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Abstract

Many researchers construct directed acyclic graph
(DAG) models manually based on domain knowl-
edge. Although numerous causal discovery al-
gorithms were developed to automatically learn
DAGs and other causal models from data, these
remain challenging to use due to their tendency to
produce results that contradict domain knowledge,
among other issues. Here we propose a hybrid, it-
erative structure learning approach that combines
domain knowledge with data-driven insights to as-
sist researchers in constructing DAGs. Our method
leverages conditional independence testing to it-
eratively identify variable pairs where an edge is
either missing or superfluous. Based on this infor-
mation, we can choose to add missing edges with
appropriate orientation based on domain knowl-
edge or remove unnecessary ones. We also give
a method to rank these missing edges based on
their impact on the overall model fit. In a simula-
tion study, we find that this iterative approach to
leverage domain knowledge already starts outper-
forming purely data-driven structure learning if the
orientation of new edge is correctly determined in
at least two out of three cases. We present a proof-
of-concept implementation using a large language
model as a domain expert and a graphical user in-
terface designed to assist human experts with DAG
construction.

1 INTRODUCTION

Understanding cause-and-effect relationships between vari-
ables is a fundamental objective in many scientific fields.
These relationships reveal the mechanisms behind observed
phenomena and guide effective interventions or policy de-
cisions. Causal discovery methods aim to discover such

relationships among random variables using observational
data. These include constraint-based methods like the PC
algorithm [Spirtes et al., 2001, Kalisch and Bühlmann,
2007] and Fast Causal Inference (FCI) [Spirtes et al., 2000],
score-based methods such as Hill-Climb Search and Greedy
Equivalence Search [Chickering, 2002], and continuous
optimization-based methods like NOTEARS [Zheng et al.,
2018] and DAGMA [Bello et al., 2022]. Despite this signifi-
cant body of work, the adoption of causal discovery methods
in observational research has so far been limited. Challenges
encountered with existing causal discovery algorithms in
practice include but are not limited to:

1. Lack of Trust: While constraint-based algorithms
are often asymptotically consistent [Kalisch and
Bühlmann, 2007], they can and do make mistakes
on finite samples. These mistakes can be severe and
contradict obvious domain knowledge (think of edges
going into unmodifiable attributes such as Age). The
choice of algorithm and hyperparameters significantly
affects the output, making it difficult to assess reliabil-
ity. Additionally, the absence of robust performance
evaluation methods for any given dataset further re-
duce the confidence in their outputs. A recent paper
advised Epidemiologists to not attempt using struc-
ture learning algorithms without the help of an expert
[Gururaghavendran and Murray, 2024].

2. Outputs Markov Equivalence Class (MEC): As mul-
tiple DAGs can be consistent with an observational
dataset, automated algorithms can only recover the
MECs. These MECs can contain a combination of
directed and undirected edges. This structural uncer-
tainty can make it difficult or impossible to apply the
learned model for downstream tasks, such as identifica-
tion or causal effect estimation [Maathuis et al., 2009,
Perkovic et al., 2017].

Figure 1 highlights some of these issues. In practice, DAGs
are still largely constructed from domain knowledge alone
[Tennant et al., 2020, Petersen et al., 2021]. This can, how-
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Figure 1: A comparison of Markov Equivalence Classes
(MECs) learned from the Adult Income Dataset [Becker and
Kohavi, 1996] using different causal discovery algorithms
and sample sizes. Edge colors represent the sample size used:
red for N = 400, and blue for N = 800. (a) PC algorithm
with a mutual information based CI test, (b) PC algorithm
with a residualization-based test [Ankan and Textor, 2023],
(c) Hill Climb Search with Bayesian Information Criterion
(BIC) score. The learned model structure varies significantly
across different algorithms and sample sizes.

ever, be equally problematic. Constructing DAGs requires
us to distinguish between different causal structures, such
as direct or indirect effects or causal mediation. Specifically,
there is often a lack of theoretical support for the absence
of direct causal effects, which are the key assumptions that
graphical models make to enable downstream causal in-
ferences. Given the likelihood of making mistakes, it is
therefore important to at least validate the consistency of a
DAG against our dataset. One way to test this consistency is
by testing whether the conditional independence (CI) state-
ments implied by the DAG hold in the data [Ankan et al.,
2021]. Specifically, each missing edge between a pair of
variables in the DAG leads to one or more CI statements,
which can be checked using statistical tests. Violations to
CI statements can point to erroneous omission of important
causal effects or to the presence of latent confounders.

