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Abstract

Performativity of predictions refers to the phenomenon where prediction-informed
decisions influence the very targets they aim to predict—a dynamic commonly
observed in policy-making, social sciences, and economics. In this paper, we
initiate an end-to-end framework of statistical inference under performativity. Our
contributions are twofold. First, we establish a central limit theorem for estimation
and inference in the performative setting, enabling standard inferential tasks such as
constructing confidence intervals and conducting hypothesis tests in policy-making
contexts. Second, we leverage this central limit theorem to study prediction-
powered inference (PPI) under performativity. This approach yields more precise
estimates and tighter confidence regions for the model parameters (i.e., policies) of
interest in performative prediction. We validate the effectiveness of our framework
through numerical experiments. To the best of our knowledge, this is the first work
to establish a complete statistical inference under performativity, introducing new
challenges and inference settings that we believe will provide substantial value to
policy-making, statistics, and machine learning. |

1 Introduction

Prediction-informed decisions are ubiquitous in nearly all areas and play important roles in our daily
lives. An important and commonly observed phenomenon is that prediction-informed decisions can
impact the targets they aim to predict, which is called performativity of predictions. For instance,
policies about loans based on default risk prediction can alter consumption habits of the population
that will further have an impact on their ability to pay off their loans.

To characterize performativity of predictions, a rich line of work on performative prediction [25]]
have been formalizing and investigating this idea that predictive models used to support decisions
can impact the data-generating process. Mathematically, given a parameterized loss function ¢, the
aim of performative prediction is to optimize the performative risk:

PR(0) :=E.p)l(2;0) (D

where z = (z,y) € X x Y is the input and output pair drawn from a distribution D(¢) that is
dependent on the loss parameter §. Typically, D(#) is unknown and the optimization objective
PR(#) can be non-convex even if £(z;6) is convex in #. Thus, finding a performative optimal
point 0pp € argminy PR(#) (there might exist multiple optimizers due to non-convexity) can
be theoretically intractable unless we impose very strong distributional assumptions [20]. As an
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alternative, [25] mainly study how to obtain a performative stable point, which satisfies the following
relationship:

GPS = arg rﬂein EZN'D(st)E(Z; 9)

The performative stable point could be proved unique under some regularity conditions, and it could
be shown close to a performative optimal point when the distribution shift between different 8°s is
not too dramatic, which makes it a good proxy to fpg. In particular, fpg could be considered as a
good proxy to the Stackelberg equilibrium in the strategic classification setting. Moreover, it could be
calculated in distribution-agnostic settings.

Previous work mainly focuses on prediction performance and convergence rate analysis for performa-
tive prediction. On the contrary, another important aspect, inference under performativity, eludes the
literature. Although a central limit theorem was established in [7] for the stochastic gradient update
algorithm with a single sample under performativity (a setting that is often impractical in applications
such as policy-making), the authors assumed all structural knowledge to be given and did not provide
any data-driven methods for estimating the covariance of the various quantities appearing in their
central limit theorem. Therefore, [[7]] did not provide a complete statistical inference framework
under performativity.

However, inference is extremely important in performative prediction because parameter ¢ in many
scenarios represents a concrete policy, such as a tax rate or credit score cutoff. Thus, when it comes
to policy-making, the aim of tackling PR(#) is not just for prediction, but more for obtaining a good
policy. As a result, knowing convergence to fpg is not enough, we need to build statistical inference
for fpg so as to enable people to report additional critical information like confidence or conduct
necessary hypothesis testing.

Our contributions. In light of the importance of building statistical inference under performativity,
in this work, we build a framework including the following elements.

(1). As our first contribution, we investigate a widely applied iterative algorithm to calculate fps, i.c.,
repeated risk minimization (RRM) (see details in Section E]), and establish central limit theorems for

the @’s obtained in the RRM process towards 6ps. Based on that, we are able to obtain the confidence
region for fpg. Our results could be viewed as generalizing standard statistical inference from a static
setting to a dynamic setting.

(2). As our second contribution, we further leverage the derived central limit theorems to investigate
prediction-powered inference (PPI), another recently popular topic in modern statistical learning,
under performativity. Our results generalize previous work [[1] to a dynamic performative setting.
This enables us to obtain better estimation and inference for the RRM process and fps. More
importantly, our results could also help mitigate data scarcity issues in getting feedback about policy
implementation that often conducted by doing surveys that frequently encounter non-responses [13].
Thus, we also contribute to generalizing the line of work on performative prediction by introducing a
more data efficient algorithm.

To sum up, our work establishes the first end-to-end framework for statistical inference under per-
formativity for the celebrated repeated risk minimization algorithm. Meanwhile, we introduce
prediction-powered inference under performativity to enable a more efficient inference. We believe
our work would inspire new interesting topics and bring up new challenges to both areas of perfora-
mative prediction and prediction-powered inference, as well as add significant value to policy-making
in a broad range of areas such as social science and economics.

1.1 Related Work

Performative prediction. Performativity describes the phenomenon whereby predictions influ-
ence the outcomes they aim to predict. [25] were the first to formalize performative predic-
tion in the supervised-learning setting; their work, along with the majority of subsequent papers
(5L 9L 116,119, 211 24] 261 129], have been focused on performative stability and proposed algorithms
for learning performative stable parameters. On the other hand, performative optimality requires
much stricter conditions (e.g. distributional assumptions to ensure the convexity of PR(6)) than
performative stability, a few papers address the problem of finding performative optimal parameters.
[20] introduce a two-stage method that learns a distribution map to locate the performative optimal
parameter. [17] study performative optimality in outcome-only performative settings. Finally, [[11]



provide a comprehensive overview of learning algorithms, optimization methods, and applications
for performative prediction. Unlike these prior works on performative prediction, which focus on
prediction accuracy, our work is dedicated to constructing powerful and statistically valid inference
procedures under the performative framework.

Prediction-powered inference. [2] first introduced the prediction-powered inference (PPI) frame-
work, which leverages black-box machine learning models to construct valid confidence intervals
(ClIs) for statistical quantities. Since then, PPI has been extended and applied in various settings.
Closely related to our strategies, [[1] propose PPI++, a more computationally efficient procedure
that enhances predictability by accommodating a wider range of models on unlabeled data, while
guaranteeing performance (e.g. CI width) no worse than that of classical inference methods. Other ex-
tensions include Stratified PPI [10], which incorporates simple data stratification strategies into basic
PPI estimates; Cross PPI [33]], which obtains confidence intervals with significantly lower variability
by including model training; Bayesian PPI [[12] and FAB-PPI [6]], which propose frameworks for PPI
based on Bayesian inference. PPI is also connected to topics such as semi-parametric inference and
missing-data imputation [8| 27} 28] 130]. Our work is the first one to study PPI under performativity,
and we validate the PPI framework in the performative setting both theoretically and empirically.

Inference in performativity. [5] studies identifiability and estimation error under a specific micro-
foundation model with performativity. Yet it doesn’t address confidence interval construction. A
closely related work is [7]], which also establishes the asymptotic normality and minimax optimality
for performative settings. It focuses on stochastic gradient update with one sample per iteration,
whereas our work analyzes the empirical risk minimizer on batch updates. Moreover, [7] does not
provide a data-driven approach for covariance estimation and thus lacks an end-to-end inference
framework. In contrast, our work explicitly handles density estimation and provides an end-to-end
inference method for constructing confidence intervals, which is missing in existing literature, to the
best of our knowledge.

2 Background

In this section, we recap more detailed background knowledge about performative prediction and
prediction-powered inference.

Repeated risk minimization. Recall that the main objective of interest is the performative stable
point, which satisfies the following relationship:

Ops = arg mein E. D (6n) (2 0).

Repeated risk minimization (RRM) is a simple algorithm that can efficiently find fps. Specifically,
one starts with an arbitrary 6y and repeat the following procedure:

011 = argminE, pg,)€(z; 0)
0

for ¢ € N. Under some regularity conditions, the above update is well-defined and provably converges
to a unique fps at a linear rate.

Theorem 2.1 (Informal, adopted from [25])). If the loss is smooth, strongly convex, and the mapping
D(-) satisfies certain Lipchitz conditions, then Ops is uniquely defined and repeated risk minimization
converges to Ops in a linear rate.

We will further explicitly state those conditions in Section[3] Throughout the paper, we will mainly
focus on building an inference framework under the repeated risk minimization algorithm.

Prediction-powered inference. A rich line of work on prediction-powered inference (PPI) [1]]
considers how to combine limited gold-standard labeled data with abundant unlabeled data to obtain
more efficient estimation and construct tighter confidence regions for some unknown parameters.
Specifically, a general predictive setting is considered in which each instance has an input z € X" and
an associated observation y € ). People have access to a limited set of gold-standard labeled data
{zi,y:}7 that are i.i.d. drawn from a distribution D. Meanwhile, we have abundant unlabeled data
{x¥}, that are i.i.d. drawn from the same marginal distribution as gold-standard labeled data, i.e.
Dy, where N > n. In addition, an annotating model f : X — ) (possibly off-the-shelf and black-



box machine learning models) is used to label dateﬂ In [[1]], the authors show that for a convex loss
with a unique solution, compared with standard M-estimator L = argming > -, U(x;,vi;0)/n,

n

1 1
é\PPI()\) = arg min A\— Zf (z3);0) + -~ Zf(mi, yi; 0) — )\E Zf(wi7 f(x:);0)
i=1

i=1 i=1

can be a better estimator of 8* = arg ming E,.p¢(z; 0) via appropriately chosen A based on data.

Notation. For K € N,, we use [K] to denote {1,2,--- ,K}. We use Ly and 25 1o denote
convergence in probability and in distribution, respectively. For two set S and S’, we use S + &’
to denote the set {s + s’ : s € S, s’ € S'}. N(u, X) denotes a Gaussian distribution with mean
and covariance matrix . Lastly, we denote a k-dimensional identity matrix as Ij,. We use B(c,r) to
denote a ball with center ¢ and radius r. Lastly, we use || - || for 3-norm and 1 to denote a column
vector with all coordinates 1.

3 Inference under Performativity

In this section, we initiate the inference framework for repeated risk minimization in the batch setting
under performativity. We mainly consider the repeated risk minimization setting. Unlike standard
inference problems, where estimators are built for a fixed underlying data distribution, in our dynamic
setting specified below, building asymptotic results such as CLT imposes extra challenges and this
has not been covered by any existing literature so far.

