Towards Robust Zero-Shot Reinforcement Learning

Kexin Zheng'**, Lauriane Teyssier?*, Yinan Zheng?, Yu Luo®, Xianyuan Zhan?*f
1 The Chinese University of Hong Kong 2 Tsinghua University
3 Huawei Noah’s Ark Lab * Shanghai Artificial Intelligence Laboratory
115561737230@1ink. cuhk.edu.hk, zhanxianyuan@air.tsinghua.edu.cn

Abstract

The recent development of zero-shot reinforcement learning (RL) has opened
a new avenue for learning pre-trained generalist policies that can adapt to arbi-
trary new tasks in a zero-shot manner. While the popular Forward-Backward
representations (FB) and related methods have shown promise in zero-shot RL,
we empirically found that their modeling lacks expressivity and that extrapola-
tion errors caused by out-of-distribution (OOD) actions during offline learning
sometimes lead to biased representations, ultimately resulting in suboptimal per-
formance. To address these issues, we propose Behavior-REgularizEd Zero-shot
RL with Expressivity enhancement (BREEZE), an upgraded FB-based framework
that simultaneously enhances learning stability, policy extraction capability, and
representation learning quality. BREEZE introduces behavioral regularization
in zero-shot RL policy learning, transforming policy optimization into a stable
in-sample learning paradigm. Additionally, BREEZE extracts the policy using
a task-conditioned diffusion model, enabling the generation of high-quality and
multimodal action distributions in zero-shot RL settings. Moreover, BREEZE
employs expressive attention-based architectures for representation modeling to
capture the complex relationships between environmental dynamics. Extensive
experiments on ExXORL and D4RL Kitchen demonstrate that BREEZE achieves the
best or near-the-best performance while exhibiting superior robustness compared
to prior offline zero-shot RL methods. The official implementation is available
at: https://github.com/Whiterrrrr/BREEZE.

1 Introduction

Reinforcement learning (RL) has become a cornerstone of artificial intelligence, enabling trans-
formative advances in robotics [53]], autonomous systems [29]], industrial control [71]], and large
language models (LLM) [60]. However, its real-world adoption faces two persistent challenges:
the reliance on human-provided reward functions and its task-specific learning paradigm, which
limits adaptability to novel or multiple tasks. These challenges sparked growing interest in zero-shot
RL [57} 158 144, 26, 4] 1231 156, [13]], which enables learning a versatile agent through pretraining on
reward-free transitions and then zero-shot adaptation to arbitrary reward functions during inference.
This opens up new possibilities for developing general-purpose RL agents capable of generalizing
across diverse tasks in open-world scenarios.

Existing zero-shot RL approaches mainly fall into two categories: task/skill-conditioned RL [[13|
23] and dynamic representation-based methods [4), 3, 58], 26, |56} 44]]. The first category encodes
demonstrations or reward functions into embeddings as conditioning signals for policy learning.

“Equal contribution.
TCorresponding author.
*Work done during internships at Institute for Al Industry Research (AIR), Tsinghua University.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Whiterrrrr/BREEZE

This preserves the task generalization capability of policies, but often results in heavy, manually
designed pretraining without optimality guarantees. The second category of methods adopts a
more principled approach by decomposing the problem into dynamic representations that can be
recomposed for novel tasks without retraining. Among dynamic representation-based methods,
Forward-Backward representations (FB) [57,158] have recently attracted notable attention, factorizing
occupancy measures into two components: a forward representation that captures policy dynamics
and a backward representation that encodes global state information. Through offline, unsupervised
pretraining, the FB framework learns linearized representations that approximate value functions for
arbitrary tasks, holding great promise for zero-shot generalization.

However, despite the elegant theoretical framework provided by the FB representations, our empirical
studies reveal that the successor measures learned through existing FB-based methods are often
inconsistent and biased, thereby compromising the stability and overall performance (see Section 3|
for details). In this paper, we identify two causes for the shortcomings of existing FB-based methods.
First, learning complex approximators and multimodal behaviors requires highly expressive models,
which current FB methods lack in both their representations and policy. Second, the offline, unsu-
pervised pretraining stage suffers from extrapolation error due to out-of-distribution (OOD) actions,
which is a similar problem to offline RL [[17, 132} [33]], but exhibits more complex behavior. As our
results show, naively integrating value constraints can be ineffective [26], indicating a need for a
more delicate OOD regularization mechanism.

Based on the above observations, we propose Behavior-REgularizEd Zero-shot RL with Expressivity
enhancement (BREEZE), a novel FB-based framework that simultaneously enhances offline learning
stability and zero-shot generalization capability. First, we introduce a behavior-regularized reformu-
lation of FB, which mitigates extrapolation errors while preserving the fidelity of representations.
Second, we extract the policy using a task-conditioned diffusion model, enabling high-quality multi-
modal action distributions in zero-shot RL settings. Finally, we employ expressive representation
networks based on the attention architecture to capture complicated dynamics. We conducted exten-
sive experiments on the EXORL benchmark [[70] and the DARL Kitchen dataset [14], under both full
datasets and small-sample data regimes. The results demonstrate that BREEZE achieves the best or
near-the-best performance while exhibiting superior robustness.

2 Preliminary

Reward-free Markov decision process (MDP). Zero-shot RL is typically formulated as a reward-
free Markov Decision Process (MDP) [51]], defined by a tuple M = (S, A, P,), consisting of a
state space S, an action space A, a transition kernel P : S x A — A(S), and a discount factor

€ (0,1). Given an initial state-action pair (s, ap) € S X A and a policy 7 : S — A(A), we
denote Pr(+|sg, ag,) a probability and E[-|sq, ag, 7] an expectation under the state-action trajectories
(80, @0, -, St, Gt)1>0 generated by sampling s, ~ P(-|s;—1,a,—1) and a; ~ m(-|s;). The state
transition under is given by P, (ds’|s) = [P(ds'|s, a)w(dals).

Approximate dynamic programming-based RL [47] uses an action-value Q-function, or optionally a
state-value V' -function. The @Q-function and V -function for 7 starting at sg, ag under a given reward
function r : S — R are respectively defined as Q7 (so, ao) := >~ V' E[r(si4+1)|S0, a0, 7] and
V7 (s0) := Y150 Y'E[r(s¢41)]s0, 7. The goal of the zero-shot RL problem is to train a task-agnostic
policy given an offline dataset D = {s;, a;, 5,11}, generated by an unknown behavior policy 1(|s),
that can later generalize to any downstream task z defined by a reward function 7y, : S — R, i.e.
find max, E[Y 7> 0¥ eval (St4+1) |80, ao, 7], relying only on a small set of reward-labeled samples
with no further finetuning.

Forward-Backward representations (FB). FB introduces a rank-d approximation of the successor
measure, which is defined as the expected discounted occurrences of future states s, € S, after
starting from (sg, ag) under a policy =

M7 (s0,a0,S4) := ZVt Pr(sip1 € Sy | s0,a0,m) VS CS. (D
t>0
Following this definition, Q-function under policy 7 can be expressed as:
Q- (s,a) = M7™(s,a,dsy)r(s4). 2)
sy €S

Given a representation space RY, a state distribution p, a task vector = € R? and a policy =,
parameterized by z, FB expresses M ™ as the product of a forward representation F' : S x A x R% —
R? and a backward representation B : S — R<, resulting in an optimal policy 7

M™ (sg,a0,dsy) =~ F(so,a0,2) B(sy)p(dsy), m,(s):=argmaxF(s,a,2) 2z, (3)
where z is defined as z := E,.,[r(s) B(s)] from a few samples with a known reward function . The
corresponding Q-function can be obtained immediately as Q. (s,a) = F (s, a, z)Tz.

Since the successor measure M ™= satisfies a Bellman-like equation M™ = P + ~vP,_M™=, FB
derives the temporal difference (TD) objective [S0] on M ™= as:

_ _ 2
Lrs = E(s, a0,5001)~D {(F(st,at,z)TB(er) —YF(sp41,m2(s041),2) ' B(sy)) }
sy~D (4)

—QE(S,,at,s,H)ND [F(st;ataz)TB(StJrl)] s

and incorporate the following objective on F' to enforce the Bellman property on the Q-function:
Lr = E(s,,a,,5041)~D [(F(sta at,2) "2 = B(siy1) "Ep[BBT] 7'z — yF (s 41, w2 (s141), Z)TZ)Q} ©)

where B(s;11)Ep[BBT] ™!z is the implicit reward estimation and D denote the data distribution.

Recent extensions of FB incorporate additional regularization to improve learning performance.
For example, Jeen et al. [26] noted that the use of 7.(s;41) in Eq. () during offline learning
could introduce OOD extrapolation errors. To resolve this problem, they introduce additional CQL-
style [33]] regularizers on M ™= (MCFB) or ., (VCFB) in Lgg for OOD regularization (i.e., decrease
values for OOD actions and increase those for data samples).

3 Pitfalls of Exiting FB-Based Methods

FB offers an elegant theoretical foundation for zero-shot RL; however, our empirical findings
reveal that FB-based methods often produce inconsistent and biased representations in practice.
To illustrate this, we evaluate the M™=- and @),-value distributions derived from the learned F’
and B representations of the vanilla FB [58]], the more recent MCFB [26], and our method on
ExORL benchmark [70] with RND [5] datasets. For each method, we use its B representation to
derive the task vector z under default settings with a fixed number of transitions. The M "> values
are computed from episode-start state-action pairs (s, ag) ~ po and randomly sampled batch of
transitions s, ~ D, while ()-values are evaluated using policy-induced actions a ~ 7 (s). Results
across additional environments and with method VCFB [26] are provided in Appendix [D.3]

Figure [I] illustrates the value distributions from two tasks in the Walker domain. Although the
successor measure M ™= is mathematically a positive quantity representing future state occupancy,
the representations learned by existing FB-based methods fail to accurately capture this property.
These distributions exhibit two notable discrepancies: a scale mismatch characterized by enor-
mous absolute values, and the presence of a considerable number of invalid negative values. Such
inaccuracies in the F' and B representations subsequently affect downstream (-value estimates,

0. 0. 0.

> BREEZE > BREEZE > BREEZE 20009 BREEZE
2 o007 = s | Zo007 = wers 2 o0 S| Zool [= wers
d) o v [
a) a a \
30 005 30 005 EDQDS 30005
% 0.003 Tfu) 0.003 % 0.003 % 0.003 /
Q Q Q Q |
o ° ° e
Q- 0.001 a. 0.001 Q. 0.001 a 0.0011/

N i3 %o R RN -2 %o w0 o

Walker-Flip Walker-Stand Walker-Flip Walker-Stand
(a) Distribution of empirically evaluated M ™= (b) Distribution of empirically evaluated () .

Figure 1: Visualization of the empirical M™* and @ distributions during evaluation stage. We conduct
experiments on FB-based methods on two Walker tasks using ExXORL [70] RND [5] dataset. We use the learned
F, B representations to recover the task vector z and compute M™* = F'' Band Q. = F' z. Both the vanilla
FB [58]] and MCFB [26] result in a proportion of error scaling values.

creating a consistent prediction bias across the system, which is further worsened by the subop-
timal action rollout. The CQL-style regularizer in MCFB partially mitigates the issue, shifting
the distributions of M7= and (), toward more plausible ranges. However, this correction is in-
complete, and significant estimation bias persists, indicating the need for a more effective reg-
ularization strategy. In comparison, our method generates distributions for M™=- and @ .-value
that more closely match theoretical expectations, and can also result in a high-quality policy.

