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Figure 1: In some mathematical problems, large models tend to use more complex knowledge to solve them. Our
method can guide large models to generate answers that are more conducive to teaching.

Abstract

Large Language Models (LLMs) have demon-
strated remarkable capabilities in solving math-
ematical problems, yet their solutions often
rely on knowledge beyond the cognitive level
of target student groups, limiting their edu-
cational value. In this paper, we propose a
novel training framework that enables LLMs to
generate mathematically correct yet pedagog-
ically appropriate solutions aligned with stu-
dents’ grade-level knowledge. By integrating
a hierarchical knowledge graph(HKG) anno-
tated with textbook-aligned difficulty levels and
designing a multi-turn dialogue-based reward
function, we extend Controllable Text Genera-
tion (CTG) to control the knowledge difficulty
of generated content. Our adaptive cognition
reward mechanism evaluates solutions based
on their alignment with target-grade knowl-
edge, guiding model optimization through a
customized Group Relative Policy Optimiza-
tion (GRPO) algorithm. Experimental results
on a stratified subset of the OpenR 1-Math-220k
dataset demonstrate that our approach effec-
tively reduces knowledge difficulty in gener-
ated solutions while maintaining correctness,
offering a significant step toward grade-aware
and instruction-friendly educational Al.

1 Introduction

In recent years, LLMs have made significant
progress in mathematical reasoning and problem-
solving (Ahn et al., 2023; Liang et al., 2023),
demonstrating relatively high accuracy in handling
mathematical problems (Liu et al., 2023; Guo et al.,
2023). However, despite their excellent perfor-
mance in outputting correct answers, these models
overlook the difficulty of the knowledge involved
in the reasoning process, which directly affects the
applicability and effectiveness of the generated con-
tent in educational settings, a factor crucial in the
field of education.

In real educational scenarios, although models
provide correct answers, the problem-solving pro-
cess does not adequately correspond to the knowl-
edge and comprehension levels of students in the
target grade. The main reason for this issue is that
existing mathematical problem datasets primarily
focus on the correctness of answers, neglecting the
difficulty levels of the problem-solving processes.
Most datasets only include rough difficulty levels
(Miao et al., 2021; Hendrycks et al., 2021), lacking
detailed annotations on the difficulty of the knowl-



edge points involved in the problem-solving steps,
leading models to potentially learn more complex
problem-solving methods during training. More-
over, when models generate solutions, they lack
consideration for students’ knowledge levels, mak-
ing it difficult to provide solution processes that
match students’ comprehension abilities.

Our goal is to develop a model capable of gen-
erating problem-solving processes that match stu-
dents’ knowledge levels. To achieve this objective,
CTG technology offers a potential solution, allow-
ing control over the attributes, content, or style of
text during the generation process (Liang et al.,
2024b; Upadhyay et al., 2022). However, current
CTG research mainly focuses on aspects such as
the safety, legality, and style of generated text, lack-
ing the ability to match the knowledge level of the
target user group (Lorandi and Belz, 2023; Wang
et al., 2024; Zhang et al., 2023a). This results in
generated text that often fails to adapt to the knowl-
edge background of different audiences, especially
in educational scenarios, where it has limited edu-
cational significance for younger students.

Inspired by Reinforcement Learning (RL) tech-
niques, particularly Reinforcement Learning from
Human Feedback (RLHF) (Bai et al., 2022), which
optimize model generation quality through reward
signals (Zhang et al., 2023b; Rafailov et al., 2023;
Yang et al., 2023), we propose a new training
method. This method aims to address the limi-
tations of existing RL and RLHF methods in the
educational field, which lack consideration for the
knowledge level of the target user group, leading to
generated text that does not match the audience’s
comprehension ability. By constructing a hierarchi-
cal knowledge graph(HKG) and closely integrating
it with LLMs, we achieve precise evaluation of
the difficulty levels of the knowledge points in the
model-generated answers and automatically add
fine-grained difficulty labels to existing datasets.
Our reward function design involves multi-turn dia-
logues with LLMs, simulating human thinking pro-
cesses, summarizing problem-solving steps, and
comparing extracted knowledge with the knowl-
edge graph. This method enhances the accuracy
of extracted knowledge points and grade levels,
thus enabling generated text to better adapt to the
knowledge levels and comprehension abilities of
students across different grades, addressing the is-
sue of overly complex knowledge points used by
large models.

