
Under review as a conference paper at ICLR 2023

ADELT: UNSUPERVISED TRANSPILATION
BETWEEN DEEP LEARNING FRAMEWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Adversarial DEep Learning Transpiler (ADELT) for source-to-source
transpilation between deep learning frameworks. Unlike prior approaches, we
decouple the transpilation of code skeletons and the mapping of API keywords (an
API function name or a parameter name). ADELT transpile code skeletons using
few-shot prompting on big language models. Based on contextual embeddings
extracted by a BERT for code, we train aligned API embeddings in a domain-
adversarial setting, upon which we generate a dictionary for keyword translation.
The model is trained on our unlabeled DL corpus from web crawl data, without
using any hand-crafted rules and parallel data. Our method outperforms state-
of-the-art transpilers on multiple transpilation pairs including PyTorch-Keras and
PyTorch-MXNet by 22.76 pts and 22.61 pts respectively evaluated by F1 score,
and we have made our code, corpus, and evaluation benchmark publicly available.

1 INTRODUCTION

The rapid development of deep learning (DL) has led to an equally fast emergence of new software
frameworks for training neural networks. Unfortunately, maintaining a deep learning framework and
keeping it up-to-date is not an easy task. Many deep learning frameworks are deprecated or lose
popularity every year, and porting deep learning code from a legacy framework to a new one is a
tedious and error-prone task. A source-to-source transpiler between DL frameworks would greatly
help practitioners overcome this difficulty.
The most straightforward way to build such a transpiler is neural machine translation (NMT), where
we consider a piece of code written using the legacy deep learning framework as a sentence and then
train a sequence-to-sequence (seq2seq) (Sutskever et al., 2014) model or a language model (LM) to
transpile. However, as it is rarely the case that a parallel corpus is available for any arbitrary pair of
source and target frameworks, only unsupervised NMT methods (Artetxe et al., 2018) are applicable.
Sadly, such methods are data-hungry. On the other hand, recent research shows that big language
models (Brown et al., 2020) pretrained on web crawl data can do translation in a few-shot or even
zero-shot manner. Such methods are suitable for transpilation between DL frameworks where labeled
training data is unavailable. In our early experiments, we use Codex (Chen et al., 2021) to transpile
DL programs using few-shot prompting. The transpiled programs usually have the correct skeletons
but are inaccurate on API-specific details, such as API function names and mappings of function
parameters.
That said, most deep learning framework code is structured: each type of layers has its own construc-
tor, and constructing a network involves calling each layer’s constructor in a chaining manner. By
leveraging the structures of programming languages, we decouple the transpilation of skeletal codes
from the mapping of API keywords. The transpilation of skeletal codes is the easier part, and large
LMs already do a great job. We only need a separate algorithm to translate the API keywords, i.e., the
function and parameter names to complete the transpilation.
In this paper, we present ADELT (Fig. 1), a method that leverages this insight to transpile DL code.
ADELT outperforms the state-of-the-art end-to-end transpilers. The canonicalized source code is
decoupled into two parts: the code skeleton and the API keywords. ADELT transpiles the code
skeleton using a pretrained big language model by few-shot prompting. Then each API keyword
occurrence is embedded into a vector by PyBERT, a BERT pre-trained on Python code. This vector
is both the textual and the contextual representation of the API keyword. ADELT then leverages
domain-adversarial training to learn a generator that maps the vector to an aligned embedding space.
The alignment is enforced by a two-player game, where a discriminator is trained to distinguish
between the embeddings from the source DL framework and those from the target DL framework.

1

Under review as a conference paper at ICLR 2023

import torch.nn as nn
torch.nn.Linear(dim_in, dim_out,

bias=False)

import torch.nn as nn
nn.Linear(in_features=dim_in,

out_features=dim_out,
bias=False)

import torch.nn as nn
PLACEHODLER_1(PLACEHODLER_2=dim_in,

PLACEHODLER_3=dim_out,
PLACEHODLER_4=False)

from tensorflow.keras import layers
PLACEHODLER_1(PLACEHODLER_2=dim_in,

PLACEHODLER_3=dim_out,
PLACEHODLER_4=False)

from tensorflow.keras import layers
layers.Dense(units=dim_out,

use_bias=False)

Canonicalize
& Extract (1)

Code to
Skeleton (2)

Skeleton
to Code (5)

Translate by
Language Model
Prompting (3)

Dictionary
Lookup (4)

Figure 1: An example of ADELT’s pipeline: an import statement in the code skeleton is transpiled from
PyTorch to Keras by a language model via few-shot prompting; a linear fully-connected layer is transpiled by
removing the argument in_features and renaming other API keywords according to the learned dictionary.
The number (1 to 5) near each arrow label corresponds to the step number in Section 2.

The API keyword embeddings are trained jointly with the generator as the output embedding matrix
of a softmax classifier on the aligned embedding space. After generating a synthetic API keyword
dictionary from the embeddings using a two-step greedy algorithm, ADELT look up each API
keyword occurrence in the dictionary and put them back into the transpiled code skeleton.
In summary, this paper makes the following contributions:
• We present ADELT for transpilation between deep learning frameworks without training on any

labeled data. ADELT outperforms seq2seq models and other big language models on multiple
transpilation pairs, achieving 85.72 F1 score and 95.32 BLEU on PyTorch-Keras transpilation,
which is 22.76 pts higher than the state-of-the-art big language model.

• We pre-train a Transformer encoder, PyBERT, on a large-scale corpus of Python code. It can
extract high-quality contextual representations of Python code fragments and is part of ADELT.

• To demonstrate our technique, we construct a PyTorch-Keras-MXNet corpus of deep learning code
from various Internet sources, containing 19,796 PyTorch modules, 3,703 Keras layers/models,
and 1,783 MXNet layers/models. We then build an evaluation benchmark for PyTorch-Keras and
PyTorch-MXNet transpilation. The benchmark evaluates both our API keyword mapping algorithm
and the overall source-to-source transpilation.

2 METHOD

ADELT (Adversarial DEep Learning Transpiler) is an algorithm that transpiles code from a source
deep learning framework into an equivalent one in a target framework, by transpiling the skeletal code
using a pretrained big language model, and then looking up each keyword in a dictionary learned
with unsupervised domain-adversarial training. ADELT applies the following steps to each piece of
input code, which we illustrate using the example shown in Fig. 1:
1. Extract API calls from the source code. Such API calls can be automatically extracted with the

ast library, a Python built-in module. We then convert each API call into its canonical form,
where each layer/function has a unique name, and all of its arguments are converted to keyword
arguments. Finally, we extract all API keywords from the canonicalized API call, where an API
keyword is the name of a layer/function or the name of a keyword argument.

2. Transform the program into its code skeleton by replacing each API keyword occurrence with a
distinct placeholder.

3. Transpile the code skeleton, where all API keywords are replaced by placeholders, into the target
DL framework using a pretrained big language model (e.g., Codex).

4. Look up each API keyword in the API keyword dictionary, and replace each keyword with its
translation. To generate the API keyword dictionary, we first learn the API embeddings using
domain-adversarial training based on contextual embeddings extracted by PyBERT (a BERT
pre-trained on Python code and then fine-tuned on deep learning code). Next, we calculate the
cosine similarity between the embedding vectors. Then we generate the API keyword dictionary
using a hierarchical algorithm.

5. Put each API keyword back into the transpiled code skeleton to generate the final output.
We describe each of these steps next in detail.

2

Under review as a conference paper at ICLR 2023

Algorithm 1 Pseudo-code for domain-adversarial training.
1 for (x_1, y_1), (x_2, y_2) in loader:
2 # N samples from X_1, X_2 respectively
3 # y_1, y_2: API keyword ids
4
5 h_1 = B(x_1).detach() # contextual embedding
6 h_2 = B(x_2).detach() # no gradient to PyBERT
7 z_1 = G(h_1) # generator hidden states
8 z_2 = G(h_2) # z_1, z_2: N x d
9

10 # dot product of z_l and output embeddings
11 logits_1 = mm(z_1, E_1.view(d, m_1))
12 logits_2 = mm(z_2, E_2.view(d, m_2))
13 L_CE_1 = CrossEntropyLoss(logits_1, y_1)
14 L_CE_2 = CrossEntropyLoss(logits_2, y_2)

15
16 # discriminator predictions
17 pred_1 = D(z_1)
18 pred_2 = D(z_2)
19 labels = cat(zeros(N), ones(N))
20 L_D = CrossEntropyLoss(pred_1, labels)
21 L_G = CrossEntropyLoss(pred_2, 1 - labels)
22
23 # joint update of G and E_l
24 # to minimize L_CE_l
25 optimize(G + E_1 + E_2, L_CE_1 + L_CE_2)
26 optimize(D, L_D) # train the discriminator
27 optimize(G, L_G) # train the generator

B: PyBERT used as the contextual embedder. G, D: the generator G and the discriminator D.
E_l: a d by ml matrix, where the i-th column vector is the output embedding of API keyword w

(l)
i .

mm: matrix multiplication; cat: concatenation

2.1 CANONICALIZATION & API KEYWORD EXTRACTION

We first parse the source code into an abstract syntax tree (AST) with the Python ast module. Then,
canonicalization and API call extraction are applied to the AST.

