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ABSTRACT

Unpaired image-to-image translation has seen significant progress since the
introduction of CycleGAN. However, methods based on diffusion models or
Schrödinger bridges have yet to be widely adopted in real-world applications
due to their iterative sampling nature. To address this challenge, we propose a
novel framework, Implicit Bridge Consistency Distillation (IBCD), which en-
ables single-step bidirectional unpaired translation without using adversarial loss.
IBCD reformulates consistency distillation by using a diffusion implicit bridge
model that connects PF-ODE trajectories between distributions, with a novel de-
sign parametrization to enable effective translation in a single step. Additionally,
we introduce two key improvements: 1) distribution matching for consistency dis-
tillation and 2) adaptive weighting method based on distillation difficulty. Exper-
imental results demonstrate that IBCD achieves state-of-the-art performance on
benchmark datasets in a single generation step.

1 INTRODUCTION

Unpaired image-to-image (I2I) translation (Zhu et al., 2017a), which transfers images between do-
mains while preserving content without supervision, has gained continuous attention in academia
and industry. This approach is particularly useful in real-world scenarios where paired data is hard to
obtain, such as in medical and scientific imaging (Kaji & Kida, 2019; Chen et al., 2023). Despite the
recent advances in modern zero-shot image editing methods (Parmar et al., 2023; Hertz et al., 2023;
2022), their applicability remains limited due to challenges such as the lack of domain-specific adap-
tation and the difficulty of preserving fine-grained details. Even the latest foundational models, such
as GPT-Image-1, consistently underperform without domain-specific adaptation (Tab. 2). Therefore,
unpaired I2I translation remains essential for applications like image enhancement, artifact removal,
and cross-modality translation in modern computer vision (Safayani et al., 2025).

Traditionally, CycleGAN (Zhu et al., 2017a) and its variants form the foundation for unpaired I2I
translation (Choi et al., 2018; Park et al., 2020a; Fu et al., 2019; Zheng et al., 2022). These meth-
ods use bidirectional generators for domain translation, along with domain-specific discriminators.
Training combines adversarial loss, guided by discriminators, and cycle consistency loss from the
bidirectional structure. While CycleGAN-based methods have advanced unpaired I2I translation,
they still rely on adversarial loss, which can cause instability, convergence issues, and mode col-
lapse (Saad et al., 2024). Moreover, their performance lags behind that of modern generative models.

The recent emergence of diffusion models (DMs) has significantly advanced unpaired I2I translation,
thanks to their exceptional generative capabilities through iterative denoising. SDEdit (Meng et al.,
2022) performs image translation by solving the reverse SDE with a diffusion model trained on the
target domain. This is achieved by introducing noise to the source image or mapping it to a noisy
space using an inversion method (Wu & De la Torre, 2023). Additional regularizers balance the
inherent realism-faithfulness tradeoff (Zhao et al., 2022; Sun et al., 2023).

On the other hand, Schrödinger Bridge (Schrödinger, 1932) offers a promising approach for translat-
ing between two arbitrary distributions using entropy-regularized optimal transport. Various meth-
ods have been developed for translating between data distributions, such as those proposed in (Wang
et al., 2021; Chen et al., 2021; Liu et al., 2022; He et al., 2024), though many of these methods are
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Model Single-step Unpaired Bi-direction Discr.

SDEdit ✗ ✓ ✗ ✗
EGSDE ✗ ✓ ✗ ✗
CycleDiff ✗ ✓ ✓ ✗
DDIB ✗ ✓ ✓ ✗
DDBM ✗ ✗ ✓ ✗
UNSB ✗ ✓ ✗ ✓
CDBM ✓ ✗ ✗ ✗

IBCD (Ours) ✓ ✓ ✓ ✗

Table 1: A systematic comparison of IBCD with
other diffusion-based image-to-image transla-
tion models highlights several key advantages.
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Figure 1: PSNR-FID trade-off comparison with
baselines on the Cat→Dog task. Marker size
represents NFE.

limited to paired settings. In contrast, DDIB (Su et al., 2023) addresses I2I translation by concate-
nating the ODE trajectories of two distinct DMs, making it suitable for unpaired settings, yet it still
relies on numerous iterative steps. More recently, UNSB (Kim et al., 2024a) has been introduced to
directly tackle unpaired I2I translation by regularizing Sinkhorn paths. Despite the aforementioned
advancements in diffusion-based approaches, there still exist challenges encountered by the infer-
ence cost associated with their fundamental iterative nature, which limits their practical usability.

To address the limitations, we aim at the development of a bidirectional single-step generator that
enables translation between two arbitrary distributions in unpaired settings without relying on ad-
versarial losses (Tab. 1). Specifically, we propose Implicit Bridge Consistency Distillation (IBCD),
a reformulation of the concept of consistency distillation (CD) (Song et al., 2023) that incorpo-
rates a diffusion implicit bridge model for translating between arbitrary data distributions. Unlike
CD, which learns paths from Gaussian noise to data, IBCD connects trajectories from one arbi-
trary distribution to another one using a Probability Flow Ordinary Differential Equation (PF-ODE),
allowing for flexible and efficient distribution translation.

However, simply extending CD can lead to increased distillation error due to error accumulation, as
well as challenges related to model capacity and training scheme, which arise from integrating two
trajectories and introducing bidirectionality. To address this, we propose a regularization method
called Distribution Matching for Consistency Distillation (DMCD). Furthermore, we introduce a
novel weighting scheme based on distillation difficulty, which applies a stronger DMCD penalty
specifically to samples where the consistency loss alone proves insufficient. By integrating additional
cycle translation loss with these advanced components, our approach significantly enhances the
realism-faithfulness trade-off, achieving state-of-the-art performance in a single step, as shown in
Fig. 1. The main contributions of our work are as follows:

• Propose Implicit Bridge Consistency Distillation (IBCD), a novel unpaired image trans-
lation framework that enables bidirectional translation with a single NFE and achieves
state-of-the-art results.

• Introduce regularizing components, including Distribution Matching for Consistency Dis-
tillation (DMCD), an adaptive weighting scheme based on distillation difficulty, and cycle
translation loss to mitigate inherent distillation errors.

• Demonstrate the effectiveness of IBCD through extensive experiments on toy, natural, and
medical images, covering a range of diverse modalities.

2 PRELIMINARIES

2.1 IMAGE TRANSLATION WITH DIFFUSION MODELS

Diffusion Models (DM). In DMs (Ho et al., 2020; Song et al., 2021), the predefined forward process
with the time variable t ∈ [0, T ] progressively corrupts data into pure Gaussian noise over a series of
steps T . Specifically, given a data distribution x0 ∼ p(x0) := preal(x), the distribution xT ∼ p(xT )
approaches an isotropic normal distribution as noise is added according to the process p(xt | x0) =
N (x0, t

2I). The reverse of this process can be described by an SDE or a PF-ODE (Song et al., 2021)
as follows:

dxt
dt

= −t∇xt
log p(xt) =

xt − E[x0|xt]
t

, (1)

2
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Figure 2: (a) IBCD performs single-step bi-directional translation using a distillation framework that
reformulates consistency distillation with a diffusion implicit bridge and introduces regularizers. (b)
The IBCD framework bridges two distributions by connecting the PF-ODE paths of two pre-trained
diffusion models through bidirectionally extended consistency distillation. To mitigate distillation
errors, we introduce distribution matching for consistency distillation and a cycle translation loss.

where the second equality follows from Tweedie’s formula, E[x0|xt] = xt+t
2∇xt

log p(xt) (Efron,
2011; Kim & Ye, 2021). In practice, the neural network is trained to approximate the ground truth
score function sϕ(xt, t) ≈ ∇xt log p(xt) or the denoiser Dϕ(xt, t) ≈ E[x0|xt] by denoising score
matching (Vincent, 2011). By substituting the trained neural networks into Eq. (1), we can obtain
the denoised sample by numerically integrating from T to 0:

x0 = xT +

∫ 0

T

−t · sϕ(x, t) dt = xT +

∫ 0

T

xt −Dϕ(xt, t)

t
dt. (2)

To solve Eq. (2), an ODE solver, denoted as Solve(xT ;ϕ, T, 0) (with an initial state xT at time
T and ending at time 0, DM parameterized by ϕ) can be applied. Examples include the Euler
solver (Song et al., 2021; Ho et al., 2020), DPM-solver (Lu et al., 2022), or the second-order Heun
solver (Karras et al., 2022). The sampling process typically requires dozens to hundreds of neural
function evaluations (NFE) to effectively minimize discretization error during ODE solving.

Dual Diffusion Implicit Bridge (DDIB). DDIB (Su et al., 2023) is a simple yet effective method for
I2I translation that leverages the connection between DMs and Schrödinger bridge problem (SBPs),
where DMs act as implicit optimal transport models. DDIB requires training two individual DMs for
the two domains A and B, denoted as sϕa and sϕb . The sampling process involves sequential ODE
solving as follows:

xl = Solve(xa;ϕa, 0, T ), xb = Solve(xl;ϕb, T, 0). (3)

Here, xl represents the latent code in the pure Gaussian noise domain, xa is the image in the source
domain, and xb is the estimated image in the target domain. Thanks to the intermediate Gaussian
distribution, DDIB automatically satisfies the cycle consistency property without any explicit regu-
larization term (Zhu et al., 2017b; Choi et al., 2018).