Our main innovations are, as illustrated in Fig-

ure 1:

» Expanding the scope of Controllable Text Gen-
eration: We extend the traditional goals of CTG
from controlling text style and safety to control-
ling knowledge difficulty, filling the gap in ex-
isting CTG research concerning knowledge level
matching.

* Designing a reward function based on multi-
turn dialogue: By engaging in multi-turn au-
tomated dialogues with the LLM, we simulate
human thinking processes to summarize the
problem-solving steps and compare them with
the knowledge graph, proposing a method to de-
sign reward functions based on the difficulty dif-
ference of knowledge points.

* Integrating knowledge graphs with multi-turn
interaction mechanisms: By constructing a lo-
cal knowledge graph and tightly integrating it
with multi-turn interactions with the LLM, we
achieve precise evaluation and dynamic adjust-
ment of the difficulty in the model’s generated
answers.

2 Related Work

2.1 Mathematical Problem-Solving Abilities
of LLMs and Their Datasets and
Evaluations

LLMs have demonstrated remarkable capabili-
ties in mathematical reasoning and problem solv-
ing (Ahn et al., 2023)(Liang et al., 2023). Studies
indicate that LLMs achieve high accuracy when
handling mathematical problems (Liu et al., 2023)
(Guo et al., 2023), showcasing strong understand-
ing and reasoning abilities, and providing a solid
foundation for educational applications.

2.2 Controllable Text Generation (CTG)

CTG focuses on controlling the attributes, con-
tent, or style of text during the generation process
and has become a key research area in natural lan-
guage generation (Liang et al., 2024b)(Upadhyay
et al.,, 2022). Current CTG methods include
model retraining, fine-tuning, reinforcement learn-
ing, prompt engineering, latent space manipulation,
and decoding time interventions. Each method has
its advantages and limitations, suitable for various
applications and requirements.

The controllable text generation method based
on dynamic attribute graphs (Liang et al., 2024a)
introduces a pluggable Dynamic Attribute Graphs-
based controlled text generation (DATG) frame-



work, combining dynamic attribute graphs with
LLMs. This approach provides a novel and flexible
attribute-driven text generation method, achieving
fine-grained control over text generation by dy-
namically adjusting attribute weights during the
generation process.

2.3 Reinforcement Learning from Human
Feedback (RLHF)

Reinforcement Learning (RL) techniques optimize
model generation quality based on reward sig-
nals, effectively fine-tuning models towards spe-
cific goals (Zhang et al., 2023b)(Rafailov et al.,
2023)(Yang et al., 2023). Feedback in reinforce-
ment learning can be automatic or from human in-
put, with the latter known as Reinforcement Learn-
ing from Human Feedback (RLHF) (Christiano
et al., 2017)(Ouyang et al., 2022). RLHF enables
LLM:s to better align with human styles and ethical
values(Bai et al., 2022).

On this basis, we propose a method that inte-
grates a fig module with a multi-round dialogue
mechanism. This approach enables the dynamic
assessment of the difficulty levels of knowledge
points in generated solutions, ensuring precise
alignment with the cognitive and comprehension
capabilities of lower-grade students.

3 Methods

We propose a method to reduce the difficulty level
of knowledge points used by LLMs in mathemati-
cal problem solving. The method comprises fig
construction, adaptive cognition reward mecha-
nism, and GRPO training (Guo et al., 2023)(Shao
et al,, 2024). These components collectively
guide the model to generate simpler and grade-
appropriate solutions. The overall architecture is
depicted in Figure 2.

3.1 Task Definition

Although LLMs have achieved high accuracy in
solving mathematical problems, most existing re-
search focuses on enhancing solution correctness,
often overlooking the educational significance of
the problem-solving process. This tendency leads
models to utilize advanced concepts beyond the
knowledge scope of lower-grade students to solve
problems, resulting in solutions that are difficult
for these students to understand and lacking in in-
structional value.

In this study, our objective is to train a large
language model such that, for mathematical prob-

lems ¢ in the dataset annotated with grade informa-
tion dgu, the model-generated answer a involves
knowledge points K whose corresponding grade
levels dj, in the fig G have a maximum value dpyodel
that is as low as possible, thereby enhancing the
answer’s educational value.