Canonicalization. We canonicalize each API call using the following steps during both domain-
adversarial training (Section 2.3) and inference. Each step involves a recursive AST traversal.
1. Unify the different import aliases of each module into the most commonly used name in the

training dataset. For example, torch.nn is converted to nn.
2. Unify different aliases of each layer/function in a DL library into the name in which it was

defined. We detect and resolve each alias by looking at its __name__ attribute, which stores
the callable’s original name in its definition.1 For example, layers.MaxPool2D is converted to
layers.MaxPooling2D.

3. Convert each positional argument of an API call into its equivalent keyword argument. Sort all
keyword arguments according to the order defined in the function signature. This is done by
linking the arguments of each API call to the parameters of its API signature using the bind
method from Python’s inspect module.2

API keyword extraction. We define API keyword as the name of a layer/function or the name of a
keyword argument. Once the input code is canonicalized, we locate each API keyword in the AST
and then unparse the AST into the canonicalized source code.

2.2 SKELETAL CODE TRANSPILATION

After canonicalizing the source program, ADELT then replaces all API keywords with a placeholder,
turning the source program into its code skeleton. Each placeholder has textual form PLACEHOLDER_i,
where i = 1, 2, 3, The code skeleton is then translated by a big language model (e.g., Codex)
using few-shot prompting. The full prompt is shown in Appendix A.5.

2.3 DOMAIN-ADVERSARIAL TRAINING

Once the code skeleton is transpiled, we then transpile API keywords. We train the aligned embed-
dings of the API keywords in a domain-adversarial setting. In Section 2.4, the embeddings will be
used to generate a dictionary that maps an API keyword of the source deep learning framework X (1)

to an API keyword in the target DL framework X (2).
Fig. 2 illustrates the domain-adversarial approach of ADELT, and Algorithm 1 shows the pseudocode.
A generator maps the contextual representations extracted by PyBERT into hidden states (line 5-8).
The alignment of hidden states from different DL frameworks is enforced by the adversarial loss
induced by the discriminator (line 17-21), so that output embeddings learned with these hidden states
(line 11-14) are also aligned. Next, we describe each step in detail:

1https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
2https://docs.python.org/3/library/inspect.html#inspect.Signature.bind

3

https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/library/inspect.html#inspect.Signature.bind

Under review as a conference paper at ICLR 2023

Each training example is a pair of API keyword occurrences with their context in the training corpus,
denoted by (x(1), x(2)). Each keyword occurrence x(l) is tokenized and encoded as multiple byte
pair encoding (BPE) (Sennrich et al., 2016) tokens. In our unsupervised setting, x(1) and x(2) are
independent samples from X (1) and X (2) in the training dataset, respectively, and they are not
necessarily translations of each other.

L(1)
CE

LG +LD L(2)
CE

Classifier(1) Discriminator Classifier(2)

Generator share parameters Generator

PyBERT share parameters PyBERT

... nn . Conv @2d layers . Dense ...

Figure 2: ADELT’s domain-adversarial
training with contextual embeddings from a
PyBERT. The generator and the PyBERT are
shared between different DL frameworks. We
do not fine-tune the PyBERT during adversarial
training.

PyBERT. PyBERT is our pre-trained Trans-
former (Vaswani et al., 2017; Devlin et al., 2019) for
Python code (Feng et al., 2020; Kanade et al., 2020;
Roziere et al., 2021). Given a sequence of BPE tokens
that represent an API keyword with its context x(l),
PyBERT outputs a sequence of vectors — one vector
in Rdb for each token, where db is the hidden dimension
size of PyBERT. We average-pool all BPE tokens of
the keyword and get a single db-dimensional vector
as the contextual embedding PyBERT(x(l)) of the
API keyword. We denote the contextual embedding of
x(1), x(2) by h(1),h(2) respectively.

Generator and discriminator. We define two multi-
layer perceptrons, a generator and a discriminator.
A generator G encodes the contextual embeddings
h(1),h(2) into hidden states z(1), z(2) ∈ Rd, and a dis-
criminator D is trained to discriminate between z(1) and

z(2). The generator is trained to prevent the discriminator from making accurate predictions, by
making G(PyBERT(X (1))) and G(PyBERT(X (2))) as similar as possible. Our approach is inspired
by domain-adversarial training (Ganin et al., 2016), where domain-agnostic representations of images
or documents are learned for domain adaptation. In our case, a domain is represented by a DL
framework.
Formally, we define the probability PrD(pred = l|z) that a hidden state z is from the DL framework
l predicted by the discriminator. Note that z(1) = G(h(1)) and z(2) = G(h(2)). The discriminator
loss and the generator loss are computed as the binary cross entropy against the true label and the
reversed label, respectively, as is shown in Eq. (1).

LD =− Edata[log Pr
D
(pred = 1|G(h(1)))]

− Edata[log Pr
D
(pred = 2|G(h(2)))]

LG =− Edata[log Pr
D
(pred = 2|G(h(1)))]

− Edata[log Pr
D
(pred = 1|G(h(2)))]

(1)

L(l)
CE = −E(x,y)∼data(l)

[
log

exp(z · e(l)
y)∑m(l)

k=1 exp(z · e(l)
k)

]
(2)

Output embeddings. Our goal is to learn an embedding for each API keyword, but the contextual
embedding of each keyword occurrence varies with its context. So we instead train a d-dimensional
vector e(l)i for each API keyword w

(l)
i , such that e(l)i is similar to the generator hidden states z(l)j of

this keyword’s occurrences and dissimilar to the hidden states z(l)k of any other keyword’s occurrences.
e
(l)
i is considered the output embedding of the API keyword w

(l)
i . With similarity computed using

dot product, our optimization objective is shown in Eq. (2), which is equivalent to the cross-entropy
loss of m(l)-way softmax-based classification. Here m(l) is the number of distinct API keywords in
the DL framework l.

Adversarial training. During each training iteration, the generator and discriminator are trained
successively to minimize LG and LD respectively with mini-batch stochastic gradient descent.
Minimizing the adversarial loss is equivalent to minimizing the distance between two distributions
of hidden states (Goodfellow et al., 2014). Therefore, the API keywords from the different DL
frameworks will be mapped to an aligned embedding space.

4

Under review as a conference paper at ICLR 2023

Also, we jointly update the generator and the output embeddings to minimize L(l)
CE with mini-batch

SGD. The joint optimization is crucial, as updating the generator to minimize L(l)
CE ensures that each

generator hidden state z(l) preserves enough information to recover its original API keyword. As a
result, the output embeddings {e(1)i }m(1)

i=1 and {e(2)j }m(2)

j=1 are also aligned, as they are trained with
vectors z(l) from the aligned embedding space.
We do not fine-tune PyBERT during domain-adversarial training, as fine-tuning PyBERT makes the
generator disproportionally strong that results in training divergence.

2.4 HIERARCHICAL API DICTIONARY GENERATION

ADELT calculates a scoring matrix using the aligned API keyword embeddings trained in Section 2.3.
The entry in the i-th row and the j-th column of the matrix is the similarity between w

(1)
i and w

(2)
j ,

denoted by si,j . We can either measure the similarity by dot product or cosine similarity.
Given the scoring matrix, ADELT generates an API keyword dictionary that maps each API keyword
in one deep learning framework to an API keyword in another DL framework. In word translation of
natural languages (Conneau et al., 2018), greedy matching is used to generate a dictionary, where
each source word is matched to the target word with the highest similarity score. Unlike natural
language words, API keywords are structured. We leverage structures of API keywords to reduce the
number of candidates so that the model can choose the correct translation with high probability.
Specifically, we classify all API keywords into two types based on their associated AST node:
callables (functions or classes), and parameter names (names of keyword arguments). In dictionary
generation, we do not allow callable names to be translated to callable names. We only allow
parameter names to be translated to callable names when the weight passes a threshold. In this
case, this parameter will be dropped and generate a new API call (the last case in Table 2). Another
structural property is that the matching of parameters depends on the matching of callables.
Leveraging the structures of API keywords, we propose a hierarchical API dictionary generation
algorithm: Step 1. Consider each callable and its parameters as a group and compute the group
similarity between each pair of groups, by summing up similarity scores in the greedy matching of
parameter names, plus the similarity between two callable names. Step 2. Apply greedy matching to
groups based on group similarity scores calculated in step 1.

