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Abstract

There have been several efforts to improve Novelty Detection (ND) performance.1

However, ND methods often suffer significant performance drops under minor2

distribution shifts caused by changes in the environment, known as style shifts. This3

challenge arises from the ND setup, where the absence of out-of-distribution (OOD)4

samples during training causes the detector to be biased toward the dominant style5

features in the in-distribution (ID) data. As a result, the model mistakenly learns to6

correlate style with core features, using this shortcut for detection. Robust ND is7

crucial for real-world applications like autonomous driving and medical imaging,8

where test samples may have different styles than the training data. Motivated9

by this, we propose a robust ND method that crafts an auxiliary OOD set with10

style features similar to the ID set but with different core features. Then, a task-11

based knowledge distillation strategy is utilized to distinguish core features from12

style features and help our model rely on core features for discriminating crafted13

OOD and ID sets. We verified the effectiveness of our method through extensive14

experimental evaluations on several datasets, including synthetic and real-world15

benchmarks, against nine different ND methods.16

1 Introduction17

Novelty detection (ND) has emerged as a critical component in developing reliable real-world machine18

learning models. The primary task of ND is to distinguish Out-of-distribution (OOD) samples from19

the in-distribution (ID) samples during inference, using only unlabeled ID samples for training20

[1, 2, 3, 4]. This task is essential across various computer vision applications, including industrial21

defect detection, medical disease screening, and video surveillance [5, 6, 7, 3]. However, these22

methods often experience significant performance drops when confronted with test data exhibiting23

minor distribution shifts in their style, such as changes in the test sets due to environmental variations24

(See Fig. 1) [8, 9, 10, 11, 12].25

A robust detector should be invariant to changes in the style features, as variations in these features26

do not change a sample’s label (ID or OOD). Instead, it should be expected to learn the core features27

which determine the label [13, 14, 8]. Robustness against style shifts is a crucial aspect of ND28

methods since variations in style are common in real-world applications. For instance, an ND method29

for autonomous driving tasks trained on images from Germany streets[15] should also perform30

effectively on the streets of Los Angeles [16], despite variations in style features caused by different31

lighting and atmospheric conditions. A similar challenge exists in medical imaging, where shifts can32

occur due to different imaging equipment, patient positioning, and variations in tissue properties [17].33

The vulnerability of existing ND methods stems from their implicit assumption that the training data34

should strongly mirror the test data, even in stylistic features. This leads to the misprediction of an35

ID test sample with a different style feature as OOD. Furthermore, training data in the ND setup is36

limited to ID samples. By relying solely on ID samples, the detector learns a correlation between the37

dominant style features present in ID samples and the label. Consequently, the detector mistakenly38

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



uses these style features for discrimination instead of focusing on core features. As a result, the39

detector incorrectly predicts an ID test sample with a different style as OOD and an OOD sample40

with a similar style as ID [8].41

Notably, current domain generalization and domain adaptation methods cannot be applied to develop42

robust ND methods against distribution shifts, as they require access to labeled training data or extra43

data from different environments, which are not available in the ND setup [18, 19, 20, 21, 22, 23, 24].44

Furthermore, our study distinguishes itself from recent works such as RedPanda [12] and PCIR45

[8], which leverage different environmental annotations as additional information to improve the46

ND robustness. In many real-world scenarios, ID training samples are collected from unknown47

environments, and hence such metadata is often missing [9, 25].48

Motivated by these challenges, we propose crafting an auxiliary OOD set by identifying the core49

features of the ID samples and distorting them. To identify the core features, we employ a feature50

attribution method like Grad-CAM [26] applied on the output of a pre-trained network when fed51

with the ID samples. We apply light augmentations (e.g., color jitter [27, 28, 29]) to the input, and52

compute saliency maps for both the original and augmented versions. By taking the element-wise53

product of these saliency maps, we derive a final saliency map where higher values correspond to54

the core features of the assumed ID sample. These light augmentations facilitate producing a final55

saliency map agnostic to style shifts. Subsequently, hard transformations [30, 31, 31, 32, 33, 34]56

(e.g., elastic transformation) are applied to regions of the assumed ID sample with higher saliency57

values, ensuring robustness against style shifts. Given the crafted OOD set and ID set, we apply light58

augmentation to each set while maintaining the labels to provide various style shifts to each set.59

To effectively leverage information from the created sets and develop a robust ND pipeline, we60

introduce a task-based knowledge distillation strategy [35]. Specifically, we use a pre-trained encoder61

concatenated with a trainable binary classification layer as the teacher and a model trained from62

scratch as the student. We train the teacher to classify the created ID and OOD sets while only63

updating the binary layer. Then, using a novel objective function, we force the student to align its64

output with the teacher when the input is an ID sample and to diverge from the teacher when the input65

is an OOD sample. The discrepancy between the student and teacher outputs will be utilized as the66

OOD score at inference time. Our approach is inspired by knowledge distillation, which has proven67

effective for ND tasks compared to other strategies [36, 37, 38, 39, 40, 9]. Notably, our method68

achieves superior performance compared to both previous knowledge distillation-based and other ND69

methods, underscoring the effectiveness of our pipeline.70

Contributions: In this study, we propose a novel data-centric approach along with a new pipeline71

to achieve a robust and meta-data free ND method. Our strategy, by providing augmented samples72

obtained through applying style shifts while retaining labels, achieves a more robust representation73

of distribution shifts. Moreover, through intervening ID samples by identifying and distorting their74

core regions, we reach synthesized OOD samples. Such samples are then leveraged to make our75

model more sensitive to the core features. From a causal viewpoint (Refer to Section 4), by sample76

intervention, as mentioned above, the unwanted correlation between style features and labels is77

weakened. We note that the general strategy of some previous work [41, 42, 31, 43] that apply78

hard augmentations on the entire image to generate OOD samples, do not necessarily weaken the79

mentioned unwanted spurious correlation. In addition, our augmentation strategy facilitates the80

generation of OOD samples whose distribution is potentially closer to that of the real OODs. As81

well as providing theoretical support to our claims, We evaluate our method on real-world datasets82

such as autonomous driving and large medical imaging datasets, as well as common datasets such83

as Waterbird. For comparison, we considered representative and recent ND methods. Our pipeline84

demonstrates superior results, improving robust and standard performance by up to 12.7% and 6.7%85

in terms of AUROC, respectively. We further verify our method through a comprehensive ablation86

study on its different components.87

2 Problem Statement88

Preliminaries. The task of ND involves developing a model f to distinguish between two disjoint89

distributions: ID and OOD. During training, the model only has access to unlabeled ID samples. At90

inference time, the detector f evaluates a test set, defined as Dtest = {Dtest
ID ∪ Dtest

OOD}, and assesses91

each test input sample X to determine whether it belongs to ID or OOD by assigning an OOD score92
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Figure 1: Evaluating Robust Novelty Detection Performance: A Comparative Study on the
Cityscapes and GTA5 datasets, which both have similar core features but exhibit different style
features. Each method has been trained on ID samples from the Cityscapes training dataset, and its
performance has been reported on the test sets of Cityscapes (Blue bar) and GTA5 (Orange bar). This
highlights the superior performance of our method in contrast to existing methods, which suffer from
considerable performance drops. Comprehensive results are provided in Table 1.

S(X; f). Samples exceeding a predefined OOD threshold are classified as OOD. Traditionally, Dtrain93

and Dtest are presumed to originate from identical environments without any style shifts—a prevalent94

assumption in earlier studies [2, 25]. Contrary to this, real-world scenarios often exhibit test samples95

that diverge in style from the training set. These are represented by D′test
= {D′test

ID ∪ D′test
OOD}. Both96

Dtest
ID and D′test

ID retain identical core features, denoted as XC , but vary in style elements, denoted as97

XE . Consequently, a robust ND model f should effectively learn and utilize XC for OOD scoring,98

while disregarding the style featuresXE . These concepts are often categorized as informativeness and99

invariantness, respectively. Using an ideal discriminator f , core features can be formally formulated100

as S(X; f) = S(XC ; f), and the relationship between core features and input is expressed through101

the formula I(XC ;X) = I(XC ; f(X)), where I(·; ·) denotes the mutual information between the102

two variables [8, 9, 10, 11, 12].103

Style Bias in Model Training In our experiments, we deliberately avoid a consistent correlation104

of specific styles with core features by considering the training set composed of ID samples from105

both D and D′ with D being dominant in a 95:5 ratio for all detection models [44, 45, 46, 47]. In this106

study, for a given ND method, we refer to its detection result on Dtest as the standard performance107

and on D′test as the robust performance. It is noteworthy that we do not have access to metadata108

indicating which training data belong to D′. Additionally, we conduct supplementary experiments109

with other ratios, including 100:0, 90:10, and 80:20, detailed in our Appendix J. A ratio of 100:0110

corresponds to scenarios where no samples from D′
ID are present in the training data.111

3 Related Work112

Previous Works on Robust ND. Recent studies have proposed ND methods for improving robustness113

under style shifts, including efforts by GNL [9], RedPanda [12], PCIR [8], Stylist [11], and Env-AD114

[10]. These methods, inspired by invariance-inducing approaches such as IRM [48], assume that ID115

samples are drawn from multiple environments with known styles. Their effectiveness is contingent116

upon accurately labeled styles in the training data, which can be a significant limitation in datasets117

where such labels are mostly unavailable or hard to define. As a result, GNL proposes to craft118

different styles by applying minor shifts to ID samples. However, GNL and other models still suffer119

from performance drops in real-world datasets, as shown in Table 1, which is extensively considered120

in this study. Importantly, all mentioned methods lack information about potential OOD samples121

during training, leading to their models struggling with effectively learning core features.122

Transfer Learning for ND. Several studies [49], including MSAD [50] and UniAD [51], have123

proposed using pre-trained networks trained on ImageNet. These networks could be useful for ND124

across different datasets, such as medical imaging. Among the methods explored, the teacher-student125

paradigm shows promising results. This approach involves using a pre-trained model as the ’teacher’126
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and a newly trained network from scratch as the ‘student’. The main objective is to train the student127

model while the teacher remains frozen, aiming to mimic the teacher’s output on ID samples. The128

rationale is that the student model, trained exclusively on ID samples, will produce discrepant outputs129

on OOD samples during the inference phase. Methods such as RD4AD [38], Transformaly [36], and130

