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Figure 1: In some mathematical problems, large models tend to use more complex knowledge to solve them. Our
method can guide large models to generate answers that are more conducive to teaching.

Abstract001

Large Language Models (LLMs) have demon-002
strated remarkable capabilities in solving math-003
ematical problems, yet their solutions often004
rely on knowledge beyond the cognitive level005
of target student groups, limiting their edu-006
cational value. In this paper, we propose a007
novel training framework that enables LLMs to008
generate mathematically correct yet pedagog-009
ically appropriate solutions aligned with stu-010
dents’ grade-level knowledge. By integrating011
a hierarchical knowledge graph(HKG) anno-012
tated with textbook-aligned difficulty levels and013
designing a multi-turn dialogue-based reward014
function, we extend Controllable Text Genera-015
tion (CTG) to control the knowledge difficulty016
of generated content. Our adaptive cognition017
reward mechanism evaluates solutions based018
on their alignment with target-grade knowl-019
edge, guiding model optimization through a020
customized Group Relative Policy Optimiza-021
tion (GRPO) algorithm. Experimental results022
on a stratified subset of the OpenR1-Math-220k023
dataset demonstrate that our approach effec-024
tively reduces knowledge difficulty in gener-025
ated solutions while maintaining correctness,026
offering a significant step toward grade-aware027
and instruction-friendly educational AI.028

1 Introduction 029

In recent years, LLMs have made significant 030

progress in mathematical reasoning and problem- 031

solving (Ahn et al., 2023; Liang et al., 2023), 032

demonstrating relatively high accuracy in handling 033

mathematical problems (Liu et al., 2023; Guo et al., 034

2023). However, despite their excellent perfor- 035

mance in outputting correct answers, these models 036

overlook the difficulty of the knowledge involved 037

in the reasoning process, which directly affects the 038

applicability and effectiveness of the generated con- 039

tent in educational settings, a factor crucial in the 040

field of education. 041

In real educational scenarios, although models 042

provide correct answers, the problem-solving pro- 043

cess does not adequately correspond to the knowl- 044

edge and comprehension levels of students in the 045

target grade. The main reason for this issue is that 046

existing mathematical problem datasets primarily 047

focus on the correctness of answers, neglecting the 048

difficulty levels of the problem-solving processes. 049

Most datasets only include rough difficulty levels 050

(Miao et al., 2021; Hendrycks et al., 2021), lacking 051

detailed annotations on the difficulty of the knowl- 052
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edge points involved in the problem-solving steps,053