2.2 EXISTING SINGLE-STEP ACCELERATION APPROACHES

Consistency Distillation (CD). The aim of the consistency distillation (CD) (Song et al., 2023) is
to learn the direct mapping from noise to clean data. Specifically, the model is designed to predict
fθ(xt, t) = x0, and is constrained to be self-consistent, meaning that outputs should be the same

3
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for any time point input within the same PF-ODE trajectory, i.e., f(xt, t) = f(xt′ , t
′) for all t, t′ ∈

[ϵ, T ], with the boundary condition fθ(xϵ, ϵ) = xϵ. Here, ϵ is a small positive number, to avoid
numerical instability at an t = 0. By discretizing the time interval [ϵ, T ] intoN−1 sub-interval with
boundaries t1 = ϵ < t2 < · · · < tN = T , the resulting objective function for CD is given by:

LCD(θ;ϕ) = E[λ(tn)d(fθ(xtn+1
, tn+1), fθ−(x̂tn , tn))], (4)

where n ∼ U [1, N − 1] and λ(tn) is weight hyperparameter, d(·, ·) measures the distance be-
tween two samples. θ− is the exponential moving average (EMA) of the student parameter θ, and
ϕ represents the pre-trained teacher model, and U [·] refers to the uniform distribution. The tar-
get x̂tn is obtained by solving one-step ODE solver, i.e., x̂tn = Solve(xtn+1 ;ϕ, tn+1, tn), from
xtn+1

∼ N (x0, t
2
n+1I).

Distribution Matching Distillation (DMD). DMD (Yin et al., 2024; Wang et al., 2023) minimizes
the Kullback-Leibler (KL) divergence between the real data distribution, preal, and the student sam-
ple distribution, pfake

θ to distill the diffusion model sreal
ϕ into a single-step generator fθ(xT ) = x0.

Additionally, DMD introduces an auxiliary “fake” DM, sfake
ψ , to approximate the score function of

the student-generated sample distribution. This estimator is trained with denoising score matching,
adapting in real-time as the student model progresses through training. The gradient of the DMD
loss is then approximated as the difference between the two score functions:

∇θDKL(p
fake
θ ||preal) ≈ ∇θLDMD = E

xt,t,xT

[wt(s
fake
ψ (xt, t)− sreal

ϕ (xt, t))∇θfθ(xT )], (5)

where xt ∼ N (fθ(xT ), t
2I), t ∼ U(Tmin, Tmax), xT ∼ N (0, T 2I) and wt is a scalar weighting

factor. DMD serves as an effective distillation loss that optimizes the student model from the view
of the distribution, without relying on unstable adversarial loss (Goodfellow et al., 2014).

3 MAIN CONTRIBUTION

We aim to develop a one-step distillation method for bidirectional mapping between arbitrary dis-
tributions in an unpaired setting, using pretrained diffusion models. Specifically, given two domains
XA and XB with unpaired datasets SA and SB, our translator fθ performs two translations: fθ(xa, cb)
for A→B and fθ(xb, ca) for B→A, where ca and cb are class embeddings for the target domain. The
concept of our method is illustrated in Fig. 2 by contrasting it to CD and DDIB. In the following, we
describe a novel distillation approach with distribution matching, adaptive weighting, and a cycle
loss for bidirectional reconstruction.

3.1 IMPLICIT BRIDGE CONSISTENT DISTILLATION

Definition. Our model architecture and diffusion process are based on the PF-ODE using EDM (Kar-
ras et al., 2022). To handle both domains with one generator, a pre-trained class conditional
DMs, sϕ(xt, t, c), is jointly trained for each domain with class conditions ca and cb. Specifi-
cally, the teacher model sϕ is trained using denoising score matching (DSM) for continuous-time
t = σ ∼ Lognormal ∈ (0,∞) without any modification from EDM. The timestep discretization
for the sampling process is defined as [t0, t1, · · · , ti, · · · , tN ] = [σmax, σmax−1, · · · , σmin, 0]. Since
DDIB concatenates two independent ODEs into a single ODE, duplicated timesteps must be re-
defined for consistency distillation (CD). We introduce a unique discretized timestep index i and
redefine the timestep t for the concatenated trajectory (XA ↔ XB) as follows:

i = [−N,−N + 1, · · · ,−1︸ ︷︷ ︸
XA

, 0︸︷︷︸
XA∩XB

, 1, · · · , N − 1, N︸ ︷︷ ︸
XB

] (6)

ti = [−0,−σmin, · · · ,−σmax-1,+σmax,+σmax-1, · · · ,+σmin,+0] (7)

Boundary Condition. Given that the student model’s output is enforced to be self-consistent with
respect to timesteps in Eq. (7), we define the student as fθ(xt, t, c), where t is a non-zero real-
valued timestep and c ∈ ca, cb represents the target domain condition. For simplicity, we denote the
opposite class embedding as c′, such that when c = cb, c′ := ca. To enable bidirectional translation,
we redefine the boundary condition to depend on the target domain condition c:

f(xϵ(c), ϵ(c), c) = xϵ(c), where ϵ(c) =
{
t−N+1 = −σmin, for c = ca
tN−1 = +σmin, for c = cb

. (8)
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This boundary condition, along with the IBCD loss introduced later, allows translation by injecting
the desired domain condition: f(xϵ(c), ϵ(c), c′) = xϵ(c′), where f(xt, t, cb) transforms xt at any t
between XA and XB into a clean domain XB image xtN−1

belonging to the same ODE trajectory,
and vice versa. Since EDM/CD is not defined for negative t values and does not directly align with
our new boundary conditions, we introduce a non-trivial reformulation of the EDM/CD formulation,
involving a novel parametrization tailored to the student model.1. For more details on this extension,
please refer to Appendix B (App. B).

The Method. To generate data pairs (xt1 , x̂t2) that lie on the same PF-ODE trajectory, we perform
forward diffusion on the dataset and predict the next data point one step ahead using a suitable
teacher model and ODE solver. For simplicity, we denote the teacher model ϕ conditioned on class
c as ϕc. The data pair generation process in the direction of XA → XB (i.e. c = cb) for each domain
is as follows:

x̂ti+1 = Solve(xti ;ϕ
a, |ti|, |ti+1|), x̂tj = Solve(xtj ;ϕ

b, |tj |, |tj+1|), (9)

where i ∼ U [−N +1,−1], j ∼ U [0, N − 2], xti ∼ N (xa, t2i I), xtj ∼ N (xb, t2jI). Similarly, in the
direction XB → XA (i.e. c = ca), the data pair for each domain can be generated as:

x̂ti−1
= Solve(xti ;ϕ

a, |ti|, |ti−1|), x̂tj−1
= Solve(xtj ;ϕ

b, |tj |, |tj−1|), (10)

where i ∼ U [−N + 2, 0], j ∼ U [1, N − 1]. Given these distillation targets, our objective function
of IBCD is defined as follows:

LIBCD(θ;ϕ) = E
t1,xt1 ,c

[λ(t2)d(fθ(xt1 , t1, c), fθ−(x̂t2 , t2, c))], (11)

where xt1 = [xti ;xtj ], x̂t2 = [x̂ti±1
; x̂tj±1

], c ∈ U [{ca, cb}],
t1 = [ti; tj ], t2 = [ti±1; tj±1], θ

− = sg(µθ− + (1− µ)θ).

n(·)±1 denotes time index for each distillation direction in Eqs. (9), (10) and sg indicates the stop-
gradient operator. For a detailed explanation, see Algo. 1 in App. A.

Using a single domain-independent teacher model instead of two reduces memory and provides an
effective initializer for the student model, acting as a unified model for both domains. By sharing the
class condition in the teacher and the target domain condition in the student as a unified embedding,
we can leverage the student’s initialization weights, as f(xt, t, c) is designed to output a clean image
for domain c. This approach differs from methods in the literature (Kim et al., 2024b; Li & He,
2024), which extend CD in both directions or specify a target timestep, but don’t fully integrate
domain conditions into a cohesive framework.

3.2 OBJECTIVE FUNCTION

While our proposed vanilla IBCD lays a foundation for one-step bidirectional transport, there re-
main areas for refinement. First, the consistency loss is a local strategy (categorized by Kim et al.
(2024b)), aligning consistency only with adjacent timesteps using the student’s recursive output.
This can accumulate local errors, leading to growing discrepancies between the student’s prediction
fθ(xt, t, c) and the true boundary xϵ(c), especially given IBCD’s doubled trajectory.

Second, the student must handle bidirectional tasks and learn two distinct ODE trajectories. Al-
though the teacher ODEs share timesteps, their differing output targets by target domain direction
increase the complexity, placing additional demands on model capacity and making training more
difficult, as also observed in CD by Li & He (2024). Finally, unlike EGSDE (Zhao et al., 2022),
which balances realism and fidelity via expert weighting, vanilla IBCD lacks such a control mecha-
nism, limiting its flexibility.