To avoid redundant computations, we preprocess
the dataset’s questions ¢ and reference anSwers aef
by applying the same knowledge point extraction
and difficulty evaluation algorithms. This process
yields the annotated grade or difficulty information
dgata Of the questions for subsequent use.

3.2 Hierarchical Knowledge Graph
Construction

To accurately assess the difficulty of knowledge
points and guide the model to generate simpler
and more comprehensible answers, we construct
afig G = (V, E) as visualized in Figure 3 that in-
corporates grade-level information. The difficulty
levels within this knowledge graph are aligned with
standard textbooks, ensuring consistency, while its
hierarchical structure facilitates access and under-
standing by LL.Ms. This design enables the model
to produce responses appropriate to the cognitive
levels of students.

The knowledge graph consists of three layers.
The first layer nodes represent the main categories
of mathematics, such as discrete mathematics, ge-
ometry, and algebra, forming the set L; and cov-
ering a wide range of mathematical fields. The
second layer nodes are subfields under these main
categories, such as triangles, solid geometry, set
theory, and combinatorics, forming the set Ly and
providing a more detailed subdivision of each dis-
cipline. The third layer comprises specific knowl-
edge points forming the set K, where each knowl-
edge point £k € K is associated with a difficulty
level dj, € N corresponding to a specific textbook
grade or chapter. This difficulty level is defined
directly based on the grade levels or chapter dif-
ficulties in textbooks, ensuring accuracy and con-
sistency when the model evaluates the difficulty of
answers.

The design of this hierarchical structure simpli-
fies the search space for the model when selecting
knowledge points, reducing the number of candi-
dates it needs to consider during each selection.
This simplification enhances the model’s efficiency
and accuracy in choosing appropriate knowledge
points and ensures that it can accurately deter-
mine the grade-level difficulty associated with each
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point. Consequently, the model can generate an-
swers that align with the target students’ cognitive
levels, thereby enhancing the educational value of
its responses.

When processing an answer a, the model can
map the involved knowledge points to nodes within
the knowledge graph, forming a set of knowledge
points K, C K. Utilizing the difficulty informa-
tion provided by the graph, the model can compute
the overall difficulty level of the answer:

dmodel = I?El?é dg (1)

Through this computation, the model can as-
sess whether its generated answer is suitable for
students at the target grade level. If necessary, it
can adjust the content and expression of the answer,
making it more aligned with the students’ cognitive
abilities. This approach ensures that the model’s re-

sponses are not only correct but also pedagogically
appropriate, thereby maximizing their instructional
value.

3.3 Adaptive Cognition Reward

To train LLMs to solve mathematical problems
accurately while utilizing lower-level knowledge
points, we introduce an adaptive cognition reward
mechanism. This mechanism guides the model to
generate correct answers that are simpler and more
appropriate for the target grade level, enhancing
both correctness and educational suitability.

We define a reward function R(a, ¢) that evalu-
ates the model-generated answer a by comparing
its difficulty level dyoqe1 With the annotated diffi-
culty level dgu, of the question ¢. The difference
in difficulty levels is calculated as:

Ad = ddata - dmodel (2)

To map this difference to a reward value and
ensure a smooth transition between positive and
negative rewards, we apply a sigmoid function:

Riificulty = 1+<13Ad (3)

This difficulty reward encourages the model to
produce answers using knowledge points that are at
or below the difficulty level of the question, align-
ing with educational practices that prioritize ac-
cessibility for students. By leveraging the fig, the
model gains awareness of knowledge point levels,
simulating human-like evaluation and reasoning
without lacking cognition of knowledge point diffi-

culty.



The total reward function incorporates additional
components to ensure the quality and correctness
of the generated answers:

¢ Format Reward Rjg,-mat: Ensures that the an-
swer is enclosed within the specified tags (e.g.,
<think> and <answer>), maintaining output
standardization.
* Tag Quantity Reward Ri,,: Verifies that the
number of tags used meets expectations, preserv-
ing the structural integrity of the response.
Accuracy Reward Rccuracy: Assesses the cor-
rectness of the answer, encouraging the genera-
tion of accurate solutions.

Combining these components, the final total re-
ward function is defined as:

R = MAdifficutty Rificulty + Aformat Fformat

+ )\tagRtag + )\accuracyRaccuracy (4)

Here, A represents the weighting parameters for
each component, allowing for adjustment of their
influence on the overall reward according to spe-
cific training objectives.