leading models to potentially learn more complex054

problem-solving methods during training. More-055

over, when models generate solutions, they lack056

consideration for students’ knowledge levels, mak-057

ing it difficult to provide solution processes that058

match students’ comprehension abilities.059

Our goal is to develop a model capable of gen-060

erating problem-solving processes that match stu-061

dents’ knowledge levels. To achieve this objective,062

CTG technology offers a potential solution, allow-063

ing control over the attributes, content, or style of064

text during the generation process (Liang et al.,065

2024b; Upadhyay et al., 2022). However, current066

CTG research mainly focuses on aspects such as067

the safety, legality, and style of generated text, lack-068

ing the ability to match the knowledge level of the069

target user group (Lorandi and Belz, 2023; Wang070

et al., 2024; Zhang et al., 2023a). This results in071

generated text that often fails to adapt to the knowl-072

edge background of different audiences, especially073

in educational scenarios, where it has limited edu-074

cational significance for younger students.075

Inspired by Reinforcement Learning (RL) tech-076

niques, particularly Reinforcement Learning from077

Human Feedback (RLHF) (Bai et al., 2022), which078

optimize model generation quality through reward079

signals (Zhang et al., 2023b; Rafailov et al., 2023;080

Yang et al., 2023), we propose a new training081

method. This method aims to address the limi-082

tations of existing RL and RLHF methods in the083

educational field, which lack consideration for the084

knowledge level of the target user group, leading to085

generated text that does not match the audience’s086

comprehension ability. By constructing a hierarchi-087

cal knowledge graph(HKG) and closely integrating088

it with LLMs, we achieve precise evaluation of089

the difficulty levels of the knowledge points in the090

model-generated answers and automatically add091

fine-grained difficulty labels to existing datasets.092

Our reward function design involves multi-turn dia-093

logues with LLMs, simulating human thinking pro-094

cesses, summarizing problem-solving steps, and095

comparing extracted knowledge with the knowl-096

edge graph. This method enhances the accuracy097

of extracted knowledge points and grade levels,098

thus enabling generated text to better adapt to the099

knowledge levels and comprehension abilities of100

students across different grades, addressing the is-101

sue of overly complex knowledge points used by102

large models.103

Our main innovations are, as illustrated in Fig-104

ure 1: 105

• Expanding the scope of Controllable Text Gen- 106

eration: We extend the traditional goals of CTG 107

from controlling text style and safety to control- 108

ling knowledge difficulty, filling the gap in ex- 109

isting CTG research concerning knowledge level 110

matching. 111

• Designing a reward function based on multi- 112

turn dialogue: By engaging in multi-turn au- 113

tomated dialogues with the LLM, we simulate 114

human thinking processes to summarize the 115

problem-solving steps and compare them with 116

the knowledge graph, proposing a method to de- 117

sign reward functions based on the difficulty dif- 118

ference of knowledge points. 119

• Integrating knowledge graphs with multi-turn 120

interaction mechanisms: By constructing a lo- 121

cal knowledge graph and tightly integrating it 122

with multi-turn interactions with the LLM, we 123

achieve precise evaluation and dynamic adjust- 124

ment of the difficulty in the model’s generated 125

answers. 126

2 Related Work 127

2.1 Mathematical Problem-Solving Abilities 128

of LLMs and Their Datasets and 129

Evaluations 130

LLMs have demonstrated remarkable capabili- 131

ties in mathematical reasoning and problem solv- 132

ing (Ahn et al., 2023)(Liang et al., 2023). Studies 133

indicate that LLMs achieve high accuracy when 134

handling mathematical problems (Liu et al., 2023) 135

(Guo et al., 2023), showcasing strong understand- 136

ing and reasoning abilities, and providing a solid 137

foundation for educational applications. 138

2.2 Controllable Text Generation (CTG) 139

CTG focuses on controlling the attributes, con- 140

tent, or style of text during the generation process 141

and has become a key research area in natural lan- 142

guage generation (Liang et al., 2024b)(Upadhyay 143

et al., 2022). Current CTG methods include 144

model retraining, fine-tuning, reinforcement learn- 145

ing, prompt engineering, latent space manipulation, 146

and decoding time interventions. Each method has 147

its advantages and limitations, suitable for various 148

applications and requirements. 149

The controllable text generation method based 150

on dynamic attribute graphs (Liang et al., 2024a) 151

introduces a pluggable Dynamic Attribute Graphs- 152

based controlled text generation (DATG) frame- 153
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work, combining dynamic attribute graphs with154

