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ABSTRACT

In this work, we propose Generative and Explainable Adversarial Data Augmen-
tation (GEADA), a novel framework designed to tackle the single-domain gener-
alization challenge in image classification. The framework consists of two com-
peting components: an augmentor to synthesize diverse yet semantically consis-
tent augmentations, and a projector to learn domain-invariant representations from
the augmented samples. The augmentor leverages a generative network for style
transformations and an attribution-based cropping module for explainable geo-
metric augmentations. We further incorporate theoretically-grounded contrastive
loss functions, inspired by the geometric properties of unit hyperspheres, to pro-
mote the diversity of generated augmentations and the robustness of learned rep-
resentations. Extensive experiments on multiple standard domain generalization
benchmarks demonstrate the effectiveness of our approach against domain shifts.

1 INTRODUCTION

Deep neural networks (DNNs) have garnered remarkable success across diverse fields (LeCun et al.,
2015; Silver et al., 2016; Radford et al., 2019) attributed to their exceptional generalization capabil-
ities. However, this generalization is often predicated on the assumption that the training and test
data originate from the same domain. In practice, the assumption is frequently compromised due
to inevitable domain shifts caused by various factors such as domain mismatch (Sinha et al., 2018),
data corruption (Hendrycks & Dietterich, 2019), and adversarial attacks (Madry et al., 2018), among
others. Such discrepancies can lead to severe degradation in the performance of DNNs, thereby sig-
nificantly undermining their safety and reliability, particularly in high-stakes applications such as
autonomous driving and medical diagnosis.

To mitigate the performance deterioration induced by domain discrepancies, domain adaptation
methods (Ganin & Lempitsky, 2015; Xu et al., 2019) and multi-domain generalization (MDG) ap-
proaches (Muandet et al., 2013; Shankar et al., 2018) have been proposed to enhance model gen-
eralization capabilities by leveraging predetermined test domains and multiple available training
domains, respectively. Nevertheless, in real-world applications, acquiring additional test or training
data from extra domains is often impractical due to constraints on the data acquisition budget. This
limitation has spurred the advancement of single-domain generalization (SDG) techniques (Volpi
et al., 2018; Qiao et al., 2020; Wan et al., 2022) that aim to promote model generalization on unseen
domains solely based on training data from a single source.

Expanding upon this, contrastive learning (CL) approaches (Oord et al., 2018; Khosla et al., 2020)
have been increasingly incorporated in domain generalization algorithms to learn domain-invariant
feature representations (Kim et al., 2021), given their exceptional performance in both supervised
and self-supervised learning scenarios. Essentially, CL algorithms are designed to learn invariant
representations by simultaneously pulling together positive sample pairs and pushing apart nega-
tive samples in the embedding space. Particularly, the selection of positive samples emerges as a
critical determinant of the quality of learned representations (Tian et al., 2020b). In the extant litera-
ture, positive views are commonly generated by applying stochastic data augmentations to the same
source samples. However, stochastically augmented views can be either overly diverse, compromis-
ing critical task-relevant information, or excessively similar, leading to redundantly noisy represen-
tations, hence substantially hindering the generalization of learned representations in downstream
tasks (Tian et al., 2020b; Peng et al., 2022).
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In this paper, we concentrate on the SDG problem within the realm of image classification. To tackle
the challenge, we propose a novel adversarial training framework termed Generative and Explain-
able Adversarial Data Augmentation (GEADA). The framework is comprised of two competing
components: an Augmentor developed to synthesize diverse yet semantically consistent views, and
a Projector tailored to learn robust representations from the augmented samples. Motivated by the
empirical efficacy of Color Jitter and Random Resized Crop techniques in crafting CL positive
views (Chen et al., 2020), we integrate both style and geometric augmentation in our framework.
The principal contributions of our work can be summarized as follows.

• We devise a generative network equipped with style modulation layers, specifically designed to
proficiently manipulate the color distribution of source samples by altering the statistics of their
feature maps. By leveraging random style codes, this network is capable of synthesizing an arbi-
trary number of images that exhibit diverse styles while maintaining semantic consistency.