By integrating this adaptive cognition reward
mechanism, we effectively guide the LLM to gen-
erate answers that are not only correct but also ap-
propriately simplified for the target audience. This
approach enhances both the educational value and
accessibility of the model’s responses, simulating
human feedback and reasoning processes in an au-
tomated manner.

3.4 Training and Inference

To reduce the difficulty level of knowledge points
utilized by LLMs in mathematical problem-solving,
we implement GRPO with formalized objec-
tive. For each question g, sampling GG outputs
{01, 09, ..., 0} from old policy 7y , ,, we optimize
the policy model by maximizing:

old’

Jerro(¥) = Elq ~ P(Q), {oi}iZ1 ~ 70,,(0lq)]

G
LS (tmin(Z0001D_y,

G =1 T6,4(0i]q)
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]D)KL(TF0| |7Tref) =E,
(6)

— log -1

)

r; —mean({r;}) .
A== 2 =1,....G. (1
1 Std({’r]}) I j Y ) ( )
where the KL divergence constraint is defined
as:

7"-ref(oi|Q)
Dgr(mgl||mrer) = Eo, | —log ——7= —1
(7ol 7res) ro(orld)

The advantage function A; is computed through
standardized reward differences within each group:

i — pu({r; }?:1)
o({ri}5o1)

The hyperparameters € control the clip threshold
for policy updates, while 3 adjusts the KL regu-
larization strength. This mechanism automatically
establishes dynamic baselines using group reward
statistics, with relative advantage evaluation guid-
ing the model to generate solutions adhering to diffi-
culty constraints, demonstrating superior adaptabil-
ity to multi-objective reward scenarios compared
to fixed baseline approaches.

A = ©)

4 Experimental Setup
4.1 Datasets

The dataset employed in this study is derived from
the OpenR1-Math-220k dataset (Guo et al., 2025).
We extracted a stratified subset from this dataset
that aligns with the textbook syllabus, ensuring that
the distribution of question grades corresponds to
real-world teaching scenarios. This subset encom-
passes three educational stages: primary school
(21.6%), junior high school (30.1%), and senior
high school (48.3%), as illustrated in Figure 4(a).
By leveraging a fig and manual verification, we
annotated the dataset with fine-grained difficulty
labels corresponding to the textbook. The specific
distribution of these labels is shown in Figure 4(b).
The distribution exhibits a fluctuating pattern of
initially rising and then declining across different
learning stages, which is consistent with the peda-
gogical system. Notably, the scarcity of new knowl-
edge in the final year of senior high school results
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labels.

in a limited number of questions being designated
for this grade. The significant number of questions
attributed to the second semester of senior high
school is due to the categorization of these ques-
tions under more challenging knowledge points,
thereby validating the accuracy of our grade extrac-
tion method. The dataset was divided into training,
validation, and test sets through stratified sampling,
preserving the grade distribution.

4.2 Baselines

In this study, we selected DeepSeek-R1-Distill-
Qwen-1.5B and Qwen2.5-1.5B-Instruct (Yang
et al., 2024) as the baseline models to systemat-
ically evaluate the performance enhancement of
the improved model. Both models are based on the
Qwen architecture and represent two key technical
pathways: knowledge distillation and instruction
tuning. DeepSeek-R1-Distill-Qwen-1.5B achieves
model lightweighting through knowledge distilla-
tion, enhancing inference efficiency while main-
taining performance. Qwen2.5-1.5B-Instruct, on
the other hand, has been specifically tuned for in-
structions, demonstrating outstanding performance
in task adaptability and instruction following.

The selection of these two models not only con-
siders their technical representativeness, covering
the main directions of current language model opti-
mization, but also takes into account the feasibility
of the experiment and resource efficiency. Since
both models share the same architectural founda-
tion, they can minimize the interference of model
differences on the experimental results, ensuring
the fairness and reliability of the performance com-
parison. These two widely validated baseline mod-
els provide a scientific reference standard for the

study, which helps accurately assess the actual ef-
fects of the improvement strategies.

4.3 Evaluation Metrics

To comprehensively evaluate the model’s perfor-
mance, we employed a combination of automatic
and human evaluations. These evaluation metrics
are designed to measure the model’s control over
difficulty and educational adaptability in generat-
ing answers, closely aligning with the experimental
results.