Distribution Matching for Consistency Distillation. To address these issues, we propose Distri-
bution Matching for Consistency Distillation (DMCD), which extends the DMD loss to fit within
the CD framework. DMCD builds on the DMD loss by optimizing the KL divergence between the
student’s output samples and the target domain data distributions across all timesteps in bidirectional
tasks. Furthermore, it incorporates the distillation difficulty adaptive weighting factor D̂(·, ·). This

1Note this formulation applies exclusively to the student model.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

adaptive weighting scheme helps to focus the optimization on challenging samples, thereby enhanc-
ing the overall performance and stability of the student model during training. The resulting DMCD
is given by:

∇θLDMCD(θ;ϕ, ψ) = E
t1,xt1 ,c,i,xti

[wtiD̂(sg(xt1), c) (sψ(xti , ti, c)− sϕ(xti , ti, c))∇θfθ(xt1 , t1, c)]

where i ∼ U [0, N − 1], xti ∼ N (fθ(xt1 , t1, c), t
2
i I) (12)

where t1,xt1 , c are defined per from Eq. (11), and w represents a time-dependent weighting factor
introduced in DMD. The term sψ(xt, t, c) denotes a class-conditional fake diffusion model, jointly
trained via DSM on outputs of student fθ, adapting during training.

Unlike DMD, DMCD functions as a regularizer rather than the primary objective. This distinction is
crucial in unpaired settings, where relying solely on the DMCD loss does not ensure a proper con-
nection between two domains. Recently, a line of work (Rakitin et al., 2024) has similarly introduced
DMD for I2I translation, where an additional L2 regularization between the source and target is used
to enforce domain mapping, while DMD itself focuses only on the target distribution matching. In
contrast, IBCD constructs a trajectory between two distributions using consistency loss that enforces
both domain mapping and target-distribution alignment, whereas DMCD handles the additional dis-
tribution matching component, serving as a regularizer to enhance realism. This integration allows
for improved performance and stability without the drawbacks associated with adversarial training
like Zhu et al. (2017b); Parmar et al. (2024); Kim et al. (2024a).

Distillation Difficulty Adaptive Weighting. DMCD effectively brings the translated distribution
closer to the target data distribution, enhancing the realism of generated samples. However, this
can also cause divergence from the teacher model’s estimations, reducing faithfulness to the source
domain. Ideally, DMCD should be applied more intensively to challenging PF-ODE trajectories that
the student struggles to translate accurately, especially those involving source data near the decision
boundary (App. D.1).

To address this, we propose a distillation difficulty adaptive weighting strategy. We define the
concept of distillation difficulty, D([xt−N+1

, · · · ,xtN−1
], c) := d(fθ(xϵ(c′), ϵ(c

′), c),xϵ(c)), which
quantifies the challenge of distilling a given ODE trajectory generated by the teacher between do-
mains. This allows DMCD to focus more aggressively on difficult trajectories, improving transla-
tion performance by targeting areas where the student struggles most. Such a strategy helps balance
source faithfulness and realism by applying DMCD loss only where the IBCD loss is insufficient.
However, estimating xϵ(c) and xϵ(c′) from a given xt requires at least N NFEs with the teacher
model for each DMCD loss calculation, which is computationally impractical. To address this, we
propose a one-step approximation of the weighting factor D(·, ·), defined:

D̂(xt1 , c) = g(d(fθ(xt1 , t1, c), fθ−(x̂t2 , t2, c)))) (13)

where t1, t2,xt1 , x̂t2 are defined in Eqs. (11), (12), and g is any monotone increasing function. The
validity of this weighting factor will be confirmed through experiments.

Cycle Consistency Loss. Similar to DDIB, our framework is designed to perform cycle translation
and must therefore satisfy cycle consistency. The objective function of enforcing this requirement
can be expressed as:

Lcycle(θ) = E
c,xϵ(c)

[d(fθ(fθ(xϵ(c), ϵ(c), c
′), ϵ(c′), c),xϵ(c))]. (14)

Final Loss Functions. The final loss, weighted by λDMCD, λcycle, for training fθ is given by:

θ∗ = argmin
θ
LIBCD + λDMCDLDMCD + λcycleLcycle. (15)

Empirically, we found that the following adaptive training strategy further improves performance:
the training process begins with only the IBCD loss; as the student model approaches convergence,
the DMCD and cycle consistency losses are additionally introduced to further refine the model’s
performance. The detailed final algorithm can be found in Algo. 2, App. A.
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Figure 3: (a) Bidirectional translation results on a toy dataset, showing the contributions of each com-
ponent. (b) Visualization of distillation difficultyD(·, cb) and its one-step approximation Et[D̂(·, cb)]
for A→B translation, with g selected as a logarithm.

4 EXPERIMENTS

4.1 TOY DATA EXPERIMENT

To evaluate the effectiveness of our framework in a controlled setting, we conducted bidirectional
translation experiments on a two-dimensional synthetic toy dataset, where the domains A and B
were represented by the S-curve and Swiss roll distributions, respectively.

Validity of the IBCD. Fig. 3(a) shows the translation results from domain A→B for various mod-
els, highlighting the cumulative effectiveness of each component in our framework. Distillation with
only the IBCD loss achieves basic translation but incorrectly maps some points to low-density re-
gions of the target domain, particularly from the source domain’s decision boundaries (Appendix
D.1). Adding the DMCD loss improves translation by guiding more points toward high-density
regions, but it fails to reposition points in low-density areas and reduces mode coverage by push-
ing points in high-density regions even further. Introducing a cycle loss alleviates the reduction in
mode coverage caused by DMCD and refines the decision boundaries in the target domain. Finally,
incorporating distillation difficulty adaptive weighting into DMCD selectively corrects points that
have drifted into low-density regions, guiding them toward higher-density areas. The complete cycle
translation (A→B→A) using a model trained with our final approach effectively demonstrates cycle
consistency, validating the robustness and fidelity of our method.

Distillation Difficulty. Fig. 3(b) illustrates the impact of distillation difficulty on the translation pro-
cess. On the left, we show the decision boundary of the source domain resulting from the translation
from the target to the source domain by the DDIB teacher model. The middle and right panels depict
D([xt−N+1

, · · · ,xtN−1
], cb) and its expected one-step approximation, Et∼U [−N+1,N−2][D̂(xt, cb)]

for the A→B translation, plotted at the source domain location xϵ(ca). The distillation difficulty mea-
sure effectively captures the decision boundary, indicating challenging regions for the student model.
As shown, it’s one-step approximation provides an accurate and suitable representation of the dis-
tillation difficulty, demonstrating its utility in guiding the training process and improving translation
accuracy.

4.2 UNPAIRED IMAGE-TO-IMAGE TRANSLATION

In this section, we apply IBCD to various I2I translation tasks, our primary focus. We evaluate its
performance across these tasks to demonstrate effectiveness and robustness.

Evaluation. Following EGSDE’s evaluation protocol, a widely used benchmark for unpaired
I2I tasks, we tested our method on Cat→Dog, Wild→Dog (AFHQ) (Choi et al., 2020), and
Male→Female (CelebA-HQ) (Karras, 2018). We trained AFHQ and CelebA-HQ DMs as teacher
models. Single-step translation models for Cat↔Dog and Wild↔Dog were distilled from the
AFHQ DM, and Male↔Female from the CelebA-HQ DM. We used FID (Heusel et al., 2017) and
Density-Coverage (Naeem et al., 2020) for translation reality, and PSNR, SSIM (Wang et al., 2004),
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LPIPS (Zhang et al., 2018), and CLIP score (Hessel et al., 2021) for translation faithfulness. A user
study was also conducted to evaluate perceptual quality and human preference.

Comparison results. Fig. 1, Fig. 4, and Tab. 2 show that IBCD consistently outperforms baseline
models in both qualitative and quantitative comparisons. IBCD strikes a balance between faithful-
ness and realism, while IBCD† emphasizes realism. These results demonstrate our effectiveness in
improving the faithfulness-realism trade-off across tasks and metrics. User studies and perceptual
metrics (App. D.2) further confirm the superiority of our method in terms of human preference.
Although the student model shows reduced realism compared to the teacher, it exhibits improved
faithfulness. The decline in realism may stem from distillation errors, which could be caused by pre-
viously discussed factors such as the single-step conversion process. Unlike the teacher, the student
model integrates information from both domains, possibly leading it to prioritize faithfulness. Inter-
estingly, in some cases, the student’s samples surpass the teacher’s in realism, likely due to auxiliary
losses beyond the IBCD loss. This suggests that the student’s ability to combine domain information
and auxiliary training components can enhance overall performance.

Ablation Study. We conducted an ablation study on the Cat→Dog task to evaluate the effectiveness
of each component. In this study, DMCD loss, cycle translation loss, and distillation difficulty adap-

Table 2: Quantitative comparison of unpaired image-to-image translation tasks. Most results
are from the EGSDE paper, except those marked with *, which are from our re-implementation and
Density-Coverage metric (Naeem et al., 2020). Marker † indicates a hyperparameter configuration
that prioritizes realism over faithfulness.

