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Abstract

Thanks to the advances in artificial intelligence (Al), interactive human-Al appli-
cations are growing explosively. A common assumption in these systems is that
the humans provide ground-truth (oracle) data during interactions. This is seen,
for example, when fine-tuning large language models with human feedback or in
personalized recommendation-systems. However, it is well-known that human
users often do not act like oracles which implies they, instead, should be represented
more realistically instead. In this work, we propose a preliminary framework for
user models for human-in-the-loop (HITL) problems. In particular, we first define
a general decision-making problem statement for HITL which explicitly includes
user models, with a focus on how they may reason about the Al they are interacting
with. We then derive user models for HITL from simple but powerful assumptions
about the user, and show the implications empirically in a Bayesian optimization
and recommendation system setting. Through this lens, we discuss how assuming
humans are oracles can lead to bias under several concrete settings.

1 Introduction

Thanks to recent developments in artificial intelligence (AI) and machine learning (ML), human-Al
interactive systems are becoming more widespread and powerful. A well-known subclass of these
systems, called “human-in-the-loop” (HITL), considers humans as a source of data (fig. [I). Examples
include the well-known personalized recommendation systems [33l], active learning or optimization
of human preferences [28 19, 130]], and also precision medicine systems [35]. Most notably, LLM
fine-tuning with reinforcement learning from feedback also falls in this category [10]. The underlying
assumption in these approaches is that the human is an oracle and provides ground-truth labels.

However, even when in rather trivial instances and instructed to provide true labels, oracles are poor
models of human users. First, humans may simply not know the right answer or, more likely, are
biased [24]]. More relevant for us, even when that is accounted for, users adjust their answers on
purpose to guide the interaction [2,|11]. For example, it is known that users maintain a mental model
of the Al with which they make predictions of the behavior of the system [9,137], a phenomenon we
propose to call artificial theory of mind.
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query g € Q
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Figure 1: Model of human-in-the-loop systems. The Al system communicates by giving queries,
whereas the human gives feedback. Left shows the typical setting. Right is our proposed modification:
we argue the user reasons about the Al’s state and gives feedback to intentionally change it.

Example: let us say we are interested in finding the best hotel for a user, and do this by asking the
user to score hotels. The assumption behind this work is that users will provide scores that (they
believe) move the system towards some desired state, rather than necessary giving the ground-truth
labels. For instance, a user may give a mediocre score to a poorly performing hotel, if the user
believes it will ‘help’: maybe the hotel is undesirable, due to some specific property, but similar
hotels have high scores and the user wants to avoid steering the system away from those options.

This work makes steps towards methods that include more realistic user models for human-in-the-loop
problems (fig. |1} right). Starting from a general view of human-in-the-loop setting, we formalize
a framework for explicitly defining, deriving, and inserting user models. From there, we focus on
modeling users who consider the state of the system, motivated by ideas grounded in modeling users
as computationally rational agents. Then, we consider Bayesian optimization and recommendation
systems as concrete settings, and investigate the behavior of our proposed user models and their effect
on the system.

2 Preliminaries

We consider a minimal setup for human-AlI collaboration where there is no state or dynamics except
for the interaction between the human and the Al, as depicted in fig.[T] This is a sequential process
in which the user and Al iteratively communicate, where the only assumption is that there is some
function f € F, f : X — ), of interest driving the interaction.

This process is defined by the AI’s query space Q, the user’s feedback space H, and some function
of interest f according to which the user gives feedback h € # on some query ¢ € Q. Generally,
we assume there is a (mutual) objective U : (AF, F) — R, which assigns values (score) to the AI's
belief over the function py(f), given the actual function. The ultimate goal, and performance metric,
is determined by this utility. The AI’s belief corresponds to the posterior given the likelihood of the
observed query-label data, (@, H ), and the prior py:

pr(f1Q.H) <ps(fip(H | Q; f) = th | gii f), (1)
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where the likelihood typically Gaussian around the ground truth p(h | g; f) = N(f(z), o) (e.g. [19,
30, [14]); the assumption that we explicitly challenge in this work.

2.1 Common Concrete Instances

While minimal, this setting represents several important settings, including learning human pref-
erences, maximizing them, learning in recommendation systems, as well as the recently popular
(reward learning in) reinforcement learning from human feedback. Here, we discuss two settings
used in the empirical evaluation.