In this paper, we propose a structure learning method that
leverages CI testing to assist researchers during manual

DAG construction, rather than merely validating the model.
Specifically, our approach iteratively uses CI testing to iden-
tify pairs of variables that may lack (direct or indirect) con-
nections and asks a domain expert to orient the potential
causal relationship between them. This process can intro-
duce superfluous edges, which are subsequently detected
and removed using CI testing. Critically, our approach does
not require the domain expert to distinguish between direct
and indirect effects; it can be thought of as guidance during
manual model construction, ensuring that the model remains
consistent with the data.

Our contributions are organized as follows:

1. In Section 3.1, we present our iterative method for
DAG construction based on domain knowledge and
data, and prove its correctness in an “oracle setting”.
We show that the method remains valid even when
allowing the domain expert to make certain kinds of
mistakes.

2. We then present a ranking method to prioritize potential
modifications to the DAG that help in fixing the most
severe violations first (Section 3.2).

3. We show empirically that even experts that make mis-
takes can outperform purely data-driven causal discov-
ery algorithms (Section 4).

4. We provide two proof-of-concept implementations of
our approach: one geared towards LLMs as experts,
and a graphical user interface designed for human ex-
perts (Section 5).

2 BACKGROUND

We denote random variables using uppercase letters like
X , and a set of random variables by X = {X1, · · · , Xk},
where |X| = k is the number of variables in the set. We
denote the standard deviation of X as σX , the covariance
between variables X and Y as cov(X,Y ), a covariance ma-
trix as Σ, and the entry corresponding to the covariance be-
tween X and Y as ΣXY . A DAG G = (V,E) is an acyclic
directed graph whose nodes V correspond to random vari-
ables and whose edges E represent direct causal relation-
ships [Pearl, 2009]. The set of parents of X in G is denoted
as PaG(X), and its ancestors and descendants as AnG(X)
and DeG(X), respectively; we use the convention that
X /∈ AnG(X) and X /∈ DeG(X). We define the transitive
closure G+ of a DAG G = (V,E) such that for any edge
X → Y ∈ E, G+ has edges {Xi → Y ∀Xi ∈ AnG(X)}.
We denote a path, π(X,Y ) = {X,V0, V1, · · · , Vk, Y } be-
tween X and Y in G where consecutive pairs of variables
in π are connected by an edge. We say X and Y are d-
connected in G given a conditioning set Z ⊆ V − {X,Y },
if there exists at least one d-connecting path π(X,Y ), i.e.,
a path π(X,Y ) for which (i) for every collider structure
(V1 → V2 ← V3) on π(X,Y ), Z ∩ {V2,DeG(V2)} ≠ ∅,



X Y Z p-value
Incm MrtS Age, Occp, Rltn 0.29
Incm Sex Occp, Rltn 0.21
Incm Wrkc Occp 0.00015
Edct MrtS Incm, Occp, Rltn 0.02

Figure 2: Results of testing some of the implied CIs of the
DAG in Figure 1(b) using the same residualization based CI
test that was used for learning it.

and (ii) for every non-collider structure (V1 → V2 → V3,
V1 ← V2 ← V3, V1 ← V2 → V3), V2 ̸∈ Z. X and Y are
d-separated given Z if no d-connecting path exists between
them. In particular, nodes connected by an edge cannot
be d-separated by any Z. The skeleton S = (V,ES) of
a DAG G = (V,EG) is the undirected graph with edges
ES = {X − Y | X → Y ∈ EG ∨ Y → X ∈ EG}.

2.1 ASSUMPTIONS

In this paper, we consider the structure learning problem
under the widely known causal Markov, causal sufficiency
and faithfulness assumptions [Spirtes et al., 1993]. These
entail that there exists a DAG G on the variables X whose
implied d-separation statements coincide exactly with the
conditional independence relationships among the variables
in X , and for which all direct common causes of variables in
X are also included in X . These are the same assumptions
made by the structure learning algorithms we consider in
this paper, such as the PC algorithm [Spirtes et al., 1993].

2.2 CONDITIONAL INDEPENDENCE TESTS

Our structure learning algorithm uses the idea of testing
DAGs using CI statements like X ⊥⊥ Y |Z (with potentially
Z = ∅). For example, take the MEC learned by the PC
algorithm in Figure 1(b) using N = 800, and suppose that
we orient the undirected edge between Marital Status and
Relationship as Marital Status→ Relationship. We can then
read implied CIs of the DAG using d-separation, and test
them in our dataset. Figure 2 shows the result of some tests.
Using a significance threshold α = 0.05, the first 2 implied
CIs hold in the data whereas the remaining tests fail. One of
the ways to fix these failing tests is to add an edge between
the variable pair X and Y . While this method helps us in
finding variable pairs where we may need to add an edge,
it does not give us any information about the orientation
of this edge. In this paper, we use domain knowledge to
determine this orientation.