LLMs. This approach provides a novel and flexible155

attribute-driven text generation method, achieving156

fine-grained control over text generation by dy-157

namically adjusting attribute weights during the158

generation process.159

2.3 Reinforcement Learning from Human160

Feedback (RLHF)161

Reinforcement Learning (RL) techniques optimize162

model generation quality based on reward sig-163

nals, effectively fine-tuning models towards spe-164

cific goals (Zhang et al., 2023b)(Rafailov et al.,165

2023)(Yang et al., 2023). Feedback in reinforce-166

ment learning can be automatic or from human in-167

put, with the latter known as Reinforcement Learn-168

ing from Human Feedback (RLHF) (Christiano169

et al., 2017)(Ouyang et al., 2022). RLHF enables170

LLMs to better align with human styles and ethical171

values(Bai et al., 2022).172

On this basis, we propose a method that inte-173

grates a fig module with a multi-round dialogue174

mechanism. This approach enables the dynamic175

assessment of the difficulty levels of knowledge176

points in generated solutions, ensuring precise177

alignment with the cognitive and comprehension178

capabilities of lower-grade students.179

3 Methods180

We propose a method to reduce the difficulty level181

of knowledge points used by LLMs in mathemati-182

cal problem solving. The method comprises fig183

construction, adaptive cognition reward mecha-184

nism, and GRPO training (Guo et al., 2023)(Shao185

et al., 2024). These components collectively186

guide the model to generate simpler and grade-187

appropriate solutions. The overall architecture is188

depicted in Figure 2.189

3.1 Task Definition190

Although LLMs have achieved high accuracy in191

solving mathematical problems, most existing re-192

search focuses on enhancing solution correctness,193

often overlooking the educational significance of194

the problem-solving process. This tendency leads195

models to utilize advanced concepts beyond the196

knowledge scope of lower-grade students to solve197

problems, resulting in solutions that are difficult198

for these students to understand and lacking in in-199

structional value.200

In this study, our objective is to train a large201

language model such that, for mathematical prob-202

lems q in the dataset annotated with grade informa- 203

tion ddata, the model-generated answer a involves 204

knowledge points K whose corresponding grade 205

levels dk in the fig G have a maximum value dmodel 206

that is as low as possible, thereby enhancing the 207

answer’s educational value. 208

To avoid redundant computations, we preprocess 209

the dataset’s questions q and reference answers aref 210

by applying the same knowledge point extraction 211

and difficulty evaluation algorithms. This process 212

yields the annotated grade or difficulty information 213

ddata of the questions for subsequent use. 214

3.2 Hierarchical Knowledge Graph 215

Construction 216

To accurately assess the difficulty of knowledge 217

points and guide the model to generate simpler 218

and more comprehensible answers, we construct 219

a fig G = (V,E) as visualized in Figure 3 that in- 220

corporates grade-level information. The difficulty 221

levels within this knowledge graph are aligned with 222

standard textbooks, ensuring consistency, while its 223

hierarchical structure facilitates access and under- 224

standing by LLMs. This design enables the model 225

to produce responses appropriate to the cognitive 226

levels of students. 227

The knowledge graph consists of three layers. 228

The first layer nodes represent the main categories 229

of mathematics, such as discrete mathematics, ge- 230

ometry, and algebra, forming the set L1 and cov- 231

ering a wide range of mathematical fields. The 232

second layer nodes are subfields under these main 233

categories, such as triangles, solid geometry, set 234

theory, and combinatorics, forming the set L2 and 235

providing a more detailed subdivision of each dis- 236

cipline. The third layer comprises specific knowl- 237

edge points forming the set K, where each knowl- 238

edge point k ∈ K is associated with a difficulty 239

level dk ∈ N+ corresponding to a specific textbook 240

grade or chapter. This difficulty level is defined 241

directly based on the grade levels or chapter dif- 242

ficulties in textbooks, ensuring accuracy and con- 243

sistency when the model evaluates the difficulty of 244

answers. 245

The design of this hierarchical structure simpli- 246

fies the search space for the model when selecting 247

knowledge points, reducing the number of candi- 248

dates it needs to consider during each selection. 249

This simplification enhances the model’s efficiency 250

and accuracy in choosing appropriate knowledge 251

points and ensures that it can accurately deter- 252

mine the grade-level difficulty associated with each 253
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Figure 2: Overview of the our method.

Figure 3: Hierarchical structure of the knowledge base
showing three know levels and