Specifically, at time ¢ = 0, we have access to a set of labeled data {2077;}?:01 that is i.1.d. drawn from
a distribution D(6y), where z9; = (z0,i, Yo,;) and 8 is chosen by us. Then, we use the empirical
repeated risk minimization to output

91 —argmln—ZK 20,45 0)

i=1

as an estimator of ¢, = argminy E..p4,)¢(z; 6). Then, for t > 1, at time ¢, we further have access
to a set of labeled data {z;;};*, that are i.i.d. drawn from the distribution induced by last iteration,

i.e., D(6;). Let us further define G(6) = arg min, E, p)¢(z;0). Then, we can obtain the output

9t+1 = argrnln— Z€ Z4;0

i=1
as an estimator of ;1 = G(6;). This iterative process will incur two trajectories, i.e., (1) underlying

trajectory: 6y — 601 — --- 0y — - - -; (2) trajectory in practice: 6y — 01 — ---0; —

Our aim is to provide inference on @ for any ¢ > 1. For simplicity, we let n, = n for all ¢.

3.1 Central Limit Theorem of @

In order to build CLT for 91, we first establish the consistency of 01, which is relatively straightforward
given that [25]] has built the non-asymptotic convergence results. Then, we introduce our main result

on building CLT for 9t Lastly, we provide a novel method to estimate the variance of Qt

Consistency of 9t. We start with proving the consistency of Ot. Recall that we have a trajectory

induced by the samples g — 6; — ---0; — --- by the iterative algorithm deployed. Without
consistency, CLT is not expected to hold. Our results are based on the following assumptions.

Assumption 3.1. Assume the loss function ¢ satisfies:

(a). (Local Lipschitzness) Loss ~function 0(z;0) is locallyNLipschit%: for each 6, there exist a neighbor-
hood Y'(6) of 6 such that £(z; 6) is L(z) Lipschitz w.r.t 6 forall € Y(6) and E. p ) L(z) < oc.

'The annotating function f could either be a stochastic or deterministic function. It could even take other
inputs besides x, but for simplicity, we only consider the annotation with the form f(z).



(b). (Joint Smoothness) Loss function £(z; #) is S-jointly smooth in both z and 6:
Vol(2;0) — Vol(2;:0)lly < B0 —0'll5, [[Vol(2:0) — Vol (2" 0)]l, < Bllz = 2,
forany z,z’ € Z and 6,60’ € ©.

(c). (Strong Convexity) Loss function £(z; #) is y-strongly convex w.r.t 6:
U=0) > (= 0) + Vollz6) (00 + 3 19— ¢/,

forany z € Z and 6, 6’.

(d). (e-Sensitivity) The distribution map D() is e-sensitive, i.e.:
W1 (D(9),D(0)) < ello — 6],

for any 6, 6', where W is the Wasserstein-1 distance.

Remark 3.2. The assumptions (b), (c), (d) follow the standard ones in [25)], which are proved to be
the minimal requirements for trajectory convergence. We additionally require (a) to build consistency

for 0; beyond convergence of 0; to Ops.
Proposition 3.3. Under Assumption ife < %, then for any given T' > 0, we have that for all
te[T)
0, 25 0,.
Building CLT for 92 In order to build the central limit theorem for @, we need to introduce a few

extra assumptions. Due to limited space, going forward, we defer the required assumptions in later
theorems to Appendix.

Let us denote X5(0) = Hy(0)'V;(0)Hy(0) ™', where Hy(0) = VE)EZND(@)E(Z; ) and V;(0) =
Cov, ps) (Vol(2;0)). And recall that G(0) = arg min, E, p@t(z:0).

Theorem 3.4 (Central Limit Theorem of @). Under Assumption|3.1|and ife < %, then for any
given T > 0, we have that for all t € [T),

V(@ — 6:) B N (0,7)

with
-

E91'71 (91)

V=Y [H vG(0,)

i=1 Lk=i

[Iveo,
k=i

In particular, VG (0r) = —Hg, (0x+1) " (v‘;Ezw'D(gk)v.gé(Z; 9k+1)), where V5 is taking gradient
for the parameter in D(f), Vg is taking gradient for the parameter in {(z; 6) and Hi;lt VG(0y) = I

Estimation of VG(6,), V; Given the established CLT for 5,5 in order to construct confidence regions

for 0, in practice, the only thing left is to provide an estimation of VG (6;) and V; with samples. In
previous results, with a more detailed calculation, we obtain

VG(0k) = —Hp, (Ok41) "E.up(on) [Vol(z, 0uy1) Vo log p(z, 0k) T].

where p(-, 0) is the density function of distribution D(#), and the score function Vg log p(z, 6) is
thus a d-dimensional vector (recall that 6 is of dimension d). In order to estimate it for any 6, we
propose a novel score matching method. Specifically, we use a model M (z, 0; 1) parameterized

by ¢ to approximate p(z, #). Inspired by the objective in [[14], for any given 6 (e.g., 6;), we aim to
minimize the following objective parameterized by v for all 0:

J(0:4) = / p(2,0)[| Vo log p(z. 6) — (= 0:0)|%dz

— /p(z,&) (HV@ log p(z, 0)”2 + |1s(z, 6; w)H2 — 2V logp(z, O)Ts(z, 0; w))dz



where s(z, 0; 1) = Vg log M (z,0;). If we can learn a ¢ so that s(z, 8; 1) = Vg log p(z, 0) for all
6, then we can reach the minimum J(6; ) = 0.

Notice the first term is unrelated to 1); the second term involves the model M that is chosen by us, so
we have the analytlcal expression of it. Thus, our key task will be estimating the third term, which
involves K(0; 1)) := [ p(z,0)Vqlogp(z,0)" s(z,0;¢)dz.

We remark that in our setting, instead of taking the gradient at z, we have new challenges in taking
the gradient at 6. So, we derive the following key lemma.

Lemma 3.5. Under Assumption[A.2] we have
d

K(e;w)zz[ o [ e TR E e [(e, g TR,

900 a00) 9002
where 01 is the i-th coordinate of 6.

Based on the lemma, we propose a novel gradient-free score matching method with policy pertur-
bation to estimate IC(@; ¥) for any ¢t € [T]. Policy perturbation is a commonly used technique
in estimating the policy effect under general equilibrium shift [22] or interference [32]]. Instead
of just getting samples for @\t for each ¢, we additionally sample for all perturbed policies in
{@ + nel,éA?t + neg, -+ ,@‘\t + neq}, where 7 > 0 is a small scalar at our choice and {e;}; are

standard basis for R?. Typically, for a policy 6, its dimension d is low. One concrete example in

practice is to use slightly different price strategies in different local markets.

9% log M (=.0,:%)
06(1)2

82 log M (z4,,043) . 9 7\ dlog M(2,0:59) .
e.g. Zj | T And for the derivative 555 [ p(24,5, 01) =2 550 dz, if we draw

additional k samples {252}521 for each perturbed policy b, +ne;, we can use the following estimator:

Specifically, the term f p(z, Gf dz could be easily estimated by using empirical mean,

1 (1 Xk:alogM(zt(fi@Jrnei;w _7zé‘logM Ztuaetvw)>

n\ k= 900 900

Combining the above, we have a straightforward way to estimate G(6;) and V; for any ¢ € [T] by
plugging in the empirical estimate. Let us denote the estimator of V; by V;. Then, we would have

V20— 6,) BN (0, 1) @)
if the model M (z, 6; 1)) is expressive enough.

Theoretical validity of estimation. Now we prove that the policy perturbation method provides a
valid estimator of VG(6y,). Recall that the gradient of G is given by

VG(Ok) = —Ho, (Ok+1) " 'Eo,[Vol(2; k1) Vo log p(z, 01) '],
and the estimator is defined by
gk = —Hg (§k+1)_1IAE§k [Vol(2:0141)5(2, 05 5(01)) ]
Theorem 3.6. Under Assumption A9 and[A.T1| we have
1 1
VvVn ny/min(n, k)

where a,, = o(1) is a vanishing optimization error term defined in Assumption @d ).

Gk — VG(0k)|I” = Oy( + 1+ ay).

The proof is by decomposing the error between the empirical and true gradient into several com-
ponents, where each varies in whether it uses empirical or population quantities. We bound the
deviations between the true parameters 0, 61 and their empirical counterparts Qk, 9k+1 us-
ing Theorem |3.4] We bound the true score function and its estimation via a uniform bound of
IV 1ogp(z,0) — s(z 0,1(0))||* over the perturbed policies using Theorem[A.13] Taken together,
the above result shows the consistency of g obtained by policy perturbation.



3.2 Bias-Aware Inference for Performative Stable Point

Finally, we further provide a way to construct the confidence region for fpg. This is directly followed

from our previous results on building CLT for é\t By the convergence results derived for the
underlying trajectory by [25]], under Assumption 3.1} we have

g
16, — es] < (f) 160 — frs |

Thus, we can immediately obtain the following corollary by using bias-aware inference — a commonly

seen technique in econometrics [3} 14} [15} 23]].

Corollary 3.7 (Confidence region construction for fps). Under Assumption B} [A 1) [A2] and[A.3] if
for any ¢ € (0, 1), we can obtain a confidence region Ry (n, 8) for 0; by using Eq.[2| such that

lim P (et e Ru(n, 5)) —1-4

n—oo

Moreover, if 0, 0ps € {0 : ||0]] < B},

lim P(0ps € Re(n,8) + B(0, 23(55) ))=1-4

n—oo

Corollary provides a way to construct the confidence region for the performative stable point
based on the confidence region for 6;. Notice that the derived new confidence region is quite close

to ﬁt (n, 0) and the difference vanishes exponentially fast as ¢ grows. Thus, we expect the derived
region to be quite tight for moderately large ¢, meaning:

n—oo

lim P(0ps € Ry(n,6) + B0, 23(55) ))~1-6

For the condition 6y, fps € {0 : ||0]|| < B}, it will be natural to satisfy and we can get an explicit and
feasible upper bound B under mild conditions. It is because that 6 is at our choice and we can further
derive an explicit and feasible upper bound for ||fps|| by using the strong convexity. Specifically, by
~-strong convexity of the loss function with respect to 6, we have

(E.up(rs) Vol(2500) — E.op(ors) Vol (2 9Ps))T(90 — Ops) > 160 — Ops]|”-

Since E, p (Ops) V@K(z eps) = 0, this leads to H]EZND gPS)ng(Z 90)” Y H90 — eps” Thus, if
we further have sup, . z || Vol(2;60)|| < B for B>0, Wthh could be achieved and calculated by
assuming Z is compact and use the continuity of Vol(-, 6p). Then, it will immediately give us an
upper bound for ||0ps | that ||0ps|| < B/~ + ||6o]-

4 Prediction-Powered Inference under Performativity

In this section, we further investigate prediction-powered inference (PPI) under performativity to
enhance estimation and obtain improved confidence regions for the model parameter (i.e., policy)
under performativity. This can also address the data scarcity issue in human responses when doing a
survey to get feedback on policy implementation.