In addition to determining significance, we are interested in
quantifying the strength of any partial association between
X and Y after conditioning on Z. This metric depends on
the type of CI test used. In the following, we provide a

brief overview of some CI tests and effect size measures for
different types of (possibly mixed) data.

Both X and Y are continuous: When both X and Y are
continuous, we can use a (partial) correlation test for CI
testing and Pearson’s correlation coefficient can be used as
the effect size. When Z = ∅, the correlation coefficient is
defined as: rX,Y = cov(X,Y )/(σXσY ). When Z ̸= ∅, the
partial correlation coefficient can be used instead. This is es-
timated by fitting two regression models EX : X ∼ Z and
EY : Y ∼ Z, calculating the residuals RX = X −EX(Z)
and RY = Y −EY (Y ), and computing the Pearson’s corre-
lation coefficient between the residuals: rX,Y |Z = rRX ,RY

X is ordinal, and Y and Z are continuous or ordinal:
Polyserial (for continuous Y ) and polychoric (ordinal Y )
correlations are used to estimate correlations involving or-
dinal variables [Poon and Lee, 1987]. Both methods make
the assumption that the observed ordinal variable is a re-
sult of thresholding a latent normally distributed continuous
variable. Under this assumption, the methods then estimate
the threshold values and covariance matrix using maximum
likelihood. Using the estimated covariance matrix, Σ we can
perform a correlation test for CI and compute the Pearson’s
correlation coefficient as the effect size (same as for contin-
uous X and Y ), i.e., Z = ∅, rX,Y = ΣXY /(

√
ΣXXΣY Y ),

and when Z ̸= ∅, rX,Y |Z = −Σ−1
XY /(

√
Σ−1

XXΣ−1
Y Y ).

X , Y , and Z are all discrete (ordinal or categori-
cal): For combinations of ordinal and categorical vari-
ables, we can use a residualization-based CI test [Ankan
and Textor, 2023] that returns a chi-square distributed
test statistic. Given the statistic, χ2, with df degrees
of freedom, we use the Root Mean Squared Error of
Approximation (RMSEA) defined as RMSEAX,Y |Z =√

max(0, χ2 − df)/(df(N − 1)), where N is the sample
size. This effect size can be used for any statistical test with
a chi-square distributed test statistic.

3 EXPERT-IN-THE-LOOP CAUSAL
DISCOVERY

Our approach to causal structure learning combines domain
knowledge with data-driven insights in a manner that is
based on the following considerations: (1) A domain expert
is possibly good at determining causal directions between
variables if there is a clear causal direction between them.
(2) A domain expert may have difficulty at identifying cases
where there is no causal relationship between the variables,
since potential causal relationships can often be argued
for anyway. (3) Many domain experts could struggle to
distinguish direct from indirect effects, since the presence
of a direct effect between two variables of interest depends
on all other variables present in the graph.



We will first present theoretical results showing how a struc-
ture learning algorithm using such experts can uncover the
true DAG structure. Afterwards, we will present a heuristic
for deciding which changes should be prioritized.

3.1 DAG STRUCTURE LEARNING USING
ANCESTRAL ORACLES

We model domain experts as procedures that take two vari-
ables X and Y that are assumed to be part of a DAG G and
provide information on the ancestral relationship between
them. First, a strong ancestral oracle AG is defined as:

AG(X,Y ) =


X → Y if X ∈ AnG(Y )

X ← Y if Y ∈ AnG(X)

None otherwise

Note that the ancestral oracle does not consider differences
between direct and indirect relationships: for any G,H
where G+ = H+, we have AG = AH .

Experts can make mistakes. In our analysis, we will con-
sider experts that essentially “make up” non-existing causal
relationships, but do provide correct answers on the direc-
tionality of existing ones.

Definition 1. Let G = (V,EG) and H = (V,EH) be two
DAGs. The G-compatible ancestral oracle AG|H is defined
by

AG|H(X,Y ) =


X → Y if X ∈ AnG(Y )

X ← Y if Y ∈ AnG(X)

AH(X,Y ) otherwise

Consider the graph G|H containing the edgesAG|H(X,Y )
for all pairs (X,Y ) ∈ V ×V . If G|H is acyclic, thenAG|H
is called an acyclic G-compatible ancestral oracle.

Note that a G-compatible oracle can contradict itself. Con-
sider V = (X,Y, Z), G = (V, {X → Y }) and H =
(V, {Y → Z,Z → X}). This gives AG|H(Y,Z) = Y →
Z and AG|H(X,Z) = Z → X which imply that Y causes
X , in contradiction toAG|H(X,Y ) = X → Y . Still, it will
turn out that we can recover from such errors.