3 EXPERIMENTS

We evaluate the effectiveness of ADELT on the task of transpilation between PyTorch, Keras, and
MXNet3. Compared with end-to-end neural networks, our model has better performance.

3.1 LANGUAGE MODEL FOR SKELETAL CODE TRANSPILATION

We use Codex (Chen et al., 2021) for transpiling code skeletons. Codex is based on GPT-3 (Brown
et al., 2020), an autoregressive language model (LM) trained on massive web crawl data. It can be
applied to translation tasks with few-shot demonstrations specified purely via text interaction with
the model. Codex is a fine-tuned version of GPT-3 using publicly available code from GitHub. The
prompt design is similar to the code translation setup of Codex. The prompt consists of a single
input-output example and three instructions to make the LM keep placeholders unchanged. Details
about prompt designs are shown in Appendix A.5.

3.2 TRAINING SETUP

DL corpus. Unsupervised translation usually relies on large unlabeled corpora (Artetxe et al.,
2018; Lachaux et al., 2020). For our study, we gather as much relevant source code as possible. We
consider 4 data sources GitHub, JuiCe (Agashe et al., 2019), Kaggle (Quaranta et al., 2021), and
Web. Details are shown in Appendix A.1.
We tokenize all Python source code and extract subclasses of torch.nn.Module,
keras.layers.Layer, or keras.Model. Then, we canonicalize (Section 2.1) the code of
each class definition. We byte-pair encode (Sennrich et al., 2016), merge, and deduplicate codes from

3We tried to evaluate using JAX (Bradbury et al., 2018). Sadly, JAX is a new DL framework and the GitHub
corpus on BigQuery (based on a historical snapshot of GitHub) contains very few (318) examples of JAX.

5

Under review as a conference paper at ICLR 2023

all sources. Finally, we collect all files into our DL Corpus containing 19,796 PyTorch modules,
3,703 Keras layers/models, and 1,783 MXNet modules.

PyBERT. We train the Transformer encoders with the masked language modeling (MLM) (Devlin
et al., 2019) objective on all open-source Python files from the GitHub dataset on BigQuery (50.6GB).
We call our pre-trained model PyBERT and report results on two model sizes: PyBERTSMALL
(6-layer, 512-d, 45M params) and PyBERTBASE (12-layer, 768-d, 125M params). The models are
pre-trained with the RoBERTa (Liu et al., 2019) pipeline in fairseq4 codebase. We pre-train each
PyBERT on the GitHub dataset. On a NVIDIA DGX-2, it takes 8.2 hours and 23.1 hours to train
PyBERTSMALL and PyBERTBASE, respectively. Detailed pre-training hyperparameters are described
in Appendix A.2.

Adversarial training. The generator and the discriminator of ADELT are multilayer perceptrons.
The activation function is ReLU for the generator and Leaky-ReLU for the discriminator. Dropout
and label smoothing are applied for regularization. We train our generator, discriminator, and API
keyword embeddings with Adam (Kingma & Ba, 2017) on 1,536,000 samples. There is a linear
learning rate warmup over the first 10% of steps, and then we set the LR according to the invert square
root decay rule. The maximum learning rate is searched from [2e-4, 5e-4, 1e-3], and the batch
size is searched from [64, 128, 256] according to the unsupervised validation criterion “average
cosine similarity” (Conneau et al., 2018) of the generated dictionary, which quantifies the consistency
between the learned API keyword embeddings and the generated keyword translations. We set other
hyperparameters according to prior works (Conneau et al., 2018) (See Appendix A.3 for details).

3.3 EVALUATION BENCHMARK

We evaluate our method onN transpiling a code snippet from one DL framework to another. We
identify potentially matched pairs in the corpus using heuristics (see Appendix A.4) and then manually
curate a clean evaluation benchmark of 30 PyTorch-Keras pairs and 25 PyTorch-MXNet pairs.
Following the standard practice of machine translation, we report BLEU scores. However, BLEU
score is unsuitable for this task because (a) a syntactically incorrect program can have a high BLEU
score, while a semantically equivalent program can have a low BLEU score (Ren et al., 2020); (b) a
trivial identical mapping baseline already achieves a BLEU score of 57.82 and 61.14 for PyTorch-
Keras and Keras-PyTorch, respectively, but it does not give meaningful translations. Therefore, we
also report F1 scores as a better measurement of the overlap between the prediction and the ground
truth: we treat the prediction and the ground truth as bags of function calls; for each test example, let
the number of exactly matched calls be nmatch, the number of predicted calls be npred, and the number
of calls in the ground truth be ntruth; the F1 score of this example is defined as 2nmatch/(npred +ntruth).
We report averages of F1 scores over all test examples. We also report a more rigorous metric, Exact
Match (EM) score. For each code snippet, a model’s transpilation is considered to be an exact
match if and only if it is exactly equivalent to the ground truth. The EM score is the number of exact
matches divided by the number of examples in the eval set.

3.4 EVALUATION OF SKELETAL CODE TRANSPILATION

Transpiling code skeletons of DL programs is an easy task, and Codex easily learned transpilation
patterns via few-shot prompting. In our evaluation benchmark, the exact match score of skeletal code
transpilation using Codex is 100%.

3.5 COMPARISON WITH OTHER METHODS

We compare ADELT using PyBERTSMALL and ADELT using PyBERTBASE with the following
baselines. We run all methods 5 times with random seeds [10, 20, 30, 40, 50], and report the
arithmetic average of all metrics.

End-to-end language models. We compare ADELT with end-to-end few-shot GPT-3/Codex
baselines, where the entire piece of source code, instead of the code skeleton, is fed into the language
model to generate the transpiled target program. For source-to-source translation, we randomly give
the LM 5 examples as demonstrations. The prompt design is similar to the code translation setup
of Codex, and we add a few tricks to improve the performance. Details about prompt designs and
hyperparameter setup are shown in Appendix A.6.

4https://github.com/facebookresearch/fairseq

6

https://github.com/facebookresearch/fairseq

Under review as a conference paper at ICLR 2023

Table 1: Comparison between ADELT and other methods on source-to-source transpilation.
“ADELT (Small)” is ADELT with PyBERTSMALL and “ADELT (Base)” is ADELT with PyBERTBASE.
There are two numbers in each table cell: the first one is for transpiling PyTorch to the other framework
(Keras or MXNet), and the second one is for transpiling the other framework to PyTorch. Each
number is the average of 5 runs with different random seeds.

PyTorch-Keras PyTorch-MXNet

BLEU F1 EM BLEU F1 EM

GPT-3 (Brown et al., 2020) 62.73 60.85 30.58 35.62 26.00 29.20 62.12 61.21 25.84 32.79 23.42 25.10
Codex (Chen et al., 2021) 66.76 68.53 62.96 70.72 56.00 60.00 65.84 67.44 57.42 68.96 53.20 56.46
NMT (Lachaux et al., 2020) 61.32 62.76 27.54 26.77 10.37 10.10 59.60 62.25 20.38 21.67 10.46 10.15
Edit Distance (Cased) 78.81 78.31 35.83 34.38 23.34 20.83 79.11 78.30 37.65 35.73 22.85 21.07
Edit Distance (Uncased) 76.29 78.31 27.50 34.38 16.67 20.83 76.40 78.77 30.77 35.97 18.47 20.12
ADELT (Small) 93.83 92.13 80.67 80.90 72.67 71.67 92.39 89.80 76.63 70.59 66.52 62.88
ADELT (Base) 95.32 91.29 85.72 82.01 75.33 72.50 93.93 88.62 80.03 72.05 69.98 63.67

Neural machine translation (NMT). Lachaux et al. (2020) consider source-to-source transpilation
as translation between sentences of code tokens. They train an seq-to-seq unsupervised neural
translator, similar to the practice in unsupervised NMT for natural languages (Artetxe et al., 2018).
We train an NMT baseline for our task using this method, where the model is initialized with
PyBERTBASE and trained on our DL corpus.

Edit distance. We consider a baseline where we use edit distance (Levenshtein, 1966) as the
similarity measure between API keywords, in place of the similarity measures calculated from
learned embeddings. We apply hierarchical API dictionary generation exactly as what we do in
ADELT. We report the result of both standard edit distance (cased) and edit distance between
lower-cased keywords (uncased).
The result is shown in Table 1. ADELT, our fully unsupervised approach, consistently outperforms
other methods with respect to all metrics, and it benefits from a larger pre-trained PyBERT embedder.
Moreover, even if Codex used more examples (5 versus 1) for few-shot supervision, ADELT still
consistently outperforms the end-to-end Codex baseline.
The end-to-end unsupervised neural machine translation baseline does not work well when a large
monolingual corpus is unavailable. The DL corpus is only 61MB, which is orders of magnitude
smaller than the corpus for training TransCoder (Lachaux et al., 2020). Even a simple heuristic
baseline using edit distance outperforms NMT, because the API keywords with similar semantics
tend to have similar textual representations in different deep learning frameworks (e.g., stride of
Conv2d in PyTorch vs. strides of Conv2D in Keras).