Specifically, at time ¢ = 0, besides the limited set of gold-standard labeled data {z¢ ;, Y0, }:2;

that are i.i.d. drawn from a distribution D(6,), we have abundant unlabeled data {z{ ,fvz‘)l that are

i.i.d. drawn from the same marginal distribution as gold-standard labeled data, i.e. Dx (6y), where
Ny > ng. In addition an annotating model f : X — ) is used to label data El, which leads to

{z0,is f(w0:)}i2 and {x ,, f (g )}Yo, . Then, we use the following mechanism to output

n

P () = argemm ﬁl ;é(zo,m f(zg,);0) + - Z (€(z0,i, 90,63 0) — MLl(xoi, f(x0,);0))

=1

2Qur theory can easily be extended to allow using different annotating function for each iteration, but for
simplicity in presentation, we use f for all iterations.



for a scalar \; as an estimator of 6;. After that, for t > 1, at time ¢, besides having access to the set of
gold-standard labeled data {x¢ ;, y¢ ; } it 1 that are i.i.d. drawn from a distribution D(6;). Meanwhile,
we have abundant unlabeled data {z} } —, that are i.i.d. drawn from the same marginal distribution
as gold-standard labeled data, i.e. DX (Qt), where N; > n,. Similar as before, we can estimate 6,1
via

n

A 1
Oy (\es1) = arg min t+ Zf tir [ (@) 0)+ - Z (C(ti, Y155 0) = Xegr £ (e, f(04);0))
i=1 i=1

for a scalar A;41. This incurs a trajectory in practice: 6y — gfpl()\l) — @;PI()\t) — -+ -. Notice
that if we choose \; = 0 forall ¢ € 7] this will degenerate to the case in Section Later on, we
will demonstrate how to choose {\;};_; via data to enhance inference. Our mechanism could be
adaptive to the data quality with carefully chosen {)\;}7_; and could be viewed as an extension of the
classical PPI++ mechanism [25] to the setting under performativity.

Building CLT for 6P%'(),). We start with building the central limit theorem for 6PP(\;) with fixed
constant scalars {\;}7_, for any ¢ € [T]. The proof is similar to that of Theorem Specifically,
we denote

£0(0im) = Hy0) ™ (rV](0) + V, 5(6)) Hyl0)
with VA{ 5(0) = N Cov, 15 (Voll(x, f(2);0)) and V, 5(0) = Cov, . ps (Vollz,y;0) —
AVol(z, f(z);0)). Then, we have the following theorem.

Theorem 4.1 (Central Limit Theorem of @f PL(\)). Under Assumption and ife <3
and § — r for some r > 0, then for any given T' > 0, we have that for all t € [T,

VB = 0) B A0V (.07

with
: T

VI (N, 05 ) =)

i=1

t—1

[Ivéen

k=i

t—1
Z>\i70i—1 (ei; ’I“) [H VG(ek)
k=1

Selection of parameters {);}7_,. Now, the only thing left is to select {\;}7_;, so as to enhance
estimation and inference. As choosing A; = 0 for all ¢ € [T] will degenerate to Theorem (3.4} we
expect that we appropriately choose {;}/_, to make F/(V;) > F(VFP({);,0;}5_;7)), where F is
a user-specified scalarization operator depending on different aims. For instance, if we are interested
in optimizing the sum of asymptotic variance of coordinates of 6, then, F'(V;) = Tr(V;). Or if we
are interested in the inference of the sum of all coordinates 8, i.e., 17 ;, then F' W) = 1TV,1.

We consider a greedy sequential selection mechanism as follows. Imagine that we have selected
{\r}!Z] via the data, and our aim is to select a A} so as to make F' (VPPI({)\ }] LA O5T)) =
(thpl({/\J ,0;}5_y;7)) for any X. Thus, we choose

A= argminF(VtPPI({)\ }] 1,>\ 0; )) &)
A

However, in practice, there are still several issues that need to be addressed. First, we need to choose
{\¢}1_, via observations, and this could be handled by using our results in Section [3|to estimate

VoG(6), and we obtain a sample version Xt by plugging in the estimation. Second, when obtaining
A; in Eq. I we actually need 6, in £y, o, , (6;; 7). But when using samples to estimate, we need to
get )\t first before we obtain §PPI Thus We propose a similar optimizing strategy as inspired by [1]:
at time t > 1, given the obtained {);}*~1 and {#"P'}'=], we choose an arbitrary X, to obtain #*?(X)
as a temporary surrogate ﬂ Then, we further obtain

N = argmlnF(VPPI({)\ APPI( )}; 11, A0 APPI(/\)' %)),

VRRA]

3Notice that 0" 1() is still a consistent estimator of 0;



where VPPl is obtained via replacing VG /(6),) with their estimation in VP! In particular, if F
satisfies F(U + V) = F(U) + F(V) as our examples of F(V;) = Tr(V;) and F(V;) = 1T V;1, then

we only need to optimize F' (Z‘/\ P Ges) (B, (N):; %))
Wi—1\ M=

To sum up, by the above process, we have the following corollary.

Corollary 4.2. Under Assumption and @ ife < % and 5 — r for some r = 0,

then for any given T' > 0, we have that for all t € [T,

_1
GPPI( (. DPPI(Y . 2 /m(0r (N D
<Vt ({/\]70]‘ (M) Y= N n (677 (Ae) — 0;) = N(0, 1a).
t=2 t=3 t=4
1.0 P 1.0 1.0
2 B i T,
0. 0.9 = 0.9 > aasane
‘é, e ?‘;’“" ==
Sosl 7 0.8{ 7 0.8 ,
3 === A=0(fps) == A=0
0.7 0.7 0.7{ === A=1(6ps) —A=1
greedy (6ps) greedy
0.6 0.6 0.6
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Figure 1: Confidence-region coverage (top row) and width (bottom row) with different choices of
A. The left, middle, and right columns correspond to inference steps ¢ = 2, ¢t = 3, and t = 4,
respectively. The solid and dashed curves correspond to the confidence-region coverage for 6, and
Ops, respectively.

5 Experiment

In this section, we further provide numerical experimental results to support our previous theory. A
case study on a semi-synthetic dataset is provided in Section[B.3]

Experimental setting. We follow [20] to construct simulation studies on a performative linear
regression problem. Given a parameter § € R?, data are sampled from D() as

y:aTx+/1'T0+Va mNN(Mm;Ex)v VNN(an—g)'

The distribution map D(0) is e-sensitive with ¢ = ||i||2. For unlabeled z¥, the annotating model
is defined as f(z}') = o' a} + p' 0 + vy, v; ~ N(—0.2,07). We use the ridge squared loss to
measure the performance and update 6: £((z, y); 0) = $(y — 0" z)? + Z|6]|%. For easier calculation
for smoothness parameter, we truncate the the distribution of (z,y) in our experiment to deal with
truncated normal distributions, but this is not necessary in many other choices of updating rules. In
the following experiments, we setd = 2, € ~ 0.02, v = 2, and 05 = 0.2. We set N = 2000 and vary
the labeled sample size n.

Simulation results for PPI under performativity. To quantify the results of PPT under performativity,
we evaluate the confidence-region coverage and width for three strategies: A = 0 (only labeled data),
A = 1 (full unlabeled data weight), and our optimization method A = \; as defined in Eq We
vary the labeled sample size n and perform ¢ € {2, 3,4} repeated risk minimization steps, averaging
results over 1000 independent trials. In Figure [T we can find that all three methods approach
0.9 coverage as n grows, while our optimized A, (orange) achieves the narrowest interval width,
supporting its effectiveness to enhance the performative inference. The dashed curves denote the
bias-adjusted confidence regions for the performative stable point fpg. It can be observed that fpg
coverages upper-bound that of 6; (solid curves) across steps ¢, and the gap between them vanishes as
t grows. This observation verifies the validity of Corollary 3.7}

Verifying central limit theorem. To validate the central limit theorem, we sample different @‘\t (here
t = 4 and n = 1000) and visualize the distribution of Vt_l/ 2\/77(9,5 — 6;). We plot the density map
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Figure 2: Visualizations to verify the Central Limit Theorem. (a) plots the density map of sampled
Vt_l/ */n(8; — ), while (b) compares the observed distribution with theoretical one A/(0, I).

in Figure 2a] and find it is close to a normal distribution. In Figure 2b] we further do a normality
test with the multivariate Q-Q plot of observed squared Mahalanobis distance over theoretical Chisq
quantiles. The tight alignment of points along the identity line (red dashed) verifies that the observed
distribution is well-approximated by its asymptotic CLT.

Estimation results of score matching. We consider two implementations of the gradient-free score
matching estimator M (z, 6;):
(a). Gaussian parametric: we assume p(z, 0) = N'(u,, 3,) and parameterize ¢ = {u,, X, };
(b). DNN-based: a small deep neural network with two hidden layers of width 128.
We collect é\u trajectory and corresponding data {let,i}?zl to train both models via the SGD
optimizer with a learning rate of 0.1 to minimize the empirical score-matching objective J(1)).
In Figure 3] we evaluate the estimation quality of two models by their final training loss J () and the
estimated variance error ||V; — V;|| over varying n and ¢. We sample 1000 independent trajectories of

61.; and report J(v)) as averaged J(6; ) over all € in the collection of trajectories. In all settings,
both estimators achieve J(¢) < 0.05, indicating the perfect approximation of our learned model
M (z, 6;) to the true p(z, 6). Correspondingly, the variance-estimation error remains negligible and
decreases as n grows, verifying the feasibility of using our score matching models to fit V¢ log p(z, 6)
for estimating VG(6y,) and V;.

