD and refines the decision boundaries in the target domain. Finally, incorporating distillation difficulty adaptive weighting into DMCD selectively corrects points that have drifted into low-density regions, guiding them toward higher-density areas. The complete cycle translation ($A \rightarrow B \rightarrow A$) using a model trained with our final approach effectively demonstrates cycle consistency, validating the robustness and fidelity of our method.

Distillation Difficulty. Fig. 3(b) illustrates the impact of distillation difficulty on the translation process. On the left, we show the decision boundary of the source domain resulting from the translation from the target to the source domain by the DDIB teacher model. The middle and right panels depict $\mathcal{D}([\mathbf{x}_{t-N+1}, \dots, \mathbf{x}_{t-N-1}], c_b)$ and its expected one-step approximation, $\mathbb{E}_{t \sim \mathcal{U}[-N+1, N-2]}[\hat{\mathcal{D}}(\mathbf{x}_t, c_b)]$ for the $A \rightarrow B$ translation, plotted at the source domain location $\mathbf{x}_t(c_b)$. The distillation difficulty measure effectively captures the decision boundary, indicating challenging regions for the student model. As shown, its one-step approximation provides an accurate and suitable representation of the distillation difficulty, demonstrating its utility in guiding the training process and improving translation accuracy.

4.2 UNPAIRED IMAGE-TO-IMAGE TRANSLATION

In this section, we apply IBCD to various I2I translation tasks, our primary focus. We evaluate its performance across these tasks to demonstrate effectiveness and robustness.

Evaluation. Following EGSDE’s evaluation protocol, a widely used benchmark for unpaired I2I tasks, we tested our method on Cat→Dog, Wild→Dog (AFHQ) (Choi et al., 2020), and Male→Female (CelebA-HQ) (Karras, 2018). We trained AFHQ and CelebA-HQ DMs as teacher models. Single-step translation models for Cat↔Dog and Wild↔Dog were distilled from the AFHQ DM, and Male↔Female from the CelebA-HQ DM. We used FID (Heusel et al., 2017) and Density-Coverage (Naeem et al., 2020) for translation reality, and PSNR, SSIM (Wang et al., 2004),

378 LPIPS (Zhang et al., 2018), and CLIP score (Hessel et al., 2021) for translation faithfulness. A user
 379 study was also conducted to evaluate perceptual quality and human preference.
 380

381 **Comparison results.** Fig. 1, Fig. 4, and Tab. 2 show that IBCD consistently outperforms baseline
 382 models in both qualitative and quantitative comparisons. IBCD strikes a balance between faithfulness
 383 and realism, while IBCD \dagger emphasizes realism. These results demonstrate our effectiveness in
 384 improving the faithfulness-realism trade-off across tasks and metrics. User studies and perceptual
 385 metrics (App. D.2) further confirm the superiority of our method in terms of human preference.
 386 Although the student model shows reduced realism compared to the teacher, it exhibits improved
 387 faithfulness. The decline in realism may stem from distillation errors, which could be caused by pre-
 388 viously discussed factors such as the single-step conversion process. Unlike the teacher, the student
 389 model integrates information from both domains, possibly leading it to prioritize faithfulness. Inter-
 390 estingly, in some cases, the student’s samples surpass the teacher’s in realism, likely due to auxiliary
 391 losses beyond the IBCD loss. This suggests that the student’s ability to combine domain information
 392 and auxiliary training components can enhance overall performance.

393 **Ablation Study.** We conducted an ablation study on the Cat \rightarrow Dog task to evaluate the effectiveness
 394 of each component. In this study, DMCD loss, cycle translation loss, and distillation difficulty adap-
 395
 396

397 **Table 2: Quantitative comparison of unpaired image-to-image translation tasks.** Most results
 398 are from the EGSDE paper, except those marked with $*$, which are from our re-implementation and
 399 Density-Coverage metric (Naeem et al., 2020). Marker \dagger indicates a hyperparameter configuration
 400 that prioritizes realism over faithfulness.

Method	NFE \downarrow	FID \downarrow	PSNR \uparrow	SSIM \uparrow	Density \uparrow	Coverage \uparrow
Cat\rightarrowDog						
CycleGAN (Zhu et al., 2017b)	1	85.9	-	-	-	-
Self-Distance (Benaim & Wolf, 2017)	1	144.4	-	-	-	-
GeGAN (Fu et al., 2019)	1	96.6	-	-	-	-
LeSeSIM (Zheng et al., 2021)	1	72.8	-	-	-	-
StarGAN v2 (Choi et al., 2020)	1	54.88 \pm 1.01	10.63 \pm 0.10	0.270 \pm 0.003	-	-
CUT (Park et al., 2020b)	1	76.21	17.48	0.601	0.971	0.696
UNSB* (Kim et al., 2024a)	5	68.59	17.65	0.587	1.045	0.706
ILVR (Choi et al., 2021)	1000	74.37 \pm 1.55	17.77 \pm 0.02	0.363 \pm 0.001	1.019 \pm 0.030	0.566 \pm 0.012
SDEDit (Meng et al., 2022)	1000	74.17 \pm 1.01	19.19 \pm 0.01	0.423 \pm 0.001	0.997 \pm 0.021	0.526 \pm 0.014
EGSDE (Zhao et al., 2022)	1000	65.82 \pm 0.77	19.31 \pm 0.02	0.415 \pm 0.001	1.258 \pm 0.027	0.634 \pm 0.023
EGSDE \dagger (Zhao et al., 2022)	1200	51.04 \pm 0.37	17.17 \pm 0.02	0.361 \pm 0.001	1.509 \pm 0.038	0.823 \pm 0.021
CycleDiffusion (Wu & De la Torre, 2023)	1000(+100)	58.63 \pm 1.08	18.36 \pm 0.04	0.537 \pm 0.001	0.905 \pm 0.023	0.767 \pm 0.028
SDDM (Sun et al., 2023)	100	62.29 \pm 0.63	-	0.422 \pm 0.001	-	-
SDDM \dagger (Sun et al., 2023)	120	49.43 \pm 0.23	-	0.361 \pm 0.001	-	-
GPT-Image-1 (Foundation) (OpenAI, 2025)	$\gg 1$	77.81	12.18	0.283	0.947	0.586
DDIB* (Teacher) (Su et al., 2023)	160	38.91	17.58	0.588	1.528	0.934
IBCD (Ours)	1	47.44 \pm 0.03	19.50 \pm 3e-4	0.701 \pm 1e-5	1.412 \pm 0.007	0.940 \pm 0.003
IBCD\dagger (Ours)	1	44.77 \pm 0.07	18.04 \pm 2e-4	0.663 \pm 8e-6	1.542 \pm 0.005	0.935 \pm 0.003
Wild\rightarrowDog						
CUT (Park et al., 2020b)	1	92.94	17.20	0.592	-	-
UNSB* (Kim et al., 2024a)	5	70.03	16.86	0.573	1.035	0.704
ILVR (Choi et al., 2021)	1000	75.33 \pm 1.22	16.85 \pm 0.02	0.287 \pm 0.001	1.275 \pm 0.046	0.531 \pm 0.013
SDEDit (Meng et al., 2022)	1000	68.51 \pm 0.65	17.98 \pm 0.01	0.343 \pm 0.001	1.292 \pm 0.045	0.636 \pm 0.018
EGSDE (Zhao et al., 2022)	1000	59.75 \pm 0.62	18.14 \pm 0.02	0.343 \pm 0.001	1.482 \pm 0.018	0.683 \pm 0.013
EGSDE \dagger (Zhao et al., 2022)	1200	50.43 \pm 0.52	16.40 \pm 0.01	0.300 \pm 0.001	1.733 \pm 0.022	0.782 \pm 0.014
CycleDiffusion (Wu & De la Torre, 2023)	1000(+100)	58.92 \pm 0.72	17.68 \pm 0.03	0.458 \pm 0.001	1.014 \pm 0.034	0.801 \pm 0.027
SDDM (Sun et al., 2023)	100	57.38 \pm 0.53	-	0.328 \pm 0.001	-	-
GPT-Image-1 (Foundation) (OpenAI, 2025)	$\gg 1$	100.72	12.38	0.230	0.578	0.294
DDIB* (Teacher) (Su et al., 2023)	160	38.59	17.03	0.552	1.594	0.924
IBCD (Ours)	1	48.60 \pm 0.11	18.25 \pm 2e-4	0.653 \pm 2e-5	1.539 \pm 0.006	0.921 \pm 0.005
IBCD\dagger (Ours)	1	46.06 \pm 0.06	16.78 \pm 1e-4	0.612 \pm 1e-5	1.583 \pm 0.010	0.919 \pm 0.004
Male\rightarrowFemale						
CUT (Park et al., 2020b)	1	31.94	19.87	0.74	-	-
UNSB* (Kim et al., 2024a)	5	28.62	19.55	0.687	0.576	0.635
ILVR (Choi et al., 2021)	1000	46.12 \pm 0.33	18.59 \pm 0.02	0.510 \pm 0.001	-	-
SDEDit (Meng et al., 2022)	1000	49.43 \pm 0.47	20.03 \pm 0.01	0.572 \pm 0.000	0.782 \pm 0.020	0.380 \pm 0.018
EGSDE (Zhao et al., 2022)	1000	41.93 \pm 0.11	20.35 \pm 0.01	0.574 \pm 0.000	0.875 \pm 0.032	0.437 \pm 0.017
EGSDE \dagger (Zhao et al., 2022)	1200	30.61 \pm 0.19	18.32 \pm 0.02	0.510 \pm 0.001	0.955 \pm 0.019	0.621 \pm 0.016
SDDM (Sun et al., 2023)	100	44.37 \pm 0.23	-	0.526 \pm 0.001	-	-
GPT-Image-1 (Foundation) (OpenAI, 2025)	$\gg 1$	60.50	13.11	0.381	0.503	0.269
DDIB* (Teacher) (Su et al., 2023)	160	23.69	18.70	0.664	0.969	0.808
IBCD (Ours)	1	24.93 \pm 0.03	20.51 \pm 4e-4	0.749 \pm 3e-5	1.160 \pm 0.008	0.814 \pm 0.006
IBCD\dagger (Ours)	1	24.70 \pm 0.03	20.11 \pm 4e-4	0.744 \pm 3e-5	1.145 \pm 0.003	0.815 \pm 0.004

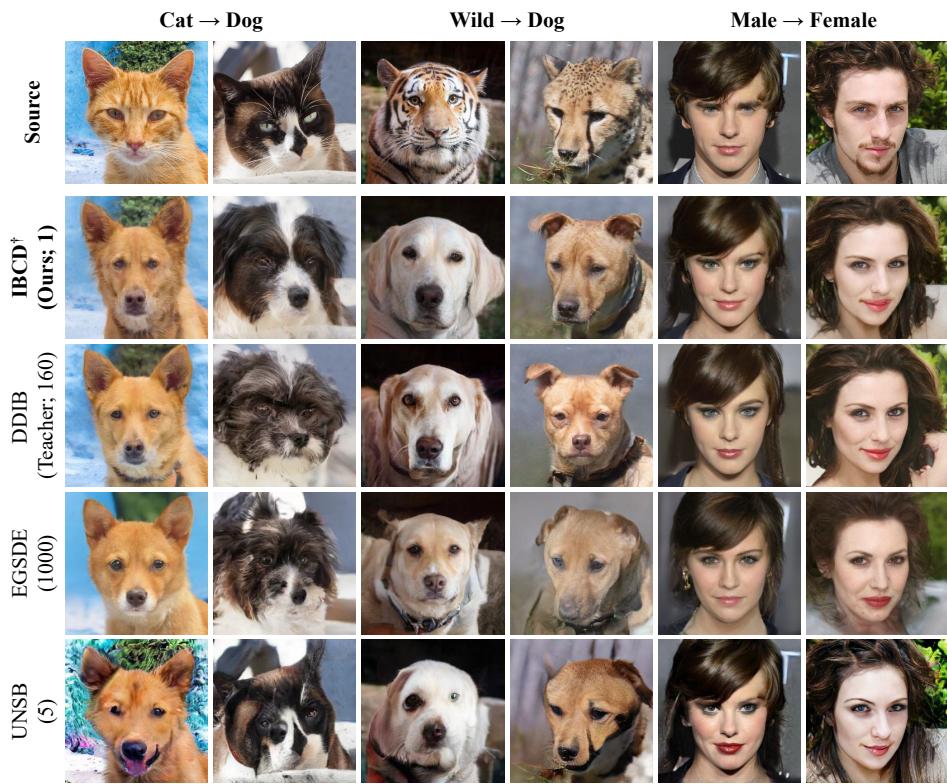


Figure 4: **Qualitative comparison of unpaired image-to-image translation tasks.** Compared to other baselines, our model achieves more realistic and source-faithful translations in a single step. The numbers in parentheses represent inference NFE.

Table 3: Quantitative ablation study results in the Cat→Dog task *under the lowest FID* (similar FID condition except for the vanilla IBCD).