The challenges in estimating M™- and Q.-
B MLP-based F network B MLP-based B network
F network in BREEZE B network in BREEZE | |

value can be primarily attributed to the limited
i

~
a
o
~
a
=)

supervisory signal in the vanilla FB learning
objective (Eq. (@), which fails to constrain the
scale of the learned representations adequately.
Additionally, modeling successor measures and
zero-shot policies across all possible task vectors
z introduces substantial complexity, necessitat-
ing models with high expressive capacity. While
the marginal gains from MCFB’s regularizer
suggest its potential utility, a more effective for-
mulation appears necessary. These observations ~ (2) Impact of F" Networks (b) Impact of B Networks

are further (j‘orr.oborated by the results from our Figure 2: Investigation of the modeling architecture on
method, which integrates a refined OOD regular- the vanilla FB [38]. We utilize the peak observed in the

ization stra'tegy and employs a more CXpr es?“’e training stage of each run as a proxy for the architecture’s
model architecture. As a result, the distributions capability ceiling.

of M7= and @), values are primarily confined to

a reasonable range. Importantly, as illustrated in Figure 2] these improvements are not attributable
to increased model capacity alone: simply scaling up the original MLP-based FB networks does
not yield measurable gains. In contrast, the architectural modifications designed in this work lead
to a marked improvement in performance, underscoring the influence of model expressivity on the
effectiveness of zero-shot learning.

~
=)
=)
~
=)
S

o
a
o

Normalized Return
o
2
3

Normalized Return

600 6 10 10 600 0.1 1 5 5

4
#Number of Params (M) #Number of Params (M)

4 Behavior-Regularized Zero-Shot RL with Expressivity Enhancement

Motivated by these findings, we propose BREEZE, a framework designed to mitigate the OOD
and expressivity issues in FB-based methods. We begin by imposing a behavioral regularizer on
the offline zero-shot RL problem, followed by the transformation of the learning process into an
in-sample weighted regression paradigm, which can naturally integrate powerful generative models
to enhance policy capability. Recognizing the importance of expressivity for learning arbitrary tasks,
we describe our practical architecture for stronger representation modeling.

4.1 Behavior-regularized Optimization

The main OOD extrapolation issue in the vanilla FB learning losses £Lpp and L in Eq. @) and
Eq. (9) lies in the policy-generated actions ;1 ~ 7,(S¢4+1) in F(s441, 72 (S¢+1), 2) during offline
learning. Since 7, is trained to maximize F (s, a, z) " z, it may produce actions that appear optimal
under the learned representation but are actually OOD and overestimated, leading to extrapolation
errors. Our solution to this is to introduce two designs: 1) stabilize the F'(s;y1,7.(St4+1), z) value
estimate in the Lpp; 2) ensure that 7, is better regularized by the dataset samples during policy
optimization.

Behavior-regularized representation guidance. To stabilize the learning of representation learn-
ing, we consider a regularized version of £ in Eq. () by introducing the task-conditioned state-value
function V' with respect to policy 7, given by:

V. (8,2) := max F(s,a,2)" 2, ©)
ac
s.t. pu(als)>0

where z is the task vector and p(als) is the behavior policy in the dataset D. Compared with
the traditional formulation of the state-value function, this optimization problem aims to learn

an optimal task-conditioned V -function solely from dataset samples without explicitly estimating
w(als). It can be solved through a class of value objectives according to different regularization

formulations [67, 18} 30]. In this work, we leverage the commonly used expectile regression as in
IQL [30]:

Ly, =E(ampznz L5 (F(s,a,2) 2 = Ve (s,2))],)

where L3 (u) = |7 — I(u < 0)|u?, with 7 > 0.5 serving as the expectile parameter. By minimizing
the above equations, we can obtain a well-regularized and nearly optimal state-value function V. for
different tasks. Given the reward function r,, associated with task z, we have the following modified
policy evaluation operator 7™ given by

(TWQZ)(S, a, Z) = ES/NP(S’ls,a) [TZ (S/) + Pyvﬂ'z (S/a Z)}) 3

This formulation of 7™ implicitly introduces regularization to the (J-function. Following above, we
modified L in Eq. (EI) as following L p.reg:

£F—reg = E(s,a,s')w’D [(F(Sv a, Z)TZ - B(S,)TED[BBT]ilz - ’yVﬂ'z (Slv Z))Q} . (9)

By substituting the potentially unstable target Q-approximation F'(s;; 1,7, (S¢41),2) | 2 with a more
well-behaved state-value function V., we can greatly stabilize the learning of representation, as well
as respond to optimality demands simultaneously. In comparison with the direct constraint on unseen
value approximation, the behavioral regularization guidance ensures maximum preservation of the
representation structure, while being flexible for tuning the degree of conservatism.

Behavior-regularized policy extraction. Having introduced regularization for the value function,
we now turn to policy learning, which prior work suggests can be equally or even more critical for
final performance [43]]. A good policy should effectively leverage high-quality behavior and further
generalize near data distribution. To ensure that the policy is well regularized by the dataset samples,
we replace the policy objective in Eq. (3) with the following behavior-regularized optimization
problem:

maxEqr_(.|s) [F(s,a,z)Tz —Va.(s,2)] st /ﬂ'z(s)da =1,Vse S, Dkr(m|u) <k,

T

(10)
where the term F(s,a,2)"z — V,_(s,2) acts as an advantage function maximization, which is
equivalent to maximizing the Q-function. The KL constraint anchors 7, to the behavior policy u,
thereby preventing distributional shift in the offline setting. Given the optimal representation F' and
V., we can obtain the closed-form solution for the constrained optimization objective Eq. by
deriving the Lagrangian objective with respect to the policy and setting its derivative to zero, as

shown in Proposition |l|below:

Proposition 1. The solution to the constrained optimization problem in Eq. (I0) yields an optimal
policy of the form (See Appendix[Alfor proof):

7% (s) x p(als) exp (a - (F(s,a, Z)TZ — Vi (s, z))) , (11)
where 1/ is the Lagrangian multiplier for the KL constraint.

« acts as a temperature that controls the balance between the regularization strength of the behavioral
policy and the optimization of the value functions. This closed-form solution elegantly combines
the distribution of the behavior policy with the optimal value functions, encouraging the policy to
favor high-advantage actions while ensuring all actions remain within the support of the dataset, thus
balancing performance with OOD avoidance. With this stable guarantee, we now aim to enhance the
policy generalization capability in the next section.

4.2 Policy Extraction via Task-Conditioned Diffusion Model

To compute the solution of the weighted behavior cloning objective in Eq. (TI) in practice, a key
challenge arises: how to efficiently model and sample from potentially highly complex and diverse
distributions distilled from a re-weighted behavior policy?

Direct weighted behavior cloning with a Gaussian policy often fails to capture the complex, multi-
modal policy distributions [62, 20l [7]], which is a demand for arbitrary task learning. This motivates the
use of diffusion models [48, 22| [37]], known for their capacity to learn complex distributions through

iterative denoising. Rather than relying on guidance-based techniques that introduce a separate,
time-dependent term to steer the sampling process, we draw inspiration from recent advances in
weighted regression for diffusion models [[7, 20,27, [72]]. Building on the theoretical foundation of
prior work [72]], we formalize in Proposition 2Jhow the optimal policy 7} can be extracted using a
diffusion model trained with a weighted regression objective:

Proposition 2 (Task-conditioned diffusion policy extraction via weighted regression). The extraction
of optimal policy 7} in Eq. (|7_7|) can be achieved by (i) minimizing the weighted regression loss
defined as:

min By ((0,7)) e~ A (0,1),(5,0)~D {eXP (a (F(s,a,2) 2 = Vi (s, Z))) le = €0,2(ar, s, 2,)I[3],
(12)
with expectations taken over t ~ U([0,T)), € ~ N(0,I), and (s,a) ~ D, where a; = aya + o€
follows the forward process N (at|aza, o 1) parameterized by noise schedules oy, oy and z ~ R?

denotes the corresponding task; and (ii) sampling from w7 by solving the corresponding diffusion
ODEs/SDEs with the learned g . (See Appendix El for the detailed proof.)

With the above objective, we can avoid the need for learning the additional time-dependent guidance
term and thereby reduce the complexity, while getting a stable policy.

For action selection, we employ a rejection sampling mechanism to boost policy performance.
Specifically, we first sample K candidate actions {a"),...,a!)} ~ 7_(s) through the policy
rollout. We then evaluate each candidate using the Q-function (approximated by F(s, a, z) " z) and
select the action with the highest value:

a* £ arg (s,a,2)" 2. (13)

~—

max F
ac{aM,...,aE)~m.(s)}

This two-stage approach ensures the policy balances both conservatism and optimism. The diffusion
model generates diverse, in-distribution candidates, while the selection step identifies the action with
the highest expected return. This combination of expressive generative modeling and value-based
selection is crucial for achieving robust, high-performance zero-shot generalization.

4.3 Expressivity Enhancement for Representation Modeling

The effectiveness of any policy—particularly a highly expressive diffusion policy—in leveraging
learned action weights hinges on accurate value estimation. Biased value estimates can degrade policy
learning to simple imitation, failing to redistribute probability mass toward superior actions. To fully
exploit the representational capacity of our diffusion policy, the underlying value representations
must precisely capture complex task and dynamic relationships. We thus introduce enhanced network
architectures for the forward (£") and backward (B) representations.

As shown in Section 3] we empirically iden- 5)
tify a pair of attention-based architectures that

improve zero-shot performance over the origi-

nal FB implementations. Below, we detail the
design of our networks, illustrated in Figure 3] FFN
Forward Network. The forward network :

encodes state-task and state-action pairs us- SeIFATIN wutieaonTT (1]
ing two separate linear encoders, following n n 2

xN Transformer

Blocks

Layer norm

Touati et al. Touati et al. [38]]. The state-task

encoder captures task-conditioned dynamics, Eramn AR Encoe:
while the state-action encoder extracts agent ' '
behavior patterns. These two feature sets cor- [E E]
respond to semantically dlstlngt concepts in Figure 3: Architecture of BREEZE
the MDP. To accurately approximate the mea-
sure M (s, a, s, z) in Eq.[3] the representation F' must integrate information from both behavioral
and task contexts, capturing their interdependencies effectively. We therefore model the two encoded
features as a length-2 embedding sequence and process them through self-attention blocks. This
allows bidirectional feature refinement between task conditions and agent behaviors. The resulting
representation is projected onto a d-dimensional space via linear layers.

|

Table 1: IQM results on EXORL benchmark. We report the best overall performance when all tasks perform
well. Each value is averaged over 10 rollouts on 5 random seeds.