Automatic Evaluation:

* Delta Difficulty: This metric measures the differ-
ence in grade values of the knowledge involved
in the model-generated answers compared to the
dataset answers. Specifically, it is calculated by
determining the difference between the difficulty
labels of the generated answers and the corre-
sponding answers in the dataset. Our goal is to
have the trained model generate answers with
lower grade values, hence a lower Delta Diffi-
culty is desired. This metric directly reflects the
model’s effectiveness in reducing the difficulty
of answers.

* Accuracy: The proportion of correct answers
generated by the trained model out of the total
number of answers.

Human Evaluation:

Given the current lack of a widely accepted au-
tomated method for assessing answer difficulty,
we opted for human expert evaluation. We en-
listed 10 experienced math teachers to evaluate
100 randomly selected test samples. To ensure
objectivity, each question presented both the origi-
nal pre-trained model’s and the improved model’s
answers, with model identifiers concealed and an-



swers randomly ordered. The evaluation dimen-
sions included:

* Knowledge Point Difficulty: Scored on a 1-5
scale, compared to the pre-trained model’s an-
swers. This assesses whether the knowledge
points used in the new model’s answers are sim-
pler, with O indicating significantly more difficult,
3 indicating comparable difficulty, and 5 indicat-
ing significantly simpler.

* Reasoning Complexity: This evaluates whether
the new model’s answers are easy to understand
and suitable for the target grade students’ cog-
nitive abilities. Using a 1-5 scale: 1 indicates
complex reasoning that is hard to understand; 3
indicates moderate reasoning that some students
might need additional explanation for; and 5 in-
dicates clear and easy-to-understand reasoning.

5 Experimental Results

5.1 Evaluation Results

The experimental results demonstrate that the
trained model has achieved significant improve-
ments in multiple key metrics, especially in terms
of difficulty control. Specifically, as shown in Ta-
ble 1, the following observations were made:
Accuracy Our model achieved an accuracy of 0.17,
which remains competitive in the context of the
current study. This accuracy is slightly lower than
that of the DeepSeek-R1-Distill-Qwen-1.5B model
(0.19), which may be attributed to our deliberate
focus on controlling the difficulty of knowledge
points during the training process. It is important
to note that our model was not trained on the full
dataset. This indicates that despite the limited data,
our model is still capable of effectively learning
and generating accurate answers.

Compared with the pre-trained model Qwen2.5-

1.5B-Instruct (accuracy of 0.12, difficulty score of
69.5), our model not only made significant progress
in difficulty control but also achieved an improve-
ment in accuracy. This demonstrates that our train-
ing method can effectively enhance model perfor-
mance even with limited data and specific training
objectives.
Difficulty Control Our model excelled in difficulty
control. Compared with the pre-trained model
Qwen2.5-1.5B-Instruct, our model not only re-
duced the difficulty score but also ensured that the
generated answers are easier to understand and do
not exceed the syllabus.

The consistency between the automatic evalua-

tion and human assessment of the difficulty of the
answers generated by our model further validates
the effectiveness of our approach.
Educational Significance Through a blind test
evaluation by 10 mathematics teachers, the new
model demonstrated significant advantages in core
teaching dimensions. Compared with the original
pre-trained model, the new model generated an-
swers using simpler knowledge points in 61% of
cases, and in 83% of the assessed data, the reason-
ing steps of the new model were found to be more
in line with students’ cognitive development pat-
terns and easier to understand. This indicates that
the tutoring role of our model in the field of subject
education has been significantly enhanced.

In summary, although our model’s accuracy is
slightly lower than that of models trained on the
full dataset and focused solely on accuracy, it has
made significant progress in difficulty control and
educational significance, bringing more education-
ally meaningful outputs. This demonstrates that
our method has important application value in bal-
ancing accuracy and difficulty control.

5.2 Ablation Experiment

To evaluate the impact of each component on model
performance, we conducted ablation experiments.
We compared the fine-tuned model with the pre-
trained model using prompt engineering and the
distilled model.

Our approach reduces the complexity of the
knowledge points used by the model without com-
promising the accuracy of the model’s answers. In
the test data, the average difficulty of the knowl-
edge points used per data point was reduced by 0.85
and 1.75 grade levels compared to the pre-trained
and distilled models, respectively. Given that many
problems may not have simpler solutions at lower
grade levels, this reduction is quite significant. For
those problems that do have simpler solutions, our
approach demonstrates substantial superiority.