V-V, V-V,
J(p) Ve = Vel 0.0071 J(y) Ve = Vel
— t=1 | 0015 — t=2 /No— | o015 — t=2
0.03 t=2 t=3 — t=1 t=3
— t=3 — t=4 0.0070 t=2 — t=4
— =g | 0010 — =5 =3 | 0.010 o
0.02 t=5 —_— t=4
0.005 0.0069 — =5 | 0,005
0.01

500 1000 1500 2000 500 1000 1500 2000 1000 2000 1000 2000
n n n n
(a) Gaussian parametric model. (b) DNN-based model.

Figure 3: Evaluating the estimation quality of two designed score matching models.

6 Conclusion

In this paper, we introduce an important topic: statistical inference under performativity. We derive
results on asymptotic distributions for a widely used iterative process for updating parameters in
performative prediction. We further leverage and extend prediction-powered inference to the dynamic
setting under performativity. Currently, our framework uses bias-awared inference for fps. Obtaining
direct inference methods will be of future interest. Our work can serve as an important tool and
guideline for policy-making in a wide range of areas such as social science and economics.
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A Theoretical Details

We will include omitted technical details in the main context. We first summarize all the required
additional assumptions in Section[A.T] Then, we provide omitted proofs for Section [3]in Section[A.2]
and omitted proofs for Sectiondin Section

A.1 Assumptions

In this subsection, we summarize all the additional assumptions we will use to build various theoretical
results in this paper. Before we state the assumptions, we need some further notations.

Let us denote ¥(6) as the collection of minimizers of [ p(z,0)||Vglogp(z,0) — s(z,0;)||*dz for
the given 6. We further denote the empirical estimation function for the two terms, i.e.,

[ 96 0) stz 850 ~ 2V logp(z.6) T s(2,650) )

as jnk (; 0) following the methods in Sectionfor any 6 in the trajectory {@}thl where n and k
are the number of samples we get at each iteration for 6, and perturbed policies.

Meaning of each assumption. Assumption is used to establish the asymptotic normality of
our estimator under performativity. Additionally, we use the fact that the population loss Hessians
H;(0) = VgEZND(é)E (z;0) are positive definite, which is guaranteed by the strong convexity of
the loss function (Assumption [3.1). Assumption [A.2] and are used in the analysis of score
matching. Assumption[A.7] based on the differentiation lemma [18], ensures the interchangeability
of integration and differentiation. Assumption[A.3|guarantees the consistency of the score matching
estimator. Assumption[A.4]and[A.5|parallel to Assumption [3.1(a) and[A.T} and are used to establish
the consistency and asymptotic normality of our PPI estimator under performativity. Conditions
such as local Lipschitz continuity and positive definiteness are standard for establishing asymptotic
normality. Similar assumptions are also imposed in [[1]].

Assumption A.1 (Positive Definiteness & Regularity Conditions for the Estimator). We assume the
following.

(a). The loss function satisfies the gradient covariance matrix is uniformly bounded below:
V5(0) = Cov, _p@) (Vol(2:0)) = cI,
for any 0, where ¢ > 0 is a constant.
(b). For any sample size n, assume the M-estimator 5,5 has a density function with respect to the
Lebesgue measure, and its characteristic function is absolutely integrable.
Assumption A.2 (Regularity Condition for M). Assume that for Vi:
0log M(z,0;)
0000
(b). For almost every z € Z (with respect to Lebesgue measure), the partial derivative
0 Olog M (z,0;)

(a). The function z — p(z, 0) is Lebesgue integrable.

exists.

(c). There exists a Lebesgue-integrable function H (z) such that for almost every z € Z,
0 0log M(z,0;)

' 200 [p TG

Assumption A.3 (Consistency of Optimizer). We let k grows along with n such that n — oo leads
to k — oo. We assume that the class M (z, 8; 1)) is rich enough that for all § € ©, there exists ¥* ()
such that M (z, 0;1*(6)) = p(z, §). Moreover, for the underlying trajectory {6;}7_,,

< H(z).

lim argmin j\nk('l/)yat) CU(h,).

n—oo w
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Assumption A.4 (Local Lipschitzness with f). Loss function £(z, f(z); 6) is locally Lipschitz: for
each 0 € ©, there exist a neighborhood Y (¢) of 6 such that £(z, f(z);6) is L/ (z) Lipschitz w.r.t 6
forall @ € Y(0) and E,p, (o) L' () < oo.

Assumption A.5 (Positive Definiteness with f & Regularity Conditions for the PPI Estimator). We
assume the following.

(a). Assume the loss function satisfies the the gradient covariance matrices are uniformly bounded
below:

V(0) = Cov, _p (Vol(20)) = cl, Véf(a) = Cov, p, @) (Vol(z, f(x);0)) = cI,

for any 0, 0, where ¢ > 0 is a constant.
(b). For any sample size n, assume @’PI has a density function with respect to the Lebesgue measure,

and its characteristic function is absolutely integrable.

A.2 Details of Section[3; Theory of Inference under Performativity

We provide the omitted details in Section 3]

A.2.1 Consistency and Central Limit Theorem of @

Let us denote:

n

Ls0):=E, pgt(z0), Lg,0) = %ZE(ZZ-; 9),

i=1
where the samples z; = (;, y;) ~ D(f) are drawn from the distribution under 6.

Proposition A.6 (Consistency of @, Restatement of Proposition . Under Assumption if
€< % then for any given T > 0, we have that for all t € [T),
0, 5 6,.

Proof. Let us denote G(6) := argming e = > i (256’ ) where the samples z; ~ D(0) are drawn
for some parameter # along the dynamic trajectory 6y — 01— -0, — -

16 — 8:]l = [G(0:—1) — G(B:—)|
<||G(@—1) — G (B, 1)||+\|G(et D) =GBl

<[IG(Br-1) = G(Br)| +s;\|em — 4],

where the last inequality follows from the results derived by [25]], under Assumption[3.1] we have
IG(8) = Gl < L6~ ¢-

Notice that IE](E@/i1 L(0) =L

5., (). By local Lipschitz condition, there exists €9 > 0 such that

P

sup L5, . (0) — L5, (0)] — 0.

e 01
0:]10—G(0:-1)lI<e0
Since ¢ is strongly convex for any 0, G (@_1) is unique. Then we know that there exists § such that

L . (0) =L (G(B,—1)) > dforall§in {6 ]]|§ — G(B,_1)| = =0}. Then it follows that:

inf Ly . (0)— L5 ' (G(‘/g\tfl))

= 0i_1,n
10-G(@r-1)l=e0 "

= inf Ly 0)— Ly (0)+ (L5 (0)—L; (G(Bo
ot (L - £, 0) + (65, 0) = £ (GG))

(L, (CO) ~ L5, ,(CO-))
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2(5 - Op(l).

Then we consider any fixed 6 such that ||§ — G(6;_1)|| > & it follows that

L5, 0 (0) = L5, (GBi)) > 02((?1)) (€)= L5, 0 (G0-))
. W@ —0p(1)) > 0 — 0p(1),

where the first inequality holds for any w by the convexity condition of ng_l ,,(0), and the second

0— G(@ 1)
16—G(B:—1)l

that ||0 — G(é\t_l)H = €o can be the minimizer of L5, (6). Then ||G(§t_1) - @(ét_l)H o

inequality holds as we take w = eo+G (@_1) and using the above result. Thus no 6 such

We then have, for a given T' > 0, we have that for all ¢ € [T,

t
i ooy P
16: — 6] < Z t||G - G(6:)] —0
1=0

Thus, we conclude that §t L, 0;. [ |

Theorem A.7 (Central Limit Theorem of 9f, Restatement of Theorem. Under Assumption 3.
and. lf&‘ < 2, then for any given T > 0, we have that for all t € [T),

V(B — 0:) 25 N (0,V,)
with
E9«;71(9

t—1 T
[Ivan
k=i

In particular, VG(0y,) = —Hp, (041) " (V@EZND(gk)Vgé(z; 0k+1)), where V is taking gradient
for the parameter in D(0), Vy is taking gradient for the parameter in {(z; 0) and Hz;lt VG(0x) = 1.

V=Y [H VG0,

i=1 Lk=i

Proof. LetU, := \/ﬁ(@ — 6;) and denote 0, =G (@,1). We make the following decomposition:
‘/g\t_et = (ét —9t)+(§t—ét)-
—_—— —
(D @)

Step 1: Conditional distribution of U;|U;_;.

For term (1), we have

Vil = 0:) = V(G (B:-1) — G(B;-1)).

For term (2), the empirical process analysis in [1]] establishes that

Vi@, —6) | 81 B N (0,55, (1)),

where the variance is given by

%5, .0 = Hg, (0)"'V;,  (60)Hg, ()"

0r—1

Conditioning on @;_1 and considering the distribution D(@\t_l), for any function h, we use the
following shorthand notations:

1 n
Enh = — D h@iy)s Guhi=vnEh =B, o pp k().
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Note that §;, = G(@\t,l). Recall that

n

1
L;(0) := E  Uz,y;0), L;, :=— 0(x;,y5;0), where (z;,y;) ~ D(0).
¢ (2.9)~D(8) fn ;

Under the assumptions, Lemma 19.31 in [31]] implies that for every sequence h,, = Op(1), we have

= I ) ]
Gn [\/ﬁ (12(3:, yibet o) =y ﬁt)) = hy, Vol(z,y; 90} =0

Applying second-order Taylor expansion, we obtain that

Py b,y 9})) =n (ﬁgtl(ét + \h/”ﬁ) - ﬁatl(ét)>

E N )
ni, <E($,y,9t + \/»
Jrh G Vgﬁ(o:,y;ét)Jrop(l)

2hIH (ét)hn + hIGané(z, Y; ét) + 0,(1).

Set hiy, = \/n(0; —6,) and hy, = —Hj_ (0,) "' G, Vol(, y; 0;). Corollary 5.53 in [31] implies they
are Op(1).