point. Consequently, the model can generate an-254

swers that align with the target students’ cognitive255

levels, thereby enhancing the educational value of256

its responses.257

When processing an answer a, the model can258

map the involved knowledge points to nodes within259

the knowledge graph, forming a set of knowledge260

points Ka ⊆ K. Utilizing the difficulty informa-261

tion provided by the graph, the model can compute262

the overall difficulty level of the answer:263

dmodel = max
k∈Ka

dk (1)264

Through this computation, the model can as-265

sess whether its generated answer is suitable for266

students at the target grade level. If necessary, it267

can adjust the content and expression of the answer,268

making it more aligned with the students’ cognitive269

abilities. This approach ensures that the model’s re-270

sponses are not only correct but also pedagogically 271

appropriate, thereby maximizing their instructional 272

value. 273

3.3 Adaptive Cognition Reward 274

To train LLMs to solve mathematical problems 275

accurately while utilizing lower-level knowledge 276

points, we introduce an adaptive cognition reward 277

mechanism. This mechanism guides the model to 278

generate correct answers that are simpler and more 279

appropriate for the target grade level, enhancing 280

both correctness and educational suitability. 281

We define a reward function R(a, q) that evalu- 282

ates the model-generated answer a by comparing 283

its difficulty level dmodel with the annotated diffi- 284

culty level ddata of the question q. The difference 285

in difficulty levels is calculated as: 286

∆d = ddata − dmodel (2) 287

To map this difference to a reward value and 288

ensure a smooth transition between positive and 289

negative rewards, we apply a sigmoid function: 290

Rdifficulty =
1

1 + e−∆d
(3) 291

This difficulty reward encourages the model to 292

produce answers using knowledge points that are at 293

or below the difficulty level of the question, align- 294

ing with educational practices that prioritize ac- 295

cessibility for students. By leveraging the fig, the 296

model gains awareness of knowledge point levels, 297

simulating human-like evaluation and reasoning 298

without lacking cognition of knowledge point diffi- 299

culty. 300
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The total reward function incorporates additional301

components to ensure the quality and correctness302

of the generated answers:303

• Format Reward Rformat: Ensures that the an-304

swer is enclosed within the specified tags (e.g.,305

<think> and <answer>), maintaining output306

standardization.307

• Tag Quantity Reward Rtag: Verifies that the308

number of tags used meets expectations, preserv-309

ing the structural integrity of the response.310

• Accuracy Reward Raccuracy: Assesses the cor-311

rectness of the answer, encouraging the genera-312

tion of accurate solutions.313

Combining these components, the final total re-314

ward function is defined as:315

R =λdifficultyRdifficulty + λformatRformat

+ λtagRtag + λaccuracyRaccuracy
(4)316

Here, λ represents the weighting parameters for317

each component, allowing for adjustment of their318

influence on the overall reward according to spe-319

cific training objectives.320

By integrating this adaptive cognition reward321

mechanism, we effectively guide the LLM to gen-322

erate answers that are not only correct but also ap-323

propriately simplified for the target audience. This324

approach enhances both the educational value and325

accessibility of the model’s responses, simulating326

human feedback and reasoning processes in an au-327

tomated manner.328

3.4 Training and Inference329

To reduce the difficulty level of knowledge points330

utilized by LLMs in mathematical problem-solving,331

we implement GRPO with formalized objec-332

tive. For each question q, sampling G outputs333

{o1, o2, ..., oG} from old policy πθold , we optimize334

the policy model by maximizing:335

JGRPO(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

(min(
πθ(oi|q)
πθold(oi|q)

Ai,

clip
(

πθ(oi|q)
πθold(oi|q)

, 1− ϵ, 1 + ϵ

)
Ai

)
− βDKL(πθ||πref)

)]
,

(5)336

DKL(πθ||πref) = Eoi

[
πref(oi|q)
πθ(oi|q)

− log
πref(oi|q)
πθ(oi|q)

− 1

]
,

(6) 337

Ai =
ri −mean({rj})

std({rj})
, j = 1, . . . , G. (7) 338

where the KL divergence constraint is defined 339

as: 340

DKL(πθ||πref ) = Eoi

[
− log

πref (oi|q)
πθ(oi|q)

− 1

]
(8) 341

The advantage function Ai is computed through 342

standardized reward differences within each group: 343

Ai =
ri − µ({rj}Gj=1)