Component	FID ↓	PSNR ↑
IBCD only	48.12	18.27
+ DMCD	44.40	17.95
+ DMCD & Cycle	44.31	18.22
+ adaptive DMCD & Cycle	44.69	18.97

tive weighting (adaptive DMCD) were sequentially added to the baseline IBCD loss-only model. To assess distillation error, we calculated PSNR relative to the DDIB teacher. Tab. 3 and Fig. 7 display the results for each ablated model that *achieved the lowest FID*. In Tab. 3, each component significantly reduces FID beyond the lower bound achieved by vanilla IBCD, while minimizing PSNR degradation due to the task’s inherent trade-off and reducing distillation error. Adaptive DMCD has been particularly effective when prioritizing the lowest FID in the trade-off curve, significantly reducing distillation errors as well. These findings confirm that the components of IBCD work synergistically to improve the balance between faithfulness and realism. In addition, the results in Fig. 7 similarly demonstrate that DMCD enhances the realism of the generated images, while the cycle loss and adaptive DMCD loss qualitatively improve source faithfulness (indicated by the white arrows).

For additional experimental content, including toy datasets, medical images, user studies, auxiliary loss analysis, and other details not covered in the main text, please refer to App. D.

5 CONCLUSION

In this work, we introduced IBCD, a novel unpaired bidirectional single-step image translation framework. By distilling the diffusion implicit bridge through a novelly parametrized reformulation CD framework, we achieved bidirectional translation without paired data or adversarial training.

486 Our approach overcomes traditional CD limitations with DMCD and distillation difficulty adaptive
 487 weighting strategies. Empirical evaluations on toy and high-dimensional datasets demonstrate
 488 IBCD's effectiveness and scalability. We believe IBCD represents a significant advancement in general
 489 single-step image translation, offering a versatile and efficient solution for various image tasks,
 490 particularly in scenarios with limited paired data and those where low latency is crucial.
 491

492 **REFERENCES**
 493

494 Uri M Ascher and Linda R Petzold. *Computer methods for ordinary differential equations and*
 495 *differential-algebraic equations*. SIAM, 1998.

496 Ujjwal Baid, Satyam Ghodasara, Suyash Mohan, Michel Bilello, Evan Calabrese, Errol Colak, Key-
 497 van Farahani, Jayashree Kalpathy-Cramer, Felipe C Kitamura, Sarthak Pati, et al. The rsna-asnr-
 498 miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. *arXiv*
 499 *preprint arXiv:2107.02314*, 2021.

500

501 Sagie Benaim and Lior Wolf. One-sided unsupervised domain mapping. *Advances in neural infor-*
 502 *mation processing systems*, 30, 2017.

503 Junhua Chen, Shenlun Chen, Leonard Wee, Andre Dekker, and Inigo Bermejo. Deep learning
 504 based unpaired image-to-image translation applications for medical physics: a systematic review.
 505 *Physics in Medicine & Biology*, 68(5):05TR01, 2023.

506

507 Tianrong Chen, Guan-Horng Liu, and Evangelos A Theodorou. Likelihood training of schrödinger
 508 bridge using forward-backward sdes theory. *arXiv preprint arXiv:2110.11291*, 2021.

509

510 Jaemoo Choi, Yongxin Chen, and Jaewoong Choi. Improving neural optimal transport via displace-
 511 ment interpolation. In *The Thirteenth International Conference on Learning Representations*,
 512 2025.

513 Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh Yoon. Ilvr: Con-
 514 ditioning method for denoising diffusion probabilistic models. in 2021 ieee. In *CVF international*
 515 *conference on computer vision (ICCV)*, volume 1, pp. 2, 2021.

516

517 Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. Star-
 518 gan: Unified generative adversarial networks for multi-domain image-to-image translation. In
 519 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 8789–8797,
 520 2018.

521

522 Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for
 523 multiple domains. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 524 *recognition*, pp. 8188–8197, 2020.

525

526 Bradley Efron. Tweedie's formula and selection bias. *Journal of the American Statistical Associa-*
 527 *tion*, 106(496):1602–1614, 2011.

528

529 Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, Kun Zhang, and Dacheng Tao.
 530 Geometry-consistent generative adversarial networks for one-sided unsupervised domain map-
 531 ping. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 532 pp. 2427–2436, 2019.

533

534 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 535 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information*
 536 *processing systems*, 27, 2014.

537

538 Nikita Gushchin, Daniil Selikhanovych, Sergei Kholkin, Evgeny Burnaev, and Aleksandr Korotin.
 539 Adversarial schrödinger bridge matching. *Advances in Neural Information Processing Systems*,
 540 37:89612–89651, 2024.

541

542 Guande He, Kaiwen Zheng, Jianfei Chen, Fan Bao, and Jun Zhu. Consistency diffusion bridge
 543 models. *Advances in Neural Information Processing Systems*, 37:23516–23548, 2024.

540 Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
 541 Prompt-to-prompt image editing with cross attention control. *arXiv preprint arXiv:2208.01626*,
 542 2022.

543

544 Amir Hertz, Kfir Aberman, and Daniel Cohen-Or. Delta denoising score. In *Proceedings of the*
 545 *IEEE/CVF International Conference on Computer Vision*, pp. 2328–2337, 2023.

546

547 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
 548 reference-free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021.

549

550 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 551 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances*
 552 *in neural information processing systems*, 30, 2017.

553

554 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 555 *neural information processing systems*, 33:6840–6851, 2020.

556

557 Shizuo Kaji and Satoshi Kida. Overview of image-to-image translation by use of deep neural net-
 558 works: denoising, super-resolution, modality conversion, and reconstruction in medical imaging.
 559 *Radiological physics and technology*, 12(3):235–248, 2019.

560

561 Tero Karras. Progressive growing of gans for improved quality, stability, and variation. *International*
 562 *Conference on Learning Representations*, 2018.

563

564 Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
 565 generative adversarial networks with limited data. *Advances in neural information processing*
 566 *systems*, 33:12104–12114, 2020.

567

568 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 569 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
 570 2022.

571

572 Beomsu Kim, Gihyun Kwon, Kwanyoung Kim, and Jong Chul Ye. Unpaired image-to-image trans-
 573 lation via neural schr\"{o}dinger bridge. *International Conference on Learning Representations*,
 574 2024a.

575

576 Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
 577 Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning prob-
 578 ability flow ode trajectory of diffusion. *International Conference on Learning Representations*,
 579 2024b.

580

581 Kwanyoung Kim and Jong Chul Ye. Noise2score: tweedie's approach to self-supervised image
 582 denoising without clean images. *Advances in Neural Information Processing Systems*, 34:864–
 583 874, 2021.

584

585 Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev. Neural optimal transport. In *The*
 586 *Eleventh International Conference on Learning Representations*, 2023.

587

588 Liangchen Li and Jiajun He. Bidirectional consistency models. *arXiv preprint arXiv:2403.18035*,
 589 2024.

590

591 Guan-Horng Liu, Tianrong Chen, Oswin So, and Evangelos A Theodorou. Deep generalized
 592 schr\"{o}dinger bridge. *arXiv preprint arXiv:2209.09893*, 2022.

593

594 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 595 ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in Neural*
 596 *Information Processing Systems*, 35:5775–5787, 2022.

597

598 Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
 599 SDEdit: Guided image synthesis and editing with stochastic differential equations. In *Interna-*
 600 *tional Conference on Learning Representations*, 2022.

594 Petr Mokrov, Alexander Korotin, Alexander Kolesov, Nikita Gushchin, and Evgeny Burnaev.
 595 Energy-guided entropic neural optimal transport. In *The Twelfth International Conference*
 596 *on Learning Representations*, 2024. URL <https://openreview.net/forum?id=d6tUsZeVs7>.

598 Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable
 599 fidelity and diversity metrics for generative models. In *International Conference on Machine*
 600 *Learning*, pp. 7176–7185. PMLR, 2020.

602 OpenAI. Introducing gpt-4.1 in the api. Online, April 2025. URL <https://openai.com/index/gpt-4-1/>. Accessed July 21, 2025.

604 OpenAI. Image generation api. Online, April 2025. URL <https://openai.com/index/image-generation-api/>. Accessed July 21, 2025.

607 Taesung Park, Alexei A. Efros, Richard Zhang, and Jun-Yan Zhu. Contrastive learning for unpaired
 608 image-to-image translation. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
 609 Frahm (eds.), *Computer Vision – ECCV 2020*, pp. 319–345, Cham, 2020a. Springer International
 610 Publishing. ISBN 978-3-030-58545-7.

611 Taesung Park, Alexei A Efros, Richard Zhang, and Jun-Yan Zhu. Contrastive learning for unpaired
 612 image-to-image translation. In *Computer Vision–ECCV 2020: 16th European Conference, Glas-*
 613 *gow, UK, August 23–28, 2020, Proceedings, Part IX 16*, pp. 319–345. Springer, 2020b.

614 Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, and Jun-Yan Zhu.
 615 Zero-shot image-to-image translation. In *ACM SIGGRAPH 2023 conference proceedings*, pp.
 616 1–11, 2023.

617 Gaurav Parmar, Taesung Park, Srinivasa Narasimhan, and Jun-Yan Zhu. One-step image translation
 618 with text-to-image models. *arXiv preprint arXiv:2403.12036*, 2024.

620 Denis Rakitin, Ivan Shchekotov, and Dmitry Vetrov. Regularized distribution matching distillation
 621 for one-step unpaired image-to-image translation. *arXiv preprint arXiv:2406.14762*, 2024.

623 Muhammad Muneeb Saad, Ruairí O'Reilly, and Mubashir Husain Rehmani. A survey on training
 624 challenges in generative adversarial networks for biomedical image analysis. *Artificial Intelli-*
 625 *gence Review*, 57(2):19, 2024.

626 Mehran Safayani, Behnaz Mirzapour, Hanieh Aghaebrahimian, Nasrin Salehi, and Hamid Ravaee.
 627 Unpaired image-to-image translation with content preserving perspective: A review. *arXiv*
 628 *preprint arXiv:2502.08667*, 2025.

629 Erwin Schrödinger. Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quan-
 630 *tique. Annales de l'institut Henri Poincaré*, 2(4):269–310, 1932.

632 Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrödinger
 633 bridge matching. *Advances in Neural Information Processing Systems*, 36:62183–62223, 2023.

634 Karen Simonyan. Very deep convolutional networks for large-scale image recognition. *arXiv*
 635 *preprint arXiv:1409.1556*, 2014.

637 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 638 Poole. Score-based generative modeling through stochastic differential equations. In *Interna-*
 639 *tional Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=PxTIG12RRHS>.

641 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In *International*
 642 *Conference on Machine Learning*, pp. 32211–32252. PMLR, 2023.

643 Xuan Su, Jiaming Song, Chenlin Meng, and Stefano Ermon. Dual diffusion implicit bridges for
 644 image-to-image translation. In *International Conference on Learning Representations*, 2023.

646 Shikun Sun, Longhui Wei, Junliang Xing, Jia Jia, and Qi Tian. Sddm: score-decomposed diffusion
 647 models on manifolds for unpaired image-to-image translation. In *International Conference on*
Machine Learning, pp. 33115–33134. PMLR, 2023.

648 Qwen Team. Qwen-vl: Scaling open vision-language models with mixture of data. Online, July
 649 2025. URL <https://qwenlm.github.io/blog/qwen-vl/>. Accessed July 28, 2025.
 650

651 Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural computation*, 23(7):1661–1674, 2011.
 652

653 Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, and Can Yang. Deep generative learning via
 654 schrödinger bridge. In *International Conference on Machine Learning*, pp. 10794–10804. PMLR,
 655 2021.

656

657 Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
 658 lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
 659 *Advances in Neural Information Processing Systems*, 36:8406–8441, 2023.

660 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 661 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 662 612, 2004.

663

664 Chen Henry Wu and Fernando De la Torre. A latent space of stochastic diffusion models for zero-
 665 shot image editing and guidance. In *Proceedings of the IEEE/CVF International Conference on*
 666 *Computer Vision*, pp. 7378–7387, 2023.

667 Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
 668 and Taesung Park. One-step diffusion with distribution matching distillation. In *Proceedings of*
 669 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6613–6623, 2024.

670 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 671 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
 672 *computer vision and pattern recognition*, pp. 586–595, 2018.

673

674 Min Zhao, Fan Bao, Chongxuan Li, and Jun Zhu. Egsde: Unpaired image-to-image translation
 675 via energy-guided stochastic differential equations. *Advances in Neural Information Processing*
 676 *Systems*, 35:3609–3623, 2022.

677 Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai. The spatially-correlative loss for various image
 678 translation tasks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 679 *recognition*, pp. 16407–16417, 2021.

680

681 Wanfeng Zheng, Qiang Li, Guoxin Zhang, Pengfei Wan, and Zhongyuan Wang. Ittr: Unpaired
 682 image-to-image translation with transformers. *arXiv preprint arXiv:2203.16015*, 2022.

683 Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation
 684 using cycle-consistent adversarial networks. In *Proceedings of the IEEE International Conference*
 685 *on Computer Vision (ICCV)*, Oct 2017a.