Dataset Domain ‘ SF-LAP FB VCFB MCFB HILP BREEZE
Walker 516 £+ 97 661 £ 10 653 £ 22 659 £ 51 665 £ 33 693 &+ 16

RND Jaco 18 £ 18 32+ 23 46 £ 35 41 + 34 52 + 21 84 £ 14
Quadruped | 330 &£ 165 671 £ 14 609 + 29 684 £ 18 674 £ 28 725 + 23

Walker 324 + 24 517 £ 99 487 £ 75 578 £ 35 643 £+ 22 637 + 21

APS Jaco 39+ 26 22+ 14 20+ 18 22+3 84 £ 16 132 £ 16
Quadruped | 498 + 160 668 £ 29 664 £+ 3 659 £ 50 679 £ 14 698 £ 24

Walker 382 + 129 650 + 19 611 +£94 602+ 112 715 £+ 31 663 + 19

PROTO Jaco 15+ 14 21 + 26 13 +£12 20 + 21 44 + 19 74 £+ 26
Quadruped 199 £ 10 222 +£107 185 +£72 2194135 216 £ 54 389 444

Walker 239 £ 79 338 £ 74 268 £ 67 268 + 97 461 £ 64 463 £ 42

DIAYN Jaco 32+ 26 22+6 24+3 15+1 52+ 7 78 £ 11
Quadruped | 207 + 168 562 £ 23 511 £+ 37 643 + 14 670 + 4 666 + 2

Table 2: IQM results with 100k-dataset. Experiments on randomly sampled g

100k-transition data from each dataset on the ExXORL benchmark g
Dataset ~ Domain | FB VCFB MCFB BREEZE (ours) ©°°
el
Walker 264 + 33 350 + 29 287 + 48 525 + 13 a0
RND T
Jaco T+5 9+2 1347 36+5 £ 5.
Quadruped | 176 + 123 233 4 52 123 + 61 474 + 21 2
0 SF-LAP HILP BREEZE
Walker 370 + 66 416 + 10 389 4+ 77 539 + 15 Kltchen Partial
APS
Jaco 21+ 17 14413 29 + 27 38+ 9 80
c
Quadruped | 340 =+ 29 351 4 57 318 + 122 556 =+ 52 2 0.
(]
o
Walker 415 £ 19 513 4 31 463 + 11 553 + 18 °
PROTO & 400
Jaco 16 + 2 18 + 12 1247 29 4+ 12 =
£
Quadruped | 198 + 111 106 4103 240 + 134 181 + 60 529
=2
‘Walker 202 + 94 210 £+ 81 196 + 26 330 £ 43 O sk.Lap HILP BREEZE
DIAYN Jaco 17+ 11 18+5 20 + 26 22415 . K'tChen M'Xed
Figure 4: Normalized scores
Quadruped 295 + 46 288 + 48 286 + 34 446 + 78 on Kitchen environment

Backward Network. As defined in Eq. 3] the backward representation B encodes state-level
structural information, serving as a global embedding of the environment. Intuitively, B should
employ a more complex architecture, maintaining orthogonality and enforcing F' alignment. We
equip B with a stack of standard transformer-based networks with multi-head attention. The final
output is projected onto a d-dimensional space, consistent with the forward network.

These architecturally enhanced representations enable BREEZE to model complex relationships more
accurately, leading to improved value estimates and policy performance. Further implementation
details are provided in Appendix B4}

5 Experiments

We conduct extensive evaluations of BREEZE against previous offline zero-shot RL algorithms across
various challenging domains with distinct tasks. We also present the ablations on component choices
and hyperparameters.

Environmental setup. Our main experiments are conducted on the ExXORL benchmark [70],
which provides a variety of datasets collected by several unsupervised RL algorithms [34]. We
select datasets collected by 4 algorithms: RND [5], APS [38], DIAYN [11], and PROTO [69]. The
experiments span 3 domains and 12 tasks (Walker: Stand, Walk, Run, Flip; Jaco: Reach Top/Bottom
Left/Right; Quadruped: Stand, Walk, Run, Jump), bringing the total to 48 state-based complex
tasks for performance calculation. In addition, we consider four challenging multi-stage tasks in
the D4RL [[14] Franka Kitchen domain [[19]] with two datasets (mixed and partial), which require
long-horizon sequential manipulation on 4 subtasks. The overall setup involves 2 locomotion domains
and 2 manipulation (goal-reaching) domains. For all goal-conditioned domains, we use the backward
representation to calculate the goal features as the task vector z.

Baselines. We only consider offline algorithms that could perform a zero-shot policy generalization
for our evaluation. Our baselines include: 1) SF-LAP [3.4]]: successor feature-based method with
basic features to be Laplacian Eigenfunction (LAP) [64], 2) vanilla FB [57], 3) VCFB and MCFB [26]:
FB-based offline algorithms with CQL-style regularizer [33]] on successor measure M ™ and ()-value
separately for OOD issue avoidance, 4) HILP [44]: a state-based representation modeling algorithm
keeping distance-preserving temporal structures in latent space having zero-shot capability.

Evaluation. Our experiments are designed to evaluate two key aspects: zero-shot performance
and robustness. To assess the overall zero-shot capability, we experiment on the full transitions of
each dataset on ExXORL and D4RL Kitchen. For robustness, we first present performance curves
across training time to demonstrate learning stability and then conduct experiments on a uniformly
subsampled 100,000 transitions to examine performance in a limited and low-quality data coverage
scenario, following the evaluation process of Jeen et al. [26]. We record the Interquartile Mean
(IQM), a robust metric that reduces the influence of outliers. We evaluate the checkpoints every
10,000 updates with 10 rollouts for each experiment. On Kitchen, we multiply the returns by 25
for normalization, following Park et al. [44]]. Further implementation and experimental details are
provided in Appendix

5.1 Experimental Results
We analyze the findings of our experiments through the following key questions:

* Does BREEZE possess zero-shot capability for novel tasks? Following previous studies [1} 26]],
we record the highest aggregated mean performance across random seeds in the offline pretrain
stage. Table[I]reports this score across all tasks on each domain of EXORL, averaged on 5 random
seeds, with standard deviations. BREEZE achieves the best or near-best returns in most domains,
demonstrating superior zero-shot generalization capability. Moreover, BREEZE can enhance
vanilla FB’s generalization capability in long-horizon tasks. As shown in Figure] we draw the
box with the performance reported in the previous study [44], and record BREEZE’s top averaged
returns across 4 random seeds. While vanilla FB struggles in these long-horizon tasks, BREEZE
achieves significantly higher performance, suggesting its ability to better leverage the dataset for
complex sequential manipulation.

More results are provided in Appendix[D.2]

* How does BREEZE quantitatively compare to baselines in terms of stability and convergence
speed? We provide the learning curves in RND [5]] datasets as Figure[5] In locomotion domains
(i.e., Quadruped and Walker), BREEZE converges faster to higher performance, with smoother
curves and lower variance (as shown by the small shaded area). In the manipulation domain (i.e.,
Jaco), BREEZE substantially outperforms all baselines with a higher learning speed. Overall,
BREEZE demonstrates faster convergence and enhanced stability across both locomotion and
manipulation scenarios.

* How does BREEZE perform facing different quality, diversity of datasets? ~ Table[2]shows results
on 100,000-transition subsets of ExORL datasets. BREEZE maintains a pronounced advantage
over FB-based baselines in this small-sample regime. Compared to explicit constraint methods
(MCFB/VCEFB), these results highlight the importance of behavior alignment across different data
regimes. BREEZE also exhibits superior stability, as shown in Figure [f]

Refer to Appendix for more learning curves.

quadruped-rnd jump stand

Normalized Return

Normalized Return

1000

04 06

Steps

08 10

le6

Normalized Return

I

B mcfb s vcfb B hilp N BREEZE(Ours)

Figure 5: Learning Curves on ExXORL RND. The solid lines represent the average return over 5 random
seeds, while the shaded area denotes the standard deviation.

c walker-aps flip run stand walk

> 250 800

2 500 400 800

£ 400, 300 200 600 o

8 300 200 150 400

E 200 100 400

g 100 100 50 200 o

S o o o o

=2 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6 Steps 1e6 Steps 1e6 Steps 1e6 Steps 1e6

. fb B mcfb m vcfb N BREEZE(Ours)

Figure 6: Learning Curves on 100k-subsample transitions on ExXORL APS Walker domain. The solid
lines represent the average return over 3 random seeds, while the shaded area denotes the standard deviation.

Quadruped RND

2 Quadruped RND 278

Dataset \ w/o FB Enhancement w/o Diffusion = BREEZE g g

- o
Walker-RND 646+18 707+13 693 & 5 700
Jaco-RND 80424 62+7 84 o 8
Quadruped-RND 685413 530+£33 725 % 2

= 650

Walker-APS 614148 587+53 637 § 650 2
Jaco-APS 82+13 45450 132 z 089 09 07 05
Quadruped-APS 655420 568+£19 698 001 005 008 01 05 Expectile

Guidance Weight

Figure 8: Ablation
on the expectile fac-
tor.

Table 3: Ablation on necessity of FB enhancement and

Figure 7: Ablation
diffusion policy (3 seeds).

on the temperature.

5.2 Ablation Studies

Hyperparameter choices. We ablate two key hyperparameters in our behavior-constrained algo-
rithm: the expectile value 7 and the temperature cv. As shown in Figure[7 and Figure 8] (Quadruped
domain, RND dataset, 3 random seeds), performance improves near monotonically with 7 and peaks
at a = 0.05, and similarly to other domains. This indicates that, while in-sample conservatism is
crucial, the algorithm benefits from more aggressive, value-weighted optimization. Consequently,
we select 7 = 0.99 and o = 0.05 as defaults in ExORL, optimally balancing conservatism with
performance for downstream tasks.

Necessity of each component. We ablate our two core innovations—an enhanced representation
model and a diffusion policy—to assess their necessity in RND and APS datasets. BREEZE is
ablated using: a gaussian policy variant (w/o Diffusion) and the baseline architecture variant (w/o
FB Enhancement). We process transitions with data normalization for the diffusion policy, as in a
commonly used preprocessing step in previous diffusion-based methods. We cancel this process and
return to the default policy setting to have a reasonable comparison of the components’ contributions.
As shown in Table 3] each component somehow individually slightly boosts performance, but their
synergy creates a leap in zero-shot capability. This demonstrates a critical interdependence: the
design of BREEZE is a logical combination to handle the system issue.

6 Related Works

Unsupervised zero-shot RL. Recent advancements in unsupervised zero-shot RL [34] 144} [13]]
mainly build upon the utilization of successor representation (SR) [[10], with two main branches:
successor feature (SF) [3} 4] and forward-backward representation (FB) [[57, 58]. Both approaches
require decomposing and linearizing reward-aware dynamics to enable zero-shot inference for
arbitrary downstream rewards. Other approaches relax the linearity assumption by modeling SR as
full distributions using generative models [25} 55,163} [12]]. Among all, FB has emerged as a pivotal
framework, factorizing successor measures into forward and backward components and avoiding the
potential collapse issue in SF at the same time. Extensions like MCFB/VCFB [26] build on offline RL,
enforcing explicit value constraints to mitigate the over-estimation issues that arise from updating on
OOD rollouts. FB-CPR [56] introduces a regularization of the -estimation by imitating pre-collected
datasets in an online setting. FB-AWARE [6] introduces an autoregressive mechanism to handle
the over-linearization problem in vanilla FB. Unlike SR-based approaches, HILP [44] structures the
latent space so that distances correspond to transition times between states, enabling hierarchical,
goal-conditioned, and zero-shot policy learning. Meanwhile, functional-encoder methods [[13} 23]
directly encode task information by pretraining on manually designed reward functions, but are
constrained by the need for extensive reward engineering and fine-tuning.

Offline RL. Numerous studies address offline RL, in which learning is restricted to a fixed dataset
without online interaction, leading to a distributional shift. The earliest approaches use policy
constraints, enforcing the learned policy to stay close to the behavior policy [[L7,[32] 15} 35]] or the
distribution coverage to stay near the dataset 36} 8]]. Another established line of work employs value
regularization, which directly penalizes the value estimates of OOD actions [33| [31} 142l |68l |66]].
Instead of an explicit constraint, in-sample learning methods [30, 67, 165, |61]] improve stability by
learning values and policies only from state-action pairs within the dataset.