• We develop an explainable cropping technique that leverages a model interpretation approach to
generate geometrically diverse views without sacrificing task-relevant information. Specifically,
we uniformly select crop centers from distinct patches that are sampled from a multinomial dis-
tribution parameterized by the corresponding attribution scores, thereby statistically encouraging
the cropped views to include various portions of task-relevant regions

• We propose theoretically justified loss functions for both data augmentation and representation
learning by investigating the unit hypersphere geometry. Particularly, we initiate the adversarial
contrastive loss to forster the diversity and semantic consistency of the augmented views by en-
couraging a uniform distribution of these views around the source sample in the embedding space.
We also introduce the supervised centroid loss to learn domain-invariant representations by align-
ing the augmented views with the corresponding uniformly distributed class centroid on the unit
hypersphere. The two loss functions are jointly optimized to enhance model generalization.

2 RELATED WORK

Domain Generalization. Unlike domain adaptation methods that are designed to align the training
domain with predetermined test domains (Ganin & Lempitsky, 2015; Murez et al., 2018; Xu et al.,
2019), MDG approaches (Muandet et al., 2013; Li et al., 2018; Shankar et al., 2018; Carlucci et al.,
2019) operate without the prior information on the target domains and instead exploit multiple avail-
able source domains to learn domain-invariant representations. On the other hand, SDG algorithms
are designed to address a more challenging yet realistic scenario where only a single training source
is accessible. For instance, ADA (Volpi et al., 2018) augments the training domain by generating
virtual images through adversarial updates on the input images. MixStyle (Zhou et al., 2020) inte-
grates instance-level style mixing into the feature normalization layers to enhance model robustness.
L2D (Wang et al., 2021) incorporates a style module to enrich image diversity through mutual infor-
mation optimization. MetaCNN (Wan et al., 2022), meanwhile, takes a novel architectural approach,
decomposing the convolutional features of images into meta-features to address the problem.

Similar to L2D (Wang et al., 2021), our framework also employs a style modulation network to
implement style augmentation. However, in contrast to L2D, our framework is complemented by
a theoretically-grounded loss function tailored for style diversity and semantic integrity, and a geo-
metric augmentation technique to further facilitate robust representation learning.

Contrastive Learning. CL algorithms have consistently proven their efficacy across a diverse range
of image classification tasks (Chen et al., 2020; He et al., 2020; Khosla et al., 2020). The pivotal in-
gredient in the achievement of CL algorithms lies in the specialized contrastive loss functions (Oord
et al., 2018; Khosla et al., 2020), which effectively discriminate between positive and negative sam-
ples in the embedding space. Optimization of these loss functions can be conceptually understood as
maximizing the mutual information (MI) between positive samples (Tian et al., 2020a). Subsequent
studies by Wang & Isola (2020) and Chen et al. (2021) delve deeper into the nuanced properties of
contrastive losses, exploring them from the dual perspectives of alignment and uniformity. More-
over, the construction of positive samples serves as another crucial factor underpinning the success
of CL algorithms. Tian et al. (2020b) empirically demonstrate that MI between optimally chosen
views should strike a delicate balance, excluding excessive noise while retaining task-specific in-
formation. Despite its critical role, the topic of view crafting remains relatively unexplored in the
academic landscape, signposting an open avenue for future research.
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Figure 1: Overview of the GEADA framework. Style augmentations are initially generated by a style
modulation network and then processed by the explainable cropping module to introduce geometric
diversity. Afterwards, the projector extracts domain-invariant features from the augmented views.

Inspired by Wang & Isola (2020), we propose theoretically grounded contrastive loss functions,
developed through an in-depth examination of the geometric properties of unit hyperspheres. Dis-
tinct from Wang & Isola (2020) and other CL-based domain generalization methods (Kim et al.,
2021; Duboudin et al., 2021), our approach leverages the contrastive principles not only in the realm
of representation learning but also in the process of view synthesis, thereby leading to diverse yet
semantically consistent views that aligns well with the criteria demonstrated by Tian et al. (2020b).

Model Interpretation. To mitigate the risks associated with the black-box nature of DNNs, post-hoc
interpretation techniques (Simonyan et al., 2013; Selvaraju et al., 2017; Lundberg & Lee, 2017) have
been developed with the objective of elucidating the intricate internal mechanisms of the networks,
all without requiring alterations to existing training algorithms or model architectures. Among these
techniques, gradient-based attribution methods have garnered significant attention due to their sim-
plicity and effectiveness. In the context of visual processing, these methods assign attribution scores
to each pixel of the input image based on the gradient of the output with respect to the input. The
attribution scores are then used to generate saliency maps that highlight the task-relevant regions of
the input image. For example, Naive Gradients (Simonyan et al., 2013) directly calculates the at-
tribution scores with the raw input gradients. Although straightforward, the corresponding saliency
maps tend to be visually noisy with pixel attributions fluctuating sharply at small scales. To mit-
igate this, SmoothGrad (Smilkov et al., 2017) averages gradients over multiple perturbed samples
in a neighborhood of input images. Integrated Gradients (Sundararajan et al., 2017) overcomes the
gradient saturation problem by integrating the gradients along a linear path between the input image
and a chosen reference, thereby providing a more comprehensive picture of feature importance.