3.6 CASE STUDIES

Table 2 shows four examples of PyTorch-Keras transpilation together with hypotheses of Codex and
ADELT (Base). Both Codex and ADELT transpile the nn.Conv2d to Keras correctly by dropping the
first argument in_channels. ADELT does not translate the parameter names of nn.Embedding to
input_dim and output_dim correctly, while Codex does. However, we notice that Codex sometimes
relies on the argument ordering heuristic. In the example of nn.MultiheadAttention, where
parameters have a different ordering in Keras than in PyTorch, Codex generates the wrong translation,
but ADELT successfully constructs the correct mapping between parameters.
Also, in the nn.Embedding example, Codex continues to generate code about “positional embeddings”
after finishing transpilation. The extra code generated by Codex is relevant to the context.5 Still, the
extra code should not be part of the translation. We have tried various ways to make Codex follow our
instructions (see Appendix A.6 for details). However, because Codex is an end-to-end neural language
model, our means of changing its predictions are limited, and the result is highly indeterministic. In
the end, Codex still occasionally generates extra arguments or unneeded statements.
On the other hand, we decouple neural network training from the transpilation algorithm. ADELT
transpiles between deep learning frameworks using deterministic keyword substitution based on a
learned API keyword dictionary. The transpiled code is always syntactically correct. If a mistake is
found in the dictionary (e.g., the nn.Embedding example in Table 2), it can be corrected by simply
modifying the dictionary.

5The definition of positional embeddings usually follows the definition of word embeddings
(nn.Embedding(vocab_size, ...)) in the source code of a Transformer model.

7

Under review as a conference paper at ICLR 2023

Table 2: Examples from the evaluation dataset of the PyTorch-Keras transpilation task and the Keras-
PyTorch transpilation task. We show the PyTorch code, ground truth Keras code, and the outputs from Codex,
ADELT, and ADELT +. ✓: the output is the same or equivalent to the ground truth. ✓: the output contains an
equivalent of the ground truth, but it also contains incorrect extra code. ✗: the output is incorrect.

Source nn.Conv2d(64, 128, 3) Source nn.Embedding(vocab_size, embed_dim)

Truth layers.Conv2D(filters=128,
kernel_size=3)

Truth layers.Embedding(input_dim=vocab_size,
output_dim=embed_dim)

Codex ✓ layers.Conv2D(128, 3) Codex ✓ layers.Embedding(vocab_size, embed_dim)
self.position_emb = layers.Embedding(...)

ADELT ✓ layers.Conv2D(filters=128,
kernel_size=3)

ADELT ✗ layers.Embedding(
embeddings_initializer=embed_dim)

Source nn.MultiheadAttention(
model_dim, num_heads=num_heads,
dropout=attn_dropout)

Source in_dim = 256
out_dim = 512
layers.Dense(out_dim, activation='relu')

Truth layers.MultiHeadAttention(
num_heads=num_heads,
key_dim=model_dim,
dropout=attn_dropout)

Truth in_dim = 256
out_dim = 512
nn.Linear(in_dim, out_dim)
nn.ReLU()

Codex ✗ layers.MultiHeadAttention(
model_dim, num_heads,
dropout=attn_dropout)

Codex ✗ in_dim = 256
out_dim = 512
nn.Linear(in_dim, out_dim)

ADELT ✓ layers.MultiHeadAttention(
num_heads=num_heads,
key_dim=model_dim,
dropout=attn_dropout)

ADELT ✗ in_dim = 256
out_dim = 512
nn.Linear(in_features=in_dim,
out_features=out_dim)

ADELT + ✓ in_dim = 256
out_dim = 512
nn.Linear(in_features=in_dim,
out_features=out_dim)

nn.ReLU()

Correcting the API keyword dictionary by humans requires much less effort than building the
dictionary manually from scratch, as ADELT generates a high-quality dictionary having 90.00%
precision@1 and 97.73% precision@5 for Keras-to-PyTorch. Developers can even add additional
rules to the transpilation algorithm. The flexibility of our decoupled design makes ADELT far easier
to be integrated into real-world products than end-to-end neural translators/LMs are.
The last case in Table 2 shows an example where an API call (layers.Dense where activation is
set) should be transpiled to two calls (nn.Linear and nn.ReLU). One-to-many mapping is rare in
transpilation between deep learning frameworks, but the capability to model such mapping reflects the
generality of a transpiler to other APIs. Both ADELT and Codex fail to solve this example because
this usage is rarely seen in the training data. Still, if we train ADELT on an additional synthetic
dataset (“ADELT +” in Table 2. See Appendix A.9 for details), it successfully solves this case,
showing that our method can model one-to-many mappings when enough training data is available.

3.7 ABLATION STUDIES

We conduct ablation studies on PyTorch-Keras transpilation to validate the contribution of each part
of ADELT. We conduct ablation studies on both source-to-source transpilation and API keyword
translation. API keyword translation involves retrieving the translation of given API keywords. We
create a high-quality dictionary by manually translating the first 50 most frequent API keywords in
PyTorch and Keras, respectively. Following the standard practice of word translation, we measure
how many times the correct translation of a source word is retrieved (precision@k for k = 1, 5) and
the mean reciprocal rank of the correct translation (MRR). The results are shown in Table 3.

Necessity of contextual embeddings. In “w/o PyBERT”, we replace PyBERT with
Word2Vec (Mikolov et al., 2013) embeddings of the same dimensions db trained on the same
corpora. As shown in Table 3, this change significantly harms the performance of ADELT. This
justifies the use of PyBERT, a high-quality pre-trained representation of API keywords that can
capture their contexts.

Contribution of adversarial loss. In “w/o Adv Loss”, we remove the adversarial loss during
training. Instead, we only train the generator and the output embeddings with the cross-entropy loss
in Eq. (2). The result in Table 3 shows that adversarial training contributes ∼6 pts in source-to-source
transpilation, showing the effectiveness of adversarial training.

8

Under review as a conference paper at ICLR 2023

Table 3: Ablation study results. By default, ADELT is trained with the adversarial loss on contextual
embeddings extracted by PyBERT, and then a dictionary is generated based on cosine similarity scores. We
change one component of ADELT (Small) or ADELT (Base) in each experiment to assess its contribution.

Keyword Source-to-Source

P@1 P@5 MRR BLEU F1

ADELT (Small) 82.92 90.00 91.67 97.73 86.97 94.04 93.83 92.13 80.67 80.90
ADELT (Base) 87.08 90.00 91.67 97.73 89.67 93.96 95.32 91.29 85.72 82.01
Domain-adversarial training
w/o PyBERT (Small) 52.08 63.64 70.00 85.91 60.54 72.84 78.92 78.66 38.83 45.76
w/o PyBERT (Base) 45.00 54.55 70.42 79.55 56.81 65.99 79.19 76.35 35.33 40.56
w/o Adv Loss (Small) 80.42 88.64 90.00 97.73 85.30 93.06 88.89 90.52 68.67 76.32
w/o Adv Loss (Base) 86.25 90.45 91.67 97.73 89.31 94.27 94.31 85.19 79.89 75.07
Measure for dictionary generation
Inner Product (Small) 81.25 79.55 91.67 90.00 86.34 85.38 93.24 88.49 78.67 77.08
Inner Product (Base) 85.42 93.18 91.67 97.73 88.84 95.71 94.38 91.75 82.17 81.46

Comparison of similarity measures. By default, ADELT uses cosine similarity as the similarity
measure for API dictionary generation. Table 3 shows the results of using dot product (inner).
Measures based on cosine similarity outperforms dot product by a small margin. This fact implies
that the performance of ADELT is insensitive to the choice of similarity measure.

4 RELATED WORK

Source-to-source transpilation. Classical source-to-source transpilers use supervised learning.
Nguyen et al. (2013) and Karaivanov et al. (2014) develop Java-C# transpilers using parallel corpora
of open-source code. The dependency on parallel corpora renders these methods inapplicable to
transpilation between deep learning frameworks, as parallel corpora are difficult to get.
Inspired by unsupervised neural machine translation (NMT) (Artetxe et al., 2018), unsupervised
translation of programming languages is made possible recently. Lachaux et al. (2020) use the similar
approach to train a transpiler between Python, Java, and C++. However, such methods relies heavily
on a massive in-domain unlabeled corpus. For example, Lachaux et al. (2020) train their model on
744GB of source code on GitHub, and Roziere et al. (2022) train their model on a dataset synthesized
using 333,542 curated Java functions. However, code related to deep learning available on the Internet
is orders of magnitude smaller than this corpus, and we show in Section 3.5 that such method does
not work for transpilation between DL frameworks.