Generally, using ancestral oracles for DAG construction
introduces superfluous edges. Our approach uses the data to
decide where to add edges and which edges are superfluous
and can be removed. As a useful abstraction, let us assume
that we have access to a second oracle DG that can answer
d-separation queries with respect to the unknown true graph
G:DG(X,Y,Z) = 1 iff X and Y are d-separated by Z in G,
and 0 otherwise. These are the standard oracles considered
in constraint-based structure learning algorithms, such as
PC [Spirtes et al., 2001].

We now define two core procedures that use ancestral and
d-separation queries to iteratively change a current DAG

structure. The procedure EXPAND (Algorithm 1) uses CI
information to search for unexplained associations in the
graph and then uses domain knowledge to determine ances-
try. The procedure PRUNE (Algorithm 3) uses CI informa-
tion to remove superfluous edges from the graph.

Algorithm 1: Adding edges based on data and domain
knowledge.

1 Function EXPAND(V,E,D,A,B,k):
2 L← {}
3 foreach X,Y where X → Y /∈ E ∪B and

Y → X /∈ E ∪B do
4 Z be a set that d-separates X and Y in (V,E)
5 if D(X,Y,Z) = 0 then
6 L← L ∪ A(X,Y )
7 end
8 if |L| ≥ k then
9 go to 12

10 end
11 end
12 R← FIXCYCLES(V,E ∪ L,D)
13 B ← B ∪R ; E ← (E ∪ L) \R
14 return (V,E,B)

Algorithm 2: Fixing cycles by removing incorrect
edges.

1 Function FIXCYCLES(V,E,D):
2 R← ∅
3 foreach X → Y on a cycle in (V,E) do
4 if there exists a set Z ⊆ X where

D(X,Y,Z) = 1 then
5 R← R ∪ {X → Y } ∪ {Y → X}
6 end
7 end
8 return R

EXPAND takes an initial list of edges and searches for any
unconnected vertex pairs that are not connected but where
the d-separation oracle indicates a residual association not
explained by other paths. The parameter B specifies a “black
list” of edges that must not be added. This is important to
prevent edges that were removed from cycles to be added
again and will have another important role in the overall
algorithm. In addition, k can be used to limit the maximum
amount of edges to be added by this procedure; it will be-
come clear soon why this is useful.

The following two propositions characterize the results of
EXPAND.

Proposition 1. For a conditional independence
oracle DG and a strong ancestral oracle AG,
EXPAND(V, ∅,DG,AG, ∅,∞) = G+.



Proof. Since we start from an empty graph, every pair of
vertices X,Y where X ∈ AnG(Y ) is d-separated by the
empty set and is connected by the edge X → Y . No other
edges are added. Therefore, the result is G+.

When using experts that do not always correctly detect the
absence of causal relationships, the resulting graph can get
larger but also smaller, if this leads to the occurrence of
cycles that need to be broken.

Proposition 2. For a conditional independence oracle
DG and a G-compatible ancestral oracle AG|H , let G̃ =

EXPAND(V, ∅,DG,AG|H , ∅,∞) Then G̃ is acyclic, and
G ⊆ G̃.

Proof. Let S be the skeleton of G. All edges in S are added
during EXPAND with correct orientation and cannot be re-
moved by FIXCYCLES. Therefore, the result is a supergraph
of G. Each cycle that is possibly created during EXPAND
contains at least one edge that is not in S, otherwise G itself
would be cyclic. At least one edge of every cycle is therefore
removed by FIXCYCLES, making the result acyclic again.
The removed edge cannot be in S, so G ⊆ G̃.

Algorithm 3: Pruning superfluous edges

1 Function PRUNE(V ,E,D):
2 R← {}
3 foreach X → Y ∈ E do
4 let Z be a set that d-separates X and Y in

(V,E \ {X → Y })
5 if D(X,Y,Z) = 1 then
6 R← R ∪ {X → Y }
7 end
8 end
9 E ← E \R

10 return (V,E)

Unlike our ancestral oracles, the pruning operation is quite
effective at distinguishing direct and indirect effects, as
shown by the following result.

Proposition 3. Consider two DAGs G = (V,E) and G′ =
(V,E′) where E ⊆ E′. Then PRUNE(V,E′,DG) = (V,E).