686

687 Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
 688 using cycle-consistent adversarial networks. In *Proceedings of the IEEE international conference*
 689 *on computer vision*, pp. 2223–2232, 2017b.

690

691

692

693

694

695

696

697

698

699

700

701

702 SUPPLEMENTARY MATERIAL
703704 A ALGORITHMS
705

706 In this section, we present the vanilla implicit bridge consistency distillation algorithm (Algo. 1),
707 which utilizes only the IBCD losses. Additionally, we introduce the final implicit bridge consistency
708 distillation algorithm (Algo. 2), which incorporates all the losses discussed in the text, including
709 DMCD, adaptive weighting strategies, and cycle translation loss, to enhance performance and ad-
710 dress the limitations identified in the vanilla version.
711

712 **Algorithm 1:** (Vanilla) Implicit Bridge Consistent Distillation (IBCD)
713

714 **Input:** Teacher diffusion model ϕ , datasets \mathcal{S}_A and \mathcal{S}_B , class conditions c_a and c_b .
715

```

1  $j \leftarrow 0, \theta \leftarrow \phi, \theta^- \leftarrow \phi$ 
2 repeat
3    $c \leftarrow \mathbf{if} (j \% 2 == 0 \mathbf{then} c_a \mathbf{else} c_b)$ 
4   Sample  $\mathbf{x}^a \sim \mathcal{S}_A, \mathbf{x}^b \sim \mathcal{S}_B$ 
5   if  $c == c_b$  then
6      $\mathbf{Sample} \mathbf{i} \sim \mathcal{U}[-N + 1, -1], \mathbf{j} \sim \mathcal{U}[0, N - 2]$ 
7   else
8      $\mathbf{Sample} \mathbf{i} \sim \mathcal{U}[-N + 2, 0], \mathbf{j} \sim \mathcal{U}[1, N - 1]$ 
9   Sample  $\mathbf{x}_{t_i} \sim \mathcal{N}(\mathbf{x}^a, t_i^2 \mathbf{I}), \mathbf{x}_{t_j} \sim \mathcal{N}(\mathbf{x}^b, t_j^2 \mathbf{I})$ 
10  if  $c == c_b$  then
11    Estimate  $\hat{\mathbf{x}}_{t_{i+1}}, \hat{\mathbf{x}}_{t_{j+1}}$  with Eq. (9)
12  else
13    Estimate  $\hat{\mathbf{x}}_{t_{i-1}}, \hat{\mathbf{x}}_{t_{j-1}}$  with Eq. (10)
14   $\mathbf{t}_1 \leftarrow [t_i; t_j], \mathbf{t}_2 = [t_{i\pm 1}; t_{j\pm 1}]$ 
15   $\mathbf{x}_{\mathbf{t}_1} \leftarrow [\mathbf{x}_{t_i}; \mathbf{x}_{t_j}], \hat{\mathbf{x}}_{\mathbf{t}_2} \leftarrow [\hat{\mathbf{x}}_{t_{i\pm 1}}; \hat{\mathbf{x}}_{t_{j\pm 1}}]$ 
16   $\mathcal{L}_{IBCD} \leftarrow [\lambda(\mathbf{t}_2) d_{IBCD}(f_\theta(\mathbf{x}_{\mathbf{t}_1}, \mathbf{t}_1, c), f_{\theta^-}(\hat{\mathbf{x}}_{\mathbf{t}_2}, \mathbf{t}_2, c))]$ 
17   $\theta \leftarrow \theta - \zeta_\theta \nabla_\theta \mathcal{L}_{IBCD}$ 
18   $\theta^- \leftarrow \text{sg}(\mu \theta^- + (1 - \mu) \theta)$ 
19   $j \leftarrow j + 1$ 
20 until  $\mathcal{L}_{IBCD}$  convergence;

```

735 **Output:** Unified single-step model f_θ for bidirectional image translation.
736

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756
757
758
759
760

761 **Algorithm 2:** (Final) Implicit Bridge Consistent Distillation (IBCD)

762 **Input:** Teacher diffusion model ϕ , datasets \mathcal{S}_A and \mathcal{S}_B , class conditions c_a and c_b .

763 1 $j \leftarrow 0, \theta \leftarrow \phi, \theta^- \leftarrow \phi, \psi \leftarrow \phi$

764 2 **repeat**

765 3 $c \leftarrow \mathbf{if} (j \% 2 == 0 \mathbf{then} c_a \mathbf{else} c_b)$

766 4 Sample $\mathbf{x}^a \sim \mathcal{S}_A, \mathbf{x}^b \sim \mathcal{S}_B$
767 //
768 // IBCD loss
769 5 $\mathbf{if} c == c_b \mathbf{then}$
770 | Sample $i \sim \mathcal{U}[-N + 1, -1], j \sim \mathcal{U}[0, N - 2]$
771 \mathbf{else}
772 | Sample $i \sim \mathcal{U}[-N + 2, 0], j \sim \mathcal{U}[1, N - 1]$
773 9 Sample $\mathbf{x}_{t_i} \sim \mathcal{N}(\mathbf{x}^a, t_i^2 \mathbf{I}), \mathbf{x}_{t_j} \sim \mathcal{N}(\mathbf{x}^b, t_j^2 \mathbf{I})$
774 10 $\mathbf{if} c == c_b \mathbf{then}$
775 11 | Estimate $\hat{\mathbf{x}}_{t_{i+1}}, \hat{\mathbf{x}}_{t_{j+1}}$ with Eq. (9)
776 12 \mathbf{else}
777 13 | Estimate $\hat{\mathbf{x}}_{t_{i-1}}, \hat{\mathbf{x}}_{t_{j-1}}$ with Eq. (10)
778 14 $\mathbf{t}_1 \leftarrow [t_i; t_j], \mathbf{t}_2 = [t_{i \pm 1}; t_{j \pm 1}]$
779 15 $\mathbf{x}_{\mathbf{t}_1} \leftarrow [\mathbf{x}_{t_i}; \mathbf{x}_{t_j}], \hat{\mathbf{x}}_{\mathbf{t}_2} \leftarrow [\hat{\mathbf{x}}_{t_{i \pm 1}}; \hat{\mathbf{x}}_{t_{j \pm 1}}]$
780 16 $\mathcal{L}_{\text{IBCD}} \leftarrow [\lambda(\mathbf{t}_2) d_{\text{IBCD}}(\mathbf{f}_\theta(\mathbf{x}_{\mathbf{t}_1}, \mathbf{t}_1, c), \mathbf{f}_{\theta^-}(\hat{\mathbf{x}}_{\mathbf{t}_2}, \mathbf{t}_2, c))]$
781 //
782 // DMCD loss
783 17 Sample $i \sim \mathcal{U}[0, N - 1]$
784 18 Sample $\mathbf{x}_{t_i} \sim \mathcal{N}(\mathbf{f}_\theta(\mathbf{x}_{\mathbf{t}_1}, \mathbf{t}_1, c), t_i^2 \mathbf{I})$
785 19 $\hat{\mathcal{D}} \leftarrow \text{sg}(g(d_{\text{DMCD}}(\mathbf{f}_\theta(\mathbf{x}_{\mathbf{t}_1}, \mathbf{t}_1, c), \mathbf{f}_{\theta^-}(\hat{\mathbf{x}}_{\mathbf{t}_2}, \mathbf{t}_2, c))))$
786 20 $\nabla_\theta \mathcal{L}_{\text{DMCD}} \leftarrow w_{t_i} \hat{\mathcal{D}} \cdot (s_\psi(\mathbf{x}_{t_i}, t_i, c) - s_\phi(\mathbf{x}_{t_i}, t_i, c)) \nabla_\theta \mathbf{f}_\theta(\mathbf{x}_{\mathbf{t}_1}, \mathbf{t}_1, c)$
787 //
788 // Cycle loss
789 21 Sample $\mathbf{x}_{\epsilon(c_a)} \sim \mathcal{N}(\mathbf{x}^a, \sigma_{\min}^2 \mathbf{I}), \mathbf{x}_{\epsilon(c_b)} \sim \mathcal{N}(\mathbf{x}^b, \sigma_{\min}^2 \mathbf{I})$
790 22 $\mathbf{t}_3 \leftarrow [\epsilon(c_a); \epsilon(c_b)], \mathbf{t}_4 \leftarrow [\epsilon(c_b); \epsilon(c_a)]$
791 23 $\mathbf{c}_3 \leftarrow [c_b; c_a], \mathbf{c}_4 \leftarrow [c_a; c_b]$
792 24 $\mathbf{x}_{\mathbf{t}_3} \leftarrow [\mathbf{x}_{\epsilon(c_a)}; \mathbf{x}_{\epsilon(c_b)}]$
793 25 $\mathcal{L}_{\text{cycle}} \leftarrow d_{\text{cycle}}(\mathbf{f}_\theta(\mathbf{x}_{\mathbf{t}_3}, \mathbf{t}_3, \mathbf{c}_3), \mathbf{t}_4, \mathbf{c}_4, \mathbf{x}_{\mathbf{t}_3})$
794 //
795 // Optimize the student
796 26 $\nabla_\theta \mathcal{L}_{\text{total}} \leftarrow \nabla_\theta \mathcal{L}_{\text{IBCD}} + \lambda_{\text{DMCD}} \nabla_\theta \mathcal{L}_{\text{DMCD}} + \lambda_{\text{cycle}} \nabla_\theta \mathcal{L}_{\text{cycle}}$
797 27 $\theta \leftarrow \theta - \zeta_\theta \nabla_\theta \mathcal{L}_{\text{total}}$
798 28 $\theta^- \leftarrow \text{sg}(\mu \theta^- + (1 - \mu) \theta)$
799 //
800 // Optimize the fake DM
801 29 $\mathcal{L}_{\text{DSM}} \leftarrow \text{DSM loss of EDM with sample } \mathbf{f}_\theta(\mathbf{x}_{\mathbf{t}_1}, \mathbf{t}_1, c), \text{ class condition } c, \text{ and fake DM } \phi$
802 30 $\phi \leftarrow \phi - \zeta_\phi \nabla_\phi \mathcal{L}_{\text{DSM}}$
803 31 $j \leftarrow j + 1$

804 32 **until** $\mathcal{L}_{\text{total}}$ convergence;

805 **Output:** Unified single-step model f_θ for bidirectional image translation.

806
807
808
809

810 B EXTENDING EDM/CD FOR THE IBCD

812 **Model Parametrization.** The EDM (Karras et al., 2022) parametrization for the student f_θ in
 813 consistency distillation (Song et al., 2023) is defined as follows for positive real-valued t and the neural
 814 network F_θ :

$$815 \quad f_\theta(\mathbf{x}_t, t) = c_{\text{skip}}(t)\mathbf{x}_t + c_{\text{out}}(t)F_\theta(c_{\text{in}}(t)\mathbf{x}_t, t'(t)). \quad (16)$$

816 In CD, authors choose

$$817 \quad c_{\text{skip}}(t) = \frac{\sigma_{\text{data}}^2}{(t - \epsilon)^2 + \sigma_{\text{data}}^2}, \quad c_{\text{out}}(t) = \frac{\sigma_{\text{data}}(t - \epsilon)}{\sqrt{\sigma_{\text{data}}^2 + t^2}}, \quad c_{\text{in}}(t) = \frac{1}{\sqrt{\sigma_{\text{data}}^2 + t^2}}, \quad (17)$$

$$820 \quad t'(t) = 250 \cdot \ln(t + 10^{-44})$$

821 to satisfies the boundary condition $f(\mathbf{x}_\epsilon, \epsilon) = \mathbf{x}_\epsilon$, and rescales the timestep.

823 For IBCD, we parametrize the student f_θ for non-zero real-valued t and target domain condition c
 824 as:

$$825 \quad f_\theta(\mathbf{x}_t, t, c) = c_{\text{skip}}(t, c)\mathbf{x}_t + c_{\text{out}}(t, c)F_\theta(c_{\text{in}}(t, c)\mathbf{x}_t, t'(t)), \quad (18)$$

826 which reflects the necessity for c_{skip} , c_{out} , and c_{in} depend on target domain condition c , ensuring
 827 that the proper boundary conditions can be applied at $t = \epsilon(c)$ depending on the target domain
 828 $c \in \{c_a, c_b\}$ direction.