Moving beyond conventional Gaussian policies, recent studies have highlighted the importance of
modeling multimodal action distributions [62, |20, [7]. Diffusion models [48} 22, |37]], known for
their strong multi-modal modeling capability, have been well studied in imitation and trajectory
modeling [24} 73} 9} 141} 52]], and have recently been integrated into offline RL frameworks. Some
approaches use the value function as energy guidance for sampling [39,40]. Other works, such as
SfBC [7]], IDQL [20], and EDP [27]], extract a diffusion policy via weighted regression under the
in-sample learning framework.

7 Conclusion

In this work, we present BREEZE, a novel framework that mitigates the improper scaling issue in
existing FB-based zero-shot RL methods. Specifically, BREEZE tackles two critical limitations:
offline extrapolation errors and constrained expressivity. Our solution integrates behavior-regularized
value estimation with a task-conditioned diffusion policy, enabling stable in-sample learning while
capturing complex, multimodal action distributions. Coupled with expressive attention-based repre-
sentations, BREEZE more accurately models dynamics and value functions. Extensive experiments
demonstrate that BREEZE consistently outperforms existing methods across various benchmarks,
underscoring the importance of calibrated regularization and sufficient model capacity for zero-shot
generalization. While BREEZE demonstrates improved robustness, its primary limitation is the in-
creased computational cost from diffusion-based sampling, which is a common trade-off for utilizing
high-performance generative policies. Further discussion is provided in Appendix

10

Acknowledgment

This work is supported by the Wuxi Research Institute of Applied Technologies, Tsinghua University,
under Grant 20242001120, and funded by Horizon Robotics, Asialnfo, and the Xiongan Al Institute.

References

[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. Advances in neural
information processing systems, 2021.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[3] André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, David Silver, and
Hado van Hasselt. Successor features for transfer in reinforcement learning. In Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems, 2017.

[4] Diana Borsa, André Barreto, John Quan, Daniel Jaymin Mankowitz, Rémi Munos, H. V. Hasselt,
David Silver, and Tom Schaul. Universal successor features approximators. In The Seventh
International Conference on Learning Representations, 2019.

[5] Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random
network distillation. ArXiv, abs/1810.12894, 2018.

[6] Edoardo Cetin, Ahmed Touati, and Yann Ollivier. Finer behavioral foundation models
via auto-regressive features and advantage weighting. Reinforcement Learning Conference,
abs/2412.04368, 2025.

[7] Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. In The Eleventh International Conference on
Learning Representations, 2023.

[8] Peng Cheng, Xianyuan Zhan, Zhihao Wu, Wenjia Zhang, Shoucheng Song, Han Wang, Youfang
Lin, and Li Jiang. Look beneath the surface: Exploiting fundamental symmetry for sample-
efficient offline rl. In Advances in Neural Information Processing Systems, 2023.

[9] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and
Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Proceedings
of Robotics: Science and Systems (RSS), 2023.

[10] Peter Dayan. Improving generalization for temporal difference learning: The successor repre-
sentation. Neural computation, 5(4):613—624, 1993.

[11] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In The Seventh International Conference on
Learning Representations, 2019.

[12] Jesse Farebrother, Matteo Pirotta, Andrea Tirinzoni, Rémi Munos, Alessandro Lazaric, and
Ahmed Touati. Temporal difference flows. In International Conference on Machine Learning,
2025.

[13] Kevin Frans, Seohong Park, Pieter Abbeel, and Sergey Levine. Unsupervised zero-shot rein-
forcement learning via functional reward encodings. In Proceedings of the 41st International
Conference on Machine Learning, 2024.

[14] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning, 2021.

[15] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132-20145, 2021.

11

[16] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International conference on machine learning. PMLR, 2018.

[17] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International Conference on Machine Learning, 2018.

[18] Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme g-learning: Maxent
rl without entropy. arXiv preprint arXiv:2301.02328, 2023.

[19] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long horizon tasks via imitation and reinforcement learning. Conference on
Robot Learning (CoRL), 2019.

[20] Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey
Levine. Idql: Implicit g-learning as an actor-critic method with diffusion policies, 2023.

[21] Longxiang He, Li Shen, Junbo Tan, and Xueqian Wang. Alignigl: Policy alignment in implicit
g-learning through constrained optimization, 2024.

[22] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Proceedings of the 34th International Conference on Neural Information Processing Systems,
2020.

[23] Tyler Ingebrand, Amy Zhang, and Ufuk Topcu. Zero-shot reinforcement learning via function
encoders. In Proceedings of the 41st International Conference on Machine Learning. PMLR,
2024.

[24] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In Proceedings of the 39th International Conference on Machine
Learning, Proceedings of Machine Learning Research.

[25] Michael Janner, Igor Mordatch, and Sergey Levine. Gamma-models: generative temporal
difference learning for infinite-horizon prediction. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, 2020.

[26] Scott Jeen, Tom Bewley, and Jonathan M. Cullen. Zero-shot reinforcement learning from low
quality data. In Advances in Neural Information Processing Systems, 2024.

[27] Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies
for offline reinforcement learning. In Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, 2023.

[28] Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models.
In Annual Conference on Neural Information Processing Systems, 2021.

[29] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey.
IEEFE Transactions on Intelligent Transportation Systems, 23(6):4909-4926, 2022. doi: 10.
1109/TITS.2021.3054625.

[30] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
g-learning. International Conference on Learning Representations, 2021.

[31] Ilya Kostrikov, Jonathan Tompson, Rob Fergus, and Ofir Nachum. Offline reinforcement
learning with fisher divergence critic regularization. In Proceedings of the 39th International
Conference on Machine Learning, Proceedings of Machine Learning Research, 2021.

[32] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
g-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems, 2019.

[33] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for

offline reinforcement learning. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, 2020.

12

[34] Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang,
Lerrel Pinto, and Pieter Abbeel. URLB: unsupervised reinforcement learning benchmark. In

Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks
1,2021.

[35] Jianxiong Li, Xiao Hu, Haoran Xu, Jingjing Liu, Xianyuan Zhan, and Ya-Qin Zhang. Proto:
Iterative policy regularized offline-to-online reinforcement learning, 2023.

[36] Jianxiong Li, Xianyuan Zhan, Haoran Xu, Xiangyu Zhu, Jingjing Liu, and Ya-Qin Zhang.
When data geometry meets deep function: Generalizing offline reinforcement learning. In
International Conference on Learning Representations, 2023.

[37] Sungbin Lim, Eunbi Yoon, Taechyun Byun, Taewon Kang, Seungwoo Kim, Kyungjae Lee, and
Sungjoon Choi. Score-based generative modeling through stochastic evolution equations in
hilbert spaces. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, 2023.

[38] Hao Liu and P. Abbeel. Aps: Active pretraining with successor features. In International
Conference on Machine Learning, 2021.

[39] Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive
energy prediction for exact energy-guided diffusion sampling in offline reinforcement learning.
In Proceedings of the 40th International Conference on Machine Learning. JMLR.org, 2023.

[40] Liyuan Mao, Haoran Xu, Weinan Zhang, Xianyuan Zhan, and Amy Zhang. Diffusion-dice: In-
sample diffusion guidance for offline reinforcement learning. In Advances in Neural Information
Processing Systems, 2024.

[41] FeiNi, Jianye Hao, Yao Mu, Yifu Yuan, Yan Zheng, Bin Wang, and Zhixuan Liang. Metadiffuser:
Diffusion model as conditional planner for offline meta-rl. In International Conference on
Machine Learning, Proceedings of Machine Learning Research, 2023.

[42] Haoyi Niu, Shubham Sharma, Yiwen Qiu, Ming Li, Guyue Zhou, Jianming HU, and Xianyuan
Zhan. When to trust your simulator: Dynamics-aware hybrid offline-and-online reinforcement
learning. In Advances in Neural Information Processing Systems, 2022.

[43] Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main
bottleneck in offline r1? Advances in Neural Information Processing Systems, 2024.

[44] Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation policies with hilbert representa-
tions. In International Conference on Machine Learning. PMLR, 2024.

[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: an imperative style,
high-performance deep learning library. In Proceedings of the 33rd International Conference
on Neural Information Processing Systems, 2019.

[46] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film:
Visual reasoning with a general conditioning layer. In Proceedings of the AAAI conference on
artificial intelligence, 2018.

[47] Warren B Powell. Approximate Dynamic Programming: Solving the curses of dimensionality,
volume 703. John Wiley & Sons, 2007.

[48] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium thermodynamics. In Proceedings of the 32nd
International Conference on International Conference on Machine Learning, 2015.

[49] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2021.

13

[50] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3(1):9-44, 1988.

[51] R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction. IEEE Transactions on
Neural Networks, 9(5):1054—-1054, 1998. doi: 10.1109/TNN.1998.712192.

[52] Tianyi Tan, Yinan Zheng, Ruiming Liang, Zexu Wang, Kexin Zheng, Jinliang Zheng, Jianxiong
Li, Xianyuan Zhan, and Jingjing Liu. Flow matching-based autonomous driving planning with
advanced interactive behavior modeling. arXiv preprint arXiv:2510.11083, 2025.

[53] Chen Tang, Ben Abbatematteo, Jiaheng Hu, Rohan Chandra, Roberto Martin-Martin, and
Peter Stone. Deep reinforcement learning for robotics: a survey of real-world successes. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2025.

[54] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin
Riedmiller. Deepmind control suite, 2018.

[55] Shantanu Thakoor, Mark Rowland, Diana Borsa, Will Dabney, Rémi Munos, and André
Barreto. Generalised policy improvement with geometric policy composition. In International
Conference on Machine Learning, 2022.

[56] Andrea Tirinzoni, Ahmed Touati, Jesse Farebrother, Mateusz Guzek, Anssi Kanervisto,
Yingchen Xu, Alessandro Lazaric, and Matteo Pirotta. Zero-shot whole-body humanoid control
via behavioral foundation models. In International Conference on Representation Learning,
2025.

[57] Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. In
Proceedings of the 35th International Conference on Neural Information Processing Systems,
2021.

[58] Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist?
In The Eleventh International Conference on Learning Representations, 2023.

[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, 2017.

[60] Shuhe Wang, Shengyu Zhang, Jie Zhang, Runyi Hu, Xiaoya Li, Tianwei Zhang, Jiwei Li, Fei
Wu, Guoyin Wang, and Eduard Hovy. Reinforcement learning enhanced llms: A survey, 2025.

[61] Xiangsen Wang, Haoran Xu, Yinan Zheng, and Xianyuan Zhan. Offline multi-agent rein-
forcement learning with implicit global-to-local value regularization. In Advances in Neural
Information Processing Systems, 2023.

[62] Zhendong Wang, Jonathan J. Hunt, and Mingyuan Zhou. Diffusion policies as an expressive
policy class for offline reinforcement learning. In The Eleventh International Conference on
Learning Representations, 2023.

[63] Harley Wiltzer, Jesse Farebrother, Arthur Gretton, Yunhao Tang, André Barreto, Will Dabney,
Marc G. Bellemare, and Mark Rowland. A distributional analogue to the successor representa-
tion. In Proceedings of the 41st International Conference on Machine Learning, 2024.

[64] Yifan Wu, George Tucker, and Ofir Nachum. The laplacian in rl: Learning representations with
efficient approximations. In The Seventh International Conference on Learning Representations,
2019.

[65] Haoran Xu, Li Jiang, Jianxiong Li, and Xianyuan Zhan. A policy-guided imitation approach for
offline reinforcement learning. In Advances in Neural Information Processing Systems, 2022.