Method NFE ↓ FID ↓ PSNR ↑ SSIM ↑ Density ↑ Coverage ↑
Cat→Dog

CycleGAN (Zhu et al., 2017b) 1 85.9 - - - -
Self-Distance (Benaim & Wolf, 2017) 1 144.4 - - - -
GcGAN (Fu et al., 2019) 1 96.6 - - - -
LeSeSIM (Zheng et al., 2021) 1 72.8 - - - -
StarGAN v2 (Choi et al., 2020) 1 54.88 ± 1.01 10.63 ± 0.10 0.270 ± 0.003 - -
CUT (Park et al., 2020b) 1 76.21 17.48 0.601 0.971 0.696
UNSB∗ (Kim et al., 2024a) 5 68.59 17.65 0.587 1.045 0.706

ILVR (Choi et al., 2021) 1000 74.37 ± 1.55 17.77 ± 0.02 0.363 ± 0.001 1.019 ± 0.030 0.566 ± 0.012
SDEdit (Meng et al., 2022) 1000 74.17 ± 1.01 19.19 ± 0.01 0.423 ± 0.001 0.997 ± 0.021 0.526 ± 0.014
EGSDE (Zhao et al., 2022) 1000 65.82 ± 0.77 19.31 ± 0.02 0.415 ± 0.001 1.258 ± 0.027 0.634 ± 0.023
EGSDE† (Zhao et al., 2022) 1200 51.04 ± 0.37 17.17 ± 0.02 0.361 ± 0.001 1.509 ± 0.038 0.823 ± 0.021
CycleDiffusion (Wu & De la Torre, 2023) 1000(+100) 58.63 ± 1.08 18.36 ± 0.04 0.537 ± 0.001 0.905 ± 0.023 0.767 ± 0.028
SDDM (Sun et al., 2023) 100 62.29 ± 0.63 - 0.422 ± 0.001 - -
SDDM† (Sun et al., 2023) 120 49.43 ± 0.23 - 0.361 ± 0.001 - -

GPT-Image-1 (Foundation) (OpenAI, 2025) ≫1 77.81 12.18 0.283 0.947 0.586
DDIB∗ (Teacher) (Su et al., 2023) 160 38.91 17.58 0.588 1.528 0.934
IBCD (Ours) 1 47.44 ± 0.03 19.50 ± 3e-4 0.701 ± 1e-5 1.412 ± 0.007 0.940 ± 0.003
IBCD† (Ours) 1 44.77 ± 0.07 18.04 ± 2e-4 0.663 ± 8e-6 1.542 ± 0.005 0.935 ± 0.003

Wild→Dog

CUT (Park et al., 2020b) 1 92.94 17.20 0.592 - -
UNSB∗ (Kim et al., 2024a) 5 70.03 16.86 0.573 1.035 0.704

ILVR (Choi et al., 2021) 1000 75.33 ± 1.22 16.85 ± 0.02 0.287 ± 0.001 1.275 ± 0.046 0.531 ± 0.013
SDEdit (Meng et al., 2022) 1000 68.51 ± 0.65 17.98 ± 0.01 0.343 ± 0.001 1.292 ± 0.045 0.636 ± 0.018
EGSDE (Zhao et al., 2022) 1000 59.75 ± 0.62 18.14 ± 0.02 0.343 ± 0.001 1.482 ± 0.018 0.683 ± 0.013
EGSDE† (Zhao et al., 2022) 1200 50.43 ± 0.52 16.40 ± 0.01 0.300 ± 0.001 1.733 ± 0.022 0.782 ± 0.014
CycleDiffusion (Wu & De la Torre, 2023) 1000(+100) 58.92 ± 0.72 17.68 ± 0.03 0.458 ± 0.001 1.014 ± 0.034 0.801 ± 0.027
SDDM (Sun et al., 2023) 100 57.38 ± 0.53 - 0.328 ± 0.001 - -

GPT-Image-1 (Foundation) (OpenAI, 2025) ≫1 100.72 12.38 0.230 0.578 0.294
DDIB∗ (Teacher) (Su et al., 2023) 160 38.59 17.03 0.552 1.594 0.924
IBCD (Ours) 1 48.60 ± 0.11 18.25 ± 2e-4 0.653 ± 2e-5 1.539 ± 0.006 0.921 ± 0.005
IBCD† (Ours) 1 46.06 ± 0.06 16.78 ± 1e-4 0.612 ± 1e-5 1.583 ± 0.010 0.919 ± 0.004

Male→Female

CUT (Park et al., 2020b) 1 31.94 19.87 0.74 - -
UNSB∗ (Kim et al., 2024a) 5 28.62 19.55 0.687 0.576 0.635

ILVR (Choi et al., 2021) 1000 46.12 ± 0.33 18.59 ± 0.02 0.510 ± 0.001 - -
SDEdit (Meng et al., 2022) 1000 49.43 ± 0.47 20.03 ± 0.01 0.572 ± 0.000 0.782 ± 0.020 0.380 ± 0.018
EGSDE (Zhao et al., 2022) 1000 41.93 ± 0.11 20.35 ± 0.01 0.574 ± 0.000 0.875 ± 0.032 0.437 ± 0.017
EGSDE† (Zhao et al., 2022) 1200 30.61 ± 0.19 18.32 ± 0.02 0.510 ± 0.001 0.955 ± 0.019 0.621 ± 0.016
SDDM (Sun et al., 2023) 100 44.37 ± 0.23 - 0.526 ± 0.001 - -

GPT-Image-1 (Foundation) (OpenAI, 2025) ≫1 60.50 13.11 0.381 0.503 0.269
DDIB∗ (Teacher) (Su et al., 2023) 160 23.69 18.70 0.664 0.969 0.808
IBCD (Ours) 1 24.93 ± 0.03 20.51 ± 4e-4 0.749 ± 3e-5 1.160 ± 0.008 0.814 ± 0.006
IBCD† (Ours) 1 24.70 ± 0.03 20.11 ± 4e-4 0.744 ± 3e-5 1.145 ± 0.003 0.815 ± 0.004
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Figure 4: Qualitative comparison of unpaired image-to-image translation tasks. Compared to
other baselines, our model achieves more realistic and source-faithful translations in a single step.
The numbers in parentheses represent inference NFE.

Table 3: Quantitative ablation study results in the Cat→Dog task under the lowest FID (similar FID
condition except for the vanilla IBCD).

Component FID↓ PSNR ↑
IBCD only 48.12 18.27
+ DMCD 44.40 17.95
+ DMCD & Cycle 44.31 18.22
+ adaptive DMCD & Cycle 44.69 18.97

tive weighting (adaptive DMCD) were sequentially added to the baseline IBCD loss-only model. To
assess distillation error, we calculated PSNR relative to the DDIB teacher. Tab. 3 and Fig. 7 display
the results for each ablated model that achieved the lowest FID. In Tab. 3, each component signif-
icantly reduces FID beyond the lower bound achieved by vanilla IBCD, while minimizing PSNR
degradation due to the task’s inherent trade-off and reducing distillation error. Adaptive DMCD
has been particularly effective when prioritizing the lowest FID in the trade-off curve, significantly
reducing distillation errors as well. These findings confirm that the components of IBCD work syn-
ergistically to improve the balance between faithfulness and realism. In addition, the results in Fig. 7
similarly demonstrate that DMCD enhances the realism of the generated images, while the cycle loss
and adaptive DMCD loss qualitatively improve source faithfulness (indicated by the white arrows).

For additional experimental content, including toy datasets, medical images, user studies, auxiliary
loss analysis, and other details not covered in the main text, please refer to App. D.

5 CONCLUSION

In this work, we introduced IBCD, a novel unpaired bidirectional single-step image translation
framework. By distilling the diffusion implicit bridge through a novelly parametrized reformulation
CD framework, we achieved bidirectional translation without paired data or adversarial training.
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Our approach overcomes traditional CD limitations with DMCD and distillation difficulty adap-
tive weighting strategies. Empirical evaluations on toy and high-dimensional datasets demonstrate
IBCD’s effectiveness and scalability. We believe IBCD represents a significant advancement in gen-
eral single-step image translation, offering a versatile and efficient solution for various image tasks,
particularly in scenarios with limited paired data and those where low latency is crucial.
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SUPPLEMENTARY MATERIAL

A ALGORITHMS

In this section, we present the vanilla implicit bridge consistency distillation algorithm (Algo. 1),
which utilizes only the IBCD losses. Additionally, we introduce the final implicit bridge consistency
distillation algorithm (Algo. 2), which incorporates all the losses discussed in the text, including
DMCD, adaptive weighting strategies, and cycle translation loss, to enhance performance and ad-
dress the limitations identified in the vanilla version.

Algorithm 1: (Vanilla) Implicit Bridge Consistent Distillation (IBCD)
Input: Teacher diffusion model ϕ, datasets SA and SB, class conditions ca and cb.

1 j ← 0, θ ← ϕ, θ− ← ϕ
2 repeat
3 c← if (j%2 == 0 then ca else cb)
4 Sample xa ∼ SA, xb ∼ SB
5 if c == cb then
6 Sample i ∼ U [−N + 1,−1], j ∼ U [0, N − 2]

7 else
8 Sample i ∼ U [−N + 2, 0], j ∼ U [1, N − 1]

9 Sample xti ∼ N (xa, t2i I), xtj ∼ N (xb, t2jI)

10 if c == cb then
11 Estimate x̂ti+1

, x̂tj+1
with Eq. (9)

12 else
13 Estimate x̂ti−1 , x̂tj−1 with Eq. (10)
14 t1 ← [ti; tj ], t2 = [ti±1; tj±1]
15 xt1 ← [xti ;xtj ], x̂t2 ← [x̂ti±1

; x̂tj±1
]

16 LIBCD ← [λ(t2)dIBCD(fθ(xt1 , t1, c), fθ−(x̂t2 , t2, c))]
17 θ ← θ − ζθ∇θLIBCD

18 θ− ← sg(µθ− + (1− µ)θ)
19 j ← j + 1
20 until LIBCD convergence;

Output: Unified single-step model fθ for bidirectional image translation.