829 Although the student model is fully trained during the distillation process and does not theoretically
 830 need to be compatible with the teacher model, initializing it using the teacher model makes it advan-
 831 tageous to design the student to be as compatible as possible. We select c_{skip} , c_{out} , and c_{in} according
 832 to Eq. (19), (20), (21), ensuring continuity and compliance with the new boundary conditions while
 833 maintaining the definitions within the target domain regions ($t > 0$ for $c = c_b$, $t < 0$ for $c = c_a$).

$$834 \quad c_{\text{skip}}(t, c) = \begin{cases} \frac{1+\text{sign}(t)}{2} \frac{\sigma_{\text{data}}^2}{(t-\epsilon(c))^2 + \sigma_{\text{data}}^2} & \text{if } c = c_b \\ \frac{1+\text{sign}(-t)}{2} \frac{\sigma_{\text{data}}^2}{(t-\epsilon(c))^2 + \sigma_{\text{data}}^2} & \text{if } c = c_a \end{cases} \quad (19)$$

$$838 \quad c_{\text{out}}(t, c) = \begin{cases} \frac{1+\text{sign}(t)}{2} \frac{\sigma_{\text{data}}(t-\epsilon(c))}{\sqrt{\sigma_{\text{data}}^2 + t^2}} + \frac{1-\text{sign}(t)}{2} \sigma_{\text{data}} & \text{if } c = c_b \\ -\frac{1+\text{sign}(-t)}{2} \frac{\sigma_{\text{data}}(t-\epsilon(c))}{\sqrt{\sigma_{\text{data}}^2 + t^2}} + \frac{1-\text{sign}(-t)}{2} \sigma_{\text{data}} & \text{if } c = c_a \end{cases} \quad (20)$$

$$841 \quad c_{\text{in}}(t, c) = \frac{1}{\sqrt{\sigma_{\text{data}}^2 + t^2}} \quad (21)$$

843 We also extend the timestep rescaler as Eq. (22) to a symmetric and continuous form, ensuring
 844 shape compatibility with the original positive-bound domain. This symmetric design reflects the
 845 fact that the sign of the timestep separates the domains, while its absolute value represents the noise
 846 magnitude:

$$847 \quad t'(t) = 250 \cdot \text{sign}(t)(\ln(|t| + 10^{-3}) - \ln(\sigma_{\text{max}} + 10^{-44})). \quad (22)$$

848 This approach preserves the structural integrity of the model and maintains consistent behavior
 849 across both domains. The parametrization extension of EDM/CD, as presented here, is visually
 850 illustrated in Fig. 5.

851 **Non-differentiability of the ODE Path.** In this paragraph, we address the behavior of IBCD at
 852 the continuous but non-differentiable point at the center of the PF-ODE trajectory ($i = 0$). Despite
 853 the introduction of this point, we show that Theorem 1 from Song et al. (2023) (its App. A.2)
 854 remains applicable, thereby proving the validity of the consistency distillation framework. First,
 855 the Lipschitz condition for $f_\theta(x_t, t)$ continues to hold. The primary distinction between IBCD and
 856 CD occurs in the t direction, and so we focus on this aspect. The output of f_θ , which predicts the
 857 clean target domain image, remains constant along a given PF-ODE trajectory, independent of t .
 858 As a result, the Lipschitz condition is not impacted by the non-differentiable point, as the trajectory
 859 is continuous. Since the change in the x_t direction is equivalent to that in the CD framework, the
 860 Lipschitz continuity assumption from CD is still valid.

861 Next, we consider the local truncation error of the ODE solver. The non-differentiable point is ap-
 862 propriately captured by our discretization scheme. At this point, the gradient is a combination of
 863 gradients from both sides of the trajectory, ensuring stable numerical integration. For example, us-
 864 ing an Euler solver in the forward direction (from domain A to domain B):

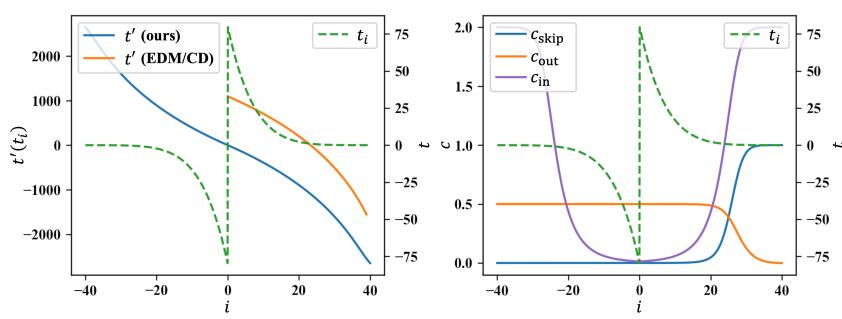


Figure 5: **Extension of EDM/CD model formulation for negative t in IBCD student model.** c_{skip} , c_{out} , and c_{in} represent when $c = c_b$ (the translation direction is $\mathcal{X}_A \rightarrow \mathcal{X}_B$).

- The interval $i = [-1, 0]$ uses the gradient at -1 (from domain A).
- The interval $i = [0, 1]$ uses the gradient at 0 (from domain B).

In the backward direction (from domain B to domain A):

- The interval $i = [0, 1]$ uses the gradient at 1 (from domain B).
- The interval $i = [-1, 0]$ uses the gradient at 0 (from domain A).

Thus, due to the properties of the consistency function and the careful treatment of the non-differentiable point, the error bound of the consistency function remains $O((\Delta t)^p)$, consistent with the original CD approach. The validity of the Lipschitz condition and the equivalence of the local truncation error in the ODE solver ensure that the theorem holds true within the IBCD framework.

C IMPLEMENTATION DETAILS

Model Architectures. All models used in this study—the teacher ϕ , student θ , and fake DM ψ —employed the same model architecture as in EDM/CD (Karras et al., 2022; Song et al., 2023). The architecture configuration followed that of the LSUN-256 teacher EDM model introduced by Song et al. (2023). However, the student model was further modified with the model parametrization described in Appendix B, while the teacher and fake DM maintained the original EDM parametrization.

Teacher Model Training. The teacher model was trained using the EDM implementation and the LSUN-256 model training configuration provided by Song et al. (2023). The training setup included a log-normal schedule sampler and L2 loss, with a global batch size of 288, a learning rate of 1e-4, a dropout rate of 0.1, and an exponential moving average (EMA) of 0.9999. Mixed precision training was enabled, and weight decay was not applied. The teacher model was trained with class conditions on two types of AFHQ models (cat, dog, and wild) and CelebA-HQ models (female and male). The AFHQ and CelebA-HQ models were trained using their respective training sets from the AFHQ (Choi et al., 2020) and CelebA-HQ (Karras, 2018) datasets. Each model was trained for approximately 5 days, completing 800K steps on an NVIDIA A100 40GB eight-GPU setup.

Implicit Bridge Consistency Distillation. The discretization of DDIB trajectories is defined by extending the sampling discretization of EDM to satisfy Eq. (7):

$$t_i = \sigma_i = \begin{cases} \text{sign}(i)(\sigma_{\max}^{1/\rho} + \frac{|i|}{N-1}(\sigma_{\min}^{1/\rho} - \sigma_{\max}^{1/\rho}))^\rho & (N < i < N) \\ 0 & (i = \pm N) \end{cases} \quad (23)$$

$$\text{where } \text{sign}(x) = \begin{cases} +1 & (x \geq 0) \\ -1 & (x < 0) \end{cases}, \sigma_{\min} = 0.002, \sigma_{\max} = 80, \sigma_{\text{data}} = 0.5, N = 40, \rho = 7.0.$$

For the distance function d in each loss, d_{IBCD} and d_{DMCD} were based on LPIPS (Zhang et al., 2018), while d_{cycle} used the L1 loss. The EMA parameter of the EMA model θ^- was 0.95, and an additional

918 EMA with a separate parameter 0.9999432189950708 was applied to the student model θ and used
 919 during inference. The global batch size was 256, with the student learning rate of 4e-5 and the fake
 920 DM learning rate of 1e-4. Dropout and weight decay were not used, and mixed precision learning
 921 was employed.

922 The ODE solver used was the 2nd order Huen solver (Ascher & Petzold, 1998), consistent with
 923 EDM/CD. The weight scheduler for the IBCD loss employed $\lambda(t) = 1$, while the DMCD loss used
 924 the weight scheduler w_t as suggested in Yin et al. (2024). For the three tasks, Cat \leftrightarrow Dog, Wild \leftrightarrow Dog
 925 models were distilled using the AFHQ-256 teacher model and its corresponding training dataset.
 926 The Male \leftrightarrow Female models were distilled using the CelebA-HQ-256 teacher model and its training
 927 dataset.

928 The distillation process began with only the IBCD loss and transitioned to using the full loss set
 929 once the FID (Heusel et al., 2017) evaluation metrics stabilized (*i.e.* transition step). Distillation was
 930 conducted on the same NVIDIA A100 40GB eight hardware used for training the teacher model.
 931 Additional hyperparameters for each model and configuration are detailed in Tab. 4.

932 **Evaluation.** We followed the evaluation methodology and tasks outlined in EGSDE (Zhao et al.,
 933 2022). The publicly available evaluation code² was used without modification. Validation sets from
 934 the AFHQ and CelebA-HQ datasets were used as the evaluation datasets. All images in each val-
 935 idation set were translated using the respective task-specific models. For each image pair (source
 936 domain and translated target domain), PSNR, SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018),
 937 and CLIPScore (Hessel et al., 2021) were computed, and the average values across all pairs were
 938 reported.

939 FID (Heusel et al., 2017) was calculated using the `pytorch-fid`³ library to measure the distance
 940 between the real target domain image distribution and the translated target image distribution. Fol-
 941 lowing the methodology of Choi et al. (2020) and Zhao et al. (2022), images from the CelebA-HQ
 942 dataset were resized and normalized before FID calculation, while images for other tasks were eval-
 943 uated without additional preprocessing. L2 distance measurement was not included in this evalua-
 944 tion.

945 Density-coverage (Naeem et al., 2020) was computed using `prdc-cli`⁴ between the distribution
 946 of real target domain images and the distribution of images translated into the target domain, similar
 947 to the FID measurement. The measurement mode was T4096 (features of the `fc2` layer of the
 948 ImageNet pre-trained VGG16 (Simonyan, 2014) model). The metric was computed for the entire
 949 dataset at once, without using mini-batches. Unlike FID, no specific transformation was applied for
 950 the CelebA-HQ dataset.

951 In the user study, twenty participants were recruited to perform a blinded, pairwise comparison be-
 952 tween our method and each baseline. For each model and task, two identical source images were
 953 randomly selected, and their corresponding outputs—generated by each model—were presented
 954 side by side for evaluation. Participants were asked to make three separate selections for each com-
 955 parison: one based on realism, one based on fidelity to the source image, and one based on overall
 956 preference. Results are reported as the average ratio of participants who preferred our model over
 957 each baseline for each criterion, averaged across all tasks.

958 **Baselines.** As baselines, we compare our method against several GAN-based methods, including
 959 CycleGAN (Zhu et al., 2017b), Self-Distance (Benaim & Wolf, 2017), GcGAN (Fu et al., 2019),
 960 LeSeSIM (Zheng et al., 2021), StarGAN v2 (Choi et al., 2020), and CUT (Park et al., 2020b). We
 961 also benchmark against diffusion model (DM)-based methods such as ILVR (Choi et al., 2021),
 962 SDEdit (Meng et al., 2022), EGSDE (Zhao et al., 2022), CycleDiffusion (Wu & De la Torre, 2023),
 963 and SDDM (Sun et al., 2023). Additionally, we compare our approach with UNSB (Kim et al.,
 964 2024a), a few-step Schrödinger bridge-based method, and the teacher DDIB (Su et al., 2023). Most
 965 of the comparison results are sourced from Zhao et al. (2022) except for the density-coverage, while
 966 the results for UNSB and DDIB are based on our re-implementations. Finally, we also include results
 967 from GPT-Image-1 (OpenAI, 2025), a multi-turn image generation and editing foundation model
 968 powered by GPT-4.1 (OpenAI, 2025), the latest iteration of OpenAI’s multimodal large language
 969 model.

²<https://github.com/ML-GSAI/EGSDE>

³<https://github.com/mseitzer/pytorch-fid>

⁴<https://github.com/Mahmood-Hussain/generative-evaluation-prdc>

972
973 Table 4: Specific hyperparameters employed by different models and configurations.
974
975

Model Configuration	Cat \leftrightarrow Dog		Wild \leftrightarrow Dog		Male \leftrightarrow Female	
	IBCD	IBCD †	IBCD	IBCD †	IBCD	IBCD †
λ_{DMCD}	1	0.18	0.2	0.2	0.02	0.02
λ_{cycle}	0.03	0.003	0.001	0.0003	0.00001	0.00003
$g(\cdot)$	1		min(log(\cdot) + 10)			
transition step	200K	200K	200K	200K	500K	500K
total distillation step	210K	230K	210K	230K	510K	520K

981
982 **Reproductions.** To evaluate our method, we replicated UNSB and DDIB, two approaches that
983 have not been previously evaluated on our benchmark datasets. For UNSB, we used the publicly
984 available official code⁵ for both training and inference, following the default configuration for the
985 Horse \rightarrow Zebra task and training the model for 400 epochs. During inference, we performed 5 steps.
986 For DDIB, we implemented the method within our framework. Specifically, DDIB was executed by
987 first solving the ODE backward from the source domain, then solving it forward again to the target
988 domain using the EDM model trained for IBCD. The ODE solver was implemented in the same
989 manner as the EDM sampler, utilizing the same sampling hyperparameters defined for EDM/IBCD.
990 This setup ensured consistency in the evaluation and allowed for a direct comparison of performance
991 across methods.