Language models are few shot learners. GPT-3 (Brown et al., 2020) is a language model (LM)
with 175B parameters trained on massive web crawl data. GPT-3 can be applied to many NLP tasks
without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely
via text interaction with the model. Codex (Chen et al., 2021) is a GPT-3 fine-tuned on publicly
available code from GitHub, specialized for code generation tasks. In constrast, ADELT is trained
in a domain-adversarial setting, and the code generation step is keyword substitution instead of
autoregressive generation. ADELT outperforms GPT-3 and Codex in PyTorch-Keras transpilation.

Adversarial learning & cross-lingual word embedding. Conneau et al. (2018) uses domain-
adversarial (Ganin et al., 2016) approach to align the distribution of two word embeddings, enabling
natural language word translation without parallel data. The domain-adversarial training in ADELT is
inspired by their approach, but we align the distributions of the hidden states of keyword occurrences
instead of API keyword embeddings.

5 CONCLUSION

We presented ADELT, a code transpilation algorithm for deep learning frameworks. ADELT for-
mulates the transpilation problem as API keyword mapping, and uses domain-adversarial training
to generate the map. Using our collected Pytorch-Keras and PyTorch-MXNet benchmarks, our
evaluation shows that ADELT can significantly outperform state-of-the-art transpilers.

9

Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

We make our code, corpus, and evaluation benchmark available in the supplementary material. We
plan to release them publicly when the paper is accepted. We include training and evaluation setups
in Section 3.2 and Section 3.3, respectively. Please refer to Appendix A.9 and Appendix A.3 for more
detailed hyperparameter settings. We also release full results with error bars in Appendix A.8.

REFERENCES

Rajas Agashe, Srinivasan Iyer, and Luke Zettlemoyer. Juice: A large scale distantly supervised dataset for open
domain context-based code generation. arXiv:1910.02216 [cs], Oct 2019. URL http://arxiv.org/abs/
1910.02216. arXiv: 1910.02216.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun Cho. Unsupervised neural machine translation.
arXiv:1710.11041 [cs], Feb 2018. URL http://arxiv.org/abs/1710.11041. arXiv: 1710.11041.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George
Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. arXiv:2005.14165 [cs], Jul 2020. URL http://arxiv.org/abs/2005.14165. arXiv:
2005.14165.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such,
Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code. arXiv:2107.03374 [cs], Jul 2021. URL http://arxiv.org/abs/2107.03374.
arXiv: 2107.03374.

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou. Word
translation without parallel data. arXiv:1710.04087 [cs], Jan 2018. URL http://arxiv.org/abs/1710.
04087. arXiv: 1710.04087.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv:1810.04805 [cs], May 2019. URL http://arxiv.org/abs/
1810.04805. arXiv: 1810.04805.

Georgiana Dinu, Angeliki Lazaridou, and Marco Baroni. Improving zero-shot learning by mitigating the hubness
problem. arXiv:1412.6568 [cs], Apr 2015. URL http://arxiv.org/abs/1412.6568. arXiv: 1412.6568.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting
Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for programming and natural languages.
arXiv:2002.08155 [cs], Sep 2020. URL http://arxiv.org/abs/2002.08155. arXiv: 2002.08155.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. arXiv:1505.07818 [cs,
stat], May 2016. URL http://arxiv.org/abs/1505.07818. arXiv: 1505.07818.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial networks. arXiv:1406.2661 [cs, stat], Jun 2014. URL
http://arxiv.org/abs/1406.2661. arXiv: 1406.2661.

Herve Jegou, Cordelia Schmid, Hedi Harzallah, and Jakob Verbeek. Accurate image search using the contextual
dissimilarity measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1):2–11, Jan
2010. ISSN 1939-3539. doi: 10.1109/TPAMI.2008.285.

10

http://arxiv.org/abs/1910.02216
http://arxiv.org/abs/1910.02216
http://arxiv.org/abs/1710.11041
http://github.com/google/jax
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/1710.04087
http://arxiv.org/abs/1710.04087
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1412.6568
http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/1505.07818
http://arxiv.org/abs/1406.2661

Under review as a conference paper at ICLR 2023

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. Learning and evaluating contextual
embedding of source code. arXiv:2001.00059 [cs], Aug 2020. URL http://arxiv.org/abs/2001.00059.
arXiv: 2001.00059.

Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. Phrase-based statistical translation of programming
languages. In Proceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software, Onward! 2014, pp. 173–184. Association for Computing Machinery,
Oct 2014. ISBN 9781450332101. doi: 10.1145/2661136.2661148. URL https://doi.org/10.1145/
2661136.2661148.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980 [cs], Jan
2017. URL http://arxiv.org/abs/1412.6980. arXiv: 1412.6980.

Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, and Guillaume Lample. Unsupervised translation
of programming languages. arXiv:2006.03511 [cs], Sep 2020. URL http://arxiv.org/abs/2006.03511.
arXiv: 2006.03511.

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady,
10:707, Feb 1966. URL https://ui.adsabs.harvard.edu/abs/1966SPhD...10..707L. ADS Bibcode:
1966SPhD...10..707L.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. Jul 2019. URL
https://arxiv.org/abs/1907.11692v1.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in
vector space. Jan 2013. URL https://arxiv.org/abs/1301.3781v3.

Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. Lexical statistical machine translation for
language migration. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pp. 651–654. Association for Computing Machinery, Aug 2013. ISBN 9781450322379.
doi: 10.1145/2491411.2494584. URL https://doi.org/10.1145/2491411.2494584.

Luigi Quaranta, Fabio Calefato, and Filippo Lanubile. Kgtorrent: A dataset of python jupyter notebooks
from kaggle. 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR), pp.
550–554, May 2021. doi: 10.1109/MSR52588.2021.00072. URL http://arxiv.org/abs/2103.10558.
arXiv: 2103.10558.

Miloš Radovanović, Alexandros Nanopoulos, and Mirjana Ivanović. Hubs in space: Popular nearest neighbors
in high-dimensional data. Journal of Machine Learning Research, 11(86):2487–2531, 2010. ISSN 1533-7928.
URL http://jmlr.org/papers/v11/radovanovic10a.html.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis. arXiv:2009.10297
[cs], Sep 2020. URL http://arxiv.org/abs/2009.10297. arXiv: 2009.10297.

Baptiste Roziere, Marie-Anne Lachaux, Marc Szafraniec, and Guillaume Lample. Dobf: A deobfuscation
pre-training objective for programming languages. arXiv:2102.07492 [cs], Oct 2021. URL http://arxiv.
org/abs/2102.07492. arXiv: 2102.07492.

Baptiste Roziere, Jie M. Zhang, Francois Charton, Mark Harman, Gabriel Synnaeve, and Guillaume Lample.
Leveraging automated unit tests for unsupervised code translation. arXiv:2110.06773 [cs], Feb 2022. URL
http://arxiv.org/abs/2110.06773. arXiv: 2110.06773.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with subword
units. arXiv:1508.07909 [cs], Jun 2016. URL http://arxiv.org/abs/1508.07909. arXiv: 1508.07909.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks.
arXiv:1409.3215 [cs], Dec 2014. URL http://arxiv.org/abs/1409.3215. arXiv: 1409.3215.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Jun 2017. URL https://arxiv.org/abs/1706.03762v5.

11

http://arxiv.org/abs/2001.00059
https://doi.org/10.1145/2661136.2661148
https://doi.org/10.1145/2661136.2661148
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2006.03511
https://ui.adsabs.harvard.edu/abs/1966SPhD...10..707L
https://arxiv.org/abs/1907.11692v1
https://arxiv.org/abs/1301.3781v3
https://doi.org/10.1145/2491411.2494584
http://arxiv.org/abs/2103.10558
http://jmlr.org/papers/v11/radovanovic10a.html
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2102.07492
http://arxiv.org/abs/2102.07492
http://arxiv.org/abs/2110.06773
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1706.03762v5

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 DATA SOURCES OF OUR PYTORCH-KERAS CORPUS

• GitHub: The GitHub public dataset available on Google BigQuery.6 We keep py and ipynb files
that contain torch, keras, or mxnet in the main and master branch of the repository. (2.5GB after
filtering)

• JuiCe: A code generation dataset (Agashe et al., 2019) based on ipynb files from GitHub. JuiCe
contains many files absent in the public dataset on Google BigQuery, since the latter is a selected
subset of GitHub (25.0GB)

• Kaggle: All files in KGTorrent (Quaranta et al., 2021), a dataset of Jupyter Notebooks from Kaggle.7

(54.4GB)
• Web: Python code snippets in web pages of relevant websites. We extract texts in <pre> tags of

HTML files scraped from Stack Overflow8 (60MB) and PyTorch Forums9 (25MB).