14
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Algorithm 2: (Final) Implicit Bridge Consistent Distillation (IBCD)
Input: Teacher diffusion model ϕ, datasets SA and SB, class conditions ca and cb.

1 j ← 0, θ ← ϕ, θ− ← ϕ, ψ ← ϕ
2 repeat
3 c← if (j%2 == 0 then ca else cb)
4 Sample xa ∼ SA, x

b ∼ SB
//
// IBCD loss

5 if c == cb then
6 Sample i ∼ U [−N + 1,−1], j ∼ U [0, N − 2]

7 else
8 Sample i ∼ U [−N + 2, 0], j ∼ U [1, N − 1]

9 Sample xti ∼ N (xa, t2i I), xtj ∼ N (xb, t2jI)

10 if c == cb then
11 Estimate x̂ti+1

, x̂tj+1
with Eq. (9)

12 else
13 Estimate x̂ti−1

, x̂tj−1
with Eq. (10)

14 t1 ← [ti; tj ], t2 = [ti±1; tj±1]
15 xt1 ← [xti ;xtj ], x̂t2 ← [x̂ti±1

; x̂tj±1
]

16 LIBCD ← [λ(t2)dIBCD(fθ(xt1 , t1, c), fθ−(x̂t2 , t2, c))]
//
// DMCD loss

17 Sample i ∼ U [0, N − 1]
18 Sample xti ∼ N (fθ(xt1 , t1, c), t

2
i I)

19 D̂ ← sg(g(dDMCD(fθ(xt1 , t1, c), fθ−(x̂t2 , t2, c))))

20 ∇θLDMCD ← wtiD̂ · (sψ(xti , ti, c)− sϕ(xti , ti, c))∇θfθ(xt1 , t1, c)
//
// Cycle loss

21 Sample xϵ(ca) ∼ N (xa, σ2
minI), xϵ(cb) ∼ N (xb, σ2

minI)
22 t3 ← [ϵ(ca); ϵ(cb)], t4 ← [ϵ(cb); ϵ(ca)]
23 c3 ← [cb; ca], c4 ← [ca; cb]
24 xt3 ← [xϵ(ca);xϵ(cb)]
25 Lcycle ← dcycle(fθ(fθ(xt3 , t3, c3), t4, c4),xt3)

//
// Optimize the student

26 ∇θLtotal ← ∇θLIBCD + λDMCD∇θLDMCD + λcycle∇θLcycle
27 θ ← θ − ζθ∇θLtotal

28 θ− ← sg(µθ− + (1− µ)θ)
//
// Optimize the fake DM

29 LDSM ← DSM loss of EDM with sample fθ(xt1 , t1, c), class condition c, and fake DM ϕ
30 ϕ← ϕ− ζϕ∇ϕLDSM
31 j ← j + 1
32 until Ltotal convergence;

Output: Unified single-step model fθ for bidirectional image translation.
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B EXTENDING EDM/CD FOR THE IBCD

Model Parametrization. The EDM (Karras et al., 2022) parametrization for the student fθ in con-
sistency distillation (Song et al., 2023) is defined as follows for positive real-valued t and the neural
network Fθ:

fθ(xt, t) = cskip(t)xt + cout(t)Fθ(cin(t)xt, t
′(t)). (16)

In CD, authors choose

cskip(t) =
σ2

data

(t− ϵ)2 + σ2
data

, cout(t) =
σdata(t− ϵ)√
σ2

data + t2
, cin(t) =

1√
σ2

data + t2
, (17)

t′(t) = 250 · ln(t+ 10−44)

to satisfies the boundary condition f(xϵ, ϵ) = xϵ, and rescales the timestep.

For IBCD, we parametrize the student fθ for non-zero real-valued t and target domain condition c
as:

fθ(xt, t, c) = cskip(t, c)xt + cout(t, c)Fθ(cin(t, c)xt, t
′(t)), (18)

which reflects the necessity for cskip, cout, and cin depend on target domain condition c, ensuring
that the proper boundary conditions can be applied at t = ϵ(c) depending on the target domain
c ∈ {ca, cb} direction.

Although the student model is fully trained during the distillation process and does not theoretically
need to be compatible with the teacher model, initializing it using the teacher model makes it advan-
tageous to design the student to be as compatible as possible. We select cskip, cout, and cin according
to Eq. (19), (20), (21), ensuring continuity and compliance with the new boundary conditions while
maintaining the definitions within the target domain regions (t > 0 for c = cb, t < 0 for c = ca).

cskip(t, c) =


1+sign(t)

2
σ2

data
(t−ϵ(c))2+σ2

data
if c = cb

1+sign(−t)
2

σ2
data

(t−ϵ(c))2+σ2
data

if c = ca
(19)

cout(t, c) =


1+sign(t)

2
σdata(t−ϵ(c))√

σ2
data+t

2
+ 1−sign(t)

2 σdata if c = cb

− 1+sign(−t)
2

σdata(t−ϵ(c))√
σ2

data+t
2

+ 1−sign(−t)
2 σdata if c = ca

(20)

cin(t, c) =
1√

σ2
data + t2

(21)

We also extend the timestep rescaler as Eq. (22) to a symmetric and continuous form, ensuring
shape compatibility with the original positive-bound domain. This symmetric design reflects the
fact that the sign of the timestep separates the domains, while its absolute value represents the noise
magnitude:

t′(t) = 250 · sign(t)(ln(|t|+ 10−3)− ln(σmax + 10−44)). (22)
This approach preserves the structural integrity of the model and maintains consistent behavior
across both domains. The parametrization extension of EDM/CD, as presented here, is visually
illustrated in Fig. 5.

Non-differentiability of the ODE Path. In this paragraph, we address the behavior of IBCD at
the continuous but non-differentiable point at the center of the PF-ODE trajectory (i = 0). Despite
the introduction of this point, we show that Theorem 1 from Song et al. (2023) (its App. A.2)
remains applicable, thereby proving the validity of the consistency distillation framework. First,
the Lipschitz condition for fθ(xt, t) continues to hold. The primary distinction between IBCD and
CD occurs in the t direction, and so we focus on this aspect. The output of fθ, which predicts the
clean target domain image, remains constant along a given PF-ODE trajectory, independent of t.
As a result, the Lipschitz condition is not impacted by the non-differentiable point, as the trajectory
is continuous. Since the change in the xt direction is equivalent to that in the CD framework, the
Lipschitz continuity assumption from CD is still valid.

Next, we consider the local truncation error of the ODE solver. The non-differentiable point is ap-
propriately captured by our discretization scheme. At this point, the gradient is a combination of
gradients from both sides of the trajectory, ensuring stable numerical integration. For example, us-
ing an Euler solver in the forward direction (from domain A to domain B):
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Figure 5: Extension of EDM/CD model formulation for negative t in IBCD student model.
cskip, cout, and cin represent when c = cb (the translation direction is XA → XB).

• The interval i = [−1, 0] uses the gradient at −1 (from domain A).
• The interval i = [0, 1] uses the gradient at 0 (from domain B).

In the backward direction (from domain B to domain A):

• The interval i = [0, 1] uses the gradient at 1 (from domain B).
• The interval i = [−1, 0] uses the gradient at 0 (from domain A).

Thus, due to the properties of the consistency function and the careful treatment of the non-
differentiable point, the error bound of the consistency function remains O((∆t)p), consistent with
the original CD approach. The validity of the Lipschitz condition and the equivalence of the local
truncation error in the ODE solver ensure that the theorem holds true within the IBCD framework.

C IMPLEMENTATION DETAILS

Model Architectures. All models used in this study—the teacher ϕ, student θ, and fake DM
ψ—employed the same model architecture as in EDM/CD (Karras et al., 2022; Song et al., 2023).
The architecture configuration followed that of the LSUN-256 teacher EDM model introduced
by Song et al. (2023). However, the student model was further modified with the model parametriza-
tion described in Appendix B, while the teacher and fake DM maintained the original EDM
parametrization.

Teacher Model Training. The teacher model was trained using the EDM implementation and the
LSUN-256 model training configuration provided by Song et al. (2023). The training setup included
a log-normal schedule sampler and L2 loss, with a global batch size of 288, a learning rate of 1e-
4, a dropout rate of 0.1, and an exponential moving average (EMA) of 0.9999. Mixed precision
training was enabled, and weight decay was not applied. The teacher model was trained with class
conditions on two types of AFHQ models (cat, dog, and wild) and CelebA-HQ models (female and
male). The AFHQ and CelebA-HQ models were trained using their respective training sets from
the AFHQ (Choi et al., 2020) and CelebA-HQ (Karras, 2018) datasets. Each model was trained for
approximately 5 days, completing 800K steps on an NVIDIA A100 40GB eight-GPU setup.

Implicit Bridge Consistency Distillation. The discretization of DDIB trajectories is defined by
extending the sampling discretization of EDM to satisfy Eq. (7):

ti = σi =

{
sign(i)(σ1/ρ

max + |i|
N−1 (σ

1/ρ
min − σ

1/ρ
max))ρ (N < i < N)

0 (i = ±N)
(23)

where sign(x) =
{
+1 (x ≥ 0)

−1 (x < 0)
, σmin = 0.002, σmax = 80, σdata = 0.5, N = 40, ρ = 7.0.