Bayesian optimization of Human Preferences: in this setting, we are interested in finding elements
x € X that optimizes the user’s preferences f. Since these are typically impossible for users to define
mathematically, they must be learned (and maximized) from data. In Bayesian optimization (BO),



the AI queries data points Qpo £ X, which the user then scores Hpo = ). The utility of the AI’s
belief is the true value of the AI’s best guess of the optimal:

Uso(p(f), f) = flargmaxE s [ ()]) @

A solution in BO is a method for tracking the posterior over f, commonly done with Gaussian
processes [36]], combined with an acquisition function that — when optimized — determines which
query to pick. Typical acquisition functions are upper confidence bound (UCB) and expected
improvement (EI) [16].

Learning in Recommendation Systems: in recommendation systems, such as those employed
by Spotify, the Al typically does not query: Qgrs = 0 [33]. Instead, the user is free to provide
any labels on any element Hgg £ (X,)), where we assume the labels are binary (“like/not like”,
ie. Y = {—1,1}) given the user’s internal scoring function f. The utility is some classification
performance metric, such as accuracy over test data X:

Urs(p(f), ) 2 > Bpronip) i) (F ()] ©)
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A typical solution to this problem is often not Bayesian, such as logistic regression[22].

2.2 Problem: User Modeling

When inferring the latent function f from data in human-AI systems, one must make a choice on how
to model the user’s decision process. For example, a Bayesian approach requires a likelihood function.
A common solution is to “ignore” the user component, and pretend we are directly modeling the
underlying function. In reinforcement learning from preferences, for example, we assume the user’s
response — ranking of possible outputs — follows the ground truth preference of the user. Similarly,
when maximizing for user preferences with Bayesian optimization, we assume the user scores queries
according to the Boltzmann distribution given the true utility function. We argue this is not what
happens in practice, leading to a misspecification and thus estimation errors.

Examples Colella et al. [L1]] show that human users do not faithfully report the (true) scores f(x)
when interacting with a Bayesian optimization system. Instead, users steer the system by providing
feedback that, presumably, (they believe) moves (the maximum of) the posterior more closely to
that of (the maximum of) the true function.

Similarly, we can expect users to not provide arbitrary labels in a recommendation system. Instead,
they provide those that (they expect) create some meaningful change in the recommendations.

Concretely, the feedback likelihood in eq. (1)) which, universally is assumed to follow f with Gaussian
noise, is wrong. Instead, the users are autonomous agents in this interactive setting, and their feedback
can be considered actions that optimize for some utility given their beliefs over the system that they
are interacting with.

Computational Rationality To formalize this intuition, we adopt the idea of computational ratio-
nality (CR), which proposes that humans can be modeled as (bounded) utility maximizers [18, 26].
In practice, CR formalizes the user’s task as a decision process and compute the values of its optimal
solution (with e.g. reinforcement learning). To create a user model, it is typically assumed the user
picks actions h € H proportional to their utility U,, using the Boltzmann-rational model [23| 38]:

exp (TUu(h))
> hiew €XD (TUu(h’))

where temperature 7 controls stochasticity. Computational rationality has already seen success in
human-Al interactive systems [31]; our contribution is its realization to the human-in-the-loop setting.

mu(h) = X exp <7‘Uu(h)), %)



3 Proposal: Solution for HITL with Artificial ToM

Our solution is two-fold. First, we introduce a new likelihood that models how users take actions
with the intention of influencing the (AI) system. Second, we derive the novel (Bayesian) inference
problem and resulting policy of the Al

3.1 User Model

We introduce two components (visualized on the right in fig. [T). First, we assume the user knows
that the AT maintains a posterior over “the function” py(f | Q, H), given some prior over f. We
describe the prior which the user believes is assigned to the AI with pay, and abuse notation by
denoting par(f | ...) as a posterior given prior pa; . Second, we assume the user has some objective
U, : (AF, F) — R that they optimize for, with respect to this posterior. This objective depends on
the task, and can be infeasible to compute in practice (both for computers and humans) and, so, we
allow for myopic approximations and heuristics. We adopt the CR approach and model the user as
optimizer of expected utility U,, given their model of the Al p; with the Boltzmann model (eq. {@)):

mulh | @ H, g, f) o exp (Uu(pai(@Uq, H U ). ) 5)

To summarize, we formalize a user with the tuple ( f, par, Uy, ), where paj is the user’s estimation of
the AL’s belief p(f), and eq. (9) is the user feedback likelihood given objective U,, and replaces the
likelihood in eq. (T)).