Since 6, is the minimizer of £ . the first term is smaller than the second term. We can rearrange
the terms and obtain:

1 * n *
5 (= ) THp,_ (00)(hy, = hn) = 0p(1),
which leads to hY — h,, = Op(1). Then the above asymptotic normality result follows directly by
applying the central limit theorem (CLT) to the following terms, conditioning on 6;_1:

V(8 —6:) | 611 = —Hp,_ (6)7'S +op(1),

\/72 Vol( xtuytz;er‘) E [ng(x,y;ét)]).

(z,y)~D(0:-1)

Note that, conditioning on é\t_h (1) is a constant. Therefore, (1) and (2) follow a joint Gaussian
distribution. Consequently, given U;_1, the conditional distribution of U; is given by:

Uy | Uiy = V(0 — 04) | 0,21
:\/ﬁ(ét—at)‘ﬂf@—ét) \@s 1
= /(G (B1-1) — G(:-1)) + V(0 — 6) | 6,
N (VAGO-1) - GOi-1), 55, (B1)) -

:N(m (2

For later references, we denote Uy | Uy EEN N(pu(Ui=1), 2(Ug-1)).

Step 2: Marginal distribution of U;. We calculate the characteristic function of U; by induction. To
begin with, we directly have

% +9H))> .

1) = GO Do,

(G(

X1 B N0,V1), Vi=Sg0).

Now, assume that U;_; =NyVs (0, Vi_1), we derive the joint distribution of (Uy, U;_1) and marginal
distribution of U;. Then we have, the characteristics functions ¢ and the probability density function
p of distributions U;_; and Uy | U;_1 follow:

1 T
(27_‘_)(1/6” “ou,_, (2)dz,

1
¢Ut—1(5) — ¢N(0,Vt—1)(5) = exp(iisTVt—ls)v pr,—l(u) =
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. 1
Du, 10,1 (8) = ON(u(Us_ )2 (Wr_1)) (8) = exp(isT p(Uy—1) — gst(Ut—l)S)-

Then we have
¢Ut (S) — EeisTUt _ E(E(eisTUf, | Ut—l)) = EUt—1¢Ut|Ut71(S | Ut—l)

= /¢Uﬁ‘Ut71(s ‘ u)prfl(u) du

:/¢Ut‘Ut—1(S ‘ U)ﬁ/e—izjru ¢Ut71(2’) dz du
B # // ¢Ut‘Ut*1(S | w) du,_, (%) e_izTu dz du

exp is' (Ui—1) — (Ut 1)8 ) exp( 1Ty, 1z) e~ % dy du

zs ,uUt 1) — (Ut 1))(/exp( LW iz2—iz u)dz)d

Il
\

zs wUi—1) — L s"S(U,_1)s )

X
—

27
/cxp (=2 u"VZ u) exp(—1 (2 — V2 hiw) TVia (2 — Vi) dz)du
1

ol

LTV ) du

- (is" w(Up—1) — £ s "S(U—1)s)((2) 9

L
e
det Vi, P

1
= ——F———— [ exp(is ,U(Ut 1)**5 S(Us- 1)5**UTVt 1u)du
(2 ) det|Vt 1|/ 2

Apply dominant convergence theorem to lim,,_, o, ¢y, (s), we have:

S S T Ly _ L
nh_)n;()(bU( )_nh—{gc( D E et Vi) /exp(zs w(Us—1) 55 3(Ui—1)s 5 U Vi—iu)du
:hm—/e (isT 1) — G(6;

n—00 (27’(’)2 det|V} 1| p \/>( ( \/> ) ( ! 1))
1, Uy 1,
_55 EU:rl‘f'e (G( \/» +0;_ 1)) iu Vt_lu)du
U
T t—1
T Br— im exp(is _1) — G(6;—
T (et det|Vt 1|/Mo plis V(G )= G0)
1, Up 1,
_53 EU‘fl+9t_1(G( NG +6i-1))s — iu Viciu)du

1 .T 1T 1T
=———— [ exp(is" VG(O,_1)u — =s" By, ,(G(0i—1))s — —u" Vi_1u)du
T e ] P VE O 5T (GO~ Vi)

1 1
= eXP(_§3TVG(9:&71)Vt+1VG(9t71)TS - isTEUt—l(et)s)v

which is the characteristic function of N'(0, V;), where V; = VG (0;_1)V;_1VG(0;_1) T +30, . (6,).

Here we use the fact that lim,, o, /1 (G(ﬁ +6;1)— G(@t,l)) = VG(6;-1)y, and the domi-
nant convergence theorem holds as we have

U
|expis” Vi(G(—7= +01-1) = G(6r-1))
1, U1 1
- 5% Eutflwt I(G(W—Fetq))s U Viciu)| < |exp(—=u’ Vi_qu)|

Thus we conclude by induction that

U, 2 N (0,V),
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t

=y

i=1

t—1

[ VG

k=1

291 1

HVGek]

And by the theorem of implicit function, we can calculate the gradient of G as follows

-1
VG(0) = [(V b, )E (9)€($,y;¢))|¢_c(e)] (vwvé(m,y)@D(Q)( U 0)) lp=c(o)-

-1
VG()) = vzax,y;am)} (Vo E_ Vel(w,yibes)

|:
(z,y)~D(0k) (z,y)~D(0k)
9k( k+1) ( 0( i )N (9k) 6 (xay7 k+l>)

= —Hy, (Ox41) " "Eop(o,)[Vol(2, 0ks1) Vo log p(z, 0) .

A.2.2 Score Matching

In this part, we provide details about our score matching mechanism.

Given that
VG(0k) = —Hp, (Ok41) "Eoup(on) [Vol(z, 0k 41) Vo log p(z, 0k) ],

once we have a good estimation of Vy log p(z, 0) for all z € Z, VG(0y,) could be easily estimated
by samples.
Recall that we use a model M (z, 0; 1)) parameterized by v to approximate p(z, §). Inspired by the

objective in [14], for any given 6 (e.g., 6;), we aim to optimize the following objective parameterized
by .

56:6) = [ p2.0)Vologp(z.0) - sz, 6: )Pz
— [ 9.0 (IVo1ogp(=.0)[F + Iz, 6: )| ~ 2V logz,6) (.65 ) )=

where s(z,0; 1) = Vg log M(z,0;v).

As mentioned in the main context, the first term is unrelated to ¢; the second term involves model M
that is chosen by us, so we have the analytical expression of s(z, 8; ). Thus, our key task will be
estimating the third term, which involves K(6; 1) := [ p(z,0)Vqlogp(z,0)" s(z,0;¢)dz.
Lemma A.8 (Restatement of Lemma[3.5). Under Assumption we have

d

L 0 Olog M (z,0;) 0% log M(z,0;)

where 01 is the i-th coordinate of 6.

Proof. Recall that 6 is of d-dimension.

d
dlogp(z,0) Olog M (z,0;v¢
/p(Z,Q)Vg logp(Z,G)TS(Z,G;@/J)dZ = Z/p(zve) 89((1) ) ’ 69((1) )dz

B Z/ alogp (2,0) 810gM(Z,9;¢)dZ
09() 06

_Z/asz _810gM(291/J) &
20 06
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Then, we study [ Op(2,0)  Dlog M(2,01%) j. {jpder Assumption the integral and differentiation

2601 90D
of the following equation is exchangeable, i.e.,

9 OM(z,0:0) [ p(z,0) IM(z,0;%)

39@/ GO0 == | g0 opm

According to integral by parts, we have

Op(z,0) OlogM(z,0;¢) 0 OM (2, 0; ) 0%log M (z,0;1))
00 a0 T g / P 00w 42— / P00z 4
Thus, our proof is completed. n

The rest of the estimation process via policy perturbation is provided in the main context in Section 3}

The other part omitted in Section 3]is the details about Eq. 2] that
V2, —00) BN (0. 1)

Here ‘A/t denotes the sample-based estimator of the variance, obtained by plugging in the empirical
Hessian and empirical covariance matrices:
V30(2;60;), Cov

H; (0,)=E

001 2~ D(0r_1) ZND(@,l)(VHK(Z?Gt»v

as well as the estimator for VG (@_1):

—Hy, (0)7'E, _p, [Vel(z 0:)Velog M(2,8,1,4)7],

where 1Z is obtained by minimizing jnk

Eq.[2]is a direct result following Slutsky’s theorem. Assumption [A.3] makes sure the empirical
optimizer set can converge to the population optimizer set. Then other parts such as estimation of the
Hessian matrix etc. could all be directly obtained by standard law of large numbers. Thus, we can
directly use Slutsky’s theorem to obtain Eq.[2]

A.3 Policy Perturbation

In this part, we prove the validity of gj, as an estimator of VG(6y,). Recall that we have s(z, 6;¢) =
Volog M(z,0;4) and we further denote s; = %
E. . p(s) and empirical expectation E__ 5 ) respectively.

, and use [Eg, H/‘ig,n for the expectation

Firstly, we define the following function families:
Fro:={s(-,0;¢) : ¢ € ¥},

i 0
Fyy o= {ggmsi(-0:0) 1 € W),
(

)
Fyly 1= {si(0:9) s € U},

.

)

Further, we set

d
To05) - = Bonlls(z, 0507 + Bo [ Vo 0gp(z, O] + 23 [Bon oy sz )]
i=1
-2 Z <]Ee+ne< e [5i(2, 0 + @5 9)] — g [5i(2, 6; w)}),

d
Tn(0;) : = Eoll|s(2, 0;9)|1”] + B [|| Vo log p(z, 0)[*] +2 [Ee[%sxz,e;w)}]
=1
d

232 (B a0 160 03] .0 )

=1
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Assumption A.9. We assume that the score function s, distribution map D and the corresponding
function families {F7 g, ]-"2(%, fé% :4=1,...,d} has the following properties:

(a). There is a positive constant C' > 0, such that for V6 € 6;¢ € U,

0

| 5z Bolsi(z,0;9)]| < € < oc.