[66] Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized g-learning for safe offline
reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

14

[67] Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Chan, and Xianyuan
Zhan. Offline rl with no ood actions: In-sample learning via implicit value regularization. In
International Conference on Learning Representations, 2023.

[68] Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, and Lei Han. Rorl:
Robust offline reinforcement learning via conservative smoothing. In Advances in neural
information processing systems, 2022.

[69] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning with
prototypical representations. In International Conference on Machine Learning, 2021.

[70] Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro
Lazaric, and Lerrel Pinto. Don’t change the algorithm, change the data: Exploratory data for
offline reinforcement learning, 2022.

[71] Xianyuan Zhan, Haoran Xu, Yue Zhang, Xiangyu Zhu, Honglei Yin, and Yu Zheng. Deepther-
mal: Combustion optimization for thermal power generating units using offline reinforcement
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

[72] Yinan Zheng, Jianxiong Li, Dongjie Yu, Yujie Yang, Shengbo Eben Li, Xianyuan Zhan, and
Jingjing Liu. Safe offline reinforcement learning with feasibility-guided diffusion model. In
The Twelfth International Conference on Learning Representations, 2024.

[73] Yinan Zheng, Ruiming Liang, Kexin ZHENG, Jinliang Zheng, Liyuan Mao, Jianxiong Li,
Weihao Gu, Rui Ai, Shengbo Eben Li, Xianyuan Zhan, and Jingjing Liu. Diffusion-based
planning for autonomous driving with flexible guidance. In The Thirteenth International
Conference on Learning Representations, 2025.

15

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, the paper discusses its limitations in Appendix [E] including the high
computational demand.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

16

Answer: [Yes]

Justification: Yes, the paper provides the full set of assumptions and complete proofs for all
theorems in the appendix [A]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, the paper fully discloses all information needed to reproduce the main
experimental results. Pseudocode, all experimental settings, hyperparameters, and baseline
details are included in the appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

17

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, the code will be made available after the open-source approval process is
completed.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, all hyperparameters and experimental setup details necessary to under-
stand the results are provided in the appendix [B]

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, for all algorithms, several random seeds are used. All results are presented
as mean =+ standard deviation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, the Appendix [C|and [E] provide detailed information about the specific
computational devices used for the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We make sure to preserve anonymity.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, the main paper discusses both potential positive societal impacts and
limitations of the work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

19

https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all sources of data and code are properly credited in the appendix [B] with
licenses and terms of use clearly indicated.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

20

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:|[NA|
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

21

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

22

A Theoretical Proofs

A1 Proof of Proposition 1]
Proposition 1. The closed-form optimal policy for Eq. follows the form:

73 (s) o< p(als) exp (o (F(s,a,2) 2z — Vr_(s,2))), (14)

where i denotes the behavior distribution of the dataset.

Proof. Construct the Lagrangian with dual variables A\; and A, for the equality and KL-divergence
constraints, respectively:

E(’]TZ,)\1,)\2) = Ea,\,ﬂz [F(S, a, Z)Tz - Vﬂ-z (S, Z)] 7)\1 (/ 7rz(a|s) da —].) 7/\2 (DKL(’/TZ”,U,) — 6) .
15)
Taking the functional derivative of £ with respect to 7, (a|s) and setting it to zero yields:

oL
or,

= F(s,a,2) 2 — Vr.(5,2) — A2 (log 7. (a|s) — log p(als) + 1) — Ay = 0. (16)

Solving above for 7, and absorbing constant terms into the normalization factor Z(s, z) gives:

7:(als) = gg?sz)) exp (- (F(s,a,2) 2 — Vi (s,2))). (17)

where o = 1/, and the partition function is defined as:

Z(s,z) = /,u(a|s) exp (a- (F(s,a,2) "z — Vx_(s,2))) da, (18)
This ensures the policy is properly normalized. The proof is completed. [

A2 Proof of Proposition 2]

We begin by conducting a theoretical review of diffusion models, and then demonstrate how to derive
the optimal policy through task-conditioned weighted regression.

Diffusion (probabilistic) models. Diffusion models [48} 22, |37] are powerful generative models
designed to learn and replicate complex distributions. Given an N-sample dataset D = {z}} , from
an unknown distribution ¢(x), diffusion models can accurately approximate ¢(z() and generate new
samples from the approximation by the following two processes:

* Forward process. The forward process gradually adds Gaussian noise on sample =y from time 0
to x over T' timesteps, with transformation distribution follows:

qro(ze|ro) = N(w¢|apao, o7 1), (19)

where o and o are predefined noise schedules ensuring g7 (x7|70) ~ qr(z1) ~ N (27)|0,521)
for some ¢ > 0 that is independent of .

* Backward process. Starting from z7 ~ N (2|0, 5%1), diffusion models reconstruct the original
data x¢ by solving diffusion ODE/SDE [49] from T to O:

(Diffusion ODE) dx; = | f(t)xs — %gQ (t)V 4, log g ()| dt, (20)
(Diffusion SDE) dzy = [f(t)z; — g*(t)Va, log qi(2)] dt + g(t)di, (1)

2
where f(t) = H8ar g2() = 490 _ 9dlosos ;2 [AG) and & is a standard Wiener process when

time flows backwards from 7" to O.

23

Diffusion models train a neural network eg(z;, t) parameterized by 6 with the following objective [22]
37:
minEy, i v(0,1)), e~ (0,1) [lle — o (s, 1)]13] , (22)

where xg ~ qo(xo), ¥+ = g + ore. The fitted 6 can be use to estimate the score function
Vo, log qi(z:) by €g(xy,t) = —0V, log ¢ () and substituted into Eq. (20121) for x¢ generation.

Energy-guided diffusion sampling. To bias sampling toward preferred distributions, the prior
energy-guidance framework [39] provides the re-weighted distribution pg(xo):

po(To) x qo(wo) f(E(w0)), (23)

where go(x0) is the unknown data distribution, £(z) is any form of energy function that encodes
human preferences, and f(z) > 0 can be any non-negative function. To solve this sampling problem,
previous approaches train a separate time-dependent classifier & [39] 24]], which is computationally
expensive and may introduce additional training errors. To address this, previous work [72] introduces
weighted regression method to perform exact energy guidance:

Lemma 1 (Weighted regression as exact energy guidance). We can sample xo ~ po(xg) where pq is
the weighted distribution in Eq. (23) by (i) optimizing the weighted regression loss:

mein Ey, tnta(0.17).e~n 0.1y Lf (E(20)) ll€ — €o(ze,)]3] » (24)

where Ty ~ qo(xo), Tt = o + or€; and (ii) substituting the obtained €y into diffusion ODEs/S-
DEs [49] solving process.

Task-conditioned diffusion sampling. In this work, we extend the Lemma |1 and provide the
following proposition for task-specific sampling:

Proposition 2 (Task-conditioned diffusion policy extraction via weighted regression). The extraction
of optimal policy 7} in Eq. can be achieved by (i) minimizing the weighted regression loss
defined as:

mein]EtNU([O»T])’ENN(OJ),(&G)ND [exp (a ’ (F(57 a, Z)TZ - VTFZ (57 Z))) HE - 697z(atv 5,2, t)”% ’

and (ii) solving diffusion ODEs/SDEs [49]] by substituting ¢g .. in Eq. (20121).

Proof. We aim to extract the optimal policy forming as a weighted distribution as follows:
m(als) o< p(als) exp (a - (F(s,a,2) "z = Vi (5,2))) ,

where yi(als) is the behavior distribution in dataset D and F(s,a,z)" 2 — V_(s, z) is the task-
dependent weight function. Set p.(als) as a task-conditioned reweighted version of the unknown
data distribution gg(a|s) and substitute the task-dependent weight function into Eq. , we have:

p-(als) o< golals)exp (a - (F(s,a,2) 2 — Vi (s,2))). (25)

There exist a normalization constant Z (s, z) = [qo(als)exp (a - (F(s,a,2)"z = Vz_(s,2))) da
ensures p,(als) to be a valid distribution. We now aim to sample from the distribution p, (als).
Parameterize the denoising process with a task-conditioned model €g . (a4, s, 2, t) and substitute in

Eq. (24), we can get a modified task-conditioned weighted regression objective for the diffusion
models by replacing the energy function with F(s,a,2) "z — Vi (s, 2):

min B0, 17),e~N (0,1), (5,0)~D {GXP (a (F(s,a,2) 2= Vz_(s, Z))) le — €o,-(a, s, z,t)|3|.

(26)
According to the LemmaE], substituting €5 into the diffusion ODEs/SDEs [49] generates data that
sample from p, (a|s), thereby recovering 7%(al|s). The proof is completed. O

B Experimental Setups

Our experiments span two benchmarks, EXORL [70] and D4RL [[14], across two locomotion domains
(Walker and Quadruped) and two manipulation goal-reaching domains (Jaco and Kitchen). All
experiments we conducted are in state-based tasks.

24

(a) Walker (b) Quadruped (¢) Jaco Arm (d) Franka Kitchen

Figure 9: Domains. Walker, Quadruped, Jaco, and Franka Kitchen.

B.1 Datasets

ExORL [70]. ExORL consists of datasets collected by several unsupervised RL algorithms on
the DeepMind Control Suite [54]]. We select datasets collected by four unsupervised RL algorithms:
APS [38]], RND [J3]], PROTO [69]], and DIAYN [11]] for each of the three domains (Walker, Jaco, and
Quadruped). Each domain has four tasks for evaluation at test time.

D4RL [14] Kitchen. D4RL Kitchen datasets consist of robotic arm manipulating trajectories of
different tasks in the Franka Kitchen domain. We adopt two datasets: "kitchen-partial-v0" and
"kitchen-mixed-v0".

* Partial: Subtasks involve the microwave, kettle, light switch, and slide cabinet. Tasks are guaran-
teed to be solved in a subset of the ’partial’ dataset.

» Mixed: Subtasks involve microwave, kettle, bottom burner, and light switch. No trajectories solve
any tasks completely in the *'mixed’ dataset.

Dataset preprocessing. BREEZE incorporates standardized data normalization for diffusion mod-
els across all training datasets as a preprocessing step to stabilize the learning process and enhance
generalization capability.

B.2 Domains

» Walker (Locomotion): A bipedal robot with 24-dimensional states (joint positions/velocities) and
6-dimensional actions. Test tasks include Flip, Run, Stand, and Walk. Rewards combine dense
objectives: maintaining torso height (Stand), achieving target velocities (Run/Walk), or angular
momentum (Flip).

* Quadruped (Locomotion): A four-legged robot with 78-dimensional states and 12-dimensional
actions. Tasks include Jump, Run, Stand, and Walk, with rewards for torso stability and velocity
tracking.

* Jaco (Manipulation/Goal-reaching): A 6-DoF robotic arm with 55-dimensional states and 6-
dimensional actions. Tasks involve reaching four target positions (Top/Bottom Left/Right) using
sparse rewards based on proximity to goals.

* Franka Kitchen (Manipulation/Goal-reaching): A robotic manipulation environment control-
ling a 9-DoF Franka robot with multiple given test-time objectives. The agent must sequentially
achieve four subtasks per episode, receiving sparse rewards for each subtask. States include arm
joint positions, velocities, torques, and task-specific object features. Test-time goals are defined as
proprioceptive states concatenated with target object states.