For the distance function d in each loss, dIBCD and dDMCD were based on LPIPS (Zhang et al., 2018),
while dcycle used the L1 loss. The EMA parameter of the EMA model θ− was 0.95, and an additional
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EMA with a separate parameter 0.9999432189950708 was applied to the student model θ and used
during inference. The global batch size was 256, with the student learning rate of 4e-5 and the fake
DM learning rate of 1e-4. Dropout and weight decay were not used, and mixed precision learning
was employed.

The ODE solver used was the 2nd order Huen solver (Ascher & Petzold, 1998), consistent with
EDM/CD. The weight scheduler for the IBCD loss employed λ(t) = 1, while the DMCD loss used
the weight schedulerwt as suggested in Yin et al. (2024). For the three tasks, Cat↔Dog, Wild↔Dog
models were distilled using the AFHQ-256 teacher model and its corresponding training dataset.
The Male↔Female models were distilled using the CelebA-HQ-256 teacher model and its training
dataset.

The distillation process began with only the IBCD loss and transitioned to using the full loss set
once the FID (Heusel et al., 2017) evaluation metrics stabilized (i.e. transition step). Distillation was
conducted on the same NVIDIA A100 40GB eight hardware used for training the teacher model.
Additional hyperparameters for each model and configuration are detailed in Tab. 4.

Evaluation. We followed the evaluation methodology and tasks outlined in EGSDE (Zhao et al.,
2022). The publicly available evaluation code2 was used without modification. Validation sets from
the AFHQ and CelebA-HQ datasets were used as the evaluation datasets. All images in each val-
idation set were translated using the respective task-specific models. For each image pair (source
domain and translated target domain), PSNR, SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018),
and CLIPScore (Hessel et al., 2021) were computed, and the average values across all pairs were
reported.

FID (Heusel et al., 2017) was calculated using the pytorch-fid3 library to measure the distance
between the real target domain image distribution and the translated target image distribution. Fol-
lowing the methodology of Choi et al. (2020) and Zhao et al. (2022), images from the CelebA-HQ
dataset were resized and normalized before FID calculation, while images for other tasks were evalu-
ated without additional preprocessing. L2 distance measurement was not included in this evaluation.

Density-coverage (Naeem et al., 2020) was computed using prdc-cli4 between the distribution
of real target domain images and the distribution of images translated into the target domain, similar
to the FID measurement. The measurement mode was T4096 (features of the fc2 layer of the
ImageNet pre-trained VGG16 (Simonyan, 2014) model). The metric was computed for the entire
dataset at once, without using mini-batches. Unlike FID, no specific transformation was applied for
the CelebA-HQ dataset.

In the user study, twenty participants were recruited to perform a blinded, pairwise comparison be-
tween our method and each baseline. For each model and task, two identical source images were
randomly selected, and their corresponding outputs—generated by each model—were presented
side by side for evaluation. Participants were asked to make three separate selections for each com-
parison: one based on realism, one based on fidelity to the source image, and one based on overall
preference. Results are reported as the average ratio of participants who preferred our model over
each baseline for each criterion, averaged across all tasks.

Baselines. As baselines, we compare our method against several GAN-based methods, including
CycleGAN (Zhu et al., 2017b), Self-Distance (Benaim & Wolf, 2017), GcGAN (Fu et al., 2019),
LeSeSIM (Zheng et al., 2021), StarGAN v2 (Choi et al., 2020), and CUT (Park et al., 2020b). We
also benchmark against diffusion model (DM)-based methods such as ILVR (Choi et al., 2021),
SDEdit (Meng et al., 2022), EGSDE (Zhao et al., 2022), CycleDiffusion (Wu & De la Torre, 2023),
and SDDM (Sun et al., 2023). Additionally, we compare our approach with UNSB (Kim et al.,
2024a), a few-step Schrödinger bridge-based method, and the teacher DDIB (Su et al., 2023). Most
of the comparison results are sourced from Zhao et al. (2022) except for the density-coverage, while
the results for UNSB and DDIB are based on our re-implementations. Finally, we also include results
from GPT-Image-1 (OpenAI, 2025), a multi-turn image generation and editing foundation model
powered by GPT-4.1 (OpenAI, 2025), the latest iteration of OpenAI’s multimodal large language
model.

2https://github.com/ML-GSAI/EGSDE
3https://github.com/mseitzer/pytorch-fid
4https://github.com/Mahmood-Hussain/generative-evaluation-prdc
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Table 4: Specific hyperparameters employed by different models and configurations.
Model Cat↔Dog Wild↔Dog Male↔Female

Configuration IBCD IBCD† IBCD IBCD† IBCD IBCD†

λDMCD 1 0.18 0.2 0.2 0.02 0.02
λcycle 0.03 0.003 0.001 0.0003 0.00001 0.00003
g(·) 1 min(log(·) + 10)

transition step 200K 200K 200K 200k 500K 500K
total distillation step 210K 230K 210K 230K 510K 520K

Reproductions. To evaluate our method, we replicated UNSB and DDIB, two approaches that
have not been previously evaluated on our benchmark datasets. For UNSB, we used the publicly
available official code5 for both training and inference, following the default configuration for the
Horse→Zebra task and training the model for 400 epochs. During inference, we performed 5 steps.
For DDIB, we implemented the method within our framework. Specifically, DDIB was executed by
first solving the ODE backward from the source domain, then solving it forward again to the target
domain using the EDM model trained for IBCD. The ODE solver was implemented in the same
manner as the EDM sampler, utilizing the same sampling hyperparameters defined for EDM/IBCD.
This setup ensured consistency in the evaluation and allowed for a direct comparison of performance
across methods.

We also re-sampled the result from models (CUT, ILVR, SDEdit, EGSDE, CycleDiffusion) for
which the density-coverage (Naeem et al., 2020), LPIPS (Zhang et al., 2018) and CLIPScore (Hessel
et al., 2021), and user study metrics were not originally reported. These metrics were measured for
these models using the method described above, and we included results in Tab. 2 and Tab. 6. The
target models for this evaluation were limited to baseline models that met the following criteria: 1)
Open-source code and checkpoints were available. 2) FID, PSNR, and SSIM values reported by the
authors could be reproduced using the reported sampling strategy. This ensured that all metrics in
Tab. 2 and Tab. 6 were measured on consistent samples.

The results for GPT-Image-1 were obtained by providing an input image to the
gpt-4.1-2025-04-14 model via the OpenAI API, instructing it to transform the image
into the target domain using the gpt-image-1-2025-04-23 tool. The input image was
resized to 256×256 pixels, consistent with all other experiments, and the output image (originally
1024×1024) was downsampled to 256×256. The prompts used for generation are provided in the
Tab. 5. This experiment incurred a total cost of approximately $100.

D FURTHER EXPERIMENTAL RESULTS

D.1 DISTILLATION ERROR IN VANILLA IBCD

Fig. 6 illustrates the distillation error that arises when using only vanilla IBCD loss on the synthetic
toy dataset. When generating samples from pure noise to domainB (Fig. 6 (a)) or translating samples
from domain A to domain B (Fig. 6 (b)) using only IBCD loss, the translated results often fall in
the low-density region of the target distribution. These translated points primarily originate from
the source domain decision boundary, which is the boundary separating the partition in the source
domain that should be mapped to two different target domain modes. Translation errors are more
pronounced in longer neural jump paths, such as those involved in translations (i = −N + 1 →
N − 1), compared to shorter paths in generation (i = 0→ N − 1).

D.2 USER STUDY AND PERCEPTUAL METRIC EVALUATIONS

The results of the user study and perceptual metric evaluations are summarized in Tab. 6, which
complement the main quantitative comparisons presented in Tab. 2. For the user study, we report
the proportion of participants who preferred each baseline over our method (IBCD) in the pairwise
comparisons. Values below 0.5 (blue) indicate that the majority preferred our method over the cor-

5https://github.com/cyclomon/UNSB
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Table 5: Prompts used in the GPT-Image-1 translation experiment for each task. These
prompts were provided to the gpt-4.1-2025-04-14 model via the OpenAI API using the
gpt-image-1-2025-04-23 tool. Each prompt was designed to preserve pose, lighting, back-
ground, and composition while achieving realistic domain translation.
Task Prompt
Cat→Dog Transform the image of the cat into a realistic dog, preserving the same pose, lighting, back-

ground, and overall composition. Ensure the dog appears natural and lifelike, matching the fur
color, orientation, and proportions of the original cat as closely as possible. The final image
should look photorealistic and faithful to the original scene, as if the dog were actually pho-
tographed in place of the cat.

Wild→Dog Transform the image of the wild animal into a realistic dog, preserving the same pose, lighting,
background, and overall composition. Ensure the dog appears natural and lifelike, matching the
fur color, orientation, and proportions of the original animal as closely as possible. The final
image should look photorealistic and faithful to the original scene, as if the dog were actually
photographed in place of the wild animal.

Male→Female Transform the image of the man into a realistic woman, preserving the same pose, lighting,
background, and overall composition. Ensure the woman appears natural and lifelike, match-
ing the skin tone, orientation, and proportions of the original man as closely as possible. The
final image should look photorealistic and faithful to the original scene, as if the woman were
actually photographed in place of the man.