(b). (Enveloping function) For V0 € ©, there is a function Hy(z), such that E¢[Hy(2)?] < oo, and
for any function f € Fi 9 U(Ulefz(fg) U(Uleféfé), we have

[f(2)| < Ho(2)

(¢). (B-uniform Donsker) Let N'(g, F,|| - ||) denote the covering number, that is the minimal number
of || - ||-balls of radius € needed to cover the set F, there exists p(e) > 0, such that

/01 Vv p(e)de < oo,

and
sup sup log N (e[| Ho (2)l| @ ,2, Fo. L2(Q)) < ple),
0ce Q

where Fy € {F1.9, ]-'2(2, }'éfg :i=1,...,d} and Q is any distribution on Z.

(d). (Vanishing optimization error) There exists a,, = 0(1), such that

(). (Richness of class) There exists 1)*(6) for each 0, s.t.

s(z,0;9"(0)) = Vg logp(z,0).
Remark A.10. Assumption .c) holds with p(e) = C'log % when Fy is a VC-subgraph class for
all Fo € {Fro, Fo, Fap i =1,...,d}.
Assumption A.11. Assume that the following conditions hold:
(). (Smoothness) H;(0) is L-joint smooth in (6,6) for some L < oc.
(b). There exists C' > 0, such that

supEj [Vol(z;0ps)] < C < 0

é

Lemma A.12. Under Assumption[A-%a), we have
sup [J(0;9) — Jn(0;)] < 2dCh.

051
Proof. By mean-value theorem, there exists (") € [0,n],1 < i < d, such that
J(0:9) — = 22 (EW() 51,0+ 1e®59)] = By [si(2,0:9) ) 22 W

0 N 0
=2 2 [W]Eemnem [Si(Z» 0+ 77(1)6(”; 1/1)]] -2 Z; [mEe [Si(zu 0; VJJ)]]

d

<2003 _ ")

=1
< 2dCh,

the first inequality follows from a direct application of mean-value theorem. |

20

(2,6;9)]]



Theorem A.13. Let ©4; = {5]7 @ +ne®:i=1,....d, j=1,...,T} UnderAssumption@
for Y0 € ©4, the following inequality holds
1 1

ettt ay).
Vo py/min(n, k) 7 )

Eo [||V1ogp(z,0) — s(z, 055(0))|*|(8)] = Oy

Proof. Fix 6 € ©, by Dudley s uniform entropy bound, c.f. Corollary 19.35 in [31], we have

Bp | sup | B [Is(2,0:0) 1] = Bo[ls(z, ) il E %
0 0 ] 1
Eo| sup |Eo,n 0 iz 0:0)]|| S ==,
g[sip oo g2 050)] = Bl gz 0:0) | < =
[ ~ | 1
Eg | sup | Egi[si(2,0;0)]1°] = Eo[llsi(z,6;0)I1°]|| S —=-
Since d, T = O(1), from the above results, the inequality below holds
1
sup su n.k(0; = —F—)
wegae@EJ #(659) = | \F ny/min(n, k)
by Lemma [A7T2] we know
~ 1 1
sup sup |Jnx(0;0)— J(6; =0p(—/=+ —F———+1). 4
weg ee(—)ld:,),T| #(0:9) ( ¢)| p(\/ﬁ n+/min(n, k) ") @

From Assumption d), we know that for any 6 € ©4 7,

wx 8:35(0)) < min T, 1 (6:0) + a.

Using Assumption e), we know that minycg J(6; ) = 0, and assume there exists
¥*(0) € argmingey J(0; ).

Take ¢ = ¢*(6) and " (9) respectively in inequality (@), we have

Tas(0:°(0) = O+ ez ),

T (0;9(8)) — Jn i (0;9(0))| = Op(% + ) + ).

Since fmk(e;&( 0)) < Jn k(6 ( )) + an, we have

~ ~

J(0;9(0)) = J(0;9(0)) — T 1(0;9(0)) + T (65 0(0)) — T (0507 (0)) + Tk (0; 0% (8))
1 1
:Op<ﬁ+m+n+an).

By definition of J(0; 1), we have proved

Eo[|V log p(z,0) — s(2, 6 4:(6))|[*[1:(6)] = O + 1+ an).

1
JE— + S —
VvV ny/min(n, k)

Recall that
VG(0y) = —Hp, (0r4+1) " Eo, [Vol(z; 0k+1) Ve logp(z,0%) '],

and the estimator is defined by

gk = ngk (5;64_1)711/@5&" [Vaf(z; §k+1)5(27é\k;1$(§k))T]-
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Theorem A.14 (Restatement of Theorem [3.6). Under Assumption[3.1||A.1} [A.9 and we have

1 1
.- VGOI?*=0,(— + ————— + + ay).
|Gk (Ox)]| p(\/ﬁ TN n )

Proof. By Assumption[3.1]

IV08(2:0141) = Vol (2 0x1)l| < Bl0s1 = Ol
by Assumption[3.1] there exists C; > 0, such that
| H, (Br1) | < C1 < o0
The proof falls into five parts.
Let R R A
i1 = —Hg(Ore1) g, [Vol(2:011)s(2, 01 9(0k)) T].
Step 1: Convergence of ||gi. — Gr.1]|-

We have N R o
19k = Gt ]l S 101 — Os|Bg, | [lls(2, O3 9 (0x)I]

1, ~ i o~~~
= —l0k+1 — Ol > s (zuk, O (0k)].
=1
From Assumption[A.9(b), there exists Cy > 0, such that
g, [lIs(z, 03 0 (01))]1?] < Ca2 < o,

by the law of large numbers, we know

1k = el = Op(llfrs1 — O],
thus combine the above result with Theorem 3.4} we have
[ = s = 0,72
Let R o
G2 = —Hg(Or11) "By, [Vol(z;041)5(2, 05 9(01)) ']
Step 2: Convergence of ||Gx.1 — gk 2||-

By Cauchy-Schwarz inequality, we know

Ej, [||Vol(z;0k1)s(2. 005 0(00)) T ||*] < Eg, [IVo(z: 00112 Eg, [15(2, 00 0 (00))|].

From Assumption[A.9(b), we have

Ep, [Is(z 8 9(00)) 7] < Eg, [H2 ()] < C < oo,

where Hj (z) is the enveloping function for Oy..

By Assumption 3.1}
IVol(z; Ok41) — Vol(2: 0ps)|| < Bll0k+1 — Opsl,
since
16041 = psll < (241160 — Bps] < 60 ~ O]
thus by Assumption[A:TT|b),

Eg, [IVol(2:0r+1)11%) < g, [IIVol(z:0ps)[*] + 1160 — Ops|* = O(1).

Hence we have o ,
g, [[[Vol(: 0k11)5(=, 0k 9(6x)) T[] = O(1),
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by Chebyshev inequality and Assumption this lead to the following bound of ||gk.1 — Gk 2]/

o~ o~

g, , [Vol(z:0k41)5(2, 0030 (01)) "] — By [Vol(2:0541)s(2, 0059 (01)) 7]

G - Gall < |

= Op( )-

vn
Let A
g3 = —Ho, (0h11) "By [Vol(2; 041)s(2, 0k; 0(0k)) ]
Step 3: Convergence of ||gi,2 — Jk,3/|- By Assumption|[A.T1{a) and (6), we have
1,2 = Grall S 1 Hoy (0s41) " — Hg=(Or1) 7|
= ||Hoy (6 11) " (Hoy (Oks1) — Hg- (k1)) Hy (Oi1) ™"

further, using Assumption 3.1 and [A-TT{a), we know

b

19k.2 — Gr3ll S 10k — Okl + [[Ok41 — Ol

thus by Theorem 3.4
1
19x,2 = Gr 3l = Op(—=).
AW

n

Let
s = —Ho, (0k11) "By [Vel(2;0141) Vo logp(z, 64)] .-

Step 4: Convergence of |G, 3 — gk 4||-
By Assumption [3.Tand Assumption[A7T] we have

2
(s — Geall® S {Eg [||W<z;ek+l>|| < (|52 85 9(62)) = Vo 1ogp(z,ek>||] }

<Eg, [[[Vot(z: 010)]]
x E5, [Hs(z, ék; 12(0/;)) — Vo logp(z, gk) ||2] (by Cauchy — Schwarz inequality)
S Eg, [||s(z, O 15(0/;)) — Vo log p(z, §k)||2] (by formula (3)))

1 1
=0)(—+——+n+a, by Theorem |A.13]).
2 Vo py/min(n, k) " ) (by

Step 5: Convergence of ||g,. — VG (6]
Finally, recall that
VG(6x) = —Hp, (Or+1) " 'Eg, [Vol(2;041) Vo logp(2,04)],

by Assumption [3.1]and [A7T}
G4 — VGBI < By, [[Vol(=: 0x0)Il] * (18 — 6|
< 110k — 0l
= OP(%) (By Theorem [3.4).
Combining the above results, we thus have proved

1

1
G = VG(O0h)|> = Op(—= + ———=
(G (0)l p(\/ﬁ n+/min(n, k)

+n+ap).
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A4 Details of Section[d: Theory of Prediction-Powered Inference under Performativity

Without loss of generality, we let N, = N and n; = n for all ¢t € [T].

Let us denote

Ls(0) :=E, ,\ p@l@y;0), LINO):=Lg,0)+\- (L]

n n

N
L3, (0) = =3 o yis0), £ (0)5= = S0 (i S@))i0), £ (0)i= 1 Dt S))i0).

i=1 i=1

Here the samples (z;, ;) ~ D() and 2 ~ Dy () are drawn from the distribution under 6. Recall
that we have defined X, 5(6) = Hy(6) " (TV)\f,é(G) + V)\’é(O)) H;(0)~! before Theorem (in
the following we sometimes omit 7 for simplicity).

Theorem A.15 (Consistency of 0 PI) Under Assumptzonnand . ife < , then for any given
T > 0, we have that for all t € [T,

Ot (N) > Orpr.

Proof. Let us denote @{(0) = argming g Zz A f(@e);00) + 50 (U, y0') —
M(zi, f(x;);0")), where the samples (z;,y;) ~ D() and =} ~ Dx (6) are drawn for some parame-
ter 6 along the dynamic trajectory 6y — 67 — --- 0, —
100 = G| = G (0u-) = G, (BT
’\P 7P 7P
<GEPY) - GO+ ||G(9t 1) = GO
< GO - G, O] + e~ ||9t i
where the last inequality follows from the results derived by [25], under Assumption[3.1} we have
1G(0) = GO < L0 - o).
Notice that IE(L(%%Z 9)) = ﬁ@z}jl (0). By local Lipschitz condition, there exists £9 > 0 such that

Ae P

Sup |‘Cf‘PP1 ( ) - E@:"Il (9)| — 0.
0:10—G (8%, )| <eo K .