B.3 Baselines

We utilize the following open-source codebases for experiments on baselines. We set the batch size
to 512 to ensure a fair comparison with other methods, while keeping all other hyperparameters at
their default values.

e For SF-LAP [4] and FB [57], MCFB and VCFB [26]], we utilized the open-source implementation
available at https://github.com/enjeeneer/zero-shot-rl.

25

https://github.com/enjeeneer/zero-shot-rl

» For HILP [44]], we utilized the open-source implementation for state-based zero-shot RL setting,
which is available at https://github. com/seohongpark/HILP.

B.4 Architectures

This section details the model architectures used in BREEZE.

F Network. The F' network processes inputs (s, a) and (s, z) using two separate MLPs, each with
two hidden layers of size 1024 and ReLU activation, projecting the inputs into a 512-dimensional fea-
ture space. The resulting embeddings are concatenated along the sequence dimension and processed
through two identical processing blocks. Each block consists of a self-attention layer [S9], followed
by a feed-forward network with residual connections, LayerNorm [2], and dropout (rate=0.1). Specif-
ically, the final representation is flattened and passed through two independent output heads, denoted
as F'1 and F'2, each comprising two linear layers with a hidden dimension of 256 that map to the
d-dimensional output space.

B Network. The B network is based on a standard transformer architecture with 8-head multi-head
attention [59]] and ReL.U activation. State embeddings are processed through transformer blocks and
projected to a d-dimensional space via a linear layer and further scaled to v/d by L2 normalization.

We observe that a sufficiently large B network is essential for achieving strong performance on the
ExORL benchmark.

Diffusion Policy. The diffusion policy uses a residual-connected MLP as the noise predictor,
following the IDQL [20] implementation. The hidden dimension is set to 1024. The task vector z is
incorporated via Feature-wise Linear Modulation (FiLM) [46]]: two parallel linear layers generate a
scaling factor -y and a shifting factor 8 from z, which modulate intermediate features i as v ® h + .

B.5 Sampling of 2

Following previous studies [38, 26], we utilize a mixture of two methods for sampling the latent
variable z:

* Sample z uniformly within a sphere of radius v/d in R,
* Derive z by setting z = B(s), where s ~ D is randomly sampled from the data set.

In our primary experiments, we employ a balanced mix ratio of 50% between the two methods.

B.6 Value Learning

Training details. We implement the V'-network with 3-layer MLPs with 512 hidden dimensions
and ReLU activation functions. During training, we set the 7 for expectile regression in Eq. (7)) shown
in Section We use clipped double value learning [16] for both the)-value and the M -value.

Rejection sampling. To improve the zero-shot performance, we use rejection sampling rather
than tuning existing parameters for greedy optimization. Rejection sampling is commonly used in
diffusion policies [[7, 20} 21]], a stable mechanism that selects /N actions from the policy to boost with
the highest value. Our practical implementation of rejection sampling is in two phases:

* Training phase: To compute the FB loss (Eq.[d), we first sample a full transition batch, which
contains states, actions, next states, and next actions. A hyperparameter p,, referred to as the
dataset mixture ratio, determines the proportion of next actions drawn directly from the dataset. The

remaining fraction is replaced by actions sampled from the policy 7,: we generate K., candidate
(1) (Kiwain)

actions a;y,...,a;, 1 via the diffusion policy and select the optimal next action according to:
' T
ay,, = arg max; F(sp41, agﬁl, z) z. (27)
ayia

* Evaluation phase: We sample K., candidate actions during evaluation, and select the optimal
action according to the @)-value.

Details of practical po, Kiin and Koy, is provided in Section[B.7]

26

https://github.com/seohongpark/HILP

B.7 Hyperparameter

This section provides the detailed hyperparameter setup. In our experiments, the model architecture
and basic algorithm hyperparameters remain unchanged, as detailed in Table d Domain-specific
hyperparameters are detailed in Table[5|and Table [d]

Table 4: General hyperparameters used for BREEZE

Hyperparameter Value

Optimizer AdamW

Representation learning rate le-4

V network learning rate 3e-4

Policy learning rate le-4

Discount factor ~ 0.98

Learning steps 1,000,000
General hyperparameters Mini-batch . >12

Representation soft update factor A 0.01

Policy soft update factor A 0.001

Latent dimension d 50

z mixing ratio 0.5

z inference steps 10,000

Regularization weight for orthogonality loss wy 10

Beta schedule vp

Exponential advantages clip (—00,100]

F preprocessor hidden dimension 1024

F preprocessor hidden layers 2

F' preprocessor output dimension 512

F preprocessor activation function relu

F" attention blocks 2

F linear layer hidden dimension 256

F" dropout 0.1

B nhead 8

B encoder layers 2

B decoder layers 2

Architecture B d model 256

B dropout 0.1

B feedforward dimension 2048

B activation function relu

V hidden dimension 512

V hidden layers 2

V' activation function relu

Policy MLP blocks 3

Policy hidden dimension 1024

Policy activation function mish

Policy time embedding learned

C Pseudo-Code

Algorithm T] provides the pseudocode. Our implementation uses PyTorch [45]], with all experiments
conducted on a single NVIDIA A6000 GPU. Peak memory usage under 23 GB.

27

Table 5: Domain-specific hyperparameters for BREEZE with full dataset.

Domain-dataset Kiain Pa Keval expectile 7 F-reg coef. wq Diffusion steps T' Temperature «
Walker-RND 9 0.1 64 0.99 0.001 5 0.05
Walker-APS 9 0.1 64 0.99 0.001 5 0.05
Walker-PROTO 9 0.1 64 0.99 0.001 5 0.05
Walker-DIAYN 9 0.1 64 0.99 0.001 5 0.05
Jaco-RND 1 0 64 0.99 0.001 10 0.05
Jaco-APS 9 0.1 64 0.99 0.0001 5 0.05
Jaco-PROTO 1 0 64 0.99 0.001 10 0.05
Jaco-DIAYN 9 0.1 64 0.99 0.0001 5 0.05
Quadruped-RND 1 0 64 0.99 0.001 10 0.05
Quadruped-APS 1 0 64 0.99 0.001 10 0.05
Quadruped-PROTO 1 0 64 0.99 0.001 10 0.05
Quadruped-DIAYN 1 0 64 0.99 0.001 10 0.05
Kitchen-mixed 1 0 16 0.7 0.001 5 0.1
Kitchen-partial 2 0.2 4 0.7 0.001 5 0.08

Table 6: Domain-specific hyperparameters for BREEZE with small sample dataset.

Domain-dataset Kiain Pa Keval expectile T F-reg coef. wq Diffusion steps T" Temperature «
Walker-RND 2 0.2 32 0.99 0.0001 10 0.05
Walker-APS 2 0.2 32 0.99 0.0001 10 0.05
Walker-PROTO 2 0.2 32 0.99 0.001 10 0.05
Walker-DIAYN 8 0.2 32 0.99 0.001 10 0.05
Jaco-RND 1 0 32 0.99 0.0001 10 0.05
Jaco-APS 1 0 32 0.99 0.0001 10 0.05
Jaco-PROTO 1 0 32 0.99 0.0001 10 0.05
Jaco-DIAYN 1 0 32 0.99 0.0001 10 0.05
Quadruped-RND 2 0.2 32 0.99 0.001 10 0.05
Quadruped-APS 1 0 32 0.99 0.001 10 0.05
Quadruped-PROTO 2 0.2 32 0.99 0.001 10 0.05
Quadruped-DIAYN 2 0.2 32 0.99 0.0001 10 0.05

Algorithm 1 Behavior-Regularized Zero-shot RL (BREEZE)

Require: Latent dimension d, mini-batch b, gradient steps NV, orthogonality coefficient wy, value
regularization coefficient w,.
1: Normalize dataset D; Initialize networks Fy, By, V,,, diffusion actor 7., with network e
2: forn=1,...,N do
3: Sample a mini-batch of transitions {(s¢, a¢, S¢4+1, @41)i}icp) C D

4 Sample a mini-batch of {z; };¢p ~ R?
5: Collect {a; ; }ic|s| by mixture of data batch and 7 outputs
6: /I Representation learning:

7: Compute Leg (¢, 1) and L p.res(¢) using Eq. (E]) Eq. @])

8 Compute orthogonality regularization 10ss Losho

9 Lorno() = 75 S persy |(Bo(51) Buls))? — |1Bu(s:)
10: Update Fy, and By, by Leg + w1 - Lortho + Wq * L F-reg

11: // Value function learning:
12: Update V,, using Eq.
13: /I Diffusion policy learning:
14: Update €y using Eq. (12)
15: end for

5= 1Bu(s)l3]

D Additional Results

This section provides a comprehensive showcase of all experimental results.

* Section[D.T|provides the learning curve comparisons.

28

* Section[D.2]reports the detailed results on EXORL benchmark.

* Section[D.3| presents the visualizations of our empirically evaluated value distributions.

D.1 Learning Curves

This section presents the zero-shot learning curves on the ExXORL benchmark. Results on the full
dataset and the 100k small-sample dataset are shown in Figure[TO}{I2]and Figure [I3}{T3] respectively.
The solid lines represent the mean IQM returns over 5 random seeds, and the shaded regions
correspond to the standard deviation.

Normalized Return Normalized Return Normalized Return

Normalized Return

quadruped-aps jump run
500
400-
300
200
100
o [}
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 0
Steps 1e6 Steps 1e6 Steps 1e6 Steps 1e6
quadruped-diayn jump run walk
800 500
600
600 400 800
300
400 400 600
200 400
200 200 100 200
o o o o o
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6 Steps 1e6 Steps 1e6 Steps 1e6 Steps 1e6
quadruped-proto jump run stand walk

quadruped-rnd

0.0 0.2 0.4 0.6 0.8
Steps 1e6

0
1.0 00 02 04 06 08

1.0 0.0 6 X 1. 0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6 Steps 1e6 Steps 1e6

. fb . mcfb mm vcfb mm hilp Bl BREEZE(Ours)

Figure 10: Curves of zero-shot performance on Quadruped domain.

29

Normalized Return Normalized Return Normalized Return

Normalized Return

Normalized Return Normalized Return Normalized Return

Normalized Return

jaco-aps BL BR TL
150 250 200
200
200 150-
100 150 150
100
w 100 100
50
50 50 /\‘
. RN A A o kA A oA BaaA L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6 Steps 1e6 Steps 1le6 Steps 1le6
jaco-diayn BL BR TL
80 125
150- 125
100
60 100
100 75 100
40 50
50
20 50 25
- o
o™ 0 0
=25
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0. 0.2 0.4 0.6 0.8 1.
Steps 1le6 Steps 1e6 Steps le6 Steps 1e6
jaco-proto BL BR TR

150

s b

. mcfb

mm vcfb

== hilp

04 06

Steps

08 1.0
le6

N BREEZE(Ours)

Figure 11: Curves of zero-shot performance on Jaco domain.

walker-aps
600
400
200
0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6
walker-diayn

0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1.
Steps 1e6 Steps 1e6
walker-rnd flip

. b

. mcfb

mm vcfb

04 06 08 10

1e6

Steps

B hilp

02 04 06

Steps

08 10
1e6

Il BREEZE(Ours)

Figure 12: Curves of zero-shot performance on Walker domain.