Proof. Let S be the skeleton of G. For an edge X − Y in
S, DG(X,Y,Z) = 0 regardless of Z, so all edges in the
skeleton are retained after PRUNE. Conversely, if X − Y
is not in S, let Z be the d-separating set chosen in line 4 of
PRUNE (there is at least one such Z, the union of the parents
of X and Y ). Since Z d-separates all paths from X to Y in
G′, it does the same in G which contains a subset of these
paths. Therefore, all edges not in G are removed.

By combining Propositions 1, 2 and 3, we immediately
obtain the following:

Theorem 1. Given a d-separation oracle DG

and a G-compatible ancestral oracle AG|H , let
(V ′, E′, B) = EXPAND(V, ∅,DG,AG|H , ∅,∞). Then
PRUNE(V ′, E′,DG) = G.

Since we require expert knowledge only in the EXPAND
operation, we may try to be more economical by asking
fewer questions at a time and interleaving expansion and
pruning steps. This leads us to the following, more iterative
DAG construction algorithm.

Algorithm 4: Iterative structure learning with expert in
the loop

1 Function EXPERTINLOOP(V,D,A):
2 Ep ← ∅ /* Current edges */
3 B ← ∅ /* Edges that were pruned or

removed from cycle */
4 repeat
5 E ← Ep

6 (V,E,B)← EXPAND(V,E,D,A, B, 1)
7 (V,Ep)← PRUNE(V,E,D)
8 B ← B ∪ {E \ Ep}
9 until E = Ep

10 return (V,E)

Theorem 2. Let G = (V,E∗) be a DAG,DG a d-separation
oracle for G, and AG|H a G-compatible ancestral oracle
for G. Then EXPERTINLOOP(V,DG,AG|H) = G.

Proof. The loop in Algorithm 4 terminates if and only if
E = E∗. If the loop does not terminate, a new edge has been
added in line 6, and/or one or more edges were pruned in
line 7. Every edge can be added at most once and pruned at
most once. Therefore, the algorithm always terminates after
at most |V |(|V | − 1) + 1 iterations of the loop. For every
edge e = X → Y in G,DG(X,Y,Z) = 0 irrespective of Z,
so e must be added to E in some iteration, and can never be
pruned afterwards. Therefore, after some iteration, (V,E)
must be a supergraph of G after executing line 6, and this
will be pruned to the real graph G in line 7 (Proposition 3).
In the next iteration, no further changes are made, and the
loop terminates.

Figures 3 and 4 show possible runs of EXPERTINLOOP. We
note that the general property of Algorithm 4 that each pos-
sible edge can be added and removed at most once, which
guarantees that the algorithm eventually terminates, remains
valid even if the oracles make arbitrary mistakes. This is
crucial when using the algorithm in practice.
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Figure 3: Results of multiple iterations of EXPERTINLOOP
with k = 1 using a strong ancestral oracle. Dashed edges
are candidates for addition in each iteration of EXPAND.

3.2 RANKING POTENTIAL NEW EDGES

EXPERTINLOOP adds a new edge in each iteration. The
edge to be added is selected using the EXPAND algorithm,
which returns a potential edge at random based on the it-
eration order. However, if the residual association between
the selected variables is low, adding the edge may result
in only a marginal improvement in the overall model fit.
Given that the algorithm requires expert intervention in each
iteration to specify the edge orientation, it can be beneficial
to prioritize edges that contribute the most to improving the
model.

To achieve this, instead of selecting edges randomly, we
propose ranking potential edges based on their residual asso-
ciation given the current DAG. This residual association can
be quantified using the effect sizes from the CI tests used
for deciding d-separation in Algorithm 1. Specifically, for
a d-separation query DG(X,Y,Z), we quantify the resid-
ual association, ϕ(X,Y,Z), as the effect size of the CI test
X ⊥⊥ Y |Z.

Algorithm 5 shows a version of EXPAND where we use
the largest unexplained association to determine where to
next add an edge. To implement this, we need an effect size
metric by which we can rank effects. Depending on the type
of variables, we can use the effect sizes shown in Section 2.2.
The algorithm selects the edge that has the highest absolute
residual association, resulting in prioritization of edges that
contribute the most to improving the model.

In addition to prioritizing edges to add or remove, the rank-
ing could also be used to break cycles when CI tests fail
to identify the edges that are not in the skeleton during the
procedure FIXCYCLE, which could happen due to finite
sample effects. In that case, removing edges that correspond
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(f) X1 → X2,
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X2 X3
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(g) X1 → X3

Figure 4: Similar example as in Figure 3 but using a G-
compatible ancestral oracle that adds the edges X2 → X3

and X4 → X2, leading to a cycle that is broken in (e).

to weak associations may be preferable to keeping the cycles
in the model.