Domain A Domain BPure noise Domain B

𝒟(⋅, 𝑐!) on 𝒩 𝒩→B𝒩(𝟎, 𝜎"#$% 𝑰) 𝒟(⋅, 𝑐!) on A A→BA

(a) Generation (b) Translation

mode 1

mode 2

mean

mode 1

mode 2

mean

Figure 6: Incorrect mapping to low-density regions due to distillation error. (a) Generation and
(b) translation results using vanilla IBCD. Samples with high distillation difficulty (i.e., large dis-
tillation errors), which originate near the source domain decision boundary, tend to be mapped to
low-probability regions in the target domain.

responding baseline. When multiple variants of a baseline exist, comparisons are made against the
default version. Taken together with the results in Tab. 2, our approach demonstrates consistently
strong performance across both automated metrics and human evaluations. We note that perceptual
consistency may be further improved by replacing the current L1-based cycle loss with a perceptual
loss formulation.

D.3 EFFECT OF THE AUXILIARY LOSS WEIGHTS

Following the component ablation study of IBCD in the main text and Fig. 7, we further investigated
the influence of auxiliary loss weights on translation outcomes. Specifically, we varied the weight
of the DMCD loss λDMCD and the cycle loss λcycle in the Male→Female task (Fig. 8). During these
experiments, the distillation difficulty adaptive weighting was not applied. The results aligned with
expectations: as λDMCD increases, the realism of the translation result improved, while increasing
λcycle enhanced the faithfulness of the translation. Thus, in the realism-faithfulness trade-off curve,
the DMCD loss emphasizes realism, whereas the cycle loss emphasizes faithfulness.
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Table 6: User study and Perceptual Evaluation Results. User study 1:1 win rates: the proportion
of users preferring each baseline over our model (IBCD) in pairwise comparisons. Values below
0.5 indicate that the majority preferred our model. When two versions of a model exist, they are
compared against the default version (without †).

User Study (1:1 win rate vs. IBCD) Cat→Dog Wild→Dog Male→Female
Method NFE Reality ↑ Faithfulness ↑ Preference ↑ LPIPS ↓ CLIP ↑ LPIPS ↓ CLIP ↑ LPIPS ↓ CLIP ↑
ILVR 1000 0.25 0.49 0.25 0.454 72.65 0.486 67.22 - -
SDEdit 1000 0.38 0.73 0.42 0.438 73.55 0.465 67.81 0.290 53.50
EGSDE 1000 0.37 0.28 0.43 0.433 73.98 0.467 67.34 0.284 53.12
EGSDE† 1200 - - - 0.497 73.53 0.526 66.25 0.343 51.11
CycleDiffusion 1000 0.25 0.62 0.25 0.381 74.77 0.417 67.84 - -

DDIB∗ (Teacher) 160 0.42 0.23 0.42 0.475 73.65 0.492 67.05 0.326 56.20
IBCD (Ours) 1 compared with each baseline 0.384 74.00 0.404 66.86 0.261 56.57
IBCD† (Ours) 1 - - - 0.406 73.69 0.423 66.99 0.263 56.53
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Figure 7: Ablation study results on Cat→Dog task. The DMCD loss improves the realism of
the generated results compared to the vanilla IBCD. Additionally, the cycle translation loss and
adaptive DMCD loss enhance source fidelity (as indicated by the arrows). These findings confirm
that the components of IBCD work synergistically to achieve a better balance between realism and
faithfulness.

D.4 APPROXIMATED DISTILLATION DIFFICULTY IN IMAGE-TO-IMAGE TRANSLATION

To explore the implications of the approximated distillation difficulty for real image-
to-image translation tasks, we computed an expected approximated distillation difficulty
Et∼U [−N+1,N−2][D̂(xt, cFEMALE)] for all trajectories generated with the DDIB teacher in the
Male→Female task using the vanilla IBCD model. We then selected the trajectories with the top
10 and bottom 10 approximate distillation difficulties and performed Male→Female translation us-
ing the vanilla IBCD model for these trajectories, as shown in Fig. 9 without cherry-picking. The
results indicate that the IBCD model struggles to effectively transform source images from trajec-
tories with high approximate distillation difficulty into target images compared to those with low
approximate distillation difficulty. Specifically, the translation results within the top 10 distillation
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Figure 8: Effect of the auxiliary loss weights (λDMCD, λcycle) for the Male→Female task. In (a)
λcycle was set to 0, and in (b) λDMCD was set to 0.10. Distillation difficulty adaptive waiting was not
applied.
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Figure 9: Relationship between self-assessed approximate distillation difficulty Et[D̂(·, cFEMALE)]
and the translations performed in the Male→Female task.

difficulty groups exhibit relatively inferior image quality, highlighting the impact of distillation dif-
ficulty on translation performance.

D.5 TRAINING STABILITY

Our framework does not rely on adversarial losses, which are known to be unstable and difficult to
tune, giving it a clear advantage in training stability. To demonstrate this, we present the training
loss curves in Fig. 10. As shown in the figure, both the consistency loss and the cycle loss steadily
decrease throughout training, with a brief fluctuation only when the auxiliary losses are introduced.
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Figure 10: Visualization of the training loss curve highlighting the stability of our framework
on the Cat→Dog task. DMCD loss and cycle loss are introduced starting at 20k training steps.

Table 7: Quantitative comparison of model inference times and parameter sizes.
Method Parameters [M] NFE ↓ Time [s/img] ↓ Relative Time ↓
StarGAN v2 (Choi et al., 2020) 64.45 1 0.0052 0.43
CUT (Park et al., 2020b) 11.39 1 0.0070 0.58
UNSB (Kim et al., 2024a) 14.69 5 0.077 6.42

ILVR (Choi et al., 2021) 93.56 1000 13.40 1116.67
SDEdit (Meng et al., 2022) 93.56 1000 6.78 565.00
EGSDE (Zhao et al., 2022) 147.14 1000 15.89 1324.16
CycleDiffusion (Wu & De la Torre, 2023) 187.12 1000(+100) 26.03 2169.17

GPT-Image-1 (Foundation) (OpenAI, 2025) ≫ 1 ≫ 1 30.32 2526.67
DDIB (Teacher) (Su et al., 2023) 32.95 160 1.45 120.83
IBCD (Ours) 32.95 1 0.012 1

The DMCD loss also shows a stable plateau, as expected, since the fake score is computed by a
jointly trained fake-score model. Overall, the loss trajectories indicate that our framework trains
smoothly and remains stable throughout the process.

D.6 MODEL INFERENCE EFFICIENCY

To reflect real-world constraints such as model size and inference algorithms, we conducted an infer-
ence speed comparison experiment. Instead of relying solely on NFE comparisons, we measured the
actual inference time for a Cat→Dog task on a single NVIDIA GeForce RTX 4090 GPU (except for
GPT-Image-1) with the batch size of 1. Tab. 7 presents the average inference time per image and the
relative time for each methodology, and the number of model parameters. The results demonstrate
that our methodology is computationally efficient in real-world sampling scenarios, while also using
substantially fewer parameters than diffusion-based baseline methods.

D.7 COMPARISON WITH OT AND SB BASELINES

We additionally conduct a quantitative comparison with optimal transport (OT)– and Schrödinger
bridge (SB)–based baselines for completeness. The comparison is performed on the Cat→Dog
image-to-image translation task, following the same evaluation protocol used in the main quantita-
tive study. Specifically, we compare our method against NOT (Korotin et al., 2023), DIOTM (Choi
et al., 2025), ASBM (Gushchin et al., 2024), DSBM (Shi et al., 2023), and Eg-EOT (Mokrov et al.,
2024). Since these methods do not natively support our task, we retrained all baselines using their
highest supported resolution settings, matched to our dataset and resolution.

Tab. 8 and Fig. 11 show that IBCD achieves superior performance compared to both OT and SB
baselines. Notably, all SB/OT methods fail to scale to our higher-resolution setting under their de-
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Table 8: Quantitative comparison of unpaired image-to-image translation tasks with OT- and
SB-based baselines.

Method Parameters [M] NFE ↓ FID ↓ PSNR ↑ SSIM ↑ Density ↑ Coverage ↑
Cat→Dog

NOT (Korotin et al., 2023) 9.72 1 161.54 15.12 0.566 0.531 0.072
DIOTM (Choi et al., 2025) 39.65 1 75.70 12.03 0.363 1.215 0.590
ASBM (Gushchin et al., 2024) 79.58 4 91.40 17.71 0.463 0.871 0.478
DSBM (Shi et al., 2023) 131.02 100 100.08 21.24 0.532 0.750 0.396
Eg-EOT (Mokrov et al., 2024) 26.21 100 53.29 15.93 0.349 1.085 0.626

DDIB (Teacher) (Su et al., 2023) 32.95 160 38.91 17.58 0.588 1.528 0.934
IBCD (Ours) 32.95 1 47.44 19.50 0.701 1.412 0.940
IBCD† (Ours) 32.95 1 44.77 18.04 0.663 1.542 0.935
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Figure 11: Qualitative comparison of unpaired image-to-image translation tasks with OT- and
SB-based baselines. The numbers in parentheses represent inference NFE.

fault configurations, highlighting the curse of dimensionality inherent to high-dimensional OT and
SB formulations (with the exception of Eg-EOT, which operates in the StyleGAN2-ADA latent
space (Karras et al., 2020)). DSBM also reflects this limitation: its higher source faithfulness re-
sults from failing to produce meaningful target-domain translations at higher resolutions, leading to
minimal changes and thus significantly worse FID, Density, and Coverage metrics.
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D.8 FAILURE CASES

IBCD occasionally produces failure cases as illustrated in Fig. 12. The primary failures can be
attributed to incomplete translations (Fig. 12(a)) and incorrect cycle translations (Fig. 12(b)), which
are likely due to distillation errors and the side effects of auxiliary losses. Distillation errors from
the CD, in particular, appear to be the primary reason. The DMCD and cycle translation loss can
also contribute to these issues, with the former leading to incorrect cycle translations and the latter
to incomplete translations. Minimizing distillation errors through improved distillation methods and
advanced weighting strategies for auxiliary losses might address this issue.