30

1.0
1e6

Normalized Return Normalized Return

Normalized Return

Normalized Return

quadruped-aps jump run stand walk
600 500
600 400 800
500- 400
400 200 300 600 300
300 | 200- 200 200
200 200-
100 100 200 100
o o 4 o o
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6 Steps 1e6 Steps 1le6 Steps le6 Steps 1e6
quadruped-diayn jump run stand walk
500 400 800 400
400 300 600 300
300 200 ' 400 200 1
200
100 200 100
100-
o 0 ° °
0.0 0.2 0.4 0.6 0.8 1.0 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6 Steps 1le6 Steps 1le6 Steps 1e6
quadruped-proto run stand walk
300-
200-
100-
0
00 02 04 06 08 1.0 - 00 02 04 06 08 1.0 00 02 04 06 08 1.0
Steps 1e6 Steps 1e6 Steps 1e6
quadruped-rnd jump run walk
0. 600 400
500 300 600
w0 W W WW -
400
300 300 200 400 200
200 200-
100 200 100
100- 100-
0- o 0 o 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6 Steps 1e6 Steps 1e6 Steps 1e6 Steps 1e6

mm fb B mcfb mm vcfb I BREEZE(Ours)

Figure 13: Curves of zero-shot performance on Quadruped domain with 100k dataset.

c jaco-aps BL BR TL TR
6
> 80 125 80 100
-*q-j 50 100 80
60
o 40 60 60
75
8 30 1 40 20
N 50 40
=20 20 20
© 25 20
E 10
= o o 0 o
o 0-
=2 00 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6 Steps 1e6 Steps 1e6 Steps 1e6 Steps 1e6
c jaco-diayn BL BR TL TR
> 100
46 40 40 125 60
x 80 100
30- 30
- 60 75 40
ﬂ‘J 20 20 40 ﬂ 50
= 20
B 10- 10 20 25
§ o o o o
(=} — -20
=2 00 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6 Steps 1e6 Steps 1e6 Steps 1e6 Steps 1e6
c jaco-proto BL BR TL TR
QU 60 40
& ° 60 30
30
8 20 a0 40 20
N 20-
% 10 20 10 20 10
IS o 0
50 ° °
2 00 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Steps 1le6 Steps 1e6 Steps le6 Steps 1e6 Steps 1e6
c jaco-rnd BL BR TL TR
80 80
3 50 80 60
(4]
o 40 60 c0 60
8 30 20 40 40 0
E 20
© 20 20 20 20
E 10
S o p &Q..__._ o 0 0 0
= 00 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6 Steps 1e6 Steps 1le6 Steps 1le6 Steps 1e6

mm b . mcfb mm vcfb s BREEZE(Ours)

Figure 14: Curves of zero-shot performance on Jaco domain with 100k dataset.

31

walker-aps flip run stand walk

800

300 600

200 400

100
200

o]

Normalized Return
E 28588
N
° g

o
00 02 04 06 08 10 0. 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Steps 1e6 Steps 1e6 Steps 1le6 Steps 1e6 Steps 1e6

walker-diayn flip run stand walk
800

600

400

200

Normalized Return
g & 58 ¢
e N w

- 8 8528438

i

U
]
¥ 8 38R &
5 3 8 3 ¢
8 2 8 8 8

0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6 Steps 1e6 Steps 1le6 Steps 1le6 Steps 1e6

walker-proto flip run stand walk

800

400
600
300
400
200

100 200

o

o
°

Normalized Return
- 58858

0.0 0.2 04 0.6 0.8 1.0 0.2 0.4 0.6 0. 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6 Steps 1e6 Steps 1e6 Steps 1e6 Steps 1e6

walker-rnd flip run stand walk

400

200- 600
300- 600

150 400
200- 400
200 100-

100- 200 200
100 50

0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 .0 0.2 0.4 0.6 0.8 1.0 .0 0.2 0.4 0.6 0.8 1.0
Steps 1e6 Steps 1e6 Steps 1e6 Steps le6 Steps 1e6

PO
s &
3 8
®
8
3

Normalized Return
g
g

mm fb B mcfb mm vcfb I BREEZE(Ours)

Figure 15: Curves of zero-shot performance on Walker domain with 100k dataset.

B Kitchen-mixed . Kitchen-partial
3 3
c c
_ —_
32 32
+ -+
9] Q
<, o,
0 0
00 02 04 06 08 10 00 02 04 06 08 1.0
Steps 1e6 Steps 1e6

Figure 16: Curves of zero-shot performance on Kitchen domain.

D.2 Detailed Results on EXORL Benchmarks

This section presents complete experimental results on the ExXORL benchmark. Table [7] summarizes
performance on the full dataset, while Table [8] reports results on the 100k small-sample datasets.
Evaluations were conducted every 10,000 steps during offline training. We computed the aggregate
score across all tasks as the overall performance measure, and selected the highest domain-level score
across 5 random seeds along with corresponding per-task results.

Table 7: Full dataset experimental results on EXORL

Dataset Domain Task SF-LAP FB VCFB MCFB HILP BREEZE
walk 555+ 221 918 + 26 813455 8424126 798+ 29 907 + 23
stand 8104+47 834439 913 + 29 950 & 20 888 + 55 938 + 12
Walker run 235+ 61 357420 376+22 328 + 20 368 + 34 320 + 25
flip 465 4+107 535429 511 4 52 517 + 89 608 =+ 48 606 =+ 22
whole performance 516 £+ 97 661 + 10 653 £ 22 659 £ 51 665 + 33 693 £ 16
RND
reach top right 2+2 75 + 68 78 + 63 86 + 68 43 + 42 108 + 42
reach top left 2+2 4+8 15+ 16 10+9 53 + 17 68 £ 30
Jaco reach bottom right 140 46 + 42 81 + 62 56 + 56 53 + 41 77 +45
reach bottom left 70 £ 71 4+5 9+ 10 11 +13 60 £+ 39 84 + 55
whole performance 18 +18 32+23 46 £+ 35 41 + 34 52421 84 4+ 14
walk 206 £ 136 519 £ 35 462+ 6 603 + 68 629 + 69 641 + 64
stand 539 £224 956 + 11 883 + 52 965+ 5 904 + 41 936 + 7
Quadruped run 233+ 136 484+14 431+20 486+22 484+20 514 + 22
jump 3424238 72244 659 & 53 683 & 41 679 + 72 808 + 16
whole performance 330 + 165 671 & 14 609 + 26 684 4 18 674 + 28 725 + 23
walk 272481 725118 705+£130 817 +88 802 + 22 935 + 23
stand 663+ 54 720+£208 567+109 751 +65 860 + 10 865 -+ 57
Walker run 139 £25 244 +58 245 + 53 316 + 26 332 + 26 267 + 14
flip 221435 380454 431 + 78 430 + 97 578 + 49 482 + 52
whole performance 324 + 24 517 £ 99 487 £ 75 578 + 35 643 + 22 637 + 21
APS
reach top right 29 + 22 33+ 37 18 £ 10 28+ 8 98 + 44 119 + 52
reach top left 9+15 16 + 14 11+ 11 15+ 17 80 + 28 153 + 76
Jaco reach bottom right 50 + 32 33+ 27 37 + 46 31+21 105 + 26 70 + 34
reach bottom left 70+ 72 6+8 13+ 11 15+ 8 52 + 20 186 + 26
whole performance 39 + 26 22+ 14 20 + 18 22+3 84 + 16 132 + 16
walk 3124158 615448 541 + 38 601 & 90 557 & 40 660 =+ 92
stand 796 +£ 186 898 + 57 946 + 24 895 + 63 934+ 9 950 + 12
Quadruped run 3424199 471 432 476 £10 440 & 36 466 + 13 472 + 27
jump 542+ 126 686 + 33 692 + 6 699 + 70 758 + 21 710 + 27
whole performance 498 + 160 668 % 29 664 + 3 659 & 50 679 + 14 698 + 24
walk 3524210 889445 7834165 8674109 894 + 38 923 + 2
stand 703 +£155 936 + 30 832486 8454135 931 422 858 = 35
Walker run 202+ 69 298 +27 324 + 81 262 + 69 387 + 29 228 + 26
flip 271 £ 156 477 £ 47 5034+ 54 4354143 64T+ 76 645 + 62
whole performance 382 + 129 650 + 19 611494 6024112 715431 663 + 19
PROTO
reach top right 5+9 31454 12 £17 37+ 52 55 4+ 23 80+ 75
reach top left 242 33 + 34 7+9 14+ 13 52 + 28 99 + 48
Jaco reach bottom right 29 + 46 19 + 33 25 + 36 26 + 40 30+ 24 91+ 79
reach bottom left 24 + 41 0+0 8+ 13 242 38 + 33 26 + 29
whole performance 15+ 14 21 +26 13+12 20+ 21 44 +£19 74 + 26
walk 131432 168+76 136 £63 235+144 118 +58 298 + 79
stand 203488 351+£263 239+£95 2594132 329+095 569 =+ 55
Quadruped run 163+£51 1254112 100445 213+172 175+ 44 283 + 33
jump 211477 244492 265+166 169+ 101 242+ 70 407 £ 7
whole performance 199 £+ 10 222 £ 107 185 £+ 72 219 + 135 216 + 54 389 + 44
walk 174+ 151 3644164 3294147 3484174 6044126 613 4 103
stand 558 £ 129 614+ 146 484+ 194 429+83 696 + 168 712 + 66
Walker run 96 + 25 103 % 20 74 + 26 75 % 25 156 + 25 152 + 38
flip 128+24 272+58 183+ 51 2224112 386+76 373 + 39
whole performance 239 £ 79 338 + 74 268 + 67 268 £ 97 461 + 64 463 + 42
DIAYN
reach top right 43 +37 17 +12 24 + 16 141 64+5 76 + 14
reach top left 10 £ 12 187 30+ 17 55+ 2 55+ 6 58 + 33
Jaco reach bottom right 42 & 42 27 + 17 T+4 141 45 + 26 96 + 36
reach bottom left 32+ 41 28 + 12 36 + 12 4+3 46 + 4 82 + 35
whole performance 32426 2246 24+3 15+1 5247 78 £ 11
walk 196 + 151 475+ 77 311 447 596 + 26 497 + 18 482 £ 11
stand 3054270 756 & 30 793 + 87 865 + 30 944 + 4 944+ 9
Quadruped run 139+ 121 380 + 22 364 & 22 408 + 15 469 + 2 47245
jump 190 + 158 636+ 19 576 + 47 700 + 18 769 + 8 766 + 25
whole performance 207 £ 168 562 + 23 511 £ 37 643 £ 14 670 + 4 666 + 2

33

Table 8: Small sample dataset experimental results on EXORL.