3.3 COMPARISON TO SCORE-BASED METHODS

Superficially, the data-driven aspects of our procedure ap-
pear similar to score-based automated causal discovery
methods like Greedy Equivalence Search (GES), which iter-
atively add or remove edges that maximize improvements
in a specified scoring metric. Indeed, we can define the total
residual association τ for a DAG G = (V,E) as:

τ =
∑

X,Y ∈V
X→Y,Y→X ̸∈E

ϕ(X,Y, paG(X) ∪ paG(Y )) (1)

Our RANKEDEXPAND approach behaves similarly to GES
in that it tries to prioritize modifications that lead to the
largest improvements in τ . However, adding an edge be-
tween the two vertices that contribute the most to τ does not
necessarily lead to the largest possible decrease in τ because
the new edge can also affect other residual associations. In
other words, τ is not a decomposable fit measure like the
ones normally used in score-based structure learning.

Another key difference lies in the interpretability of the
evaluation metric. Scoring metrics are usually based on the
log-likelihood with a penalty for model complexity. They
can be used to make relative comparisons between models
but their values do not have any interpretation in an absolute
sense. That is, they indicate which model is better for a given
dataset but do not quantify how well the model explains the
data. In contrast, τ could be seen as an absolute measure



Algorithm 5: Adding an edge between variables with
the highest correlation

1 Function RANKEDEXPAND(V,E,D,A,ϕ,B):
2 ϕmax ← 0 ; L← ∅
3 foreach X,Y where X → Y /∈ E ∪B and

Y → X /∈ E ∪B do
4 let Z be a set that d-separates X and Y in

(V,E)
5 if D(X,Y,Z) = 0 then
6 if |ϕ(X,Y,Z)| > ϕmax then
7 ϕmax ← |ϕ(X,Y,Z)|
8 L← {A(X,Y )}
9 end

10 end
11 end
12 R← FIXCYCLES(V,E ∪ L,D)
13 B ← B ∪R ; E ← (E ∪ L) \R
14 return (V,E,B)

of model fit – its value approaches 0 as the model perfectly
explains the observed data.

It is possible to integrate domain knowledge into score-
based methods in a similar way as we do here for constraint-
based structure learning. Kitson and Constantinou [2025]
recently extended the Tabu search algorithm by a proce-
dure that asks a domain expert for advice before making
changes that would improve the score only marginally. In
contrast, our approach places greater emphasis on expert
input as no edges are oriented without consulting the expert.
Further, the approach by Kitson and Constantinou [2025]
requires experts that are able to distinguish between direct
and indirect effects.

4 EMPIRICAL ANALYSIS

In this section, we compare our EXPERTINLOOP algorithm
with automated causal discovery algorithms. Our goal with
the empirical analysis is to understand the behaviour of our
method when both experts and d-separation oracles are not
perfect. Specifically, how good does the domain expert have
to be so we actually benefit from their expertise, compared
to a purely data-driven approach?

In our analysis, we simulate data from a “true” DAG G and
use the EXPERTINLOOP algorithm with the RANKEDEX-
PAND heuristic to recover G. We implement the d-separation
oracle DG(X,Y,Z) by conducting conditional indepen-
dence tests of X ⊥⊥ Y | Z, which on finite data inevitably
make type I and type II errors. To simulate an imperfect
domain expert, we use a version of a strong ancestral oracle
AG (Section 3.1) that with probability α knows the correct
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Figure 5: Comparison of PC, Hill-Climb Search, and GES al-
gorithms against EXPERTINLOOP algorithm. As automated
algorithms only recover the CPDAG, we use the best and
worst scoring orientation of the CPDAG to get the range.
We test EXPERTINLOOP with varying values of expert accu-
racy, α = {0.1, 0.3, 0.5, 0.7, 0.9}. The corresponding αeff
is shown in the plot. Expert shading: mean ± standard error.
Others shading: [mean min. - standard error min., mean max.
+ standard error max.]

answer and randomly guesses otherwise, i.e.,

x = rand([0, 1])

Expert(α) =

{
AG(X,Y ), if x <= α

rand(X → Y, Y ← X,None) otherwise

Additionally, instead of performing an exhaustive search for
separating sets in FIXCYCLES, we used a heuristic: for each
edge X → Y on the cycle, we ran a CI test between X and
Y , using as the conditioning set the parents of Y combined
with one variable from the cycle. This approach was able to
successfully break all cycles in our empirical analysis.

It is important to note that the effective accuracy of Expert
is higher than α as even when x > α, there is a 1/3 chance
that edge orientation is correct. Therefore, an Expert with
accuracy α has an effective accuracy, αeff = α+(1−α)/3.