σ({rj}Gj=1)
(9) 344

The hyperparameters ϵ control the clip threshold 345

for policy updates, while β adjusts the KL regu- 346

larization strength. This mechanism automatically 347

establishes dynamic baselines using group reward 348

statistics, with relative advantage evaluation guid- 349

ing the model to generate solutions adhering to diffi- 350

culty constraints, demonstrating superior adaptabil- 351

ity to multi-objective reward scenarios compared 352

to fixed baseline approaches. 353

4 Experimental Setup 354

4.1 Datasets 355

The dataset employed in this study is derived from 356

the OpenR1-Math-220k dataset (Guo et al., 2025). 357

We extracted a stratified subset from this dataset 358

that aligns with the textbook syllabus, ensuring that 359

the distribution of question grades corresponds to 360

real-world teaching scenarios. This subset encom- 361

passes three educational stages: primary school 362

(21.6%), junior high school (30.1%), and senior 363

high school (48.3%), as illustrated in Figure 4(a). 364

By leveraging a fig and manual verification, we 365

annotated the dataset with fine-grained difficulty 366

labels corresponding to the textbook. The specific 367

distribution of these labels is shown in Figure 4(b). 368

The distribution exhibits a fluctuating pattern of 369

initially rising and then declining across different 370

learning stages, which is consistent with the peda- 371

gogical system. Notably, the scarcity of new knowl- 372

edge in the final year of senior high school results 373
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Figure 4: (a) Distribution of educational stages (primary, junior high, senior high); (b) Distribution of difficulty
labels.

in a limited number of questions being designated374

for this grade. The significant number of questions375

attributed to the second semester of senior high376

school is due to the categorization of these ques-377

tions under more challenging knowledge points,378

thereby validating the accuracy of our grade extrac-379

tion method. The dataset was divided into training,380

validation, and test sets through stratified sampling,381

preserving the grade distribution.382

4.2 Baselines383

In this study, we selected DeepSeek-R1-Distill-384

Qwen-1.5B and Qwen2.5-1.5B-Instruct (Yang385

et al., 2024) as the baseline models to systemat-386

ically evaluate the performance enhancement of387

the improved model. Both models are based on the388

Qwen architecture and represent two key technical389

pathways: knowledge distillation and instruction390

tuning. DeepSeek-R1-Distill-Qwen-1.5B achieves391

model lightweighting through knowledge distilla-392

tion, enhancing inference efficiency while main-393

taining performance. Qwen2.5-1.5B-Instruct, on394

the other hand, has been specifically tuned for in-395

structions, demonstrating outstanding performance396

in task adaptability and instruction following.397

The selection of these two models not only con-398

siders their technical representativeness, covering399

the main directions of current language model opti-400

mization, but also takes into account the feasibility401

of the experiment and resource efficiency. Since402

both models share the same architectural founda-403

tion, they can minimize the interference of model404

differences on the experimental results, ensuring405

the fairness and reliability of the performance com-406

parison. These two widely validated baseline mod-407

els provide a scientific reference standard for the408

study, which helps accurately assess the actual ef- 409

fects of the improvement strategies. 410

4.3 Evaluation Metrics 411

To comprehensively evaluate the model’s perfor- 412

mance, we employed a combination of automatic 413

and human evaluations. These evaluation metrics 414

are designed to measure the model’s control over 415

difficulty and educational adaptability in generat- 416

ing answers, closely aligning with the experimental 417

results. 418

Automatic Evaluation: 419

• Delta Difficulty: This metric measures the differ- 420

ence in grade values of the knowledge involved 421

in the model-generated answers compared to the 422

dataset answers. Specifically, it is calculated by 423

determining the difference between the difficulty 424

labels of the generated answers and the corre- 425

sponding answers in the dataset. Our goal is to 426

have the trained model generate answers with 427

lower grade values, hence a lower Delta Diffi- 428

culty is desired. This metric directly reflects the 429

model’s effectiveness in reducing the difficulty 430

of answers. 431

• Accuracy: The proportion of correct answers 432

generated by the trained model out of the total 433

number of answers. 434

Human Evaluation: 435

Given the current lack of a widely accepted au- 436

tomated method for assessing answer difficulty, 437

we opted for human expert evaluation. We en- 438

listed 10 experienced math teachers to evaluate 439

100 randomly selected test samples. To ensure 440

objectivity, each question presented both the origi- 441

nal pre-trained model’s and the improved model’s 442

answers, with model identifiers concealed and an- 443
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swers randomly ordered. The evaluation dimen-444