3.2 Al Inference

As originally, the AI’s aims to maximize the original task U, which includes learning f. Originally,
this means computing the Bayesian posterior, assuming a Gaussian process prior and Gaussian
likelihood (eq. (I))). Given the new likelihood derived above, the posterior now becomes

_pHQ, )p(f)
:pf(f) ﬂ-u(hl | Q<Z>H<zaq’b7f) (6)
g eq. @)

The key observations are that we do not assume each data-point is i.i.d. (compare eqs. (I)) and (6))
and that the posterior no longer has a closed-form solution.

A solution to the human-Al problem is an Al policy m,; that maximizes the utility function U given
a posterior over the user’s internal latent function eq. (6). In this preliminary work, we propose to
adopt acquisition functions associated with the original task « : (AF, Q) — R, such as UCB for
BO, and extend these to our novel posterior:

7TAI(I{a Q) = argmaxa(p(f | Ha Q)aQ) (7)
’ @
eq.

4 Empirical Evaluation: Proof of Concept

This work is still in progress and the empirical evaluation is limited. However, below we present
empirical insights in two settings. For each setting, we develop user models that reason about the
system and give feedback with intentions of achieving the collaborative goal, and show they generate
reasonable (human) behavior. We show that the performance of typical (AI) solutions may vary
widely, depending on the accuracy of the theory of mind of these user models. This means, in practice,
the accuracy of our deployed systems may similarly be suffering.
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Figure 2: (left) Prior in a 1-dimensional Bayesian optimization problem. The true function f is
shown in blue, whereas the orange is the posterior (mean and uncertainty) with orange dot being the
maximum of the posterior mean, given the observations in blue. (center) Posterior of next time step
given ground truth label. (right) Posterior of next time step given label from user model. This label
leads to a more desirable posterior, which we claim simulates behavior of an expert user.

4.1 Bayesian Optimization

Setting We consider the running example of Bayesian optimization where the Al observes the
user’s score Hpo = Y given queries Qpo = A, and is interested in finding the optimizing value
arg max, f(z) (recall section|2.1)). We consider two (myopic) utilities that the user may optimize:

1. To model a user who is interested in explicitly steering the posterior, we model them
minimizing the distance between the true maximum and that of the AI’s posterior mean.

Uz;rgmax-dist(p(f), f) - _ (8)

argmax f(x) — argmax Eps) [f ()]
T T

2. To represent a user focused on pure performance, we propose a model that maximizes the
true value of the maximum of the posterior mean:

Ulsgret(p(f), f) =f <argarcnaXEp(f) [f(x)]) 9

Results First, we study the behavior of our first user model (eq. (§)) in a salient situation (fig. 2)).
This setting is one where we argue users may recognize the result of steering to positively guide the
posterior to a more useful posterior, one which assigns higher value to the true maximum of f. The
left and center figure shows the prior, and the posterior assuming oracle feedback. The right figure
shows the response of our user model. This scenario showcases that our user model behaves naturally,
in that it returns false feedback at the benefit of positively steering the optimization process.

In our second experiment, we evaluate UCB with Gaussian processes on the function plotted in fig. [2]
Figure 3] (left) plots the regret given oracle or user model feedback (eq. (2)), where we initiate our
user model with either a correct (* ) or incorrect (“misspecified user model”) prior
par- We see that our user model is able to improve performance when it has the correct assumptions
on the system it is interacting with, but harms this process when provided with faulty assumptions.
This showcases the type of behavior we expect and would like to resolve in real world scenarios.

Lastly, fig.[3] (right) shows the exact output of the two proposed user models, eqs. (§) and (9), for the
whole query space. Despite the promising results so far, their behavior is not universally intuitive
which highlights that additional work is necessary to investigate the realism of these user models.