These results highlight the effectiveness of our
training methodology. By fine-tuning the model
with a fig-based reward mechanism for educational
scenarios, we ensure that the model provides ac-
curate answers while explaining them in a manner
that is easier for students to understand and accept.
This high alignment with educational goals is cru-
cial for developing models that can truly support
and enhance the learning experience.



Model Accuracy Difficulty
Qwen2.5-1.5B-Instruct 0.12 69.5
DeepSeek-R1-Distill-Qwen-1.5B 0.19 78.5
Our Model 0.17 61.0

Table 1: Comparative performance of different models. Accuracy represents the model’s correctness rate (higher is
better), while Difficulty indicates the average problem difficulty level the model can handle (lower means handles

more difficult problems).

5.3 User Study

To evaluate the effectiveness of the model in educa-
tional settings, we conducted a user study with 10
experienced math teachers and 20 students (7 from
primary, 7 from junior high, and 6 from senior high
school). The participantsants reviewed 20 math
problems, each paired with two anonymsolutions,
one, one from the original model and one from our
imprmodel, withoutithout knowing their sources.

Teachers assessed each solution pair based on
grade-level suitability, clarity of reasoning, and ap-
propriate use of knowledge. Students chose the
solution they found easier to understand and ex-
plained their choice in plain language.

Results showed that teachers preferred the im-
proved model’s solutions in 61% of cases, citing
clearer reasoning and better curriculum alignment.
Similarly, 64% of students favored the improved
solutions, often describing them as “more famil-
iar” and “easier to follow.” Teachers also noted that
the improved model avoided advanced concepts
and better reflected textbook-style explanations, in-
creasing its classroom relevance.

5.4 Case Study

To further demonstrate the effectiveness of our new
model,we have selected a specific case for detailed
analysis.

As shown in Figure 2, our model effectively
generates problem solving processes that match
students’ knowledge levels. Our model employs
fundamental concepts such as the Pythagorean the-
orem and systems of equations,which are typically
introduced in earlier grades,while avoiding more
advanced knowledge like Heron’s formula that
is usually taught in high school. This problem-
solving approach significantly reduces the cogni-
tive load on students,facilitating their grasp of key
concepts and ensuring alignment with their learn-
ing progress.

Problem:
Given the lengths of the three sides of a triangle are
4\/7, 5,and 7, find the area of the triangle

Original Model Output:
Using Heron's Formula:
Calculate the semi-perimeter p:

a+b+c 424547
= = =212

= 6
2 2 *

Apply Heron's formula:

S=Jp-a)@-b)p )
= J(Z\/Z+ 6)(2V2+6 —4V2)(2V2 + 6 —5)(2V2 + 6 — 7)
=14

Our Model Output:
Using Altitude and Pythagorean Theorem:
Construct the altitude: Draw an altitude from the vertex opposite
the longest side (c = 7) to the base ¢ . Let the altitude be h and
the segments of the base be x and 7 — x.
Apply the Pythagorean theorem: a
32 =x2%+h?
25 = (7 — x)2+h? S

Solve the equations and calculate the area:
{ h=4
x=4

S
2

4

Table 2: The figure presents a case study comparing
the outputs of the original and trained models on a sam-
ple problem. The original model provides a concise
answer, while our model employs simpler knowledge
points, making it more comprehensible for lower-grade
students.

6 Conclusion

This paper demonstrates that integrating HKGs
into the training of large language models signifi-
cantly improves their ability to generate mathemat-
ically sound and grade-appropriate solutions. By
capturing hierarchical dependencies among knowl-
edge points, HKGs impose structural constraints
that guide models toward logical and curriculum-
aligned reasoning. When incorporated into the re-
ward model, HKGs also enable fine-grained control
over the educational quality of generated responses,
making them more suitable for instructional use.



7 Limitations

While our method shows clear benefits in produc-
ing grade-appropriate mathematical solutions, its
broader application remains constrained. The cur-
rent design is tightly coupled with the structure
of mathematics education, relying on manually
crafted HKGs that reflect well-defined curricular
progressions. Transferring this approach to other
subjects may prove challenging, especially in do-
mains lacking similarly structured knowledge or
where educational content is more fluid. Addition-
ally, the reward mechanism is curriculum-specific
and may require adaptation when applied to differ-
ent academic areas or educational standards.
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