sions included:445

• Knowledge Point Difficulty: Scored on a 1-5446

scale, compared to the pre-trained model’s an-447

swers. This assesses whether the knowledge448

points used in the new model’s answers are sim-449

pler, with 0 indicating significantly more difficult,450

3 indicating comparable difficulty, and 5 indicat-451

ing significantly simpler.452

• Reasoning Complexity: This evaluates whether453

the new model’s answers are easy to understand454

and suitable for the target grade students’ cog-455

nitive abilities. Using a 1-5 scale: 1 indicates456

complex reasoning that is hard to understand; 3457

indicates moderate reasoning that some students458

might need additional explanation for; and 5 in-459

dicates clear and easy-to-understand reasoning.460

5 Experimental Results461

5.1 Evaluation Results462

The experimental results demonstrate that the463

trained model has achieved significant improve-464

ments in multiple key metrics, especially in terms465

of difficulty control. Specifically, as shown in Ta-466

ble 1, the following observations were made:467

Accuracy Our model achieved an accuracy of 0.17,468

which remains competitive in the context of the469

current study. This accuracy is slightly lower than470

that of the DeepSeek-R1-Distill-Qwen-1.5B model471

(0.19), which may be attributed to our deliberate472

focus on controlling the difficulty of knowledge473

points during the training process. It is important474

to note that our model was not trained on the full475

dataset. This indicates that despite the limited data,476

our model is still capable of effectively learning477

and generating accurate answers.478

Compared with the pre-trained model Qwen2.5-479

1.5B-Instruct (accuracy of 0.12, difficulty score of480

69.5), our model not only made significant progress481

in difficulty control but also achieved an improve-482

ment in accuracy. This demonstrates that our train-483

ing method can effectively enhance model perfor-484

mance even with limited data and specific training485

objectives.486

Difficulty Control Our model excelled in difficulty487

control. Compared with the pre-trained model488

Qwen2.5-1.5B-Instruct, our model not only re-489

duced the difficulty score but also ensured that the490

generated answers are easier to understand and do491

not exceed the syllabus.492

The consistency between the automatic evalua- 493

tion and human assessment of the difficulty of the 494

answers generated by our model further validates 495

the effectiveness of our approach. 496

Educational Significance Through a blind test 497

evaluation by 10 mathematics teachers, the new 498

model demonstrated significant advantages in core 499

teaching dimensions. Compared with the original 500

pre-trained model, the new model generated an- 501

swers using simpler knowledge points in 61% of 502

cases, and in 83% of the assessed data, the reason- 503

ing steps of the new model were found to be more 504

in line with students’ cognitive development pat- 505

terns and easier to understand. This indicates that 506

the tutoring role of our model in the field of subject 507

education has been significantly enhanced. 508

In summary, although our model’s accuracy is 509

slightly lower than that of models trained on the 510

full dataset and focused solely on accuracy, it has 511

made significant progress in difficulty control and 512

educational significance, bringing more education- 513

ally meaningful outputs. This demonstrates that 514

our method has important application value in bal- 515

ancing accuracy and difficulty control. 516

5.2 Ablation Experiment 517

To evaluate the impact of each component on model 518

performance, we conducted ablation experiments. 519

We compared the fine-tuned model with the pre- 520

trained model using prompt engineering and the 521

distilled model. 522

Our approach reduces the complexity of the 523

knowledge points used by the model without com- 524

promising the accuracy of the model’s answers. In 525

the test data, the average difficulty of the knowl- 526

edge points used per data point was reduced by 0.85 527

and 1.75 grade levels compared to the pre-trained 528

and distilled models, respectively. Given that many 529

problems may not have simpler solutions at lower 530

grade levels, this reduction is quite significant. For 531

those problems that do have simpler solutions, our 532

approach demonstrates substantial superiority. 533

These results highlight the effectiveness of our 534

training methodology. By fine-tuning the model 535

with a fig-based reward mechanism for educational 536

scenarios, we ensure that the model provides ac- 537

curate answers while explaining them in a manner 538

that is easier for students to understand and accept. 539

This high alignment with educational goals is cru- 540

cial for developing models that can truly support 541

and enhance the learning experience. 542
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Model Accuracy Difficulty
Qwen2.5-1.5B-Instruct 0.12 69.5
DeepSeek-R1-Distill-Qwen-1.5B 0.19 78.5
Our Model 0.17 61.0

Table 1: Comparative performance of different models. Accuracy represents the model’s correctness rate (higher is
better), while Difficulty indicates the average problem difficulty level the model can handle (lower means handles
more difficult problems).