ReContrast [39] are based on this paradigm. More details about them can be found in Appendix I.131

Auxilary OOD for ND task It has been demonstrated that using auxiliary OOD samples during132

the training step can be beneficial for ND tasks by incorporating an extra dataset [52, 53]. Recent133

works have shown that the effectiveness of this technique largely depends on the diversity and the134

distance of the distribution of the auxiliary OOD set used during training. In response to this, methods135

including MIXUP [54], CutPaste [30], and VOS [55] have been proposed. More recently, GOE [56],136

Dream-OOD [41], and FITYMI [42] address this issue by using large generative models (e.g., Stable137

Diffusion [57]) for OOD crafting. Interestingly, our crafted auxiliary method does not rely on any138

extra dataset or generative model. More details about these methods can be found in Appendix I.139

4 Theory140

Causal Viewpoint From the perspective of causality, the data-generating process can be modeled as141

the Structural Causal Model (SCM) [58] shown in Fig. 2. In this SCM, C and E denote unobservable142

causal and non-causal (i.e., domain, environment, or style) variables, from which the observable143

causal and non-causal components XC and XE for an image are obtained. The final image X is the144

output of ψ(XC , XE), where ψ(., .) is a combining function. The label Y of the image is caused145

by XC . In the case of spurious correlation, a hidden confounder U , would be present such that146

E ← U → C. This creates the path XE ← E ← U → C → XC → Y , which introduces an147

unwanted correlation between E and Y . While there are solutions for when the environment variable148

E is observable, they are not feasible when domain annotation of samples is not provided. Our149

approach is effective even in the absence of domain annotation of samples. More precisely, we150

remove or at least weaken the edge E → XE by intervening on some components of XE in order151

to break or loosen the path between E and Y , as shown in Fig. 2b. Another orthogonal way of152

weakening this unwanted correlation is intervening XC by altering some core features of the ID153

samples (and correspondingly changing their label to Y = “OOD”).154

In other words, we want to learn representations that are invariant to changes in XE and also sensitive155

to altering XC . By augmenting samples via natural distribution shifts without changing the label,156

we reduce the correlation of XE and Y . On the other hand, to make our model more sensitive to the157

causal variables, we synthesize A-OOD samples by altering the core regions of ID images (changing158

XC variables and creating samples with Y = “OOD”).159

U

EC

XC XE

XY

(a) Before applying intervention

U

EC

XC XE

XY

(b) After applying intervention

Figure 2: Comparison of causal graphs: Our method, by intervening on XE and XC , reduces the
unwanted spurious correlation between XE and Y .

Method Justification Now that we made the label Y independent of E through the intervention made160

by the augmentations, we focus on the sufficient conditions that make the intervened xC “informative,”161

i.e. whether the generated OODs, referred to as A-OODs, are authentically representing the true162

OODs in their core features.163

Let p1(xC) and p−1(xC) represent the distribution of ID and OOD classes on XC , the core164

features, and F be the hypothesis space, and for any f ∈ F , define the expected loss as165
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Lf := ExC∼p(ℓ(f(xC), y)), with p := 0.5p1 + 0.5p−1, where p1 and p−1 represent the distri-166

bution of core sections in ID and OOD classes, respectively. Further, let the expected loss under167

the A-OOD distribution as L′f := ExC∼p′(ℓ(f(xC), y), with p′ := 0.5p1 + 0.5p′−1, where p′−1168

represents the distribution of A-OOD classes. Further, let L′
nf be the empirical version of L′f .169

Theorem 1. Assume that the input x to the OOD detector lives in a compact space X . The general-170

ization gap in the ID vs. A-OOD learning setup evaluated under real OODs, i.e. supf∈F |L′
nf −Lf |,171

is upper bounded with high probability by the regular generalization bound of learning f in the ID172

vs. A-OOD learning setup evaluated under A-OOD, added by some factor of the ℓ2 distance of real173

OODs’ core distribution p−1, and A-OOD core distribution p′−1.174

Proof. Using uniform convergence bounds, one seeks to probabilistically bound supf∈F |L′
nf −Lf |.

We have:

|L′
nf − Lf | = |L′

nf − L′f + L′f − Lf | ≤ |L′
nf − L′f |︸ ︷︷ ︸

E

+ |L′f − Lf |︸ ︷︷ ︸
E′

.

To bound the difference E, one can use the regular generalization bound based on the VC-dimension175

[59]:176

Lf − L′
nf ≤

√
1

n

[(
D log

(
2n

D

)
+ 1

)
− log

(
δ

4

)]
with probability of at least 1− δ, where D is the VC-dimension of the F , and n is the training set177

size. For supf∈F E
′, we have:178

E′ =

∣∣∣∣∫ ℓ(f(xC), y)(p
′(xC)− p(xC))dxC

∣∣∣∣
≤

√∫
ℓ(f(xC), y)2dxC︸ ︷︷ ︸

E′
1

√∫
(p′(xC)− p(xC))2dx︸ ︷︷ ︸

E′
2

.

Note that given a compact input spaceX , bothE′
1 andE′

2 would be bounded. Specifically, considering179

the fact that p1 is shared between p and p′, E′
2 corresponds to how much A-OOD and real OOD180

distributions are close to each other. In addition, E′
2 is multiplied by E′

1, which is the uniformly181

weighted average of loss throughout the feature space, which is bounded given a bounded loss182

function and a compact space X .183

Remarks: Theorem 1 suggests that once we have an ideal intervention, and the label only de-184

pends on xC , it suffices for the intervention to satisfy p(xC |do(xC), do(xE), Y = “ID”) ≈185

p(xC |Y = “OOD”), i.e. the generated OODs through intervention on the ID samples186

(p(xC |do(xC), do(xE), Y = “ID”)) are close in distribution to the real OODs p(xC |Y = “OOD”).187

We note that the hard augmentations are minimal alterations on xC that are needed to turn ID data188

into OOD. Hence we would expect this specific intervention to make the two mentioned distributions189

close provided that the real OODs are close to the ID samples. This condition is usually satisfied in190

real-world OOD detection datasets, where the OOD constitutes minor alterations of the ID samples,191

which is also known as near-OOD.192

5 Method193

Motivation We propose a task-based knowledge distillation method with a novel contrastive-based194

loss function [27, 28], where the defined task is the classification of ID and crafted OOD samples.195

The teacher model aims to update its knowledge by completing the defined task while concurrently196

encouraging the student model to mimic its behavior closely for ID samples and diverge for OOD197

samples. To generate informative OOD samples, we propose a simple yet effective method that198

relies on estimating core regions and distorting them with hard transformations. In the following199

subsections, we will explain each component of our method, detailing its functionality and benefits.200

Generating Style-Related OOD Samples Style-related OOD samples, also referred to as near OOD201

samples in this study, are those that share stylistic similarities with ID samples but do not belong to202

the ID set due to differences in core features [31, 42]. To generate these style-related OOD samples,203
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we propose a guided strategy that transforms ID samples into OOD by altering the core regions of the204

ID samples, which contain the primary semantics, while leaving the other regions unchanged.205

At first, we define two families of transformations denoted as T + (light transformations) and T −206

(hard transformations). T + are those that have been shown to preserve semantics in ongoing literature207

on self-supervised learning [27, 28, 60, 61, 62], while T − has been shown to be harmful to preserving208

semantics in previous studies [54, 63, 64, 31, 32, 33, 34, 65, 30, 66, 67, 68, 69, 70, 71, 72]. For209

crafting OOD samples, we leverage GradCAM [73], which provides a saliency map for an input210

sample using a common pre-trained model (e.g., ResNet18 [74]). Formally, for an ID sample x, we211

randomly choose a light transformation τ+1 ∼ T +. We then compute the saliency map for both x and212

τ+1 (x) and take their element-wise product to ensure the exploited saliency map is style-agnostic. We213

denote the normalized exploited saliency map as SMx, where higher values correspond to the core214

features of the assumed ID sample.215

For the distortion step, we randomly sample two transformation of harsh transformations τ−1 , τ
−
2 ∼216

T −. The rationale behind choosing two transformations is to ensure that the distortion shifts the ID217

sample to OOD. Specifically, for an image x with area Ax and exploited saliency map SMx, we218

design a mask m that covers an area αAx. We set α randomly between [0.20,0.50] for each sample to219

increase the diversity of crafted OOD samples. The mask is then slid over the saliency map, and for220

each region, the region’s weight is determined by summing the pixel values from SMx. Subsequently,221

we choose xmasked
ID as the core region to distort based on these computed scores. The OOD sample222

is then created as follows: xOOD = τ−1 (τ−2 (xmasked
ID ))) + (1 −m) ⊙ xID. We denote our proposed223

OOD crafting strategy as G(·), where xOOD = G(xID). More details about our generation strategy,224

including hard transformations and masking approach, can be found in Appendix E. Moreover,225

samples of the crafted OOD data are presented in Fig.8 and Fig. 9. Notably, we conduct extensive226

ablation studies on various hyperparameters, including α and k, in Appendix E.227

Task-based Teacher-Student Framework Teacher-student (T-S) methods have demonstrated promis-228

ing results by training a student model to mimic the outputs of a teacher on ID images, using the229

discrepancy between their outputs as the OOD score [36, 37, 38, 39, 40, 9, 75]. However, T-S-based230

methods experience significant performance drops under style shift scenarios. In our study, we231

distinguish our approach by proposing a task-based T-S method that considers not only ID but also232

OOD information to emphasize discriminative features (i.e., core features) during the training step.233

Moreover, in contrast to previous T-S works that are limited to using frozen teachers, we propose234

enhancing teacher knowledge by updating its binary layer’s weights.235

Formally, we denote the extractors for the student and teacher as Fs and Ft, respectively. We extend236

both extractors by adding a binary layer denoted as Hs and Ht. We represent the features extracted by237

the bottom l layer groups of the teacher model as F l
t (x) ∈ Rwl×hl×dl , where wl, hl, and dl denote238

the width, height, and channel number of the feature map, respectively. We then define the output of239

the teacher, ft(x) as follows:240

f lt(x)k = 1
hl·wl

∑hl

i=1

∑wl

j=1 F
l
t (x)jik, f lt(x) =

f l
t(x)