Since ¢ is strongly convex for any 0, G (51) PL) is unique. Then we know that there exists & such that

E’;ﬁ‘l’ 0) — E@ZTI(G@PH ))>dforall@in {0 |0 — G(APPI )|| = €0}. Then it follows that:
inf  Lon (0) - Lo (GETY))
l6-G@™,)ll=co0

R . ((£ge (8) = Lom () + (Lm (6) — Lo (G(B))

+ (Lo, (GE)) - L5 (@E)))
2(5 — Op(l).

@)l

Then we consider any fixed ¢ such that ||§ — G(0 > € it follows that

t t 9 G( ) t t
v (0) - £l @) > T=O0 (e ) - £l @) )

o w— GO o
0 — G(HP™!
”Ei)(é —op(1)) > 0= op(1),
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where the first inequality holds for any w by the convexity condition of Egl’,\l‘ (0), and the second

9-G(B")
lo—G@™ )l

that [|§ — G(6*P,)|| = o can be the minimizer of CQQ‘ (6). Then ||G(0PP,) — G (APPI ) s 0.

inequality holds as we take w = eo+G(0 (q)P 1) and using the above result. Thus no 6 such

We then have, for a given T' > 0, we have that for all ¢ € [T,

t

i o~ P
— 0, < Z tHG P — G{ (6P| = 0.

1=0
Thus, we conclude that §P L QN |

Theorem A.16 (Central L1m1t Theorem of 6¥7!(\, ), Restatement of Theorem 4.1). Under Assump-
tlonn 4 and. zfe < and = — 1 for some r > 0, then for any given T 0, we have that
forallt €

V(B0 = 00) 25 N (0, V7 ({0, 05 i)
with

[Ivee

k=i

t
VI ({0 jmir) = D

i=1

t—1 T
Ekiﬂz‘fl (9“ T) [H VG(Hk)
k=1

Proof. Let us denote the variance terms by V! for simplicity, while omitting explicit dependence

on parameters in the notation. Let U; := \/ﬁ(@’” — 6;) and denote 0, = G (@)311). We make the
following decomposition:

O — 9, = (0, — 0,) + (67" — ) .
—_—— N——
(1) ?2)

Step 1: Conditional distribution of U;|U;_;.

For term (1), we have

V(0 = 0,) = V(GOT) — G(0i-1)).
For term (2), the empirical process analysis in [1] establishes that
VR = 6|8} 2 N0, g (8137)),

where the variance is given by
Eé‘p}jl (ét; r) = Heqz,jl (ét)*l <TV>\ff,,@:Pll (ét) + thﬁi"ﬂl (ét)> H@:Tl (ét)*l

Conditioning on @311, for any function h, we use the following shorthand notations:

E,h = %Zh(m’i,yi) Guh = V(Eah —E(, ) pm [h(z,9)]),

N

Z . Chhi=VNEN—E, 5, g b, f(@))),
b %Zh(@,f(xi)), Glh = ViiBah —E,_p, g [h(z, £(2)):

i=1
Note that 6, = G(6FP,). Recall that

L5(0) := . y)IED(é)é(ac, y;0), LINO) = L5,(0)+ - (Eg,N(e) - ﬁg’n(a)).
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Under the assumptions, Lemma 19.31 in [31]] implies that for every sequence h,, = Op(1), we have

- h, ~ _
Gn {\/ﬁ (f(l’,y;@t + %) - E(I,y;(%)) - hlvoﬂ(ay;ﬂt)] Lo,

G/ [\/ﬁ (((%y; 0, + \h/%) — Uz, y; ét)) — h) Vol(z,y; ét)] 550
Applying second-order Taylor expansion, we obtain that
nE, (g(gc, y; 0, + h—\/%) — U(z,y; 0, ) ( 6+ ) L@:Hl(e})) + iy GaVol(z,y: 0:) + 0p(1)
h (9,:) + 1y G Vol(2,y; 0;) + op(1).

Based on similar calculation of the previous two terms, we can obtain that:
- h -
WA n A
1 ~ n ~ ~ ~
:ﬁhIH@fpll(et)h” +h,) (Gn + A4/ NG{V - )\Gfl> Vol(x,y;0:) + 0p(1).

By considering %, = v/n(0P"—0;) and hy, = — ()" (Gn +AYEG - A@{) Vol(z,y; 0y),
t—1
Corollary 5.53 in [31] implies they are Op (1) and we obtain that

- 1 - ~ ~ -
(ﬁﬁ,ﬁ[ O — L2 (9,:)) = ghn Ham (00)h5, + 03 ((Gn + A /%G{V - AG;Q) Vol(z,y;0;) + 0p(1)
~ hy, ~ 1 -
n (ﬁ%@l(at v Eéﬁ%f"”) = 3l Hapm (B0)h + 0p(1).

§P Pl is the minimizer of ﬁg{,}f; , the first term is smaller than the second term. We can rearrange
t—1

Since

the terms and obtain:

1 ~
5~ hn)" Haem (00)(hy, — ) = 0p(1),

which leads to h} — h,, = Op(1). Then the above asymptotic normality result follows directly by
applying the central limit theorem (CLT) to the following terms, conditioning on 6¥% :

V(B = 6167 = —Haem (6)7" (1 + S2) + 0p(1),

N
n 1 w wnN A s
Sy = )\t\/ NV N ; <V0£(xt,ia f(‘rt,i)v 0r) — xNDiE(@E‘L)VM(x’ f(@); ‘9t))7
1 & - -
Sy = \/;Zl (v9£(gjt,ia Yt.is at) - )‘tVQK(It,ia f(mt,i); et)

—  E [Vel(z,y;0;) — \Vel(z, f@);ét)]).

(z,y)~D(E)

Note that, conditioning on §fpll, (1) is a constant. Therefore, (1) and (2) follow a joint Gaussian

distribution. Consequently, given U;_1, the conditional distribution of U, is given by:
Uy|Up_y = f(APPI )|/\PPI
= Vb, — 0,) + V(O] - ét>|é]’”
= V(G — G(6,-1) + V(@™ — )16}
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2N (VAGE™) = G(6:1)). 55, g (Brir))

Ut 1 Ut 1
x (Va2 o) - G(ot_n),zkt,uwg, (O i)

For later references, we denote Uy | U;_q EEN N(w(U—1), B(Up—1; 7).

Step 2: Marginal distribution of U;. We calculate the characteristic function of U, by induction. To
begin with, we directly have

Xy 2 NV, VI = S0, (0137).
Now, assume that U;_; =5 N (0, V;PP1), we derive the joint distribution of (Uy, U;_1) and marginal

distribution of U;.Then we have, the characteristics functions ¢ and the probability density function p
of distributions U;_; and U; | U1 follow:

1 1 T
(bUt—l(s) - (b./\/(OJ/tPfll)(s) = exp(_§ST‘/t]?{S)7 pUt—l(U’) = W /6 " u¢Ut71(Z)dZ

. 1
Du, 10,1 (8) = ON(u(Us_ 1) 21 (8) = exp(is” p(Up—1) — §5TE(Ut—1; 7)8).

Then according to the proof of vanilla CLT under performativity in Section[A.2] we have:

1 LT L r L 7o epr )
- - Uy 1) — =sTS(U,_1:7)s — ~uT VPP ) du.
du,(s) (ZF)%detWE’H €xp (ZS w(Ut—1) 9% (Ui-137)8 ot Vi) au
Apply dominant convergence theorem to lim,,_, o ¢y, (s), we have:
: 1 Ty/PPI
Tim ¢y, (s) = lim. (QW)%det‘Vppw zs Tu(Ui—q) = 2s"S(Ue—157)s — 2V 1u> du
= lim T Tt 4 g G(0,—
nl_>oo (2m) 2 det|VPP{|/ s \F ( +0i-1) — G(0: 1))
U1
— 1'% AUt g0, (G( \tf +6i_1); )s—%uTVgﬂu) du
Ui
= exp(isT + 6 G(6s—
(2 det|v;PP|/ (GO +a) = G)
_ §5T2At,Utf1+0t,1(G(U\tfl +6;-1); )s— LuTveR )du
_ 1 LT _1.T cNe _ 1, Ty/PPI
= (277)%det|VtP_P{| /exp(zs VG(Oi—1)u— 55 Xx,.0,,(G(0i—1);7)s — 5u thlu) du

= exp(~ 357 VG(O, VIV O1)Ts = 5575, 0, (0 7)s),

which is the characteristic function of A/ (0, V1), where V™ = VG(0,_1)VIIIVG(0;,-1)" +
Ya..0,_, (Bg; 7). Here we use the fact that lim,, o /1 (G(% +6_1) — G(Gt,1)> = VG(0:i-1)y,

and the dominant convergence theorem holds as we have
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Thus we conclude by induction that
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And we have:
-1
VG(6) = — E  Vi(x,y; 0 \Y
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B Experimental Details

B.1 Additional Experimental Details

As described in Section[5} we construct simulation studies on a performative linear regression problem,
where data are sampled from D(0) as

y:aTx+/1'T0+Va mNN(Mm;Ez)v VNN(OaO—Z)'

At each time step ¢, the label y; is updated with @_1 via the above equation, and then HAt is obtained
by empirical repeated risk minimization with the updated data z; = (x4, y¢). The objective of this

task is to provide inference on an unbiased 5,5 with low variance, that is, the ground-truth 6, is covered
by the confidence region of 6, with high probability, and the width of this confidence region is small.

Given a set of labeled data, we can obtain the underlying 6; as
0 = (S + prapty +710) " (papt 001 + (Sa + papty )ar) - ©)

To compute the coverage and width of a confidence region Rt(n 9) for 6;, we run 1000 independent

trials. For each trial j, we sample 9t ;j together with with its estimated variance Vt j» and construct
two-sided normal intervals for each coordinate i = 1,...,d:

{9 Tq_ g V;(,j)/n:|7 G- =P (1_ﬁ)

where d = 2 is the parameter dimension, § = 0.1 the significance level, n the data size, and ® ! the
standard normal quantile. The interval width of each trial is averaged over d coordinate intervals, and
we count this trial as covered if the ground-truth 6, lies inside all d coordinate intervals simultaneously.
Finally, we report the average width and coverage rate over all trials.