Dataset Domain Task FB VCFB MCFB BREEZE (ours)
walk 300 + 50 377+ 18 225 + 46 663 & 41
stand 368 £+ 70 556 + 44 587 £ 97 791 £ 21
Walker run 104411 144417 101+ 18 224 + 12
flip 284 £ 91 319 + 46 236 + 44 4214+9
whole performance 264 £ 33 350 £ 29 287 £+ 48 525+ 13
RND
reach top right 9+£8 6+7 28 +16 51+ 10
reach top left 2+2 6+£5 1+1 7T£3
Jaco reach bottom right 10 + 10 444 19415 38 + 22
reach bottom left 8+9 20£12 1+1 47 £ 22
whole performance 7£5 9+2 13+7 36£5
walk 125 + 98 164 + 45 94 + 58 382+ 15
stand 268 + 183 288 £ 73 159 £ 70 651 + 37
Quadruped run 132483 186+ 52 89 + 49 318 £ 16
jump 178 + 130 292 + 82 148 + 70 544 + 37
whole performance 176 + 123 233 £ 52 123 £ 61 474 + 21
walk 535 4 139 533 + 114 449 + 64 762 £ 25
stand 447 + 45 625 £ 52 562 4 104 828 £ 19
Walker run 166+73 216 +33 192 + 50 200 £ 2
flip 334 + 121 293 £+ 85 354 £ 95 365 + 24
whole performance 370 £ 66 416 + 10 389 + 77 539 + 15
APS
reach top right 36 £ 29 TET 20 + 24 21+ 16
reach top left 3+2 7+5 24 +19 21+£15
Jaco reach bottom right 44 £ 60 42 £43 56 £ 71 58 £+ 33
reach bottom left 2+3 0£0 15+4 51 429
whole performance 21 +£17 14 +£13 29 + 27 38+9
walk 299 £ 27 293 + 26 255 + 116 435 £+ 49
stand 479 £ 12 524 + 141 456 + 92 810 £+ 85
Quadruped run 260+ 10 232446 222+ 101 401 =+ 30
jump 321 £ 115 356 £ 30 338 £ 179 577 £ 59
whole performance 340 + 29 351 £ 57 318 +122 556 + 52
walk 522 + 136 732 £ 38 685 + 87 709 £ 27
stand 608 + 119 709 + 36 637 £ 39 846 + 22
Walker run 176 £58 215+ 24 174 + 49 21047
flip 354 £ 67 394 + 36 357 £+ 43 447 £ 27
whole performance 415+ 19 513 £ 31 463 + 11 553 + 18
PROTO
reach top right 7+10 17+£19 6£8 18 £13
reach top left 59+ 4 14 + 12 19+ 14 51 + 22
Jaco reach bottom right 0£0 22422 12+ 10 27 +19
reach bottom left 0£0 18+ 11 12+10 19+ 12
whole performance 16 =2 18+ 12 12+7 29 + 12
walk 105 + 63 22+7 103 + 85 129 + 66
stand 327 £+ 180 196 £ 202 387 + 185 59 + 35
Quadruped run 169499 984110 206+ 152 244 + 173
jump 193 £ 111 106 £ 103 265 4 194 201 + 47
whole performance 198 £+ 111 106 £+ 103 240 + 134 181 £ 60
walk 103 £ 79 114 £ 16 129 + 38 418 + 119
stand 513 4+ 245 460 + 256 424 + 27 524 + 39
Walker run 87 + 45 79 + 22 63+ 19 102 4+ 17
flip 106 + 50 186 + 44 169 + 33 276 + 28
whole performance 202 £ 94 210 £ 81 196 + 26 330 £+ 43
DIAYN
reach top right 18 £ 23 14 +13 29 + 37 5+ 34
reach top left 32+ 35 25+9 9+8 72 £ 58
Jaco reach bottom right 15+ 11 12+9 42 £ 58 6 £29
reach bottom left 5+2 19 +24 0+0 7+26
whole performance 17+ 11 18+5 20 + 26 22+ 15
walk 158 £ 41 189 £ 73 190 £+ 10 303 + 69
stand 430 + 84 423 + 46 408 + 57 680 + 117
Quadruped run 224441 214+ 28 204 + 28 341 £ 79
jump 368 £+ 83 327 £ 58 343 £ 63 459 + 61
whole performance 295 + 46 288 + 48 286 + 34 446 + 78

34

D.3 Empirically Evaluated /™= and (), on Other Tasks

We present empirical visualization results of /™= and @), distributions, shown in Figure[T7HI9] We
trained FB, VCFB, and MCFB on the RND [J3]] dataset. Specifically, the trained B network was
utilized for inferring the task latent vector zy,g, and as the input to both M ™= and @, during the
evaluation phase.

o, : o, . o 0.009 :
> 1 == 8 > : == 8 > L > :
o= H = H 0 McFB = 3 MCFB | = H
@ 0.007 ; @ 0.007 3) vere @ 0.007 s | 20 :
[} o) i o} o}
o o ! [s] o
>0005 >0005 H >0.DDS >0
= = £ £
E) o o K
2 0.003 2 0.003 2 0.003 2 o
S S S S
& 0.001 & 0.001 & 0.001 a o
-500 -300 -100 100 368 500 —4 =200 o 200 -100 100 100 100
Walker-Flip Walker-Stand Walker-Flip Walker-Stand
0 T 0 T o i X .

2 P S |2 i e | 2 = |2 i =

H ‘@ = [MCFB
& 007 : o vers | @ 0007 ' = vers 2 0.007 o vers | @ 0007 SV
o) | [} H o)
a i a i a 8
>0005 H >0005 >‘D.UDS .0
£] £ £
= ! = = £
3 3 3]
2 0.003 2 2 0.003 g,
S 8" i g

o
& 0.001 & o & 0001 £
-500 =300 -100 100 300 00 —-300 -100 100 300 500 00

V?Ialker—Wazlolg
(a) Distribution of empirically evaluated M™z in Walker (b) Distribution of empirically evaluated Q,, in Walker
Figure 17: Visualization of the empirical M™* and @ distribution on Walker RND.

-100 100
Walker-Run

Walker-Run Walker-Walk

o : o. . 0.009 ; 0.009 ;
2 : == 8 > H = FB > i == 8 > i = 8
] i = MCFB | = H 1 MCFB B | 3 MCFB | R H [MCFB
é 0.007 : o vers | @ 0007 : =1 vere & 0007 : o vers | & 0007 i = v
H j7 H [H [H
a : o : o i o H
0.005 : 0.005 i 0.005 ! 0.005 H
2 i z i 2 i z :
S 0003 3 S 0003 : S 0003 i S 0003
Q i o i Q] -1 |
I3 i <) < <
& 0.001 & 0.001 & 0.001 & 0.001 —
—800-600-400-200 0 200 400 600 800 —800-600-400-200 0 200 400 600 800 -600 ~400 ~200 0 200 400 600 800 -400 -200 0 400 600 800
Jaco-Reach Top Left Jaco-Reach Top Right Jaco-Reach Top Left Jaco-| Reach Top Right
o. o : o o
> i =B > ‘ g LBcra > i N > i ==
= H O MCFB | R H = H O MCFB | S H £ MCFB
£ 0007 : e | g 007 : = vere 2 0.007 | o vers | & 0007 : = vere
k7] ! v H 9] H [9) H
o i o 0.005 ! a H o H
50005 ! >0 i 0005 1 2000 1
B 0003 H 2 0.003 i B 0.003 ! B 0.003 |
3 4 3 ‘ 3 = 8 i
& 0.001 & 0.001 & 0.001 & 0.001
—800-600-400-200 O 200 400 600 800 —800-600-400-200 0 200 400 600 800 -400 -200 0 200 400 600 800 400 200 0 200 400 600 800
Jaco-Reach Bottom Left Jaco-Reach Bottom Right Jaco-Reach Bottom Left Jaco-Reach Bottom Right
(a) Distribution of empirically evaluated M™z in Jaco (b) Distribution of empirically evaluated @, in Jaco
Figure 18: Visualization of the empirical M ™ and Q. distribution on Jaco RND.
o 0. 0. o .
> i =B > i =B > > H =B
= H 0 MCFB | o H 0 MCFB = = H 0 MCFB
@ 0.007 i @ 0.007 i i @ 0.007 @ 0.007 i " vers
1] : 9] H @ 1] H
a a H o a H
., 0.005 >, 0.005 >.0.005 ., 0.005 H
£ £ £ £ i
3 3 3 3 |
2 0.003 < 0.003 < 0.003 2 0.003 :
S S K S
& 0.001 & 0.001 & 0.001 & 0.001)
—4 -200 o 200 400 —4 —200 o 200 —400 -200 o 200 400
Quadruped-Jump Quadruped-Walk Quadruped-Walk
o . 0. : o o :
> =B > i =B > >
= [0 MCFB e [MCFB = =
@ 0.007) vers | 80007 o vere @ 0.007 @ 0.007
© 9] 1] o]
o o [a] o
. 0.005 >.0.005 ., 0.005 . 0.005
E = £ £
= = = =
S 0.003 2 0.003 2 0.003 2 0.003
8 K S 8
& 0.001 & 0.001 & 0.001 a 0.001
—400 =200 400 —400 —200 o 200 400 —400 -200 o 400 ﬂﬁﬂb -200 [200 400
Quadruped Stand Quadruped-Run Quadruped-! Stand Quadruped-Run
(a) Distribution of empirically evaluated M™z in Quadruped (b) Distribution of empirically evaluated @, in Quadruped

Figure 19: Visualization of the empirical M ™ and Q. distribution on Quadruped RND.

35

E Discussion and Limitation

E1. Hyperparameter Sensitivity and Tuning.

BREEZE introduces additional components compared to vanilla FB, resulting in more hyperparame-
ters. While performance is generally robust, we provide the following tuning guidance:

e Effect of components.

Representation architectures are responsible for a high performance ceiling, as we can observe
from Table[3] The diffusion policy ensures a solid performance lower bound by maintaining stable
alignment with any quality dataset.

* Greedy demand for upstream value learning.

Training cost is mainly influenced by the action ratio p, and the number of rejection sampling
candidates K\,j,. While the diffusion policy provides conservatism, we find that increasing p,
and Ky, further improves performance in some domains at the cost of additional computation.
Near-optimal results can be achieved cost-effectively by reducing the batch size and diffusion
timesteps to reallocate the computational resources to increase p, and K.

E2. Computation and Performance Trade-off.

A limitation of BREEZE is its higher computational cost, attributable to the expressive represen-
tation networks and diffusion model. We consider this a reasonable trade-off given the significant
improvements in stability and zero-shot performance. For a comparable and fair comparison, all
reported results use a batch size of 512, and training for 1 million steps takes approximately 20 hours
or less for environments with standard TD updates [50]; configurations with higher Ki.,i, and mixture
ratios require up to 39 hours. As shown in Table 0] BREEZE typically converges within 400k steps,
matching or exceeding baselines trained for 1M steps. Future work may explore framework-level
optimizations, such as replacing diffusion with more efficient flow-based policies to lower costs
without compromising performance.

Table 9: Computation cost v.s. performance trade-off. Aggregated scores are averaged over 5 random seeds
across datasets. Experiments are conducted on a single NVIDIA A6000 GPU.

Methods Training Steps (k) Training Time (h) IQM Walker IQM Jaco IQM Quadruped Aggregate IQM
200 0.8 480 16 303 266
FB 400 1.6 508 21 401 310
1000 4.0 542 24 531 366
200 24 441 18 361 273
VCFB 400 4.8 489 19 457 322
1000 12.0 505 26 492 341
200 24 473 21 347 280
MCFB 400 4.8 514 21 469 335
1000 12.0 527 25 551 368
200 4.0-7.8 586 57 550 398
BREEZE (ours) 400 8.0-15.6 606 75 567 416

36

	Introduction
	Preliminary
	Pitfalls of Exiting FB-Based Methods
	Behavior-Regularized Zero-Shot RL with Expressivity Enhancement
	Behavior-regularized Optimization
	Policy Extraction via Task-Conditioned Diffusion Model
	Expressivity Enhancement for Representation Modeling

	Experiments
	Experimental Results
	Ablation Studies

	Related Works
	Conclusion
	Theoretical Proofs
	Proof of Proposition 1
	Proof of Proposition 2

	Experimental Setups
	Datasets
	Domains
	Baselines
	Architectures
	Sampling of z
	Value Learning
	Hyperparameter

	Pseudo-Code
	Additional Results
	Learning Curves
	Detailed Results on ExORL Benchmarks
	Empirically Evaluated Mz and Qz on Other Tasks

	Discussion and Limitation