∥f l
t(x)∥

, ft(x) = f1t (x)⊕· · ·⊕f lt(x)⊕Ht(x),241

The output of the student, fs(x), is defined in a similar manner. To reduce computational costs, we242

transform the 3D features to 1D features by average pooling across channels. This is followed by243

concatenating the features to form a single vector ft(x) ∈ Rdl for each sample, which we will use to244

train the student. We chose l = 3, following previous T-S works [39].245

Training Step Previous T-S works aimed to define LTS, which was generally associated with246

increasing sim(fs(x), ft(x)), where x belongs to the ID set. In contrast, we propose an OOD-aware247

contrastive-based loss, denoted as LOCL. Specifically, considering a batch of ID training samples,248

BID = {xi}ni=1, we define BA-OOD = {xi}2ni=n+1 and B = BID ∪ BA-OOD, where BA-OOD is created249

using our proposed crafting strategy, i.e., BA-OOD = G(BID).250

For a sample x, using τ1, τ2 ∼ T +, we define x1 = τ1(x) and x2 = τ2(x), and define them as positive251

pairs, i.e., P (x1) = x2 and P (x2) = x1. Then, for each ID sample in B we define LOCL(x) =252

LOCL(x; fs, ft) + LOCL(x; ft, fs), which only updates the student’s weights, and LOCL(x; fs, ft) is253

6
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Figure 3: Overview of our framework for robust novelty detection: (A) Generation of an auxiliary
OOD set by distorting core features of ID samples. (B) Architecture of the proposed pipeline featuring
a pre-trained encoder (teacher) and a from-scratch encoder (student), both concatenated to a linear
layer. (C) Training step aims to align the output of the student fs(·) closely with the teacher’s output
ft(·) for x1ID and x2ID, and to differentiate them for x1OOD and x2OOD. (D) Green circles indicate pairs
where the student’s output is intended to be close to the teacher’s output, red circles indicate pairs that
are meant to diverge, and gray squares represent pairs that have been omitted from the loss function.
defined as:254

−
2∑

i=1

log
exp(sim(fs(x

i), ft(x
i))/γ) + exp(sim(fs(x

i), ft(P (x
i)))/γ)∑

x′∈{τ1(B)∪τ2(B)}
exp(sim(fs(xi), ft(x′))/γ) + exp(sim(fs(G(xi)), ft(x′))/γ)

(1)

Here, γ is the temperature parameter, sim(·) denotes cosine, and G(·) maps each ID sample to its255

OOD counterpart, with G(xi) = xn+i for 1 ≤ i ≤ n.256

Meanwhile, the teacher is updated using the classification task with cross-entropy loss LCE(τ1(B) ∪257

τ2(B)), which is defined on ID and augmented OOD samples. It trains its binary layer while258

keeping the weights of the other layers frozen. The final loss function for training is LOCL + LCE.259

A visualization of our method is provided in Fig. 3. During test time, we utilize the discrepancy260

between the teacher and student model as the OOD score, where their features exhibit low differences261

for ID test samples and high differences for OOD samples due to the defined loss function. Notably,262

we conduct an ablation study on different options of loss in Appendix B.263

6 Experiments264

In this section, we validate the efficacy of our proposed robust ND method under style shifts.265

We conducted an extensive evaluation using a diverse range of industrial and medical datasets,266

incorporating both natural and synthetic shifts. As shown in Table 1, we compare our method with267

state-of-the-art ND methods under both standard and shifted conditions, demonstrating its superior268

performance across different scenarios.269

Experimental Setup & Datasets. To model the distribution shift and conduct evaluation, we270

followed the setup mentioned in Section 2 for each experiment. We used two datasets, D and D′,271

where both include ID and OOD samples. The core features for D and D′ are the same but come272

from different environments (different style features). For instance, in the waterbirds experiment,273

we consider land birds as ID and water birds as OOD. Specifically, we used 3,420 land birds with a274

land background and 180 land birds with a water background as training data. In the standard test,275

both land birds and water birds with a land background are considered, while for the shifted test,276
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Table 1: Performance of several AD methods, including our proposed method, on multiple pairs of
different styles. The results are presented in the format ‘Standard/Robust’, measured by AUROC (%).
‘Standard’ represents the scenario where the test set has a similar style to the dominant style in the ID
training data, while ‘Robust’ refers to the scenario where a shifted test set is used, having the same
core features but differing in style. Best method on each dataset in terms of Robust performance is
highlighted with a blue background.

Dataset Pair Method
CSI MSAD DRAEM RD4AD UniAD ReContrast Transformaly GNL RedPanda∗ Ours

R
ea

l-w
or

ld
D

at
as

et
s

Autonomous Driving 68.9 / 55.6 86.5 / 67.4 87.0 / 68.3 71.6 / 65.7 92.0 / 59.7 90.4 / 68.2 87.4 / 70.5 81.6 / 67.1 72.8 / 67.3 92.9 / 84.2

Camelyon17 60.2 / 53.4 70.1 / 64.2 68.3 / 59.9 60.0 / 56.3 62.1 / 56.7 59.8 / 60.4 64.0 / 63.8 65.3 / 60.7 68.0 / 65.9 75.0 / 72.4

Brain Tumor 86.4 / 65.1 98.0 / 66.3 71.8 / 50.3 98.6 / 43.7 86.7 / 74.2 96.1 / 55.7 93.7 / 54.7 98.1 / 48.7 92.6 / 58.3 98.2 / 79.0

Chest CT-Scan 59.7 / 54.2 70.2 / 58.7 67.3 / 66.0 64.8 / 59.7 70.3 / 60.1 66.9 / 60.2 71.2 / 70.3 63.8 / 58.2 67.8 / 60.4 72.8 / 71.6

W. Blood Cells 62.3 / 45.7 76.8 / 60.6 67.1 / 60.4 61.2 / 53.2 55.7 / 60.8 59.6 / 50.7 79.1 / 57.2 60.7 / 56.7 74.9 / 56.2 88.8 / 72.1

Skin Disease 77.2 / 49.5 72.1 / 60.3 80.4 / 67.2 85.1 / 61.9 78.9 / 72.5 90.5 / 67.3 75.4 / 50.1 88.3 / 54.8 71.7 / 53.9 90.7 / 70.8

Blind Detection 83.9 / 55.3 92.2 / 59.4 90.7 / 60.5 92.4 / 58.7 92.4 / 59.6 97.6 / 62.8 89.2 / 63.0 92.5 / 55.1 82.5 / 58.5 96.1 / 73.2

Sy
nt

he
tic

D
at

as
et

s

MVTec AD 63.8 / 51.2 84.3 / 55.1 98.1 / 62.7 98.5 / 56.8 86.6 / 72.8 98.0 / 48.2 85.9 / 51.4 96.5 / 54.0 76.5 / 59.0 94.2 / 87.6

VisA 65.2 / 53.5 84.1 / 63.1 96.3 / 58.0 96.0 / 64.7 84.0 / 70.1 91.1 / 54.5 85.5 / 53.8 89.3 / 60.2 84.2 / 65.1 89.3 / 82.1

WaterBirds 66.8 / 62.3 69.2 / 60.4 53.1 / 52.5 55.9 / 53.6 77.1 / 75.0 59.4 / 55.3 81.0 / 79.3 57.1 / 53.9 76.8 / 72.4 76.5 / 74.0

DiagViB-MNIST 89.8 / 72.3 84.9 / 58.5 83.9 / 63.9 77.0 / 53.3 63.7 / 55.2 76.6 / 54.5 67.1 / 55.0 65.9 / 65.0 83.1 / 76.8 93.1 / 73.8

DiagViB-FMNIST 87.4 / 74.5 90.8 / 55.0 87.4 / 67.1 78.2 / 64.0 74.8 / 50.3 77.9 / 60.7 84.6 / 63.4 75.5 / 64.1 85.2 / 71.0 92.1 / 78.7

Average 72.6 / 57.7 81.6 / 60.8 79.3 / 61.4 78.3 / 57.6 77.1 / 63.9 80.3 / 58.2 80.3 / 61.1 77.9 / 58.2 78.0 / 63.7 88.3 / 76.6

∗Since RedPanda requires metadata for training, we specifically grant access to environment labels for evaluating this method.

both land birds and water birds with a water background are used. For the MVTecAD [76] and Visa277

[77] experiments, similar to GNL, D′ was created manually by us, ensuring that the core features278

remained constant. For the other experiments,D andD′ were obtained from existing datasets. Details279

on D and D′ for each experiment can be found in Table 2 and Appendix F.280

The results in the Table 1 explain each dataset in detail, while the results with D and D′ swapped are281

reported in Appendix H. For further details regarding the benchmarks, see Appendix F . Furthermore,282

extra ablation studies can be found in Appendix J. The Pseudocode for our proposed method is283

provided in Appendix C.284

Analyzing Results. Our approach enhances the average robust detection performance by 12.7%285

compared to existing methods (presented in Table 1). Additionally, we achieve a significant im-286

provement of 6.7% in standard performance. Our evaluation includes methods such as GNL, which287

was specifically proposed to improve robustness under style shifts, and DRAEM, which uses ex-288

tra OOD dataset. The results on various challenging datasets demonstrate the applicability of our289

method in real-world scenarios, all without relying on any metadata or extra dataset. This significant290

improvement underscores the real-world applicability and generalization of our method.291

Implementation Details. We utilize a pre-trained ResNet-18 [74] as the foundational encoder292

network for both the student and teacher networks. Our model undergoes 200 epochs of training293

using the AdamW [78] optimizer, with a weight decay of 1e-5 and a learning rate of 1e-4. The batch294

size (β) for training is set to 128. Further experimental details can be found in Appendix D.295

Table 2: Specifications of main (D) and shifted D′ pairs for real-world datasets
Description Autonomous Driving Camelyon17 Brain Tumor Chest CT-Scan WBC Skin Disease Blind Det.
D Cityscapes [15] Hospitals 1-3 [79] Br35H [80] RSNA [81] Low Res [82] ISIC 2018 [83] APTOS [84]
D′ GTA5 [16] Hospitals 4-5 [79] Brats 2020 [85] PD-Chest [86] High res [82] PAD-UFES [87] DDR [88]

7 Ablation Study296

Pipeline Components To verify the impact of the proposed elements, we conduct comprehensive297

ablation studies using various datasets. The results are reported in Table 3. In each scenario, we298

replace certain components with alternative ones while keeping the remaining elements fixed. Setup299
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Table 3: An ablation study on our method with the exclusion of different components while keeping
the others intact.