992 We also re-sampled the result from models (CUT, ILVR, SDEdit, EGSDE, CycleDiffusion) for
993 which the density-coverage (Naeem et al., 2020), LPIPS (Zhang et al., 2018) and CLIPScore (Hessel
994 et al., 2021), and user study metrics were not originally reported. These metrics were measured for
995 these models using the method described above, and we included results in Tab. 2 and Tab. 6. The
996 target models for this evaluation were limited to baseline models that met the following criteria: 1)
997 Open-source code and checkpoints were available. 2) FID, PSNR, and SSIM values reported by the
998 authors could be reproduced using the reported sampling strategy. This ensured that all metrics in
999 Tab. 2 and Tab. 6 were measured on consistent samples.

1000 The results for GPT-Image-1 were obtained by providing an input image to the
1001 gpt-4.1-2025-04-14 model via the OpenAI API, instructing it to transform the image
1002 into the target domain using the gpt-image-1-2025-04-23 tool. The input image was
1003 resized to 256 \times 256 pixels, consistent with all other experiments, and the output image (originally
1004 1024 \times 1024) was downsampled to 256 \times 256. The prompts used for generation are provided in the
1005 Tab. 5. This experiment incurred a total cost of approximately \$100.

1007 D FURTHER EXPERIMENTAL RESULTS

1009 D.1 DISTILLATION ERROR IN VANILLA IBCD

1011 Fig. 6 illustrates the distillation error that arises when using only vanilla IBCD loss on the synthetic
1012 toy dataset. When generating samples from pure noise to domain B (Fig. 6 (a)) or translating samples
1013 from domain A to domain B (Fig. 6 (b)) using only IBCD loss, the translated results often fall in
1014 the low-density region of the target distribution. These translated points primarily originate from
1015 the source domain decision boundary, which is the boundary separating the partition in the source
1016 domain that should be mapped to two different target domain modes. Translation errors are more
1017 pronounced in longer neural jump paths, such as those involved in translations ($i = -N + 1 \rightarrow$
1018 $N - 1$), compared to shorter paths in generation ($i = 0 \rightarrow N - 1$).

1019 D.2 USER STUDY AND PERCEPTUAL METRIC EVALUATIONS

1021 The results of the user study and perceptual metric evaluations are summarized in Tab. 6, which
1022 complement the main quantitative comparisons presented in Tab. 2. For the user study, we report
1023 the proportion of participants who preferred each baseline over our method (IBCD) in the pairwise
1024 comparisons. Values below 0.5 (blue) indicate that the majority preferred our method over the cor-
1025

⁵<https://github.com/cyclomon/UNSB>

1026

1027 **Table 5: Prompts used in the GPT-Image-1 translation experiment for each task.** These
 1028 prompts were provided to the `gpt-4.1-2025-04-14` model via the OpenAI API using the
 1029 `gpt-image-1-2025-04-23` tool. Each prompt was designed to preserve pose, lighting, back-
 1030 ground, and composition while achieving realistic domain translation.

1031 Task	1032 Prompt
1032 Cat→Dog	1033 Transform the image of the cat into a realistic dog, preserving the same pose, lighting, back- 1034 ground, and overall composition. Ensure the dog appears natural and lifelike, matching the fur 1035 color, orientation, and proportions of the original cat as closely as possible. The final image 1036 should look photorealistic and faithful to the original scene, as if the dog were actually pho- 1037 tographed in place of the cat.
1037 Wild→Dog	1038 Transform the image of the wild animal into a realistic dog, preserving the same pose, lighting, 1039 background, and overall composition. Ensure the dog appears natural and lifelike, matching the 1040 fur color, orientation, and proportions of the original animal as closely as possible. The final 1041 image should look photorealistic and faithful to the original scene, as if the dog were actually 1042 photographed in place of the wild animal.
1043 Male→Female	1044 Transform the image of the man into a realistic woman, preserving the same pose, lighting, 1045 background, and overall composition. Ensure the woman appears natural and lifelike, match- 1046 ing the skin tone, orientation, and proportions of the original man as closely as possible. The 1047 final image should look photorealistic and faithful to the original scene, as if the woman were 1048 actually photographed in place of the man.

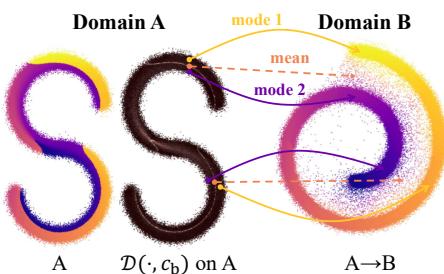
1045

1046

1047 **(a) Generation**



1048 **(b) Translation**



1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1063 **Figure 6: Incorrect mapping to low-density regions due to distillation error.** (a) Generation and
 1064 (b) translation results using vanilla IBCD. Samples with high distillation difficulty (*i.e.*, large dis-
 1065 tillation errors), which originate near the source domain decision boundary, tend to be mapped to
 1066 low-probability regions in the target domain.

1067

1068

1069

1070

1071

1072

1073

1074 responding baseline. When multiple variants of a baseline exist, comparisons are made against the
 1075 default version. Taken together with the results in Tab. 2, our approach demonstrates consistently
 1076 strong performance across both automated metrics and human evaluations. We note that perceptual
 1077 consistency may be further improved by replacing the current L1-based cycle loss with a perceptual
 1078 loss formulation.

1079 D.3 EFFECT OF THE AUXILIARY LOSS WEIGHTS

1074 Following the component ablation study of IBCD in the main text and Fig. 7, we further investigated
 1075 the influence of auxiliary loss weights on translation outcomes. Specifically, we varied the weight
 1076 of the DMCD loss λ_{DMCD} and the cycle loss λ_{cycle} in the Male→Female task (Fig. 8). During these
 1077 experiments, the distillation difficulty adaptive weighting was not applied. The results aligned with
 1078 expectations: as λ_{DMCD} increases, the realism of the translation result improved, while increasing
 1079 λ_{cycle} enhanced the faithfulness of the translation. Thus, in the realism-faithfulness trade-off curve,
 the DMCD loss emphasizes realism, whereas the cycle loss emphasizes faithfulness.

1080

1081 **Table 6: User study and Perceptual Evaluation Results.** User study 1:1 win rates: the proportion
1082 of users preferring each baseline over our model (IBCD) in pairwise comparisons. Values below
1083 0.5 indicate that the majority preferred our model. When two versions of a model exist, they are
1084 compared against the default version (without \dagger).
1085

Method	NFE	User Study (1:1 win rate vs. IBCD)			Cat \rightarrow Dog		Wild \rightarrow Dog		Male \rightarrow Female	
		Reality \uparrow	Faithfulness \uparrow	Preference \uparrow	LPIPS \downarrow	CLIP \uparrow	LPIPS \downarrow	CLIP \uparrow	LPIPS \downarrow	CLIP \uparrow
ILVR	1000	0.25	0.49	0.25	0.454	72.65	0.486	67.22	-	-
SDEdit	1000	0.38	0.73	0.42	0.438	73.55	0.465	67.81	0.290	53.50
EGSDE	1000	0.37	0.28	0.43	0.433	73.98	0.467	67.34	0.284	53.12
EGSDE \dagger	1200	-	-	-	0.497	73.53	0.526	66.25	0.343	51.11
CycleDiffusion	1000	0.25	0.62	0.25	0.381	74.77	0.417	67.84	-	-
DDIB* (Teacher)	160	0.42	0.23	0.42	0.475	73.65	0.492	67.05	0.326	56.20
IBCD (Ours)	1	<i>compared with each baseline</i>			0.384	74.00	0.404	66.86	0.261	56.57
IBCD\dagger (Ours)	1	-	-	-	0.406	73.69	0.423	66.99	0.263	56.53

1092

1117

1118 **Figure 7: Ablation study results on Cat \rightarrow Dog task.** The DMCD loss improves the realism of
1119 the generated results compared to the vanilla IBCD. Additionally, the cycle translation loss and
1120 adaptive DMCD loss enhance source fidelity (as indicated by the arrows). These findings confirm
1121 that the components of IBCD work synergistically to achieve a better balance between realism and
1122 faithfulness.
1123

1124

D.4 APPROXIMATED DISTILLATION DIFFICULTY IN IMAGE-TO-IMAGE TRANSLATION

1125

1126 To explore the implications of the approximated distillation difficulty for real image-
1127 to-image translation tasks, we computed an expected approximated distillation difficulty
1128 $\mathbb{E}_{t \sim \mathcal{U}[-N+1, N-2]} [\hat{\mathcal{D}}(\mathbf{x}_t, c_{\text{FEMALE}})]$ for all trajectories generated with the DDIB teacher in the
1129 Male \rightarrow Female task using the vanilla IBCD model. We then selected the trajectories with the top
1130 10 and bottom 10 approximate distillation difficulties and performed Male \rightarrow Female translation using
1131 the vanilla IBCD model for these trajectories, as shown in Fig. 9 without cherry-picking. The
1132 results indicate that the IBCD model struggles to effectively transform source images from
1133 trajectories with high approximate distillation difficulty into target images compared to those with low
approximate distillation difficulty. Specifically, the translation results within the top 10 distillation

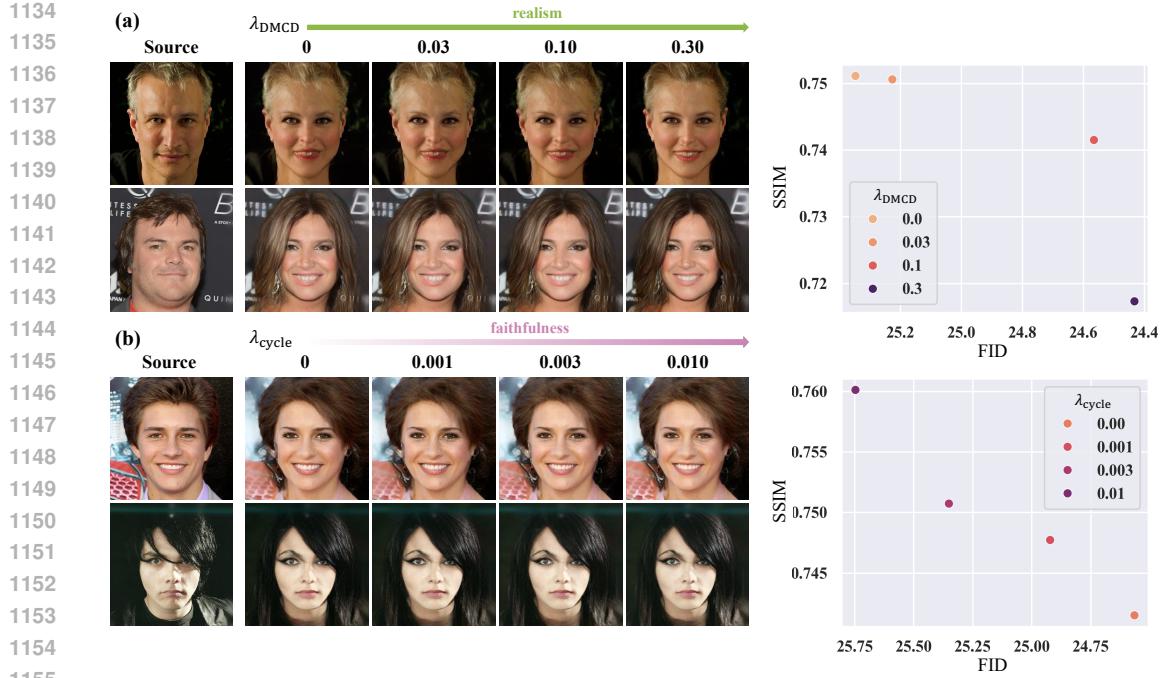


Figure 8: **Effect of the auxiliary loss weights (λ_{DMCD} , λ_{cycle}) for the Male→Female task.** In (a) λ_{cycle} was set to 0, and in (b) λ_{DMCD} was set to 0.10. Distillation difficulty adaptive waiting was not applied.