A.2 PYBERT PRE-TRAINING HYPERPARAMETERS

Table 4 shows the pre-training hyperparemters of PyBERTSMALL and PyBERTBASE. We first pre-train each
model on the Github dataset and then fine-tune it on our canonicalized PyTorch-Keras corpus. The learning
rate is decayed according to the inverse square root schedule. We do not use early stopping — we use the last
PyBERT checkpoint in ADELT.

Table 4: Pre-training hyperparameters of PyBERT
Hyperparameter PyBERTSMALL PyBERTBASE

Number of layers 6 12
Hidden size db 512 768
FFN inner hidden size 2048 3072
Attention heads 8 12
Attention head size 64 64
Dropout 0.1 0.1
Attention dropout 0.0 0.0
FFN dropout 0.0 0.0
Adam β1 0.9 0.9
Adam β2 0.98 0.98
Adam ϵ 1e-6 1e-6
Weight decay 0.01 0.01
Gradient clipping - -
Peak learning rate 5e-4 5e-4
Batch size 2,048 2,048
Warmup steps 10,000 10,000
Total steps 125,000 125,000

A.3 DOMAIN-ADVERSARIAL TRAINING HYPERPARAMETERS

For domain-adversarial training, we search the peak learning rate from [2e-4, 5e-4, 1e-3] and the batch size
from [64, 128, 256]. Other hyperparameters are shown in Table 5 (top). The learning rates and the batch sizes
selected in the hyperparameter search are shown in Table 5 (bottom). The total number of training steps is “total
samples” (1,536,000) divided by the searched batch size, which is 6,000 steps for ADELT (Small) and 12,000
steps for ADELT (Base).

A.4 EVALUATION DATA COLLECTION

Our PyTorch-Keras corpus contains some matched PyTorch-Keras pairs. They usually come from open-source
projects on GitHub aimed at comparing the performance of PyTorch and Keras using similar neural network
architectures. We identify these pairs using a heuristic based on the names of Python classes. Specifically, we
consider all pairs of PyTorch module and Keras model/layer that (a) share the same class name and (b) have a

6https://console.cloud.google.com/marketplace/details/github/github-repos
7https://kaggle.com
8https://stackoverflow.com/
9https://discuss.pytorch.org/

12

https://console.cloud.google.com/marketplace/details/github/github-repos
https://kaggle.com
https://stackoverflow.com/
https://discuss.pytorch.org/

Under review as a conference paper at ICLR 2023

Table 5: The hyperparameters of domain-adversarial training

Generator hidden size 2,048
Generator layers 1
Discriminator hidden size 2,048
Discriminator layers 1
Discriminator LeakyReLU slope 0.2
Dropout 0.1
Label smoothing 0.2
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1e-8
Weight decay 0.001
Discriminator iterations per step 1
Total samples 1,536,000

Peak learning rate (Small) 2e-4
Batch size (Small) 128
Peak learning rate (Base) 5e-4
Batch size (Base) 256

BLEU score greater than 65. Then we manually curate each pair by extracting code segments relevant to deep
learning API calls. The resulting parallel corpus has 50 examples, which is too small to be used as a training
dataset. So we use the corpus for evaluation of source-to-source transpilation.

A.5 DETAILS OF SKELETAL CODE TRANSPILATION

Table 6 shows by example how we transpile skeletal codes using Codex few-shot prompting.

1. Each API keyword in the canonicalized source program is replaced with an distinct placeholder,
numbered from 1 to n (the number of API keywords). The program after this step is called the code
skeleton of the source program.

2. We append the code skeleton to the natural language prompt, # Translate from PyTorch to Keras,
and four input-output pairs. The first three input-output pairs prompt the model to keep placeholders
unchanged during transpilation. Our experiments show that three input-output pairs are required for
100% skeletal code transpilation correctness. Also, Codex can generalize to an arbitrary number of
placeholders even if only three is given. The last input-output pair is a real example of PyTorch-Keras
skeletal code transpilation.

3. This entire piece of input is fed into Codex, and Codex will complete this input by generating tokens
after # Keras. The output of Codex is considered as the code skeleton of the target program.

4. Each placeholder is replaced with the API keyword in the target DL framework, by querying each API
keyword before replacement (step 1) in the API keyword dictionary learned with ADELT.

If the number of placeholders in the source skeleton and the number of placeholders in Codex’s output do
not match, it is considered a failed example in evaluation. However, in practice, the success rate of skeletal
code transpilation is 100% in our experiments. We attribute that to the fact that skeletal code in DL programs,
in comparison to arbitrary Python code, tend to be high structured with fairly predictable import statements,
constructors, and how the different DL layers are constructed and connected to each other.

A.6 EVALUATION SETUP OF GPT-3 AND CODEX

Following the practices in Brown et al. (2020) and Chen et al. (2021), we use the “completion” endpoint of
GPT-3 or Codex for transpilation. We input some text as a prompt with few-shot demonstrations, and the model
will generate a completion that attempts to match the prompt. Table 7 shows two examples illustrating how we
leverage GPT-3 and Codex for our task.
For source-to-source transpilation, prompt engineering is straightforward. In the PyTorch-Keras transpilation
example, we tell the model to “# Translate from PyTorch to Keras” and then give 5 demonstrations from
our evaluation dataset. Next, we input a piece of source code and “# Keras” and let the model generate a code
completion starting from the following line. To prevent answers from being leaked to the language model, we do
not allow any demonstration to share common API functions with the current evaluation example.
Prompt engineering of API keyword translation is trickier because there are two types of keywords. We represent
callable names by one line containing its textual representation, and we represent parameter names by two lines,

13

Under review as a conference paper at ICLR 2023

where the first line is the name of the callable that the parameter belongs to, and the second line is the name of
the parameter. We give 10 demonstrations from our evaluation dataset.
Although GPT-3 and Codex have strong capabilities in generating code related to our prompt, we find that
they sometimes fail to follow our instructions to transpile between deep learning frameworks. We discuss this
problem in Section 3.5. We try several approaches to mitigate this issue:

1. Use the Instruct version10 of GPT-3/Codex: text-davinci-001 and code-davinci-001.
2. Add a prefix to the input prompt based on simple rules. For example, if the source code starts with nn.

in PyTorch, add layers. to the prompt and let the model generate a code completion after it. This
trick is applicable to two examples shown in Table 7.

3. Mask the logits of tokens that usually leads to irrelevant generations. Specifically, we find that the
model tends to generate irrelevant extra code after a line break or random comments. So we add a bias
of -100 to the logits of the hash mark “#”. We also add a bias of -100 to the logits of the line break if
the source code contains no line breaks.

We find that these measures significantly improve the performance of GPT-3 and Codex on deep learning
transpilation. All results of GPT-3 and Codex reported in Section 3.5 are from the LMs with all these tricks
turned on.

A.7 CROSS-DOMAIN LOCAL SCALING (CSLS)

Cross-Domain Local Scaling (CSLS) is a similarity measure for creating a dictionary based on high-dimensional
embeddings. CSLS was proposed by Conneau et al. (2018) for word translation between natural languages.
Empirical results by Conneau et al. (2018) show that using a pairwise scoring matrix (e.g. cosine similarity,
dot product) in dictionary generation suffers from the hubness problem (Radovanović et al., 2010), which is
detrimental to generating reliable matching pairs as some vectors, dubbed hubs, are the nearest neighbors to
many other vectors according to s, while others (anti-hubs) are not nearest neighbors of any point. This problem
is observed in various areas (Jegou et al., 2010; Dinu et al., 2015). CSLS is proposed to mitigate the hubness
problem.
We also conduct an experiment to verify the effectiveness of CSLS in API keyword translation between deep
learning frameworks. Specifically, we denote by N (l)

s (w) the neighborhood of API keyword w, a set consisting
of K elements with the highest similarity scores with w in DL framework X (l). We calculate the average
similarity score of w(1)

i to its neighborhood in DL framework X (2) and denote it by r
(2)
i . Likewise, we denote

by r
(1)
j the average similarity score of w(2)

j to its neighborhood in DL framework X (1). Then we define a new

similarity measure CSLS of w(1)
i and w

(2)
i by subtracting r

(2)
i and r

(1)
j from their (doubled) similarity score

si,j , as shown in Eq. (3).

r
(2)
i =

1

K

∑
k∈N (2)

s (w
(1)
i)

si,k

r
(1)
j =

1

K

∑
k∈N (1)

s (w
(2)
j)

sk,j

CSLSi,j = 2si,j − r
(2)
i − r

(1)
j

(3)

CSLS can be induced from a parameter K and any similarity measure, including dot product and cosine similarity.
Intuitively, compared with the score matrix of similarity measure s, the score matrix of CSLS assigns higher
scores associated with isolated keyword pairs and lower scores of keywords lying in dense areas.
Given the (cosine similarity) scoring matrix scaled by CSLS, we then apply the hierarchical dictionary generation
algorithm (Section 2.4) to generate the API keyword dictionary. We search K in {5, 10, 20} according to the
unsupervised evaluation metric, and the result is similar, where K = 5 gives a slightly better result. Table 8
shows the result of cosine-CSLS compared with cosine similarity.
Table 8 shows that replacing cosine similarity with cosine-CSLS-5 does not impact the F1 score of transpiling
PyTorch to Keras significantly, but it hurts the F1 score of transpiling Keras to PyTorch. The reason is that
the vocabulary of API keywords is smaller than a natural language vocabulary. Hubness is not a problem
for generating API keyword dictionaries; instead, penalizing the top-K may hurt the performance when there
are relatively few valid candidates (e.g. Keras-to-PyTorch transpilation). Therefore, we do not use CSLS for
ADELT.