Setups
Components Datasets

A-OOD Core LCE LOCL LTS MVTecAD Autonomous Driving MNIST Waterbirds Brain TumorEstimation

Setup A - - - - ✓ 89.6 / 54.3 81.2 / 65.4 73.8 / 68.2 58.4 / 56.7 91.6 / 54.2
Setup B ✓ ✓ - ✓ - 90.3 / 76.9 83.1 / 75.3 88.0 / 69.7 68.3 / 66.1 94.1 / 75.7
Setup C ✓ ✓ ✓ - ✓ 91.4 / 72.5 84.5 / 78.0 85.6 / 69.4 75.6 / 67.6 91.5 / 63.5
Setup D ✓ - ✓ ✓ - 92.9 / 78.0 85.7 / 81.7 88.2 / 65.9 66.6 / 64.5 93.0 / 74.8

Setup E (Ours) ✓ ✓ ✓ ✓ - 94.2 / 87.6 92.9 / 84.2 93.1 / 73.8 76.5 / 74.0 98.2 / 79.0

Table 4: An ablation study on our method’s performance using different A-OOD generation methods.

OOD Crafting Dataset Average
Method MVTec AD Autonomous Driving MNIST Waterbirds Brain Tumor FMNIST VisA

MIXUP∗ 69.8 / 57.2 84.5 / 61.7 76.1 / 62.6 68.5 / 57.1 85.6 / 53.9 84.9 / 73.8 71.3 / 66.4 77.2 / 61.8
CutPaste 91.7 / 75.1 83.6 / 74.8 88.2 / 61.9 71.9 / 67.0 93.8 / 69.3 87.8 / 62.6 81.9 / 73.2 85.6 / 69.1

VOS 64.2 / 53.9 74.8 / 56.1 81.3 / 64.0 54.8 / 52.3 71.8 / 44.2 75.4 / 66.2 65.1 / 54.8 69.6 / 55.9
FITYMI∗ 74.0 / 64.5 81.6 / 58.4 86.9 / 65.8 64.5 / 60.9 92.7 / 67.4 85.1 / 64.7 74.6 / 68.2 79.9 / 64.3

Dream-OOD∗ 86.4 / 75.8 87.4 / 76.2 84.5 / 56.7 82.4 / 71.6 79.2 / 63.0 82.5 / 61.3 69.0 / 57.4 81.6 / 66.0
GOE∗ 86.8 / 72.7 90.5 / 78.3 86.1 / 59.2 78.3 / 65.2 84.1 / 69.7 82.1 / 70.6 72.8 / 65.7 83.0 / 68.8

Ours 94.2 / 87.6 92.9 / 84.2 93.1 / 73.8 76.5 / 74.0 98.2 / 79.0 92.1 / 78.7 89.3 / 82.1 90.9 / 79.9
∗In contrast to our strategy, these methods employ additional datasets or generative models for crafting OOD data.

A refers to a scenario where we ignore using auxiliary OOD samples for training and drop the binary300

classification layers. Instead, we augment ID samples with light transformations and use the common301

teacher-student based loss function, LTS, for training. Notably, this scenario is similar to the GNL302

method. Setup B highlights the effect of the defined classification task by modifying the training303

process. Specifically, it excludes the classification task that updates the binary layer of the teacher304

model. Both the teacher and student models are trained without binary layers. Instead, we train the305

student model with LOCL using the created ID and OOD sets. In Setup C, we replaced our defined306

LOCL with LTS. This tests the efficacy of our proposed loss function in our framework. Setup D307

specifically targets our OOD crafting strategy. Rather than estimating core regions of an ID sample308

for manipulation, this setup randomly distorts regions of ID samples. This OOD crafting approach is309

similar to the CutPaste [30] method in terms of finding the region of modification. Results show that310

Setup E, which refers to our proposed (default) framework, achieves superior performance compared311

to other setups.312

OOD crafting strategy In this ablation study, we substituted our OOD crafting strategy with313

alternative strategies, while keeping other components unchanged. The results, presented in Table314

4, demonstrate that our efficient crafting strategy—which does not require an additional dataset315

or generative model—outperforms other methods. This superiority is based on the fact that other316

strategies, including MIXUP [54], FITYMI [42], Dream-OOD [41], and GOE [56], fail to preserve317

the relationship between the style features of created OOD samples and ID samples. Moreover, these318

methods tend to generate OOD samples biased towards the datasets their backbones are trained on319

(e.g., Dream-OOD’s bias towards LAION [89]), resulting in the creation of distant and unrelated320

OOD samples (see the comparative figure of samples). VOS [55], crafting OOD samples in the321

embedding space, is ineffective in preserving image style features. CutPaste [30], despite being better322

than other alternatives, distorts random regions and may alter background features instead of core323

regions. More details on these methods are in Appendices L, I.324

8 Conclusion325

In this paper, we presented a robust novelty detection method that handles style shifts without326

requiring metadata. By crafting an auxiliary OOD set and using a task-based knowledge distillation327

strategy, our approach focuses on core features, reducing the impact of style variations. Evaluations328

on real-world and benchmark datasets demonstrated significant performance improvements, achieving329

up to 12.7% higher AUROC compared to existing methods. Our method proves effective in diverse330

scenarios, offering a robust solution for ND tasks.331
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Figure 4: Examples of Datasets Used in the Study: This figure illustrates the concept of Style Shift
in data. We have selected the Brain Tumor Dataset, Waterbirds, MVTECAD, and Camelyon17, which
perfectly highlight our point. In each row, the left section illustrates 4 images corresponding to the
training set of the main dataset, i.e., Dtrain. The middle section corresponds to the test set of the same
dataset, i.e., Dtest. The right section corresponds to the samples from the dataset containing style shift,
i.e., D′. In the test datasets (middle and right sections), the OOD samples contain a red frame, only
for the sake of readability in the figure. Please note that these frames are not available in the actual
data. In the brain tumor datasets, images containing a tumor are labeled as OOD and healthy brains
are labeled ID, as shown in the figure. The brain images from the main dataset, all include their
skulls, which represents itself as a curve around the brain. On the other hand, the images from the
shifted dataset do not possess skulls (which could have been removed as a preprocessing procedure).
This can lead to the model mistakenly learning the skull as an ID feature, thus labeling all images
from the shifted dataset as OOD. In the second row, we consider the waterbirds dataset, which is fully
explained in Appendix F.1. In this row, land birds represent ID data and water birds correspond to
OOD. In the main dataset (the 2 leftmost columns), the background of all images is a land scenary.
In the shifted dataset, all images possess a water background (e.g., sea, lake, etc.). The goal here
is to train a model that is robust to the background shifts, and labels images with respect to their
foreground, i.e., the type of the bird. In the third row, we consider hazelnut class of the MVTecAD
dataset. In this class, non-broken hazelnuts are considered ID, and broken ones are OOD. For the
shifted dataset, following the procedure explained for generating synthetic shifted pairs in Appendix
F.3, we apply light augmentations on the background of the image, thus simulating a shift in the style,
where the style feature here is the background color. Finally, we have the Camelyon17 dataset, which
is a lymph node section dataset fully explained in Appendix F.2. In this set, the ID class represents
healthy patients, and the OOD class represents patients with cancerous cells. The shifted dataset has
the exact same settings, but the images are taken in a different center, thus facing minor shifts due to
difference in equipment, angle, etc. The shift can be seen in the figure as slight changes in the color
for both ID and OOD groups, i.e., the shifted images generally have a darker color complex.
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Appendix591

A Detailed Results592

In this section, in Tables 5 and 6, we provide the mean and standard deviation of our method’s results593

on the provided datasets in Table 1 using 5 different seeds. These were not reported in the main table594

due to space constraints.595

Table 5: Detailed results of our method’s performance on the first 6 datasets, over 5 runs.

Method Dataset

Autonomous Driving Camelyon Brain Tumor Chest CT-Scan White Blood Cells Skin Disease

Ours (D) 92.9 ± 0.51 75.0 ± 0.64 98.2 ± 0.12 72.8 ± 0.68 88.8 ± 0.61 90.7 ± 0.43
Ours (D′) 84.9 ± 0.62 72.4 ± 0.84 79.0 ± 0.20 71.6 ± 0.83 72.1 ± 0.75 70.8 ± 0.52

Table 6: Detailed results of our method’s performance on the second 6 datasets, over 5 runs.