5.3 User Study543

To evaluate the effectiveness of the model in educa-544

tional settings, we conducted a user study with 10545

experienced math teachers and 20 students (7 from546

primary, 7 from junior high, and 6 from senior high547

school). The participantsants reviewed 20 math548

problems, each paired with two anonymsolutions,549

one, one from the original model and one from our550

imprmodel, withoutithout knowing their sources.551

Teachers assessed each solution pair based on552

grade-level suitability, clarity of reasoning, and ap-553

propriate use of knowledge. Students chose the554

solution they found easier to understand and ex-555

plained their choice in plain language.556

Results showed that teachers preferred the im-557

proved model’s solutions in 61% of cases, citing558

clearer reasoning and better curriculum alignment.559

Similarly, 64% of students favored the improved560

solutions, often describing them as “more famil-561

iar” and “easier to follow.” Teachers also noted that562

the improved model avoided advanced concepts563

and better reflected textbook-style explanations, in-564

creasing its classroom relevance.565

5.4 Case Study566

To further demonstrate the effectiveness of our new567

model,we have selected a specific case for detailed568

analysis.569

As shown in Figure 2, our model effectively570

generates problem solving processes that match571

students’ knowledge levels. Our model employs572

fundamental concepts such as the Pythagorean the-573

orem and systems of equations,which are typically574

introduced in earlier grades,while avoiding more575

advanced knowledge like Heron’s formula that576

is usually taught in high school. This problem-577

solving approach significantly reduces the cogni-578

tive load on students,facilitating their grasp of key579

concepts and ensuring alignment with their learn-580

ing progress.581

Problem：
Given the lengths of the three sides of a triangle are 

4 2, 5, and 7, find the area of the triangle

Original Model Output：
Using Heron's Formula:

Calculate the semi-perimeter 𝑝:

𝑝 =
𝑎 + 𝑏 + 𝑐

2
=
4 2 + 5 + 7

2
= 2 2 + 6

Apply Heron's formula:

𝑆 = 𝑝(𝑝 − 𝑎)(𝑝 − 𝑏)(𝑝 − 𝑐)

= (2 2 + 6)(2 2 + 6 − 4 2)(2 2 + 6 − 5)(2 2 + 6 − 7)

= 14

Our Model Output:

Using Altitude and Pythagorean Theorem:

Construct the altitude: Draw an altitude from the vertex opposite

the longest side (𝑐 = 7) to the base 𝑐 . Let the altitude be ℎ and

the segments of the base be 𝑥 and 7 − 𝑥.

Apply the Pythagorean theorem:

32 = 𝑥2 + ℎ2

25 = (7 − 𝑥)2+ℎ2

Solve the equations and calculate the area:

ℎ = 4
𝑥 = 4

𝑆 =
𝑐 ∗ ℎ

2
= 4

h
b

c

a

x

Table 2: The figure presents a case study comparing
the outputs of the original and trained models on a sam-
ple problem. The original model provides a concise
answer, while our model employs simpler knowledge
points, making it more comprehensible for lower-grade
students.

6 Conclusion 582

This paper demonstrates that integrating HKGs 583

into the training of large language models signifi- 584

cantly improves their ability to generate mathemat- 585

ically sound and grade-appropriate solutions. By 586

capturing hierarchical dependencies among knowl- 587

edge points, HKGs impose structural constraints 588

that guide models toward logical and curriculum- 589

aligned reasoning. When incorporated into the re- 590

ward model, HKGs also enable fine-grained control 591

over the educational quality of generated responses, 592

making them more suitable for instructional use. 593

8



7 Limitations594

While our method shows clear benefits in produc-595

ing grade-appropriate mathematical solutions, its596

broader application remains constrained. The cur-597

rent design is tightly coupled with the structure598

of mathematics education, relying on manually599

crafted HKGs that reflect well-defined curricular600

progressions. Transferring this approach to other601

subjects may prove challenging, especially in do-602

mains lacking similarly structured knowledge or603

where educational content is more fluid. Addition-604

ally, the reward mechanism is curriculum-specific605

and may require adaptation when applied to differ-606

ent academic areas or educational standards.607
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