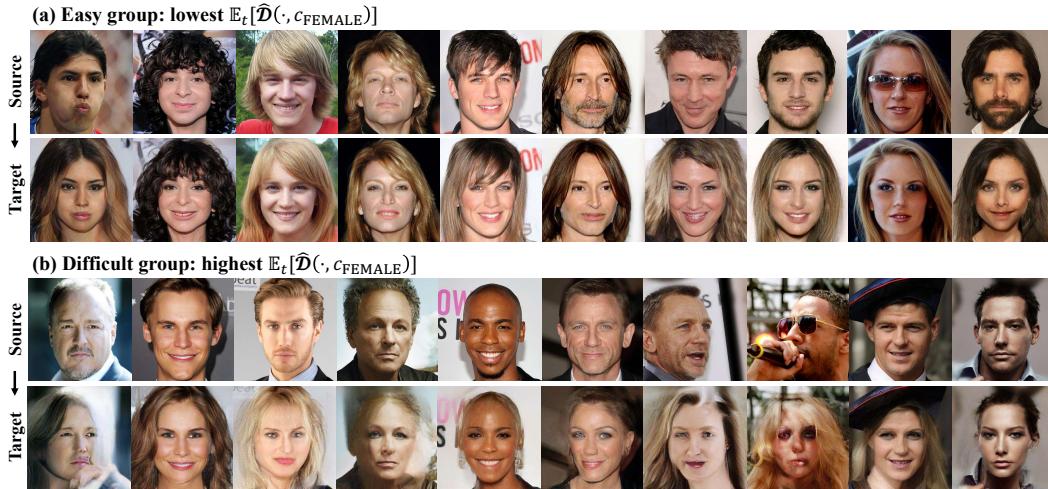


Figure 9: Relationship between self-assessed approximate distillation difficulty $\mathbb{E}_t[\hat{\mathcal{D}}(\cdot, c_{\text{FEMALE}})]$ and the translations performed in the Male→Female task.

difficulty groups exhibit relatively inferior image quality, highlighting the impact of distillation difficulty on translation performance.

D.5 TRAINING STABILITY

Our framework does not rely on adversarial losses, which are known to be unstable and difficult to tune, giving it a clear advantage in training stability. To demonstrate this, we present the training loss curves in Fig. 10. As shown in the figure, both the consistency loss and the cycle loss steadily decrease throughout training, with a brief fluctuation only when the auxiliary losses are introduced.

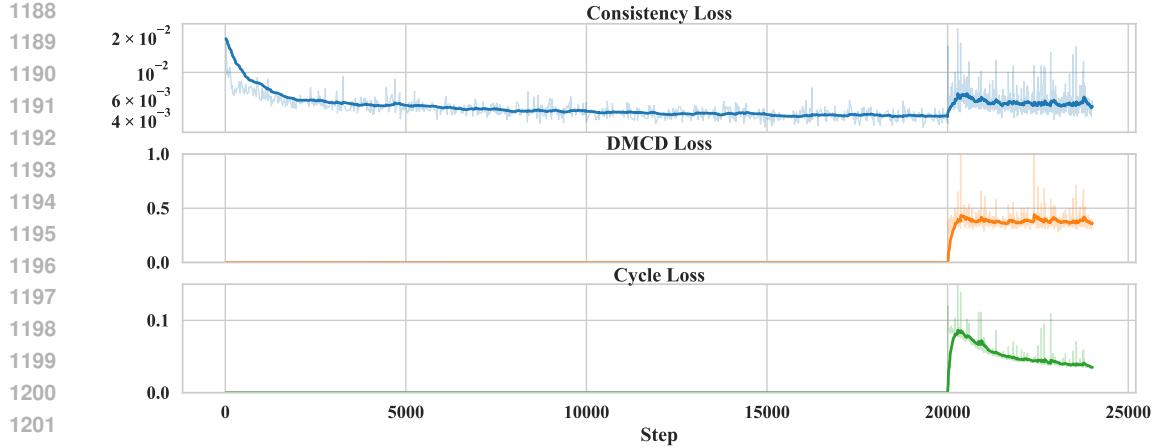


Figure 10: **Visualization of the training loss curve highlighting the stability of our framework on the Cat→Dog task.** DMCD loss and cycle loss are introduced starting at 20k training steps.

Table 7: Quantitative comparison of model inference times and parameter sizes.

Method	Parameters [M]	NFE ↓	Time [s/img] ↓	Relative Time ↓
StarGAN v2 (Choi et al., 2020)	64.45	1	0.0052	0.43
CUT (Park et al., 2020b)	11.39	1	0.0070	0.58
UNSB (Kim et al., 2024a)	14.69	5	0.077	6.42
ILVR (Choi et al., 2021)	93.56	1000	13.40	1116.67
SDEdit (Meng et al., 2022)	93.56	1000	6.78	565.00
EGSDE (Zhao et al., 2022)	147.14	1000	15.89	1324.16
CycleDiffusion (Wu & De la Torre, 2023)	187.12	1000(+100)	26.03	2169.17
GPT-Image-1 (Foundation) (OpenAI, 2025)	≥ 1	≥ 1	30.32	2526.67
DDIB (Teacher) (Su et al., 2023)	32.95	160	1.45	120.83
IBCD (Ours)	32.95	1	0.012	1

The DMCD loss also shows a stable plateau, as expected, since the fake score is computed by a jointly trained fake-score model. Overall, the loss trajectories indicate that our framework trains smoothly and remains stable throughout the process.

D.6 MODEL INFERENCE EFFICIENCY

To reflect real-world constraints such as model size and inference algorithms, we conducted an inference speed comparison experiment. Instead of relying solely on NFE comparisons, we measured the actual inference time for a Cat→Dog task on a single NVIDIA GeForce RTX 4090 GPU (except for GPT-Image-1) with the batch size of 1. Tab. 7 presents the average inference time per image and the relative time for each methodology, and the number of model parameters. The results demonstrate that our methodology is computationally efficient in real-world sampling scenarios, while also using substantially fewer parameters than diffusion-based baseline methods.

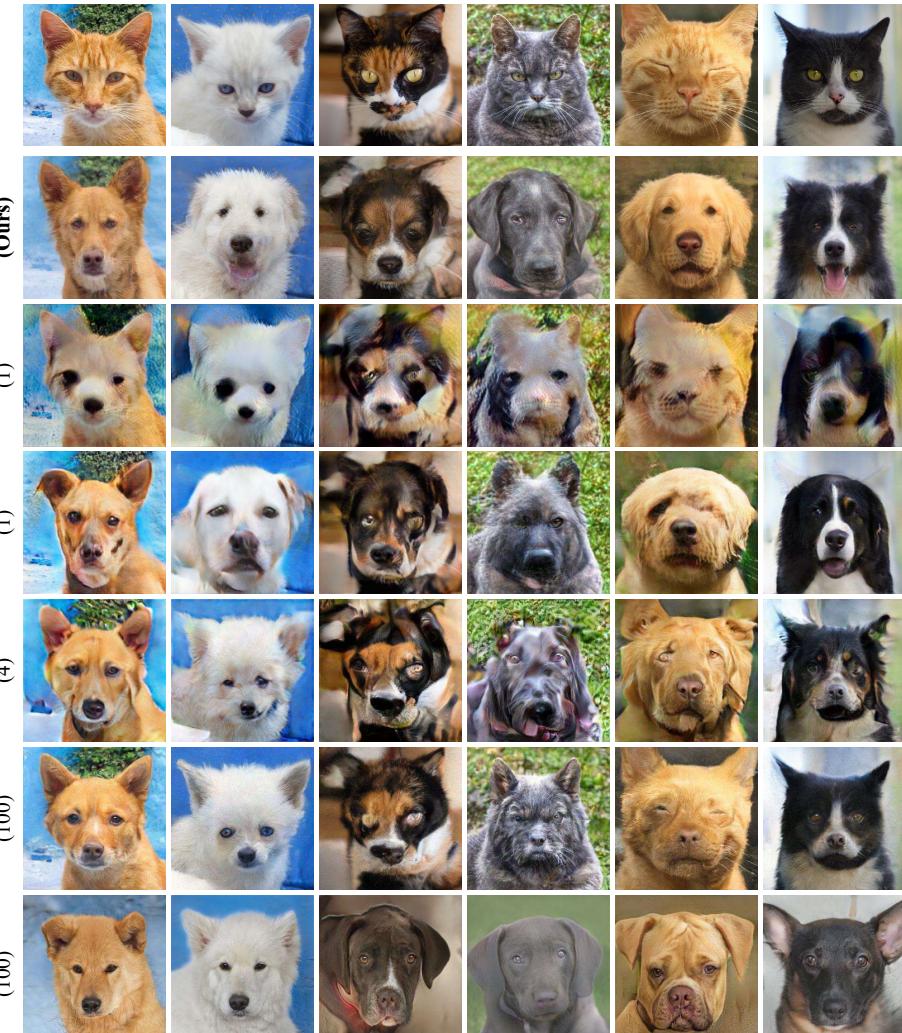
D.7 COMPARISON WITH OT AND SB BASELINES

We additionally conduct a quantitative comparison with optimal transport (OT)– and Schrödinger bridge (SB)–based baselines for completeness. The comparison is performed on the Cat→Dog image-to-image translation task, following the same evaluation protocol used in the main quantitative study. Specifically, we compare our method against NOT (Korotin et al., 2023), DIOTM (Choi et al., 2025), ASBM (Gushchin et al., 2024), DSBM (Shi et al., 2023), and Eg-EOT (Mokrov et al., 2024). Since these methods do not natively support our task, we retrained all baselines using their highest supported resolution settings, matched to our dataset and resolution.

Tab. 8 and Fig. 11 show that IBCD achieves superior performance compared to both OT and SB baselines. Notably, all SB/OT methods fail to scale to our higher-resolution setting under their de-

1242
 1243 **Table 8: Quantitative comparison of unpaired image-to-image translation tasks with OT- and**
 1244 **SB-based baselines.**

1245 Method	1246 Parameters [M]	1247 NFE \downarrow	1248 FID \downarrow	1249 PSNR \uparrow	1250 SSIM \uparrow	1251 Density \uparrow	1252 Coverage \uparrow
Cat \rightarrow Dog							
1247 NOT (Korotin et al., 2023)	1248 9.72	1249 1	1250 161.54	1251 15.12	1252 0.566	1253 0.531	0.072
1247 DIOTM (Choi et al., 2025)	1248 39.65	1249 1	1250 75.70	1251 12.03	1252 0.363	1253 1.215	0.590
1247 ASBM (Gushchin et al., 2024)	1248 79.58	1249 4	1250 91.40	1251 17.71	1252 0.463	1253 0.871	0.478
1247 DSBM (Shi et al., 2023)	1248 131.02	1249 100	1250 100.08	1251 21.24	1252 0.532	1253 0.750	0.396
1247 Eg-EOT (Mokrov et al., 2024)	1248 26.21	1249 100	1250 53.29	1251 15.93	1252 0.349	1253 1.085	0.626
1247 DDIB (Teacher) (Su et al., 2023)	1248 32.95	1249 160	1250 38.91	1251 17.58	1252 0.588	1253 1.528	0.934
1247 IBCD (Ours)	1248 32.95	1249 1	1250 47.44	1251 19.50	1252 0.701	1253 1.412	0.940
1247 IBCD† (Ours)	1248 32.95	1249 1	1250 44.77	1251 18.04	1252 0.663	1253 1.542	0.935



1288 **Figure 11: Qualitative comparison of unpaired image-to-image translation tasks with OT- and**
 1289 **SB-based baselines.** The numbers in parentheses represent inference NFE.

1290 fault configurations, highlighting the curse of dimensionality inherent to high-dimensional OT and
 1291 SB formulations (with the exception of Eg-EOT, which operates in the StyleGAN2-ADA latent
 1292 space (Karras et al., 2020)). DSBM also reflects this limitation: its higher source faithfulness re-
 1293 sults from failing to produce meaningful target-domain translations at higher resolutions, leading to
 1294 minimal changes and thus significantly worse FID, Density, and Coverage metrics.

1296 D.8 FAILURE CASES
1297

1298 IBCD occasionally produces failure cases as illustrated in Fig. 12. The primary failures can be
1299 attributed to incomplete translations (Fig. 12(a)) and incorrect cycle translations (Fig. 12(b)), which
1300 are likely due to distillation errors and the side effects of auxiliary losses. Distillation errors from
1301 the CD, in particular, appear to be the primary reason. The DMCD and cycle translation loss can
1302 also contribute to these issues, with the former leading to incorrect cycle translations and the latter
1303 to incomplete translations. Minimizing distillation errors through improved distillation methods and
1304 advanced weighting strategies for auxiliary losses might address this issue.

1305
1306 D.9 BIDIRECTIONAL TRANSLATIONS
1308

1309 To evaluate IBCD’s bidirectional translation capabilities, we compared it to baseline methods
1310 through two tasks: *opposite translation* and *cycle translation*. Opposite translation involves reversing
1311 the main translation task (Dog→Cat, Dog→Wild, Female→Male), while cycle translation in-
1312 volves performing the reverse task after the main translation (Cat→Dog→Cat, Wild→Dog→Wild,
1313 Male→Female→Male). To ensure a fair comparison of bidirectional performance, we used the same
1314 model and sampling hyperparameters for each domain pair (Cat↔Dog, Wild↔Dog, Male↔Female)
1315 in both opposite and cycle translation tasks.

1316 Given the limited number of models capable of bidirectional translation, we selected StarGAN
1317 v2 (Choi et al., 2020), CycleDiffusion (Wu & De la Torre, 2023), and DDIB (teacher) (Su et al.,
1318 2023) as baselines. We measured FID for the final target domain for the cycle translation task. It’s
1319 worth noting that StarGAN v2’s inference process differs from its main translation task (Tab. 2) per-
1320 formed by Zhao et al. (2022) for a better fair comparison. It inputs the same source image as both
1321 the source and reference images, enabling it to achieve both high realism and faithfulness.