Method Dataset

Blind Detection MVTecAD VisA Watebirds Diag-MNIST Diag-FMNIST

Ours (D) 96.1 ± 0.91 94.2 ± 1.01 89.3 ± 0.76 76.5 ± 0.67 93.1 ± 0.21 92.1 ± 0.32
Ours (D′) 73.2 ± 0.98 87.6 ± 1.21 82.1 ± 0.89 74.0 ± 0.75 73.8 ± 0.34 78.7 ± 0.28

B Loss Function Analysis596

Development Process597

The core concept behind using A-OOD in the T-S architecture is to encourage the student model to598

produce outputs that are closer to the teacher model’s outputs when the input is an ID sample, and to599

diverge further when the input is an OOD sample.600

Setup A: At first glance, it seems that adding a simple term to the common cosine similarity of the601

T-S models can help, specifically:602

= sim(fs(xID), ft(xID))− sim(fs(xA-OOD), ft(xA-OOD)) (2)

where fs and ft are the student and teacher models, respectively, and xID and xA-OOD represent603

in-distribution and auxilary out-of-distribution samples. However, the results in Table 7 show that604

this method is not a suitable option for robust novelty detection. Based on this observation and605

recognizing the effectiveness of contrastive learning in distinguishing between similar and dissimilar606

samples, we decided to introduce a novel T-S architecture where the student mimics the teacher using607

a contrastive learning loss instead of cosine similarity.608

Setup B: The first solution that comes to mind to enhance contrastive learning with A-OOD is the609

following loss function:610

=−
2∑

i=1

log
exp(sim(fs(x

i), ft(x
i))/γ) + exp(sim(fs(x

i), ft(P (x
i)))/γ)∑

x′∈{τ1(B)∪τ2(B)}
exp(sim(fs(xi), ft(x′))/γ)

+

2∑
i=1

log
exp(sim(fs(G(x

i)), ft(G(x
i)))/γ) + exp(sim(fs(G(x

i)), ft(P (G(x
i))))/γ)∑

x′∈{τ1(B)∪τ2(B)}
exp(sim(fs(G(xi)), ft(x′))/γ)

, (3)

where fs, ft, P,G are the same as defined in Section 5. In this loss, inspired by contrastive loss [31],611

we try to make the student mimic the outputs of the teacher to ID samples. Simultaneously, the612

second term tries to make the outputs of the student to the OOD samples close to those of the teacher.613

Then, the second term is subtracted from the first, indicating that we want their similarity minimized,614
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resulting in their divergance. However, in this scenario, the loss function operates unstably, and the615

results in Table 7 show that it is not a robust OOD detection model.616

Setup C: Next, we propose our novel loss function in equation (1), which ensures stable training and617

enables the student model to produce outputs that are closer to the teacher model’s outputs for ID618

samples, while diverging further for OOD samples.619

LOCL(x) = LOCL(x; fs, ft) + LOCL(x; ft, fs) (4)

Setup D: For further exploration and ablation study of our method, we removed LOCL(x; ft, fs) and620

observed its effect.621

LOCL(x) = LOCL(x; fs, ft) (5)

Note: In all setups (A, B, C, D), we also include the LCE term in the loss.622

Table 7: Performance comparison of different proposed losses. The table shows the evaluation results
of different losses, including our proposed loss, highlighting their effectiveness and stability.

Loss setup Dataset

Brain Tumor Autonomous Driving DiagViB-MNIST WaterBirds MVTec AD VISA

Setup A 88.7 / 62.1 83.2 / 68.9 82.8 / 58.3 63.7 / 60.1 79.3 / 65.8 81.0 / 67.3
Setup B 85.4 / 64.0 73.6 / 65.1 79.8 / 61.7 60.3 / 56.4 81.7 / 66.0 78.6 / 65.3

Setup C (Ours) 98.2 / 79.0 92.9 / 84.2 93.1 / 73.8 76.5 / 74.0 94.2 / 87.6 89.3 / 82.1
Setup D 96.2 / 75.2 88.5 / 79.1 90.0 / 71.1 73.4 / 72.1 90.3 / 83.6 84.4 / 75.9

Stability of loss623

In the analysis of various configurations applied to the Cityscapes dataset, the distinctions in perfor-624

mance and loss metrics are clearly illustrated (Figures 5a and 5b). Figure 5a displays the AUROC625

curves for four different setups, where it is evident that our setup, Setup C, not only achieves faster626

convergence but also delivers comparatively higher AUROC values. Similarly, Figure 5b shows the627

normalized loss across these setups, with Setup C exhibiting a considerably more consistent loss628

trajectory than its counterparts. Notably, Setups A and B demonstrate significant fluctuations in their629

loss metrics, indicating a lack of stability. While Setup D has similar performance to Setup C, the630

consistency and rapid convergence of Setup C affirms its superiority.631

(a) (b)

Figure 5: Performance and Loss Comparison Across Different Setups on the Cityscapes Dataset:
Figure (a) showcases the AUROC curves for four setups, highlighting that Setup C (Ours) not only
converges more rapidly but also achieves superior performance relative to the others. Figure (b)
presents the normalized loss, where Setup C demonstrates a notably stable loss profile. In contrast,
Setups A and B display less stability, with fluctuations in their loss metrics. These comparisons
underscore the efficiency and robustness of our approach in both performance and stability.

C Algorithm632

In this section, we present the Robust Novelty Detection Algorithm that outlines our method, detailed633

further in Section 5. The A-OOD-Generator function is designed to generate an OOD sample from634
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a given ID sample. Meanwhile, the ViewGenerator function constructs two positive views for each635

ID and OOD sample, utilizing a series of random positive augmentations.636

During training, the A-OOD-Generator function produces XOOD from XID, and subsequently, the637

ViewGenerator function generates positive views of both XID and XOOD. These views are then638

fed into the network. The loss is computed according to equation (1), following which the model is639

updated.640

Algorithm 1 Robust Novelty Detection

function A-OOD-GENERATOR(XID)
τ+ = sample({Color Jitter, Horizontal Flip, Grayscale, ...})
SXID = Grad(XID)⊙Grad(τ+(XID)) ▷ Get saliency map for XID using GradCam
mask = get_mask(XID, SXID)
τ− = sample({Rotation, Elastic, Distortion, ...}) ▷ T is a sample of hard augmentations
XOOD = mask ⊙ τ−(XID) + (1−mask)⊙XID
return XOOD

end function

function VIEWGENERATOR(XID, XOOD)
T1, T2, T3, T4 = Sample({Color jitter,Blur,Random H-flip, . . . })

▷ Tis are samples of light augmentations
return T1(XID), T2(XID), T3(XOOD), T4(XOOD)

end function

function TRAIN
for XID ∈ Dataloader do

XOOD = A-OOD-generator(XID)
X = [XID, XOOD]
Xview1

ID , Xview2
ID , Xview1

OOD , Xview2
OOD = ViewGenerator(XID, XOOD)

Y = [0]× |XID|+ [1]× |XOOD|
▷ Y is a label vector where 0 denotes samples from XID and 1 denotes samples from XOOD.
loss = LOCL(X

view1
ID , Xview2

ID , Xview1
OOD , Xview2

OOD ) + LCE(X,Y ) ▷ As defined in equation
(1)

Update(loss)
end for

end function

function MAIN
for epoch in range(200) do

Train()
end for

end function

Main()

D Implementation Details641

Model details642

We employ a pre-trained ResNet-18 as the foundational encoder network for both the student and643

teacher ResNet-18 models, excluding the binary layers from each. To classify ID and auxiliary OOD644

data, we append a new linear layer at the end of the network. Additionally, we extract features645

from layers 1, 2, and 3 of both the student and teacher models to calculate the OCL loss. These646

intermediate features, which provide information at various levels of abstraction, are crucial for the647

student model to effectively mimic the teacher model.648
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Training and Evaluation Details649

During optimization, our model is trained for 200 epochs using the AdamW optimizer, with a weight650

decay of 1e-4 and a learning rate of 5e-5. The batch size for training is set to 128. We evaluated651

all methods using the Area Under the Receiver Operating Characteristic curve (AUROC). Our652

experiments were conducted on NVIDIA GeForce RTX 3090 GPUs (24GB) using Python version653

3.8.654

Time Complexity655

An additional component in our work that adds to the time complexity, in comparison with previous656

ND works, is the saliency map extraction from GradCAM. Using the resources explained in the657

previous subsection, we generate saliency maps for one hundred 224×224 images in ∼ 2.7± 0.04658

seconds over all datasets in our setup. Notably, we compute these maps for each sample before659

starting the training phase. This adds an initial overhead but reduces overall time complexity as we660

avoid redundant computations of the maps.661

Moreover, we observe that our method usually converges after ∼ 150 epochs on average, which662

should be taken into consideration when estimating total time. For the batch size and backbone663

specified in Appendix D, each epoch should take less than one minute. Further, evaluation time664

is proportional to dataset size, but for an average-sized dataset, e.g. One-class MVTecAD, should665

be less than a minute. Formally speaking, calculating the LOCL loss takes O(β2) time, giving666

O(GradCAM) + (total iters) · (O(β2) +O(LCE)). On eval time, we have (|D′test|) ·O(f), where667

f is the output of the model.668

E Auxiliary OOD generation details669

Masking Approach670

Following our method explanation in Section 5, we wish to find the optimal region of the image to671

distort. After getting the final normalized saliency map SMx, we use the fact that saliency maps672

possess spatial coherence, as stated in [73], and look for regions with higher values. The mentioned673

fact ensures that the selected region’s values are continuous, as well as having the core areas covered,674

resulting in an area of the image that encloses most of the core parts, rather than just including675

minor and edge areas in it. Noteworthy is that when multiplying the mask by the image, the hard676

transformation might still get applied to regions with a zero pixel value, i.e., the unmasked area. To677

tackle this, we crop the region and apply the transformation on the cropped part. Then, we paste the678

new patch on the original image.679

In our primary experiments, the parameter (α), which represents the relative area of the mask with680

respect to the ID sample, is set between 0.2 and 0.5. This subsection presents an ablation study on681

various values of (α), with results detailed in Table 8. The findings indicate that variations in (α) have682

minimal impact on the outcomes, demonstrating that our model is relatively insensitive to changes in683

this parameter.684

Table 8: Exploring the Influence of Random Mask Sizes in Our Method Across Diverse Datasets: A
Comprehensive Ablation Study

Mask Size
(% of image)

Dataset

Brain Tumor Autonomous Driving DiagViB-MNIST WaterBirds MVTec AD VISA

5% to 20% 96.2 / 76.1 90.0 / 82.1 93.0 / 74.2 77.0 / 72.3 92.1 / 86.7 87.8 / 83.0
10% to 30% 97.1 / 78.9 93.0 / 84.3 92.5 / 73.2 75.0 / 73.9 95.1 / 86.4 90.1 / 81.5
20% to 40% 98.3 / 79.4 91.3 / 83.8 93.4 / 72.1 75.4 / 73.1 94.3 / 85.1 89.7 / 81.2