We compare the performance of the EXPERTINLOOP algo-
rithm to three other automated algorithms: PC [Spirtes et al.,
2001, Kalisch and Bühlmann, 2007], Hill-Climb Search
[Scutari, 2010], and Greedy Equivalence Search (GES)
[Chickering, 2002] on linear-Gaussian data. For EXPERTIN-
LOOP, we use the RANKEDEXPAND method with Pearson’s
correlation coefficient as the effect size (Section 2.2) and
significance threshold (and type I error rate) α = 0.05. We
start by generating a random DAG on 10 nodes and use
linear models with random effects to simulate 500 samples
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Figure 6: LLM-in-the-loop causal discovery on the Adult
Income datases. As the ground truth is unknown, two mea-
sures of fit are shown over 30 iterative modifications: total
residual association τ (left, see Equation 1; lower is bettter);
log-likelihood (right, higher is better).

from it. We simulate each variable Vi in the DAG as

Vi = β · PaG(Vi) +N (0, 1)

where each coefficient βi of the vector β ∈ R|PaG(Vi)| is
randomly drawn as

βi ∼ Uniform([−0.6, 0.6])

We perform the experiment for varying densities of the DAG
and accuracies of Expert. We repeat each experiment 30
times and report the mean and standard error of the results.

To compare the learned DAG to the original DAG, we
use two metrics: the Structural Hamming Distance (SHD)
and the Structural Intervention Distance (SID) [Peters and
Bühlmann, 2015]. Unlike EXPERTINLOOP, the automated
algorithms can only recover the MEC, therefore, we consid-
ered all possible orientations of the MEC to compute a range
of SHD and SID values representing the best and worst case
scenarios. The results of this analysis are shown in Figure 5.
For SHD, the performance of EXPERTINLOOP is compara-
ble to the automated algorithms for α = 0.3 (αeff = 0.53),
implying that if an expert is able to get the edge orientation
correctly in more than 1 out of 2 cases, they can outperform
the automated algorithms. Similarly for SID, an expert can
outperform the automated algorithms if they are able to get
the orientation correct in 2 out of 3 cases. Another thing to
note is that for denser DAGs, the EXPERTINLOOP is able
to perform better for lower α values.

5 PRACTICAL IMPLEMENTATION

We now present two proof-of-concept implementations of
our approach, geared towards using large language models
(LLMs) and humans as experts to decide on edge directions.

Race

Native
Country

Sex

Age

Education

Marital Status

Work
Class

Relationship Income Occupation

Hours per
Week

Figure 7: DAG learned from the Adult Income dataset us-
ing an LLM (Gemini 1.5 Flash) as the expert. The p-value
threshold used is 0.05 and the measure of association thresh-
old is 0.1, meaning that associations below 0.1 are not con-
sidered by RANKEDEXPAND.

We use the Adult Income dataset from the introduction as
an example. There is no known ground truth for this dataset,
and it contains mixed types of data; here, we use a version
that contains ordinal and nominal variables and use the RM-
SEA of a residualization-based conditional independence
test [Ankan and Textor, 2023] as a measure of association
to prioritize modifications (Section 2).

5.1 USING LLMS AS EXPERTS

Recently, there has been significant interest in leveraging
Large Language Models (LLMs) for causal discovery. These
applications range from determining pairwise edge orienta-
tions [Kıcıman et al., 2023, Jin et al., 2024] to full causal
structure learning [Naik et al., 2023, Vashishtha et al., 2023]
and counterfactual reasoning [Kıcıman et al., 2023] (see Liu
et al. [2024] for a comprehensive overview).

Since our approach relies on expert knowledge to determine
ancestral relationships, we explored the potential of using
an LLM for this task. We applied our causal discovery pro-
cedure using the Gemini 1.5 Flash model as the expert. We
simulate the ancestral oracle using the LLM by asking it
to choose the causal direction between a pair of variables.
The LLM is provided a description of each of the variables
and given the prompt shown in Appendix A. Figure 6 shows
how the model fit to the data improves across 30 iterations
compared to GES for a run of the algorithm. Figure 7 shows
the DAG learned on the Adult Income dataset using the
LLM as the expert. We can see that the model fit improves
comparably to a greedy approach and the resulting DAG
appears to contain largely sensible edge directions. We have
provided an implementation of this method in the pgmpy
package [Ankan and Textor, 2024].



Figure 8: Tool for guided model construction. Upon dataset
upload, the tool creates an empty graph and shows all pairs
of variables with unexplained residual associations using
undirected red edges (edge width is proportional to associa-
tion strength). Users iteratively add suggested edges (shown
in green), relying on their knowledge when specifying the
orientation. Superfluous edges are shown in black.