4.2 Learning in Recommendation Systems

Setting Here, we emulate a recommendation system that is interested in modeling a user’s prefer-
ence given their binary feedback. The feedback is generated by an underlying scoring function f),
with a threshold to return either -1 or 1 (recall section [2.1]and see left in fig. [d). Notably, the Al is
unable to query the user, but passively receives query-label pairs Hrs = (X,{—1,1}). We argue
that the user picks which queries to label intentionally, given their running estimate of the system. We
simplify the AI and focus on a non-Bayes setting: logistic regression. In particular, we assume that
the base model fits a logistic regression model on the data and the user is aware of this. Hence, we
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Figure 3: (left) Regret of BO (UCB) given “ground truth” or “ours” helpful user model. Our user
model is able to give feedback such that the regret is much lower than ground truth. (right) Feedback
of several user models given x. The blue line here is the “ground truth” model, whereas red and green
are respectively the regret-minimizer and argmax-dist user models defined in egs. (8) and (9). More
work must be done to investigate how realistic these models are.

skip the user definition of the pair (par, U, ), and directly model the user’s policy 7, (eq. ). We
compare the following (probabilistic) behaviors:

1. We argue users may attempt to be explicit and pick the picks the best and worst examples:

7_rexll‘f:me(x) o ‘f($)| (10)

u

2. We model users who may try to explicitly help identify the decision boundary by picking
those around it. This decision boundary can either be the user’s (f) or the Al’s:

1 1

ai-boundary

F@p X By IF @]

3. Lastly, we model user who label the best and “best of worst”. This models users who label
the best and worst content that is shown by the recommendation system and, we argue,
reflects realistic labeling behavior.

T (2) o eq. (T0) if f(z) > 0, else eq. (TT) (12)
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4. The baseline is a random labeling strategy: m %

Results We test the accuracy of a typical classification (logistic regression) system given the
proposed labeling strategies in fig. [ (right). While some strategies lead to performance similar to
the (typically assumed) random labeling strategy, some labeling strategies severely affect the sample
efficiency. In particular, users that label the best and worst content shown to them (eq. (I2)), a strategy
we believe is quite reasonable, has particularly poor performance.

5 Related Work

Closely related to this work is student-teacher settings, in which an artificial agent is teaching or
learning from a human user [32,20]. A very interesting work looks at higher-order models for Al
learning from human feedback in an active learning setting [25]. Under some additional assumptions,
their work could be seen as a specific instance of ours, in particular when the objective is one agent
learning a model from the other.

Work that shows evidence for human steering interactions is crucial to our motivation. In addition to
the Bayesian optimization setting [[11] previously mentioned, “COACH” [29] shows users adapt their
advice to the current policy of a reinforcement learning agent. Research has also shown that (not
how) users learn mental models of their assistant in Al-assisted human decision making [6].
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Figure 4: (left) Classification problem of 2-dimensional problem; colored small dots is (unlabeled)
data set and their true scores, whereas bigger yellow (y = 1) & purple (y = —1) are labeled data.
The Al’s logistic regression boundary is displayed in red, while the gray line is the true boundary line.
(right) Accuracy of trained classifiers given different labeling strategies, average over multiple run
(shaded areas are 2 times standard error estimates). Computes the percentage of correctly labeled data
points (y-axis) given number of labeled data (x-axis), given different user model labeling strategies.

Work on modeling agents in multi-agent settings typically take a more abstract view — they rarely
care for modeling human agents — but nevertheless are a rich source of ideas [1} 20], including those
on theory-of-mind [12} 21]]. These have been successfully applied to, for example, human-robot
navigation [8} 27]. Their work is interesting, but typically simplifies the aspects of theory of mind
that are highlighted here — highly complex theory of mind models — and instead focus other
complicating dimensions of sequential decision making and non-collaborative settings.

Other related topics include methods for designing HITL systems [15 [13| [34]], inference over
rational agents given their behavior [4, 39], and computational rationality as explanation for human
behavior [18, 26, 31]. Lastly, literature that shows Bayesian reasoning in humans is particularly
important motivation for modeling in this work [7} 15, [17, [3]]. These works do not directly tackle
human-in-the-loop settings, but have similar motivations and ideas in modeling humans.

6 Conclusion

Applications involving human-in-the-loop interactions are expanding rapidly, thanks to advancements
in generative Al. However, a key challenge remains: how to effectively simulate, model, and
interpret the most crucial component—the users themselves. In this work, we explore the concept of
artificial theory of mind, where users explicitly reason about the (consequences of their feedback
on the) systems they interact with. We argue that users provide feedback with the intent to benefit
the overall system. We formalize this phenomenon in the form of a decision process and derive
concrete instances on Bayesian optimization and recommendation systems. Finally, we examine
empirically how different user models lead to drastically different behaviors and system performance,
confirming our concerns regarding user misspecification and highlighting the importance of our
proposed solution.
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