20% to 50% (Ours) 98.2 / 79.0 92.9 / 84.2 93.1 / 73.8 76.5 / 74.0 94.2 / 87.6 89.3 / 82.1
30% to 50% 96.9 / 77.6 91.7 / 83.1 91.3 / 73.0 76.1 / 73.6 92.8 / 86.6 87.1/ 81.5
40% to 70% 90.4 / 71.3 84.5 / 77.0 85.7 / 64.9 69.9 / 65.8 86.3 / 78.7 81.2 / 74.7
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Augmentation Details685

We apply two types of augmentations to each input x ∈ Dtrain, two of which are positive augmentations686

and two are negative augmentations. The intuition behind this is that with positive augmentations,687

we seek to make the model understand that light augmentations, which simulate environmental688

change in actual data, are not decisive in the final decision of the label. Meanwhile, with negative689

augmentations, we seek to destroy the core of the image, resulting in a new image with different core690

properties, representing OOD data. We also apply light augmentations to the newly crafted OOD691

data, to make the model understand environmental changes to this data should not be decisive in the692

final decision, the same as with ID data.693

The exact details on transformations T + and T − are provided in the main text. For each data, we694

sample a hard transformation τ+ ∈ T +. We then attempt to find the core of the image using the695

procedure explained in our method in Section 5. All transformations are applied using official Python696

libraries of Albumenations [90] and ImageCorruptions [91].697

F Datasets698

In the following paragraphs, we explain how we obtain Dtrain, Dtest, and D′test. One detail shared699

among all datasets is that after obtaining the datasets, we add k samples from the shifted dataset,700

D′
ID to the training data, where k is equal to 5% of the size of Dtrain. Worth noting is that our model701

significantly outperforms other models, even in the absence of this added data, as explained in Section702

6. This detail is not mentioned in the following paragraphs to avoid redundancy.703

F.1 Details on benchmark datasets with synthetic shifts704

• DiagViB-MNIST and DiagViB-FMNIST [92] we use the DiaViB-6 benchmark dataset for our705

experiments, DiaViB-6 provide a unique capability to manipulate five key generative factors in706

colored images: texture overlays, object dimensions, placement, brightness, and saturation, in707

addition to semantic features corresponding to the label. Adjusting these factors enabled the708

creation of diverse environments varying in these six aspects. All images in both datasets were709

resized to dimensions of 3 × 256 × 256. The main dataset contained data from two environments,710

while the shifted dataset consisted of data from five distinct, previously unseen environments. In711

both DiagViB-MNIST and DiagViB-FMNIST datasets, the DiagViB-6 benchmark employed class712

4 as the ID set, with class 9 assigned as the OOD set. These datasets are publicly available under713

the AGPL-3.0 license.714

• WaterBirds [93] We evaluated our method using the Waterbird dataset, which contains natural715

images with distribution shifts caused by changes in the background habitat, alternating between716

aquatic and land settings. In our experiments, the main dataset includes land birds with land717

backgrounds as the ID set and water birds with land backgrounds as the OOD set (5% of the718

training data comes from the ID set of the shifted dataset). The shifted dataset includes land birds719

with water backgrounds and water birds with water backgrounds. The main dataset’s training data720

consists of 3,420 images with land backgrounds and 180 images with water backgrounds. The test721

set of the main dataset contains 3,551 images with land backgrounds. The shifted dataset, used for722

evaluation, includes 4,637 images with water backgrounds. All images are resized to 224×224.723

This dataset is publicly released under the MIT license.724

F.2 Details on Natural Shift Datasets725

• Autonomous Driving The main dataset used for Autonomous Driving is Cityscapes [15]. This726

dataset provides stereo videos from 50 cities, with detailed annotations for 30 classes, including727

roads and buildings. Intuitively, to reflect real-world scenarios, we want the streets with few728

obstacles (e.g. pedestrians) to be considered “safe”, thus being labeled as ID, while the crowded729

streets be labeled unsafe, i.e. OOD. We utilize Cityscapes by extracting 256×256 patches from730

the center of the images to construct an OOD detection dataset. In our methodology, we classify731

roads, sidewalks, buildings, walls, fences, poles, vegetation, terrain, sky, cars, trucks, and buses as732

ID classes, while all other classes are treated as OODs. Each patch is labeled as OOD if it contains733

any object from an OOD class; otherwise, it is labeled as ID. The license clearly states that the734
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dataset is made freely available for both academic and non-academic purposes, and permission to735

use is given.736

The robust pair of Cityscapes is the GTA5 dataset [16]. The GTA5 dataset consists of 24,966737

synthetic images with pixel-level semantic annotations, generated using the open-world video game738

Grand Theft Auto 5. Similarly, we extract 256×256 patches from the center of these images to739

form another OOD detection dataset. The ID classes remain the same as in the Cityscapes dataset,740

whereas the OOD classes include trains, motorcycles, persons, riders, traffic signs, traffic lights,741

and bicycles. Their code is released under the MIT license.742

• Camelyon17 We use the Camelyon17 dataset [79, 94] which is a lymph node section dataset743

gathered from patients with potential breast cancer. The images are taken from tissue patches744

obtained from five different hospitals, each potentially having a tumorous tissue within other parts745

of the tissue. The ID data is defined as healthy tissues and tumorous tissues are labeled as OOD.746

We use the train data from the first 3 hospitals (218,510 images) as the training data. We then use747

the test data from the first 3 hospitals (99,121 images) as the main test data, and the test data from748

hospitals 4 and 5 (77,862 images) as the shifted test data. All images are resized to 224×224. This749

dataset is publicly released under the CC0 1.0 license.750

• Brain Tumor The main dataset is Br35h [80], which consists of 3,000 magnetic resonance images751

(MRIs) of human brains, with 1,500 images of tumorous brains and 1,500 of non-tumorous brains.752

We split the non-tumorous set 70/30, training on 70% of the non-tumorous data and evaluating753

on the remaining non-tumorous and tumorous images during test time. The shifted pair is the754

Brain Tumor [85] dataset, which contains 3,764 MRIs of human brains. These images are also755

categorized into two classes: tumorous and non-tumorous. Similar to the Br35h dataset, we split the756

non-tumorous set 70/30, training on 70% of the non-tumorous data and evaluating on the remaining757

non-tumorous and tumorous images during test time. All images are resized to 224× 224. Both758

datasets are free to public use under the CC BY 4.0 license.759

• Blindness Detection Blindness Detection is a pair of datasets dedicated to images of color fundus,760

with the main dataset being APTOS, which is the official training dataset released for the 2019761

APTOS blindness detection challenge [84]. This dataset contains 3,662 images with grades 0-4762

indicating the severity of Diabetic Retinopathy (DR). We used the images with grade 0 (1,805763

images) as ID, and the rest as OOD. As for the shifted dataset, we used the DDR dataset [88],764

which contains 13,673 fundus images from 147 hospitals in China. Similar to APTOS, these765

images are also classified into 5 groups according to DR severity: none, mild, moderate, severe,766

and proliferative DR. We label the images with no DR severity (6,266 images) as ID, and the rest767

as OOD. All images are resized to 224× 224. Both datasets are publicly available under the MIT768

license.769

• Skin Disease Skin Disease is a pair of image datasets dedicated to different skin diseases. The770

main dataset is ISIC2018, which is the publicly available dataset of the ISIC2018 Lesion Diagnosis771

challenge [83]. It contains seven classes corresponding to seven different categories of skin disease.772

We take the NV (Nevus) class as ID, and the rest as OOD, following the setup used in [95] and773

[39]. The training set comprises 6,702 ID images. The shifted dataset is PAD-UFES-20 [87], a774

skin lesion dataset composed of clinical images collected from smartphones. It contains 2,298 total775

images, with 224 of them labeled NEV (Nevus), which we take as ID, and the rest are taken as776

OODs. All images are resized to 224×224. The ISIC dataset is available under CC-BY-NC license,777

and the DDR dataset is under CC-BY-4.0 license.778

• Chest CT-Scan Chest CT-Scan is a pair of datasets dedicated to images of frontal view chest779

X-RAY images. The main dataset, RSNA, which is available from the 2018 RSNA Pneumonia780

Detection Challenge [81], consists of images of 30,227 patients, with 9,555 of them diagnosed with781

Pneumonia. The shifted dataset is another pneumonia dataset used for image classification, which782

is used by Kermany et. al [86]. It contains 5,856 images in total, with 1,341 of them being ID and783

the rest being defected. To create the training dataset, we use 70% of the ID data, and use the rest784

of them for testing the model. All images are resized to 224×224. RSNA license is available for785

non-commercial purposes, and the shifted dataset is licensed under CC-BY-4.0.786

• White Blood Cells The White Blood Cells (WBC) dataset [82], comprises two sets of datasets,787

each containing microscopic images of 5 different cell types. In our setup, from each dataset, cells788

with the label “Lymphocite” are taken as ID and the rest are taken as OOD. The main dataset789

contains three hundred 120×120 images of WBCs and their color depth is 24 bits. The shifted790

dataset contains one hundred 300×300 color images with significantly higher resolution. To obtain791
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training data, we sample 70% of the ID images from the main dataset, resulting in 123 images. The792

rest of dataset 1 are used as the main test data, and dataset 2 is used as the robust test data. All793

images are resized to 224×224. WBC is under the GPL-3.0 license.794

F.3 Details on our approach to generating synthetic shifted pairs795

The MVTec Anomaly Detection (MVTecAD) dataset [76] is specifically designed for evaluating796

anomaly detection methods in industrial settings. It features high-resolution images from 15 different797

categories, including both objects like screws and textures like leather, each with examples of ID and798

defective conditions. We utilized the MVTecAD dataset as the main dataset in our experiments. For799

the robust version, we added a 10% width padding to all ID and OOD images in the MVTecAD test800

set for texture categories. Additionally, for object categories, we modified the background color of801

the MVTecAD test set using Facebook’s SAM (Segment Anything Model)[96] model. MVTecAD is802

under the CC-BY-NC-SA 4.0 license.803

The VisA dataset [97] introduces a novel and substantial dataset, comprising a total of 10,821 images,804

with 9,621 labeled as ID and 1,200 as OOD, doubling the size of MVTec. This dataset is organized805

into 12 subsets, which are divided into three standard categories based on object properties. The first806

category includes four printed circuit boards (PCBs) with intricate structures. The second category807

consists of datasets showcasing multiple instances in a single view, such as Capsules, Candles,808