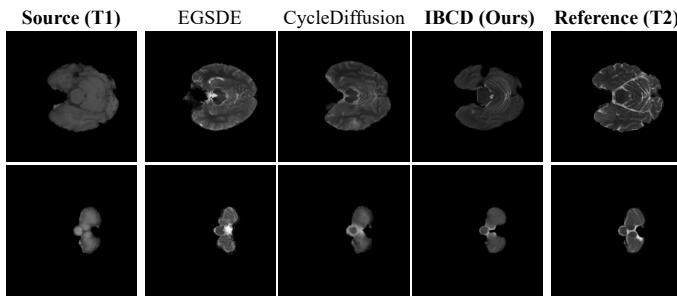
1322 Tab. 9 and Fig. 13, 14 demonstrate that our model also excels in reverse and cycle translation tasks,
1323 exhibiting the best performance and high efficiency. This further supports its strong bidirectional
1324 translation capabilities.

1325
1326 D.10 UNPAIRED MRI CONTRAST TRANSLATION
1328

1329 We conducted experiments on the BraTS2021 dataset (Baid et al., 2021) to evaluate our model
1330 on the brain MRI contrast translation task, demonstrating its applicability in the medical imaging
1331 domain. We used T1- and T2-weighted brain MRI scans from the dataset (excluding other contrasts)
1332 and performed unpaired translation from T1- to T2-weighted images at a resolution of 256×256.
1333 Although the dataset provides paired images, we utilized them in an unpaired setting during training.
1334 The dataset was split into 1,126 volumes (174,530 images) for training and 10 volumes (1,550
1335 images) for validation. Quantitative and qualitative comparisons with existing baselines (Tab. 15
1336 and Fig. 10) demonstrate the effectiveness of our method, highlighting its potential for practical
1337 deployment in clinical workflows.

1338
1339
1340 Table 10: Quantitative compar-
1341 ison of unpaired MRI contrast
1342 translation tasks.

Method	compared with G.T.	
	PSNR ↑	SSIM ↑
SDEdit	29.85	0.849
EGSDE	23.34	0.842
CycleDiffusion	30.52	0.825
GPT-Image-1 (Foundation)	not working	
DDIB* (Teacher)	30.24	0.825
IBCD (Ours)	33.28	0.855



1343
1344
1345
1346
1347
1348
1349 Figure 15: Qualitative comparison of unpaired MRI contrast
translation tasks.

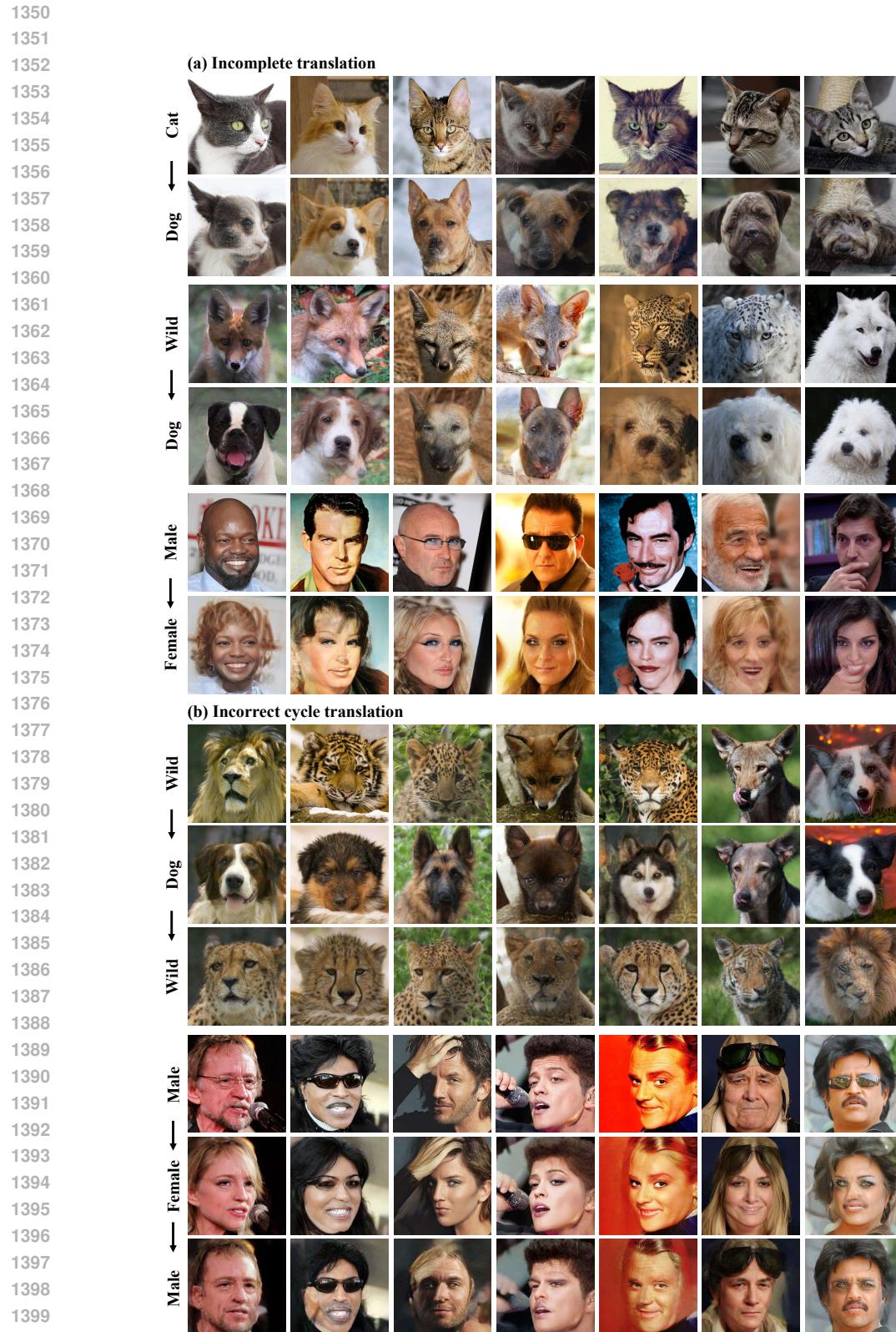


Figure 12: Example of failure cases, which are (a) incomplete translation and (b) incorrect cycle translation.

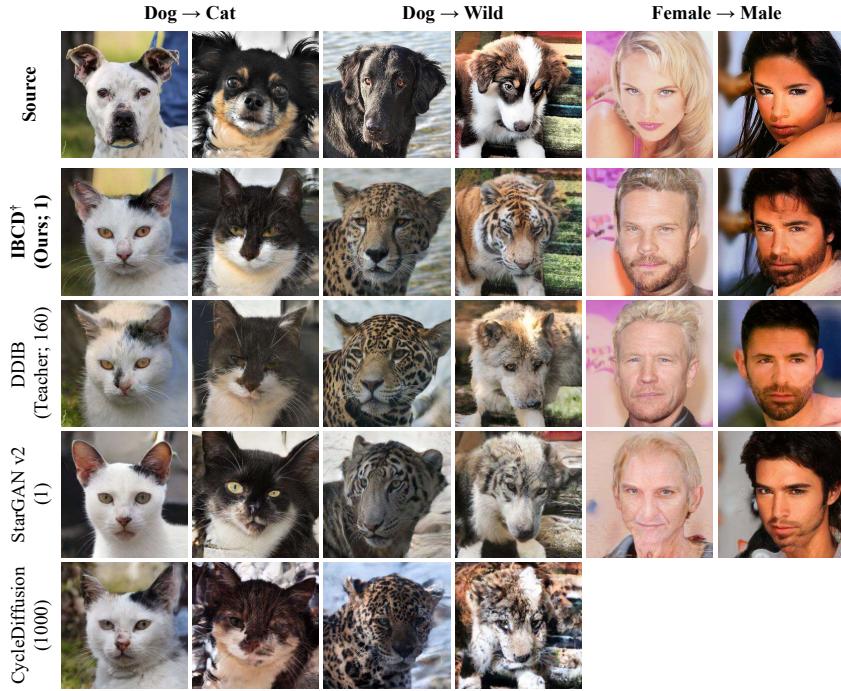
1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414

Table 9: **Quantitative comparison of unpaired image-to-image translation tasks (opposite & cycle translation).** The opposition task used the same model and inference hyperparameters as the main direction task using bi-directionality.

Method		NFE ↓	FID ↓	PSNR ↑	SSIM ↑	Density ↑	Coverage ↑
Dog → Cat							
StarGAN v2 (Choi et al., 2020)	1	37.73	16.02	0.399	1.336	0.778	
CycleDiffusion (Wu & De la Torre, 2023)	1000(+100)	40.45	17.83	0.493	1.064	0.774	
DDIB (Teacher) (Su et al., 2023)	160	30.28	17.15	0.597	2.071	0.902	
IBCD (Ours)	1	28.99	19.10	0.695	1.699	0.894	
IBCD† (Ours)	1	28.41	17.40	0.653	2.112	0.920	
Dog → Wild							
StarGAN v2 (Choi et al., 2020)	1	49.35	16.17	0.386	0.772	0.478	
CycleDiffusion (Wu & De la Torre, 2023)	1000(+100)	27.01	16.99	0.421	0.816	0.752	
DDIB (Teacher) (Su et al., 2023)	160	13.20	16.80	0.583	1.202	0.760	
IBCD (Ours)	1	18.79	17.56	0.671	0.900	0.830	
IBCD† (Ours)	1	16.67	16.22	0.646	1.058	0.814	
Female → Male							
StarGAN v2 (Choi et al., 2020)	1	59.56	15.75	0.465	1.145	0.587	
DDIB (Teacher) (Su et al., 2023)	160	26.98	18.74	0.668	1.154	0.858	
IBCD (Ours)	1	31.28	19.93	0.733	1.300	0.808	
IBCD† (Ours)	1	31.49	19.51	0.726	1.311	0.809	
Cat → Dog → Cat							
StarGAN v2 (Choi et al., 2020)	1	30.53	16.30	0.382	1.717	0.890	
CycleDiffusion (Wu & De la Torre, 2023)	1000(+100)	39.59	19.01	0.434	0.731	0.676	
DDIB (Teacher) (Su et al., 2023)	160	16.56	25.88	0.804	1.330	0.990	
IBCD (Ours)	1	22.42	22.35	0.767	1.322	0.992	
IBCD† (Ours)	1	24.03	20.28	0.724	1.749	0.988	
Wild → Dog → Wild							
StarGAN v2 (Choi et al., 2020)	1	37.76	15.30	0.285	1.102	0.566	
CycleDiffusion (Wu & De la Torre, 2023)	1000(+100)	19.43	16.39	0.281	0.649	0.616	
DDIB (Teacher) (Su et al., 2023)	160	6.75	26.08	0.803	1.118	0.974	
IBCD (Ours)	1	9.89	20.56	0.739	1.118	0.972	
IBCD† (Ours)	1	10.66	18.80	0.693	1.259	0.968	
Male → Female → Male							
StarGAN v2 (Choi et al., 2020)	1	57.80	15.39	0.502	1.634	0.728	
DDIB (Teacher) (Su et al., 2023)	160	28.29	27.70	0.853	0.821	0.993	
IBCD (Ours)	1	39.84	22.22	0.790	1.341	0.979	
IBCD† (Ours)	1	39.96	21.85	0.783	1.332	0.984	

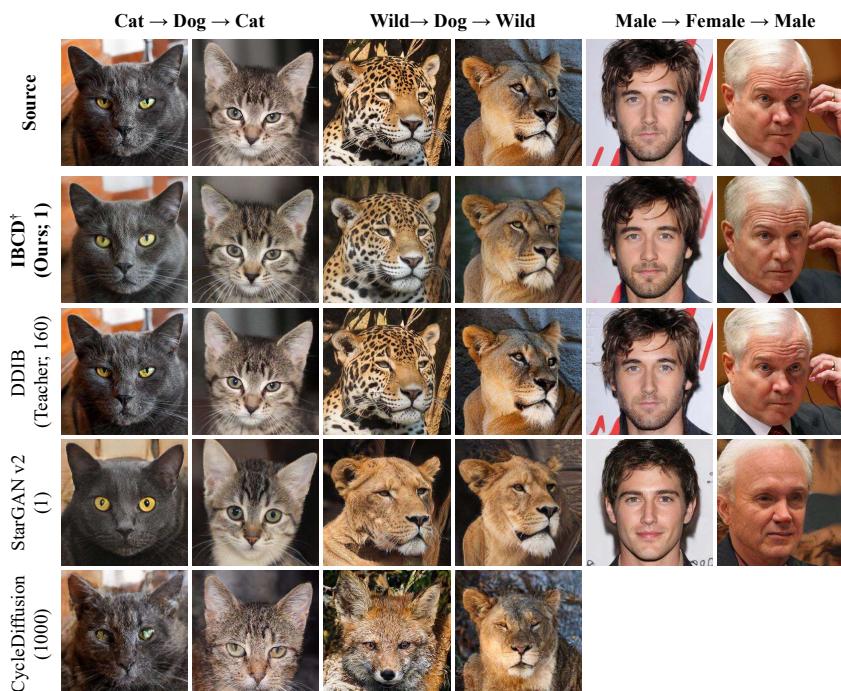
1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480



1481
 1482 **Figure 13: Qualitative comparison of unpaired image-to-image translation tasks (opposite**
 1483 **translation).** Compared to other baselines, our model achieves more realistic and source-faithful
 1484 translations in a single step. The numbers in parentheses represent inference NFE.