A.8 FULL RESULTS WITH ERROR BARS

Table 9 shows full results with error bars for PyTorch-Keras API keyword translation and source-to-source
transpilation. The table includes the results of both the main comparison with GPT-3/Codex and ablation studies.

10https://help.openai.com/en/articles/5832130-what-s-changed-with-engine-names-and-best-practices

14

https://help.openai.com/en/articles/5832130-what-s-changed-with-engine-names-and-best-practices

Under review as a conference paper at ICLR 2023

We also add the results of GPT-3 and Codex on API keyword translation, where we randomly give the GPT-3
and Codex 10 examples as demonstrations. Details about prompt designs and hyperparameter setup are shown
in Appendix A.6. We do not calculate precision@5 and mean reciprocal rank for GPT-3 and Codex because the
API provided by OpenAI does not support ranking a large number of generations cost-efficiently.

A.9 ADELT +

ADELT + is ADELT trained on a synthetic dataset to show that our method can generalize to one-to-many
mappings of APIs when there are enough data. We have discussed in Section 2.4 that we allow parameter
names to be translated to callable names when the weight passes a threshold. In this case, this parameter will
be dropped and generate a new API call. This mechanism allows ADELT to transpile layers.Dense(...,
activation="relu") into two layers: nn.Linear(...) and nn.ReLU(). However, such cases are pretty rare in
the transpilation between deep learning frameworks, making it difficult to evaluate its capability of one-to-many
translations in practice. Therefore, we create a synthetic dataset, where we replace all consecutive calls of
layers.Dense and layers.ReLU in our dataset with layers.Dense(..., activation="relu"). Then we
train a new model, dubbed ADELT +, in the synthetic dataset. Table 2 in Section 3.6 shows that our method is
capable of modeling one-to-many mappings of APIs.

A.10 MORE CASE STUDIES

In this section, we select two PyTorch-Keras cases in our evaluation dataset for illustration. They are examples
of the average length of all evaluation examples in the evaluation set.

A.10.1 CASE 1
Source Program
import torch.nn as nn
class BasicBlock(nn.Module):

def __init__(self, dim):
super.__init__()
self.bn1 = nn.BatchNorm2d(dim)
self.act1 = nn.LeakyReLU(0.2)
self.conv1 = nn.Conv2d(dim, dim, 3)
self.pool1 = nn.MaxPool2d(3, 2)

Transpiled by ADELT
import tensorflow.keras.layers as layers
class BasicBlock(layers.Layer):

def __init__(self, dim):
super.__init__()
self.bn1 = layers.BatchNormalization()
self.act1 = layers.LeakyReLU(alpha=0.2)
self.conv1 = layers.Conv2D(filters=dim, kernel_size=3)
self.pool1 = layers.MaxPooling2D(pool_size=3, stride=2)

Ground Truth
import tensorflow.keras.layers as layers
class BasicBlock(layers.Layer):

def __init__(self, dim):
super.__init__()
self.bn1 = layers.BatchNormalization()
self.act1 = layers.LeakyReLU(0.2)
self.conv1 = layers.Conv2D(dim, 3)
self.pool1 = layers.MaxPooling2D(3, 2)

A.10.2 CASE 2
Source Program
import torch.nn as nn
class AttentionBlock(nn.Module):

def __init__(self, args):
super().__init__()
self.attn = nn.MultiheadAttention(

args.d_model, args.n_heads, dropout=args.att_dropout)
self.drop1 = nn.Dropout(args.dropout)

15

Under review as a conference paper at ICLR 2023

self.norm1 = nn.LayerNorm(args.d_model)

Transpiled by ADELT
import tensorflow.keras.layers as layers
class AttentionBlock(layers.Layer):

def __init__(self, args):
super().__init__()
self.attn = layers.MultiHeadAttention(

num_heads=args.n_heads, key_dim=args.d_model, dropout=args.att_dropout)
self.drop1 = layers.Dropout(rate=args.dropout)
self.norm1 = layers.LayerNormalization()

Ground Truth
import tensorflow.keras.layers as layers
class AttentionBlock(layers.Layer):

def __init__(self, args):
super().__init__()
self.attn = layers.MultiHeadAttention(

args.n_heads, args.d_model, dropout=args.att_dropout)
self.drop1 = layers.Dropout(args.dropout)
self.norm1 = layers.LayerNormalization()

In each case, ADELT makes the correct transpilation. The only textual difference is that ADELT’s transpilation
only contains keyword arguments while the ground truth still contains positional arguments. However, because
the prediction and the ground truth are the same after canonicalization, we consider each case as an exact match
during evaluation.

A.11 DEEP LEARINING TRANSPILATION ACROSS DIFFERENT PROGRAMMING LANGUAGES

In the main paper, all experiments are conducted on Python due to the scarcity of deep learning programs written
in other programming languages such as Java or C. Despite that, in this section we show that ADELT is not
limited to the same source and target languages by transpiling code written against the PyTorch library in Python
2 to Keras in Python 3.
To do so, we first canonicalize all PyTorch programs into Python 2 and all Keras programs into Python 3. Then
we run ADELT on this modified training data to learn the API keyword dictionary. During inference, we transpile
the code skeleton with Codex using the prompt shown in Table 10. Besides adding hint words such as “Python2”
and “Python3” into the natural language prompt, we also find it necessary to add to the prompt some examples
showing differences between Python 2 and Python 3, such as different print statements and different integer
division operators. As is shown in Table 10, the skeletal codes were successfully transpiled from Python 2 and
Python 3 along with the API keywords.

16

Under review as a conference paper at ICLR 2023

Table 6: Example inputs we give to Codex for skeletal code transpilation. We also show the expected
outputs of the language model.

Canonicalized Source Program
import torch.nn as nn
dense = nn.Linear(in_features=dim_in, out_features=dim_out, bias=False)

Code Skeleton
import torch.nn as nn
dense = PLACEHOLDER_1(PLACEHOLDER_2=dim_in, PLACEHOLDER_3=dim_out, PLACEHOLDER_4=False)

Codex Input
Translate from PyTorch to Keras

PyTorch
PLACEHOLDER_1

Keras
PLACEHOLDER_1

PyTorch
PLACEHOLDER_2

Keras
PLACEHOLDER_2

PyTorch
PLACEHOLDER_3

Keras
PLACEHOLDER_3

PyTorch
import torch.nn as nn
class Model(nn.Module):

def __init__(self):
super().__init__()
self.layer1 = PLACEHOLDER_1(PLACEHOLDER_2=16, PLACEHOLDER_3=32, PLACEHOLDER_4=3)
self.layer2 = PLACEHOLDER_5()

def forward(self, x):
x = self.layer1(PLACEHOLDER_6=x)
x = self.layer2(PLACEHOLDER_7=x)
return x

Keras
import tensorflow.keras.layers as layers
class Model(layers.Layer):

def __init__(self):
super().__init__()
self.layer1 = PLACEHOLDER_1(PLACEHOLDER_2=16, PLACEHOLDER_3=32, PLACEHOLDER_4=3)
self.layer2 = PLACEHOLDER_5()

def call(self, x):
x = self.layer1(PLACEHOLDER_6=x)
x = self.layer2(PLACEHOLDER_7=x)
return x

PyTorch
import torch.nn as nn
dense = PLACEHOLDER_1(PLACEHOLDER_2=dim_in, PLACEHOLDER_3=dim_out, PLACEHOLDER_4=False)

Keras

Expected Codex Output
import tensorflow.keras.layers as layers
dense = PLACEHOLDER_1(PLACEHOLDER_2=dim_in, PLACEHOLDER_3=dim_out, PLACEHOLDER_4=False)

Target Program
import tensorflow.keras.layers as layers
dense = layers.Dense(units=dim_out, use_bias=False)

17

Under review as a conference paper at ICLR 2023

Table 7: Example inputs we give to GPT-3 or Codex for source-to-source transpilation and API
keyword translation. We also show the expected outputs of the language models.