Macaroni1, and Macaroni2. The third category comprises single instances with roughly aligned809

objects, like Cashew, Chewing gum, Fryum, and Pipe fryum. In our experiments, the main dataset810

utilized is VisA, and for the robust version, we altered the background color of the VisA test set using811

Facebook’s SAM (Segment Anything Model)[96] model. VisA is under the CC-BY 4.0 license.812

G Limitations813

In this study, we utilize an interpretable method to identify and distort the core features of ID814

samples. Despite demonstrating the effectiveness of our approach, there are some limitations to815

consider. Firstly, in certain image domains, such as texture images (e.g., grid images), the distortions816

introduced may resemble random alterations rather than systematic ones, potentially impacting the817

performance of the method because the core regions of texture images are not well defined. Secondly,818

although our method has been validated on 12 diverse datasets spanning various tasks, including white819

blood cell analysis in medical imaging, the hard augmentations applied may not always accurately820

represent real-world OOD samples. This discrepancy could affect the performance of our approach821

in specific scenarios where the real-world OOD samples significantly differ from the crafted OOD822

samples.823

H Interchanged Dataset Pairs Results824

In this section, we provide results for the case where the “Main” and “Shifted” datasets are inter-825

changed, i.e. D is used as the Shifted dataset and D′ is the Main dataset. The splitting policies for826

train and test datasets, and exposure percents are the same as the original setup. Results are presented827

in Table 9, and descriptions of the datasets are provided in Table 10.828

I Additional Related Work829

Previous Works on Robust ND830

Teacher-student based methods for ND Efforts to adapt the teacher-student paradigm for ND tasks831

have involved using a pre-trained model as the teacher and a from-scratch network as the student. The832

main objective is to train the student model to mimic the teacher’s features on ID samples, with the833

rationale that the student model, trained exclusively on OOD-free samples, will generate discrepant834

features on OOD samples in inference phase [31]. US ensembles several models trained on IDs at835

different scales to capture a broader spectrum of ID behavior, enhancing the detection of OOD data.836

Multiresolution Knowledge Distillation (MKD) [37] proposes using multi-level feature alignment to837

fine-tune the sensitivity to discrepancies between ID and OOD samples. RD4AD [38] advances these838

methods by using a teacher-student setup with the teacher as an encoder and the student as a decoder839
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Table 9: Performance of some AD methods, including our proposed method, on the interchanged pairs
of datasets given in Table 10. The results are presented in the format “Standard/Robust”, measured by
AUROC (%). “Standard” represents the scenario where the test set has a similar style to the dominant
style in the ID training data, while “Robust” refers to the scenario where a shifted test set is used,
having the same core features but differing in style.
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Autonomous Driving 78.6 / 70.5 83.7 / 71.9 89.1 / 72.3 88.3 / 79.3

Camelyon 69.7 / 58.4 68.7 / 62.1 70.9 / 63.7 78.9 / 72.1

Brain Tumor 90.4 / 63.1 88.1 / 67.5 81.0 / 68.4 90.4 / 80.0

Chest CT-Scan 73.6 / 61.7 76.2 / 60.7 78.4 / 62.3 80.0 / 73.8

W. Blood Cells 69.8 / 60.7 75.1 / 54.7 72.1 / 66.7 80.1 / 69.3

Skin Disease 82.1 / 60.7 85.1 / 61.2 79.1 / 64.1 88.1 / 72.3

Average 77.3 / 62.5 79.4 / 63.0 78.4 / 66.3 84.3 / 74.5

Table 10: Specific D and D′ sets for each Real-world dataset
Description Autonomous Driving Camelyon17 Brain Tumor Chest CT-Scan WBC Skin Disease Blind Det.
D GTA5 [16] Hospitals 4-5 [79] Brats 2020 [85] PD-Chest [86] High res [82] PAD-UFES [87] DDR [88]
D′ Cityscapes [15] Hospitals 1-3 [79] Br35H [80] RSNA [81] Low Res [82] ISIC 2018 [83] APTOS [84]

focused on feature reconstruction, enhancing detection capabilities. ReContrast [39] introduces a840

global paradigm for reconstructing teacher features by the student, rather than a regional approach. It841

also incorporates a stop-gradient operation to stabilize the optimization process.842

Auxiliary OOD Sample Crafting. CSI [31] and CutePaste [30] propose using fixed hard aug-843

mentation to create auxiliary samples. Specifically, CSI relies on Rotation, while CPAD considers844

CutPaste as a pseudo-OOD. The GOE [56] method employs a pretrained GAN on ImageNet-1K to845

craft anomalies by targeting low-density areas. FITYM [42] employed an underdeveloped diffusion846

as a generator. Dream-OOD [41] uses both image and text domains to learn visual representations847

of normal instances in an embedding space of a pretrained stable diffusion [57] model trained on 5848

billion data (e.g. LAION [89]). On the other hand, VOS [55] generates OOD embeddings instead of849

image data. Notably, we adapt Dream-OOD for generation by using ID sample labels as prompts, as850

this generative method requires text for generation.851

Previous Robust ND methods. RED PANDA model propose a robust ND method by focusing on852

the removal of nuisance attributes by leverageing a domain-supervised disentanglement strategy to853

learn representations that are invariant to specified nuisance attributes the model shows promise in854

controlled settings, the effectiveness of RED PANDA is contingent upon the accurate labeling of855

nuisance attributes in the training data, which can be a significant limitation in datasets where such856

labels are mostly unavailable or hard to define. calling a method to work without such anotaions.857

PCIR explores robust Unsupervised ND by aiming to identify invariant causal features across various858

environments. Specifically, the method assumes that the training data is drawn from multiple known859

environments, while the test data may come from different, potentially unseen environments. The860

known environments of each training sample facilitate the development of a regularization term861

designed to enhance the model’s ability to generalize across diverse environments. Despite the862

improved robustness demonstrated by their proposed method on specific datasets, a significant863

limitation is its reliance on the strong presupposition that the environment of each training sample is864

known. This assumption may not hold in real-world ND scenarios, where datasets often comprise a865

vast number of samples with unlabelled or unknown environmental contexts.866
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J Extra Ablation Study867

Correlation Strength868

In this section, we provide results in Table 11 for different amounts of exposure from the shifted869

training set D′train
ID into the main training dataset, examining various correlation strengths. We denote870

this measure by correlation strength. In our default setup, correlation strength is set to 5% of871

the size of Dtrain
ID .872

Table 11: An ablation study on the amount of data from D′ which is visible to our model in training
time.

Method correlation strength = %0(80:20) correlation strength = %10 correlation strength = %20

MVTec AD VISA Autonomous Driving MVTec AD VISA Autonomous Driving MVTec AD VISA Autonomous Driving

MSAD 87.2 / 53.2 84.1 / 57.9 85.5 / 59.1 71.0 / 56.1 81.6 / 69.2 85.1 / 71.3 73.1 / 62.4 81.3 / 73.1 86.1 / 75.1
Transformaly 88.5 / 50.6 85.5 / 51.3 89.1 / 62.4 83.2 / 59.4 82.7 / 60.1 85.4 / 69.1 84.1 / 67.0 83.5 / 66.5 84.3 / 70.3
ReContrast 99.5 / 50.1 97.5 / 50.2 90.9 / 58.4 96.3 / 55.3 89.6 / 63.0 88.6 / 72.2 95.8 / 60.2 86.4 / 68.7 88.0 / 74.1
GNL 98.0 / 52.7 90.3 / 58.1 84.3 / 65.2 96.7 / 58.1 87.9 / 65.7 80.6 / 71.1 94.1 / 65.7 86.6 / 69.1 81.0 / 73.1
Ours 95.5 / 86.1 90.1 / 81.6 93.0 / 79.8 93.7 / 89.0 88.8 / 84.4 91.5 / 86.7 93.9 / 91.2 89.1 / 86.4 90.9 / 89.3

K Example of Datasets Used in the Study873

In this section, we present examples of both real-world and synthetic datasets, along with their874

corresponding shifted datasets that demonstrate variations in style features used in this study. For875

the brain tumor detection task, the Br35H dataset is employed, with the shifted dataset being the876

Brats 2020 dataset. As for the Camelyon17 dataset [79], data from hospitals 1-3 constitute the main877

dataset, while data from hospitals 4-5 serve as the shifted dataset. As for the Waterbirds dataset, the878

main dataset consists of land birds with land backgrounds as the ID set and water birds with land879

backgrounds as the OOD set. The shifted dataset includes land birds with water backgrounds and880

water birds with water backgrounds. Examples for these datasets are provided in Figure 4.881

For the MVTecAD and VisA datasets, we apply Facebook’s Segment Anything Model (SAM)[96]882

to alter the background of the objects. Additionally, for texture modifications, we center-paste the883

image onto a random ImageNet dataset sample. Examples for the MVTecAD dataset are illustrated in884

Figure 6, and for the VisA dataset, examples can be seen in Figure 7.885

L OOD generation methods comparison886

In this section, we present examples of OOD generation methods, including our own A-OOD887

generation method, detailed in Section 5. The comparative samples can be viewed in Figure 8 for888

the MVTecAD dataset, in Figure 9 for the VisA dataset, and in Figure 10 for the remaining datasets.889

Techniques such as Fake It, Mixup, and Dream OOD influence both the core and style features of890

the samples. In contrast, the CutPaste method, which selects pasting areas randomly, may variably891

affect either core or style features, thus not consistently impacting the sample label. However, our892

method, as demonstrated in Section 5, specifically targets and distorts the core features of the samples,893

demonstrating its efficacy in generating OOD samples from given ID samples.894

Specifically, for the Dream OOD technique, we provided the desired label in the form of text.895

M Details on evaluating other methods896

To obtain the results of other models in our experiment, we use the official code released with their897

work. We train and evaluate their code with minimal changes, i.e. only changing the dataloaders898

and code related to that. Moreover, for works with multiple setups (e.g. backbone, loss function,899

etc.) we use the default method reported in their paper. As for epoch number, batch size, and other900

hyperparameters, we set them to their default values reported in their papers.901