Similarly, to compute the coverage for performative stable point fpg, we can obtain the close-form
Ops for this task as follows:

Ops = (B0 + atty — papt’ +71a) 7 (B0 + papy ). ®)
As defined in Corollary the confidence region for fpg is constructed with

Ru(n,6) + B0, 23(55) ).

where € = ||u

2, B = || — Ops|2, and

— |12 T 2 2
B = max { max{||z||5 + v}, max \/ z'0 + ||z]2]|0 + ||z .
{x X{H 112 } (@) e D)0 {/( y+ llzll2001l2)* + |l ||2}}

Here we take X = {x : ||z]|3 < 20}. Note that the closed form expressions for the update and
the performatively stable point in Eq.[7]and Eq.[§|hold for any distribution of = with mean 1, and
variance Y., and v with mean 0 and variance 05. For easier calculation for the smoothness parameter,

we truncate the normal distribution of (z,y) such that ||z||3 < 20. The mean and variance of the
resulting truncated distribution can be well approximated by those of the original normal distribution
due to the concentration of Gaussian.

We run our experiments on NVIDIA GPUs A100 in a single-GPU setup.
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B.2 Additional Experimental Results

Ablation study on effects of . In Figure[AT] we compare confidence-region performance under
regularization strengths v = 1 and = 3. Together with results of v = 2 in Figure[I] we can find that
as -y increases, the gap between the coverage for 6; (solid curve) and the bias-adjusted coverage for
fps (dashed curve) vanishes more quickly across iterations. For example, at ¢ = 3, the dashed and
solid curves are tightly closed for v = 3, while a substantial gap remains for v = 1. This phenomenon
derives that the larger v yields a more strongly convex loss, which both accelerates convergence of

the estimate 6, to its stable point and reduces the performative bias ||§; — Opg||. Consequently, the
bias-awared intervals converge for fpg to the original ones for 6, in fewer iterations when -y is larger.

Ablation study on effects of c. In Figure[A2] we compare confidence-region performance under
sensitivity € =~ 0.003 and € = 0.03. We can find that as ¢ increases, the gap between the coverage for
0; (solid curve) and the bias-adjusted coverage for fpg (dashed curve) vanishes more slowly across
iterations. For example, for ¢ ~ 0.003, the dashed curves tightly upper-bound the solid curves at
t = 3, whereas for € ~ (.03, a noticeable gap persists even at £ = 5. This behavior is because a higher
¢ amplifies the performative shift (the dependence of the label distribution on ), which increases the
performative bias. That is, stronger sensitivity requires more iterations for 6; to approach its stable
point, slowing down convergence of the two confidence regions.

Ablation study on effects of oj. In Figure we compare confidence-region performance under
noise level 0'5 = 0.1 and 05 = 0.4. We observe that across all settings, PPI with our greedy-selected

Nis essentially never worse than either baseline A = 1 or A = 0. When the noise is low (05 =0.1),

greedy X behaves similarly to A = 0, placing almost all weight on the true labels. Conversely, when
the noise is high (05 = 0.4), greedy X behaves like A = 1, relying more heavily on pseudo-labels

to reduce variance. For the intermediate noise level 03 = 0.2 in Figure|l| greedy h) significantly
outperforms both baselines by hitting the optimal bias—variance balance.

B.3 Case Study on Semi-synthetic Dataset

In Section [5] we originally consider experiments on a synthetic dataset because the performative
prediction is an on-policy setting, which means we need to collect the corresponding data every time
we update the parameter (policy). In all the previous literature on performative prediction, no such
dataset is provided. Alternatively, previous work always uses a semi-synthetic dataset, which one
will need to specify how the data distribution will react and shift according to the new policy.

Following Perdomo et al. [25]], we further conduct a case study in a semi-synthetic way on a realistic
credit scoring task using a Kaggle datasetﬂ The dataset contains features of individuals and a binary
label indicating whether a loan should be granted or not. Consider the setting where a bank uses a
logistic regression classifier § trained on features of loan applicants to predict their creditworthiness,
while the individual applicants respond to this classifier by manipulating their features to induce a
positive classification. Following [2], we can formulate this task as performative prediction because
applicants’ feature distribution D(6) is strategically adapted in response to 6. By applying repeated
risk minimization, a performative stable point fpg can be achieved.

We treat the data points in the original dataset as the true distribution to compute §pg. We add
Gaussian noise to the original data feature to generate an unlabeled set of the same size. Then, we
sample varying n labeled points with N = 18000 unlabeled points and perform ¢ = 5 repeated
risk minimization steps to compute the estimated 6, and build the confidence region for it over 100
independent trials. From the experimental results, we find that a coverage of 0.9 is achieved with
decreasing width as n increases. Notably, our optimized greedy \; (orange) achieves the highest
coverage and narrowest confidence width compared with when A is fixed to 0 or 1. The results
support our proposed theory and strengthen the practical significance of our methods. We hope this
case study can inspire future work for practical settings of PPI under performativity.

*https://www.kaggle.com/c/GiveMeSomeCredit/data
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(b) Confidence-region coverage and width with y = 3.

Figure A1: Confidence-region coverage (top row) and width (bottom row) with different choices of A.
The setup is the same as in FigureEl, only we change v = 1 or v = 3.
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t=3 =4 t=5
1.0 1.0 [ 1.0
S e s
v 0.9]-57 0.9 //: . 0.9 wo—
gl 2 ==
$0.8 0.8 0.8
3 == A=0 (6ps) — A=0
0.7 0.7 0.7{ === A=1 (6ps) — A=1
greedy (6ps) greedy
0.6 0.6 0.6
0.10 0.10 0.10
0.08 0.08 0.08
% 0.06 0.06 0.06
'S 0.04 0.04 0.04
0.02 0.02 0.02
0.00 0.00 0.00
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
n n n

(b) Confidence-region coverage and width with € ~ 0.03.

Figure A2: Confidence-region coverage (top row) and width (bottom row) with different choices of A.
The setup is the same as in FigureEl, only we change € ~ 0.003 or € =~ 0.03.
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(b) Confidence-region coverage and width with JZ =0.4.

Figure A3: Confidence-region coverage (top row) and width (bottom row) with different choices of A.
The setup is the same as in Figure only we change 05 =0.1or 05 = 0.4.
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Figure A4: Confidence-region coverage and width for 6, (t = 5) with different choices of A on the
semi-synthetic Kaggle credit scoring dataset.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

— You should answer [Yes] , ,or [NA].

— [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

— Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " " itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

— Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist',
— Keep the checklist subsection headings, questions/answers and guidelines below.
— Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in abstract and introduction are included in our paper. Specif-
ically, our main theoretical results on CLT is included in Section [3] The results with
prediction-powered inference is included in Section[d] We further demonstrate our numeri-
cal experiments in Section 5]

Guidelines:
— The answer NA means that the abstract and introduction do not include the claims
made in the paper.

— The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

— The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

— Itis fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]

Justification: Currently, our framework uses bias-awared inference for fpg rather than a
direct inference method. We hope that in the future, we could Obtain direct inference
methods for Opg.

Guidelines:

— The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

— The authors are encouraged to create a separate "Limitations" section in their paper.

— The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

— The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

— The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

— The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

— If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

— While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have listed our necessary assumptions in Assumption[3.1|and in Section[A.T]
in Appendix [A] We also provide complete proofs of our claims in Appendix [A]
Guidelines:

— The answer NA means that the paper does not include theoretical results.

— All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

— All assumptions should be clearly stated or referenced in the statement of any theorems.

— The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

— Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

— Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: We explain our experimental settings and provide the complete set of hyperpa-
rameters in Section

Guidelines:

— The answer NA means that the paper does not include experiments.

— If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

— If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

— Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

— While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide a zip file containing our simulation study’s code.
Guidelines:

— The answer NA means that paper does not include experiments requiring code.

— Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

— While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

— The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

— The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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— The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

— At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
— Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide information about the training details in[5]and Appendix
Guidelines:

— The answer NA means that the paper does not include experiments.

— The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

— The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We do not provide error bars as the main results in Figure |1| capture the
statistical significance of the experiments by counting the coverage rate of the confidence
interval from repeated experimental trials. The randomness comes from the data generation
process during performantive inference.

Guidelines:

— The answer NA means that the paper does not include experiments.

— The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

— The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

— The method for calculating the error bars should be explained (closed form formula,

call to a library function, bootstrap, etc.)

The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

— It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis

of Normality of errors is not verified.

For asymmetric distributions, the authors should be careful not to show in tables or

figures symmetric error bars that would yield results that are out of range (e.g. negative

error rates).

If error bars are reported in tables or plots, The authors should explain in the text how

they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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9.

10.

Answer: [Yes]
Justification: All these information can be found in Appendix
Guidelines:

— The answer NA means that the paper does not include experiments.

— The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

— The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

— The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in this paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

— The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

— If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

— The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: As we mentioned in our introduction, our paper is mainly for inference theory
under performativity, which is quite useful in social science and provide a useful tool when
evaluating policies made via performative prediction. There is no negative societal impacts
we can think of.

Guidelines:

— The answer NA means that there is no societal impact of the work performed.

— If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

— Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

— The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

— The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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11.

12.

13.

— If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any datasets or models since we are doing synthetic data
experiments on very classical models like regression models.

Guidelines:

— The answer NA means that the paper poses no such risks.

— Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

— Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

— We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We do not use existing assets.
Guidelines:

— The answer NA means that the paper does not use existing assets.
— The authors should cite the original paper that produced the code package or dataset.

— The authors should state which version of the asset is used and, if possible, include a
URL.

— The name of the license (e.g., CC-BY 4.0) should be included for each asset.

— For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the

license of a dataset.

— For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

— If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide code and instructions on how to run the code to reproduce our
results.

Guidelines:
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14.

15.

16.

— The answer NA means that the paper does not release new assets.

— Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

— The paper should discuss whether and how consent was obtained from people whose
asset is used.

— At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

— The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

— Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

— According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

— The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

— Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

— We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

— For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:
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— The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

— Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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