5.2 USING HUMANS AS EXPERTS

To enable researchers to easily apply our approach to their
own datasets, we developed an interactive web tool (Fig-
ure 8) for constructing DAGs. Users can upload their dataset,
which initializes an empty DAG with nodes corresponding
to the dataset’s variables. They can then specify a p-value
threshold and a threshold for a minimal association strength.
The tool then visually highlights variable pairs with a resid-
ual association greater than the threshold, marking them
with red edges; to avoid cluttering, no lines are drawn for
residual associations that are statistically insignificant or be-
low the specified threshold. The thickness of these edges rep-
resents the strength of association, helping users prioritize
which variable pairs to address first; however, note that users
are free to choose which variables to connect. Similarly, if
an existing edge is found to be potentially superfluous (statis-
tically insignificant), it is highlighted in black. Using this in-
formation, users can iteratively modify the model by adding
or removing edges. The tool also computes the Root Mean
Square Error of Approximation (RMSEA) based on Ship-
ley’s C test, a global test of model fit based on the implied
CIs [Shipley, 2000], to provide an estimate of the overall fit
of the model. Once satisfied with the constructed DAG, users
can export the model for further analysis. This web tool can
be accessed at: https://ankurankan.github.io/
2025-causal-discovery-webapp/

6 CONCLUSIONS

Researchers often prefer to construct DAGs manually rather
than using automated algorithms, which could be partly due
to practical challenges with automated methods. To assist
this process, we developed an iterative structure learning
method that integrates manual construction with data-driven
feedback, bridging the gap between fully manual and fully
automated methods. The idea of augmenting structure learn-
ing by domain knowledge is of course not new. Common
ways to provide such background knowledge are “whitelists”
or “blacklists” of edges [Scutari, 2010], or specification of
a “tiered” (e.g., temporal) structure between the variables
[Bang and Didelez, 2023]. Compared to such approaches,
where domain knowledge is specified and supplied before-
hand, the novelty of our method lies in the interactive back-
and-forth between domain knowledge and data, which gen-
erates the correct result in a polynomial amount of steps in
the oracle settings we considered.

Nevertheless, the algorithm presented in this paper has sig-
nificant limitations. First of all, the causal Markov and
causal sufficiency assumptions are widely seen as too restric-
tive, since they rule out latent confounders. Further, recover-
ing from mistakes that introduce cycles requires searching
for a separating set for each edge on each cycle, which in
the worst case can take exponential time and would then
essentially amount to running significant parts of the PC
algorithm. In practice, we may be better off breaking cycles
by other means – such as the heuristic implemented in our
experiments – even if the theoretical correctness guarantee
is lost. Lastly, any iterative model improvement procedure
runs the risk of overfitting to the given dataset. While this
is also the case for purely data-driven structure learning
(which may even require a vastly larger amount of model
improvement steps), the inclusion of human judgement in
this process means that it will be seen as less reliable. Mod-
els generated by this approach should certainly be seen as
preliminary and in need of further validation using indepen-
dent data, and a log of all human decisions made during the
process should be kept. In this respect, it will be interesting
to see how the research community will feel about the use
of LLMs instead of humans for model refinement.

Avenues for future work include extending this approach
to less restrictive assumptions, such as those used by FCI
[Spirtes et al., 2000] that allow for latent confounding. Fur-
ther, if experts make mistakes that lead to inconsistencies
during model construction (such as cycles), this informa-
tion could be leveraged in a more systematic way to allow
backtracking and recovery.
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A PROMPTS USED FOR LLM

You are an expert in Social Science. Following are the descriptions of two variables:

<A>: {description of variable A}
<B>: {description of variable B}

Which of the following two options is the most likely causal direction between these
variables:

1. <A> causes <B>
2. <B> causes <A>

Return a single letter answer between the choices above; Do not provide any reasoning
in the answer; Do not add any text formatting to the answer.

Figure 9: Prompt used for the LLM. Here the variable descriptions are replaced with description provided in Fig. 10

Age: The age of a person
Workclass: The workplace where the person is employed such as Private industry,

or self employed
Education: The highest level of education the person has finished.

MaritalStatus: The marital status of the person
Occupation: The kind of job the person does. For example, sales, craft repair,

clerical.
Relationship: The relationship status of the person.

Race: The ethnicity of the person.
Sex: The sex or gender of the person.

HoursPerWeek: The number of hours per week the person works.
NativeCountry: The native country of the person.

Income: The income i.e. amount of money the person makes.

Figure 10: Variable descriptions used for prompting the LLM
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