Source-to-Source Transpilation Keyword Translation
Translate PyTorch to Keras

PyTorch
max_len = 512
self.embed_tokens = nn.Embedding(
n_words, dim_emb)

Keras
max_len = 512
self.embed_tokens = layers.Embedding(

n_words, dim_emb, input_length=max_len)

PyTorch
nn.Linear(dim_in, dim_out)
Keras
layers.Dense(dim_out)

(2 demonstrations omitted)

PyTorch
F.log_softmax(logits, dim=-1)
Keras
tf.nn.log_softmax(logits, axis=-1)

PyTorch
nn.Conv2d(64, 128, 3)
Keras
layers.

Translate PyTorch to Keras

PyTorch
F.log_softmax
Keras
tf.nn.log_softmax

PyTorch
nn.MaxPool2d
stride
Keras
layers.MaxPooling2D
strides

(7 demonstrations omitted)

PyTorch
F.relu
Keras
tf.nn.relu

PyTorch
nn.Conv2d
out_channels
Keras
layers.

Conv2D(128, 3) Conv2D
filters

Table 8: Results of CSLS. By default, ADELT computes similarity scores using cosine similarity
to generate an API keyword dictionary. In this experiment, we replace cosine similarity with inner
product or cosine-CSLS-5 to compare different similarity measures. There are two numbers in each
table cell: the first one is for transpiling PyTorch to PyTorch, and the second one is for transpiling
Keras to PyTorch.

Keyword Source-to-Source

P@1 P@5 MRR BLEU F1

ADELT (Small) 82.92 90.00 91.67 97.73 86.97 94.04 93.83 92.13 80.67 80.90
ADELT (Base) 87.08 90.00 91.67 97.73 89.67 93.96 95.32 91.29 85.72 82.01

Inner Product (Small) 81.25 79.55 91.67 90.00 86.34 85.38 93.24 88.49 78.67 77.08
Inner Product (Base) 85.42 93.18 91.67 97.73 88.84 95.71 94.38 91.75 82.17 81.46
cos-CSLS-5 (Small) 84.17 83.18 97.92 93.64 89.89 89.12 94.24 90.43 83.17 76.60
cos-CSLS-5 (Base) 87.08 89.55 97.50 97.73 90.63 93.75 95.20 90.27 85.39 76.18

18

Under review as a conference paper at ICLR 2023

Table 9: Full results with 95% confidence intervals. For each experiment, we run five experiments
with different random seeds. Each cell has two intervals: the first one is for transpiling PyTorch to
Keras, and the second one is for transpiling Keras to PyTorch. Each interval is the 95% confidence
interval according to the Student’s t-Test, where we assume that the result of the five experiments
follows a normal distribution.

Keyword Source-to-Source

P@1 BLEU F1

LM few shot
GPT-3 (Brown et al., 2020) 35.42 ± 6.07 39.09 ± 4.19 62.73 ± 4.82 60.85 ± 2.59 30.58 ± 6.35 35.62 ± 8.88
Codex (Chen et al., 2021) 67.50 ± 8.30 79.09 ± 7.83 66.76 ± 2.32 68.53 ± 2.68 62.96 ± 3.44 70.72 ± 2.65

ADELT
ADELT (Small) 82.92 ± 1.16 90.00 ± 1.55 93.83 ± 0.67 92.13 ± 0.48 80.67 ± 2.78 80.90 ± 1.83
ADELT (Base) 87.08 ± 1.16 90.00 ± 2.52 95.32 ± 0.44 91.29 ± 1.29 85.72 ± 1.13 82.01 ± 3.08
w/o PyBERT (Small) 52.08 ± 2.59 63.64 ± 4.46 78.92 ± 2.47 78.66 ± 6.19 38.83 ± 10.2 45.76 ± 6.04
w/o PyBERT (Base) 45.00 ± 3.92 54.55 ± 5.28 79.19 ± 3.67 76.35 ± 5.55 35.33 ± 9.24 40.56 ± 3.84
w/o Adv Loss (Small) 80.42 ± 1.42 88.64 ± 2.00 88.89 ± 0.40 90.52 ± 1.13 68.67 ± 2.27 76.32 ± 1.89
w/o Adv Loss (Base) 86.25 ± 1.42 90.45 ± 2.36 94.31 ± 0.56 85.19 ± 4.80 79.89 ± 2.58 75.07 ± 5.09
Dot product (Small) 82.92 ± 4.48 90.00 ± 7.19 93.24 ± 0.70 88.49 ± 2.39 78.67 ± 3.32 77.08 ± 4.93
Dot product (Base) 87.08 ± 1.16 90.00 ± 2.00 94.38 ± 0.73 91.45 ± 0.31 82.17 ± 0.62 81.46 ± 0.94

19

Under review as a conference paper at ICLR 2023

Table 10: Example of transpiling from PyTorch in Python 2 to Keras in Python 3.

Canonicalized Source Program in Python 2
import torch.nn as nn
dense = nn.Linear(in_features=dim_in / 2, out_features=dim_out / 2, bias=False)

Code Skeleton
import torch.nn as nn
print dim_in, dim_out
dense = PLACEHOLDER_1(PLACEHOLDER_2=dim_in / 2, PLACEHOLDER_3=dim_out / 2, PLACEHOLDER_4=False)

Codex Input
Translate from PyTorch in Python2 to Keras in Python3

PyTorch in Python2
PLACEHOLDER_1

Keras in Python3
PLACEHOLDER_1

PyTorch in Python2
PLACEHOLDER_2

Keras in Python3
PLACEHOLDER_2

PyTorch in Python2
PLACEHOLDER_3

Keras in Python3
PLACEHOLDER_3

PyTorch in Python2
import torch.nn as nn
class Model(nn.Module):

def __init__(self):
super().__init__()
print "Building Model"
self.layer1 = PLACEHOLDER_1(PLACEHOLDER_2=16 / 2, PLACEHOLDER_3=32, PLACEHOLDER_4=3)
self.layer2 = PLACEHOLDER_5()

def forward(self, x):
x = self.layer1(PLACEHOLDER_6=x)
x = self.layer2(PLACEHOLDER_7=x)
return x

Keras in Python3
import tensorflow.keras.layers as layers
class Model(layers.Layer):

def __init__(self):
super().__init__()
print("Building Model")
self.layer1 = PLACEHOLDER_1(PLACEHOLDER_2=16 // 2, PLACEHOLDER_3=32, PLACEHOLDER_4=3)
self.layer2 = PLACEHOLDER_5()

def call(self, x):
x = self.layer1(PLACEHOLDER_6=x)
x = self.layer2(PLACEHOLDER_7=x)
return x

PyTorch in Python2
import torch.nn as nn
print dim_in, dim_out
dense = PLACEHOLDER_1(PLACEHOLDER_2=dim_in / 2, PLACEHOLDER_3=dim_out / 2, PLACEHOLDER_4=False)

Keras in Python3

Codex Output
import tensorflow.keras.layers as layers
print(dim_in, dim_out)
dense = PLACEHOLDER_1(PLACEHOLDER_2=dim_in // 2, PLACEHOLDER_3=dim_out // 2, PLACEHOLDER_4=False)

Target Program in Python 3
import tensorflow.keras.layers as layers
print(dim_in, dim_out)
dense = layers.Dense(units=dim_out // 2, use_bias=False)

20

	Introduction
	Method
	Canonicalization & API Keyword Extraction
	Skeletal Code Transpilation
	Domain-Adversarial Training
	Hierarchical API Dictionary Generation

	Experiments
	Language Model for Skeletal Code Transpilation
	Training Setup
	Evaluation Benchmark
	Evaluation of Skeletal Code Transpilation
	Comparison with Other Methods
	Case Studies
	Ablation Studies

	Related Work
	Conclusion
	Appendix
	Data Sources of Our PyTorch-Keras corpus
	PyBERT Pre-Training Hyperparameters
	Domain-Adversarial Training Hyperparameters
	Evaluation Data Collection
	Details of Skeletal Code Transpilation
	Evaluation Setup of GPT-3 and Codex
	Cross-Domain Local Scaling (CSLS)
	Full Results with Error Bars
	ADELT +
	More Case Studies
	Case 1
	Case 2

	Deep Learining Transpilation across Different Programming Languages