D.9 BIDIRECTIONAL TRANSLATIONS

To evaluate IBCD’s bidirectional translation capabilities, we compared it to baseline methods
through two tasks: opposite translation and cycle translation. Opposite translation involves revers-
ing the main translation task (Dog→Cat, Dog→Wild, Female→Male), while cycle translation in-
volves performing the reverse task after the main translation (Cat→Dog→Cat, Wild→Dog→Wild,
Male→Female→Male). To ensure a fair comparison of bidirectional performance, we used the same
model and sampling hyperparameters for each domain pair (Cat↔Dog, Wild↔Dog, Male↔Female)
in both opposite and cycle translation tasks.

Given the limited number of models capable of bidirectional translation, we selected StarGAN
v2 (Choi et al., 2020), CycleDiffusion (Wu & De la Torre, 2023), and DDIB (teacher) (Su et al.,
2023) as baselines. We measured FID for the final target domain for the cycle translation task. It’s
worth noting that StarGAN v2’s inference process differs from its main translation task (Tab. 2) per-
formed by Zhao et al. (2022) for a better fair comparison. It inputs the same source image as both
the source and reference images, enabling it to achieve both high realism and faithfulness.

Tab. 9 and Fig. 13, 14 demonstrate that our model also excels in reverse and cycle translation tasks,
exhibiting the best performance and high efficiency. This further supports its strong bidirectional
translation capabilities.

D.10 UNPAIRED MRI CONTRAST TRANSLATION

We conducted experiments on the BraTS2021 dataset (Baid et al., 2021) to evaluate our model
on the brain MRI contrast translation task, demonstrating its applicability in the medical imaging
domain. We used T1- and T2-weighted brain MRI scans from the dataset (excluding other contrasts)
and performed unpaired translation from T1- to T2-weighted images at a resolution of 256×256.
Although the dataset provides paired images, we utilized them in an unpaired setting during training.
The dataset was split into 1,126 volumes (174,530 images) for training and 10 volumes (1,550
images) for validation. Quantitative and qualitative comparisons with existing baselines (Tab.15
and Fig.10) demonstrate the effectiveness of our method, highlighting its potential for practical
deployment in clinical workflows.

Table 10: Quantitative compar-
ison of unpaired MRI contrast
translation tasks.

compared with G.T.
Method PSNR ↑ SSIM ↑
SDEdit 29.85 0.849
EGSDE 23.34 0.842
CycleDiffusion 30.52 0.825

GPT-Image-1 (Foundation) not working
DDIB∗ (Teacher) 30.24 0.825
IBCD (Ours) 33.28 0.855

Source (T1) Reference (T2)IBCD (Ours)CycleDiffusionEGSDE

Figure 15: Qualitative comparison of unpaired MRI contrast
translation tasks.
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Figure 12: Example of failure cases, which are (a) incomplete translation and (b) incorrect cycle
translation.
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Table 9: Quantitative comparison of unpaired image-to-image translation tasks (opposite &
cycle translation). The opposition task used the same model and inference hyperparameters as the
main direction task using bi-directionality.

Method NFE ↓ FID ↓ PSNR ↑ SSIM ↑ Density ↑ Coverage ↑
Dog→Cat

StarGAN v2 (Choi et al., 2020) 1 37.73 16.02 0.399 1.336 0.778
CycleDiffusion (Wu & De la Torre, 2023) 1000(+100) 40.45 17.83 0.493 1.064 0.774
DDIB (Teacher) (Su et al., 2023) 160 30.28 17.15 0.597 2.071 0.902
IBCD (Ours) 1 28.99 19.10 0.695 1.699 0.894
IBCD† (Ours) 1 28.41 17.40 0.653 2.112 0.920

Dog→Wild

StarGAN v2 (Choi et al., 2020) 1 49.35 16.17 0.386 0.772 0.478
CycleDiffusion (Wu & De la Torre, 2023) 1000(+100) 27.01 16.99 0.421 0.816 0.752
DDIB (Teacher) (Su et al., 2023) 160 13.20 16.80 0.583 1.202 0.760
IBCD (Ours) 1 18.79 17.56 0.671 0.900 0.830
IBCD† (Ours) 1 16.67 16.22 0.646 1.058 0.814

Female→Male

StarGAN v2 (Choi et al., 2020) 1 59.56 15.75 0.465 1.145 0.587
DDIB (Teacher) (Su et al., 2023) 160 26.98 18.74 0.668 1.154 0.858
IBCD (Ours) 1 31.28 19.93 0.733 1.300 0.808
IBCD† (Ours) 1 31.49 19.51 0.726 1.311 0.809

Cat→Dog→Cat

StarGAN v2 (Choi et al., 2020) 1 30.53 16.30 0.382 1.717 0.890
CycleDiffusion (Wu & De la Torre, 2023) 1000(+100) 39.59 19.01 0.434 0.731 0.676
DDIB (Teacher) (Su et al., 2023) 160 16.56 25.88 0.804 1.330 0.990
IBCD (Ours) 1 22.42 22.35 0.767 1.322 0.992
IBCD† (Ours) 1 24.03 20.28 0.724 1.749 0.988

Wild→Dog→Wild

StarGAN v2 (Choi et al., 2020) 1 37.76 15.30 0.285 1.102 0.566
CycleDiffusion (Wu & De la Torre, 2023) 1000(+100) 19.43 16.39 0.281 0.649 0.616
DDIB (Teacher) (Su et al., 2023) 160 6.75 26.08 0.803 1.118 0.974
IBCD (Ours) 1 9.89 20.56 0.739 1.118 0.972
IBCD† (Ours) 1 10.66 18.80 0.693 1.259 0.968

Male→Female→Male

StarGAN v2 (Choi et al., 2020) 1 57.80 15.39 0.502 1.634 0.728
DDIB (Teacher) (Su et al., 2023) 160 28.29 27.70 0.853 0.821 0.993
IBCD (Ours) 1 39.84 22.22 0.790 1.341 0.979
IBCD† (Ours) 1 39.96 21.85 0.783 1.332 0.984
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Figure 13: Qualitative comparison of unpaired image-to-image translation tasks (opposite
translation). Compared to other baselines, our model achieves more realistic and source-faithful
translations in a single step. The numbers in parentheses represent inference NFE.

Cat → Dog → Cat Wild→ Dog → Wild Male → Female → Male
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Figure 14: Qualitative comparison of unpaired image-to-image translation tasks (cycle trans-
lation). Compared to other baselines, our model achieves consistent cycle translations in a single
step. The numbers in parentheses represent inference NFE.
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Figure 16: Limitations of foundational models in domain-specific translation.

D.11 LIMITATIONS OF FOUNDATIONAL MODELS IN DOMAIN-SPECIFIC TRANSLATION

The rise of foundational diffusion-based image editing methods (Parmar et al., 2023; Hertz et al.,
2023; 2022), particularly those coupled with large language models, has enabled intuitive zero-
shot multi-turn editing (OpenAI, 2025; Team, 2025). Despite their appeal, unpaired I2I translation
remains essential, especially in domains where paired data is scarce, such as medical and scientific
imaging (Kaji & Kida, 2019; Chen et al., 2023).

These tasks demand specific, accurate knowledge of both source and target domains, along with
fine-grained detail preservation and low-latency performance. Foundational models, while flexible,
lack such specialization. As shown in Fig.16, GPT-Image-1 (OpenAI, 2025) often generates outputs
that deviate significantly from the target distribution under zero-shot conditions, producing results
that may appear unrealistic, incomplete, or exaggerated. This tendency is especially pronounced
in medical scenarios like MRI translation, where the model frequently fails to produce clinically
meaningful outputs. These limitations are further supported by the quantitative results in Tab. 2 and
Tab. 15.

We do not claim our method outperforms foundational models across the board. Instead, we argue
that unpaired I2I approaches remain indispensable in scenarios where zero-shot methods fall short
due to their lack of domain-specific adaptation.

D.12 MORE QUALITATIVE RESULTS

In this section, we present additional qualitative results obtained through cycle translation
tasks (Cat→Dog→Cat, Wild→Dog→Wild, Male→Female→Male). The results of the Cat↔Dog,
Wild↔Dog, and Male↔Female model are illustrated in Fig. 17, 18, 19. These results highlight our
model’s one-way and bidirectional translation capabilities.
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Cat Dog Cat Dog Cat Dog

Figure 17: Result of the bi-directional cycle translation with a single model for the Cat↔Dog task
(IBCD†).
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Wild Dog Wild Dog Wild Dog

Figure 18: Result of the bi-directional cycle translation with a single model for the Wild↔Dog task
(IBCD†).
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Male Female Male Female Male Female

Figure 19: Result of the bi-directional cycle translation with a single model for the Male↔Female
task (IBCD†).
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