1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507



1508
 1509 **Figure 14: Qualitative comparison of unpaired image-to-image translation tasks (cycle trans-**
 1510 **lation).** Compared to other baselines, our model achieves consistent cycle translations in a single
 1511 step. The numbers in parentheses represent inference NFE.

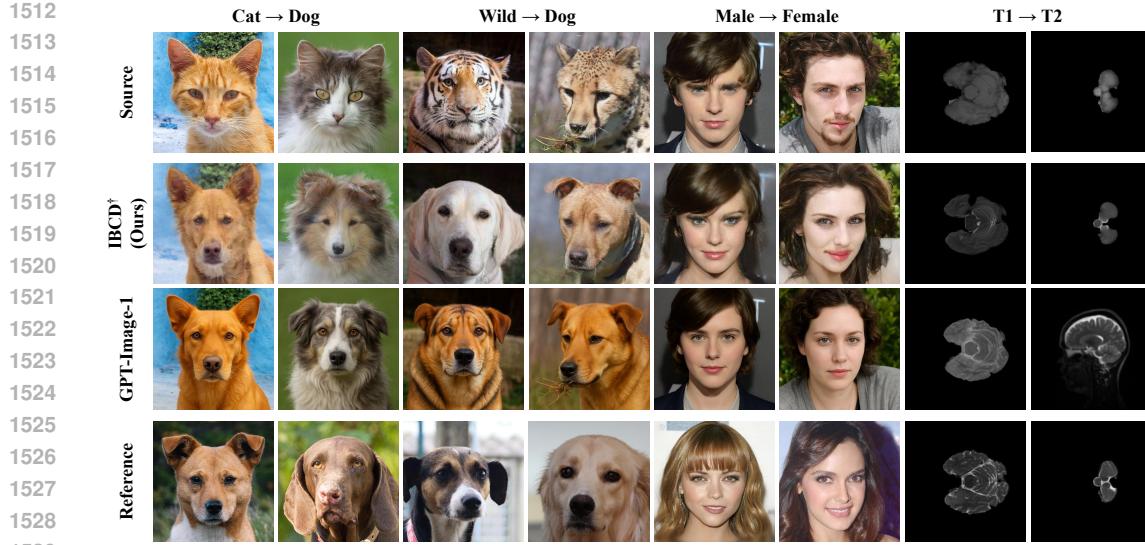


Figure 16: Limitations of foundational models in domain-specific translation.

1533 D.11 LIMITATIONS OF FOUNDATIONAL MODELS IN DOMAIN-SPECIFIC TRANSLATION

1534 The rise of foundational diffusion-based image editing methods (Parmar et al., 2023; Hertz et al.,
1535 2023; 2022), particularly those coupled with large language models, has enabled intuitive zero-
1536 shot multi-turn editing (OpenAI, 2025; Team, 2025). Despite their appeal, unpaired I2I translation
1537 remains essential, especially in domains where paired data is scarce, such as medical and scientific
1538 imaging (Kaji & Kida, 2019; Chen et al., 2023).

1539 These tasks demand specific, accurate knowledge of both source and target domains, along with
1540 fine-grained detail preservation and low-latency performance. Foundational models, while flexible,
1541 lack such specialization. As shown in Fig.16, GPT-Image-1 (OpenAI, 2025) often generates outputs
1542 that deviate significantly from the target distribution under zero-shot conditions, producing results
1543 that may appear unrealistic, incomplete, or exaggerated. This tendency is especially pronounced
1544 in medical scenarios like MRI translation, where the model frequently fails to produce clinically
1545 meaningful outputs. These limitations are further supported by the quantitative results in Tab. 2 and
1546 Tab. 15.

1547 We do not claim our method outperforms foundational models across the board. Instead, we argue
1548 that unpaired I2I approaches remain indispensable in scenarios where zero-shot methods fall short
1549 due to their lack of domain-specific adaptation.

1551 D.12 MORE QUALITATIVE RESULTS

1553 In this section, we present additional qualitative results obtained through cycle translation
1554 tasks (Cat→Dog→Cat, Wild→Dog→Wild, Male→Female→Male). The results of the Cat↔Dog,
1555 Wild↔Dog, and Male↔Female model are illustrated in Fig. 17, 18, 19. These results highlight our
1556 model’s one-way and bidirectional translation capabilities.

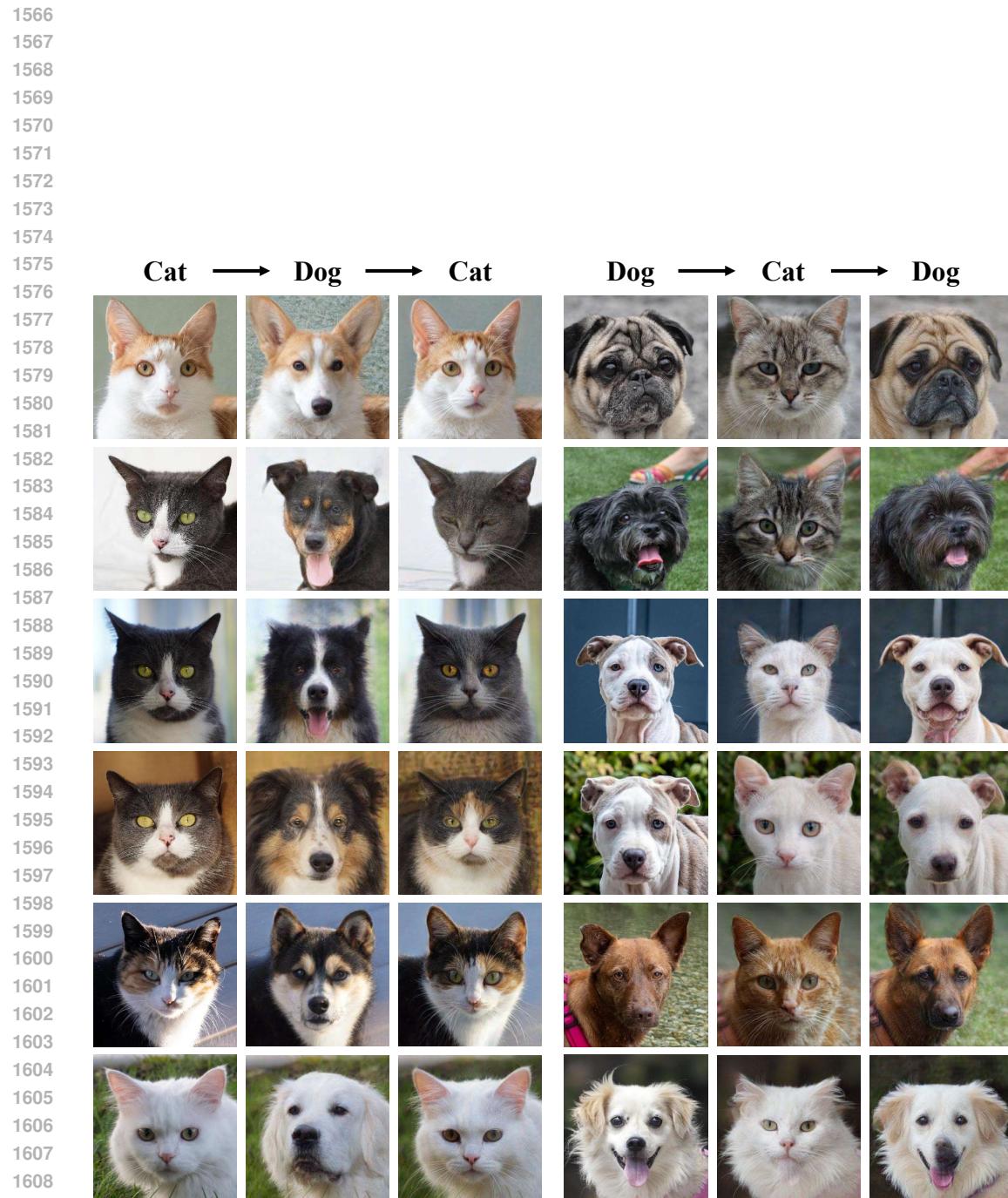
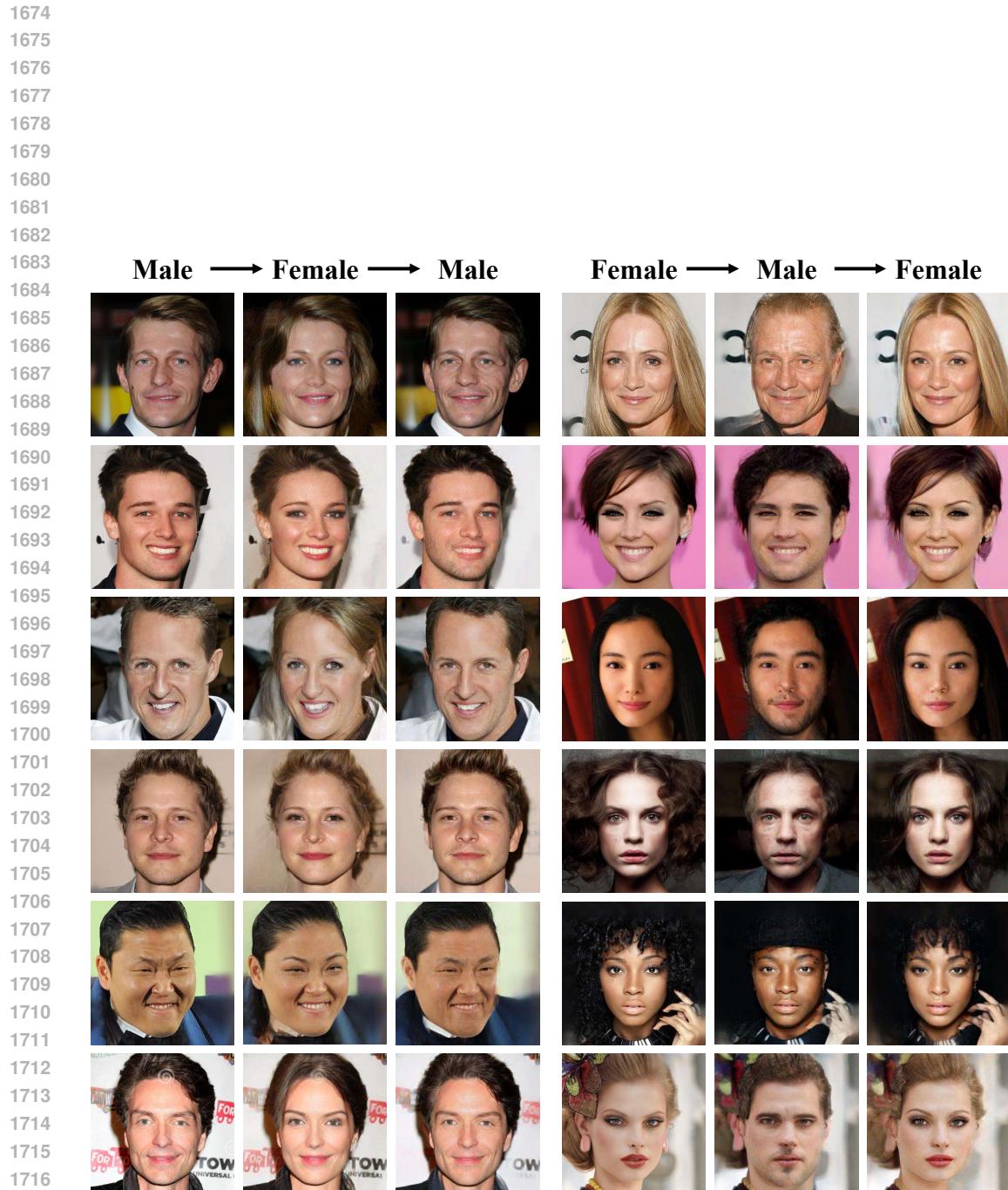


Figure 17: Result of the bi-directional cycle translation with a single model for the $\text{Cat} \leftrightarrow \text{Dog}$ task (IBCD †).

1612
1613
1614
1615
1616
1617
1618
1619

1664 Figure 18: Result of the bi-directional cycle translation with a single model for the Wild↔Dog task
 1665 (IBCD[†]).

1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673



1718 Figure 19: Result of the bi-directional cycle translation with a single model for the Male \leftrightarrow Female
1719 task (IBCD †).

1720
1721
1722
1723
1724
1725
1726
1727