24



N Societal Impacts902

In this section, we consider both positive and negative societal impacts that our work can potentially903

present. Regarding positive impacts, our model could be applied to assist in the decision-making904

process across various domains including medical and industrial applications. Further, our model905

reduces the need to train models on new datasets in scenarios where trained models in similar datasets906

are available, thus helping in preserving energy and resources.907

On the other hand, like any machine learning model, there is a risk of perpetuating or amplifying908

societal biases present in the training data. Careful consideration must be given to ensure fairness909

and avoid discriminatory outcomes, particularly in sensitive applications such as hiring, lending, or910

criminal justice.911

O Extra Evaluation Metrics912

The AUROC (Area Under the Receiver Operating Characteristic curve) metric is a widely recognized913

metric for evaluating the performance of outlier detection methods. To provide a more comprehensive914

assessment, we have included results using two additional metrics—AUPR and FPR95%—previously915

employed in related studies [98]. The table below contrasts our method with TRANSFORMALY, a916

recent outlier detection technique. Specifically, FPR95% measures the false positive rate at which917

95% of outlier samples are accurately identified; a lower FPR95% indicates enhanced detection918

capabilities. Both AUROC and AUPR encapsulate a method’s effectiveness across various thresholds,919

where a higher AUROC suggests a greater probability that an outlier is correctly prioritized higher920

than an in-distribution sample based on anomaly scores. Therefore, higher values of AUROC and921

AUPR are indicative of superior performance, with a baseline uninformative detector achieving an922

AUROC of 50%.923

Table 12: Performance of our method vs. best previous work on multiple datasets, using the AUPR
and FPR95% metrics.

Method Dataset

Metric Brain Tumor Autonomous Driving MNIST FMNIST WaterBirds MVTecAD VISA

Ours AUROC 98.2 / 79.0 92.9 / 84.2 93.1 / 73.8 92.1 / 78.7 76.5 / 74.0 94.2 / 87.6 89.3 / 82.1
Ours AUPR 95.7 / 81.9 91.0 / 86.6 85.1 / 76.1 96.0 / 80.9 72.1 / 69.1 96.4 / 89.7 92.6 / 84.7
Ours FPR95% 5.7 / 27.4 13.4 / 19.9 6.3 / 35.8 16.0 / 32.3 19.1 / 28.5 15.3 / 22.4 17.6 / 25.0

Transformaly AUROC 93.7 / 54.7 87.4 / 70.5 67.1 / 55.0 84.6 / 63.4 81.0 / 79.3 85.9 / 51.4 85.5 / 53.8
Transformaly AUPR 95.1 / 61.9 89.1 / 72.9 71.0 / 58.5 87.1 / 66.7 84.1 / 79.9 88.1 / 53.8 82.6 / 59.8
Transformaly FPR95% 10.6 / 48.7 17.3 / 33.1 31.8 / 45.9 25.6 / 36.1 15.4 / 26.5 16.9 / 37.9 16.2 / 43.0
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Figure 6: Main and Shifted datasets comparison on the MVTec AD dataset.
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Figure 7: Main and Shifted datasets comparison on the VisA dataset.
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Real OOD Fake it DREAM OOD Cutpaste MixupNormal Our OOD

Figure 8: OOD Generator methods comparison on the MVTec AD dataset.
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Real OOD Fake it DREAM OOD Cutpaste MixupNormal Our OOD

Figure 9: OOD Generator methods comparison on the VisA dataset.
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Real OOD Fake it DRAEM OOD Cutpaste MixupNormal Our OOD

Figure 10: OOD Generator methods comparison on datasets.
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NeurIPS Paper Checklist924

1. Claims925

Question: Do the main claims made in the abstract and introduction accurately reflect the926

paper’s contributions and scope?927

Answer: [Yes]928

Justification: The abstract accurately reflects the paper’s contribution, with a brief description929

of our approach. Furthermore, our introduction correctly describes our work’s scope and930

applications, whilst also highlighting our contributions.931

Guidelines:932

• The answer NA means that the abstract and introduction do not include the claims933

made in the paper.934

• The abstract and/or introduction should clearly state the claims made, including the935

contributions made in the paper and important assumptions and limitations. A No or936

NA answer to this question will not be perceived well by the reviewers.937

• The claims made should match theoretical and experimental results, and reflect how938

much the results can be expected to generalize to other settings.939

• It is fine to include aspirational goals as motivation as long as it is clear that these goals940

are not attained by the paper.941

2. Limitations942

Question: Does the paper discuss the limitations of the work performed by the authors?943

Answer: [Yes]944

Justification: We exclusively created a section dedicated to our work’s limitations in Ap-945

pendix G. Notably, we believe that our assumptions apply to real-world scenarios, and are946

easily justifiable.947

Guidelines:948

• The answer NA means that the paper has no limitation while the answer No means that949

the paper has limitations, but those are not discussed in the paper.950

• The authors are encouraged to create a separate "Limitations" section in their paper.951

• The paper should point out any strong assumptions and how robust the results are to952

violations of these assumptions (e.g., independence assumptions, noiseless settings,953

model well-specification, asymptotic approximations only holding locally). The authors954

should reflect on how these assumptions might be violated in practice and what the955

implications would be.956

• The authors should reflect on the scope of the claims made, e.g., if the approach was957

only tested on a few datasets or with a few runs. In general, empirical results often958

depend on implicit assumptions, which should be articulated.959

• The authors should reflect on the factors that influence the performance of the approach.960

For example, a facial recognition algorithm may perform poorly when image resolution961

is low or images are taken in low lighting. Or a speech-to-text system might not be962

used reliably to provide closed captions for online lectures because it fails to handle963

technical jargon.964

• The authors should discuss the computational efficiency of the proposed algorithms965

and how they scale with dataset size.966

• If applicable, the authors should discuss possible limitations of their approach to967

address problems of privacy and fairness.968

• While the authors might fear that complete honesty about limitations might be used by969

reviewers as grounds for rejection, a worse outcome might be that reviewers discover970

limitations that aren’t acknowledged in the paper. The authors should use their best971

judgment and recognize that individual actions in favor of transparency play an impor-972

tant role in developing norms that preserve the integrity of the community. Reviewers973

will be specifically instructed to not penalize honesty concerning limitations.974

3. Theory Assumptions and Proofs975
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Question: For each theoretical result, does the paper provide the full set of assumptions and976

a complete (and correct) proof?977

Answer: [Yes]978

Justification: We dedicated Section 4 to theoretical justification of our work. We ensure all979

assumptions made are precisely mentioned in the theorem or the proof.980

Guidelines:981

• The answer NA means that the paper does not include theoretical results.982

• All the theorems, formulas, and proofs in the paper should be numbered and cross-983

referenced.984

• All assumptions should be clearly stated or referenced in the statement of any theorems.985

• The proofs can either appear in the main paper or the supplemental material, but if986

they appear in the supplemental material, the authors are encouraged to provide a short987

proof sketch to provide intuition.988

• Inversely, any informal proof provided in the core of the paper should be complemented989

by formal proofs provided in appendix or supplemental material.990

• Theorems and Lemmas that the proof relies upon should be properly referenced.991

4. Experimental Result Reproducibility992

Question: Does the paper fully disclose all the information needed to reproduce the main ex-993

perimental results of the paper to the extent that it affects the main claims and/or conclusions994

of the paper (regardless of whether the code and data are provided or not)?995

Answer: [Yes]996

Justification: Whilst we provide the code needed to reproduce our results, all the implemen-997

tation details have been explained in detail in Section 6 and Appendix D.998

Guidelines:999

• The answer NA means that the paper does not include experiments.1000

• If the paper includes experiments, a No answer to this question will not be perceived1001

well by the reviewers: Making the paper reproducible is important, regardless of1002

whether the code and data are provided or not.1003

• If the contribution is a dataset and/or model, the authors should describe the steps taken1004

to make their results reproducible or verifiable.1005

• Depending on the contribution, reproducibility can be accomplished in various ways.1006

For example, if the contribution is a novel architecture, describing the architecture fully1007

might suffice, or if the contribution is a specific model and empirical evaluation, it may1008

be necessary to either make it possible for others to replicate the model with the same1009

dataset, or provide access to the model. In general. releasing code and data is often1010

one good way to accomplish this, but reproducibility can also be provided via detailed1011

instructions for how to replicate the results, access to a hosted model (e.g., in the case1012

of a large language model), releasing of a model checkpoint, or other means that are1013

appropriate to the research performed.1014

• While NeurIPS does not require releasing code, the conference does require all submis-1015

sions to provide some reasonable avenue for reproducibility, which may depend on the1016

nature of the contribution. For example1017

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1018

to reproduce that algorithm.1019

(b) If the contribution is primarily a new model architecture, the paper should describe1020

the architecture clearly and fully.1021

(c) If the contribution is a new model (e.g., a large language model), then there should1022

either be a way to access this model for reproducing the results or a way to reproduce1023

the model (e.g., with an open-source dataset or instructions for how to construct1024

the dataset).1025

(d) We recognize that reproducibility may be tricky in some cases, in which case1026

authors are welcome to describe the particular way they provide for reproducibility.1027

In the case of closed-source models, it may be that access to the model is limited in1028

some way (e.g., to registered users), but it should be possible for other researchers1029

to have some path to reproducing or verifying the results.1030
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5. Open access to data and code1031

Question: Does the paper provide open access to the data and code, with sufficient instruc-1032

tions to faithfully reproduce the main experimental results, as described in supplemental1033

material?1034

Answer: [Yes]1035

Justification: All the datasets we use and our processing pipelines are explained in detail in1036

Appendix F. Further, our code will be released with open access.1037

Guidelines:1038

• The answer NA means that paper does not include experiments requiring code.1039

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1040

public/guides/CodeSubmissionPolicy) for more details.1041

• While we encourage the release of code and data, we understand that this might not be1042

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1043

including code, unless this is central to the contribution (e.g., for a new open-source1044

benchmark).1045
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