In this paper, we leverage the gradient-based attribution method to develop an explainable cropping
technique for geometrically diverse views. In contrast to ContrastiveCrop (Peng et al., 2022) that re-
lies on upsampled feature maps from the final convolutional layer for semantic-aware cropping, our
approach employs the averaged gradients across style-augmented views to calculate more precise
saliency maps. Notably, our cropping technique can be seamlessly adapted to various architectures
other than convolutional neural networks, such as Vision Transformers (Dosovitskiy et al., 2021).

3 METHODOLOGY

In the context of single domain generalization for a K-class classification task, let S = {(xi, yi)}Ni=1

denote the source domain with training samples xi ∈ X ⊂ RD and labels yi ∈ Y ⊂ [K] :=
{1, · · · ,K}. The primary objective of SDG is to train a classifier that generalizes well on unseen
domains solely relying on S. To achieve this, we propose a novel framework named Generative and
Explainable Adversarial Data Augmentation (GEADA), which incorporates two core components:

• Augmentor comprises a generative model G(·) responsible for style augmentation, and a cropping
module Xcrop(·) for geometric augmentation. Specifically, the generative model G incorporates
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an MLP network m : Z 7→ W to map random vectors to intermediate style codes, and a style
modulation network g : X × W 7→ X to transform the original images into style-augmented
views. The cropping module Xcrop : X 7→ X then applies cropping and resizing operations to
these style-augmented views based on patchified saliency maps to introduce geometric diversity.

• Projector consists of a feature extractor f : X 7→ Sd−1 that maps the input images onto a d-
dimensional unit hypersphere, and a linear classification head h : Sd−1 7→ RK that outputs the
logits for the K-class classification.

As depicted in figure 1, the GEADA framework attains domain-invariant representations through a
competitive interplay between the Augmentor and the Projector. The remainder of this section will
delve into the key mechanisms and associated loss functions within the framework.

3.1 GENERATIVE STYLE AUGMENTATION

3.1.1 GENERATIVE NETWORK WITH STYLE MODULATION

Modification of spatial feature statistics has been validated as a remarkably effective approach for
style transfer (Huang & Belongie, 2017), and such techniques have been further employed in gen-
erative models like the StyleGAN series (Karras et al., 2019; 2020; 2021) to generate high-quality
images. Inspired by these advancements, we incorporate the style modulation layer from Style-
GAN2 (Karras et al., 2020) into our style modulation network g to implement style augmentation.

As illustrated in figure 1, the style modulation layer incorporates feature statistics modification and
normalization into the conventional convolutional layer. Let {wijk} represent the original convo-
lutional weights, where i, j, and k enumerate the input feature maps, output feature maps, and the
spatial footprint of the convolution, respectively. The style modulation and demodulation operations
can then be implemented by scaling the weights as

w′
ijk = si · wijk, w′′

ijk =
[∑

i,k

(w′
ijk)

2 + ϵ
]− 1

2 · w′
ijk,

where the i-th input channel is scaled by the style code si for modulation and the j-th output channel
is then normalized for demodulation with a small constant ϵ to avoid numerical instability. The style
code vector s = (s1, · · · , sI) = A(w) is obtained via a learnable affine transformation A, where
w = m(z) is an intermediate style code mapped from the standard Gaussian vector z ∼ N (0, I).

Subsequently, we assemble the style modulation block by stacking two style modulation layers to-
gether. Every block is outfitted with a ToRGB layer, designed to generate triple-channel images
across multiple resolutions. The intermediate images at lower resolutions are progressively upsam-
pled and fused with their higher-resolution counterparts via skip connections to yield the final output.
With such design, given any source image xi and random vectors {zij}Mj=1, the generative model G
can synthesize M augmented views xij = G(xi, zij) = g(xi,m(zij)) with distinct styles.

3.1.2 ADVERSARIAL CONTRASTIVE LOSS

For the training samples {xi}Ni=1, let {xij = G(xi, zij)}Mj=1 denote M augmented views of sample
xi synthesized by the generative network G, and vi = f(xi) and vij = f(xij) represent the corre-
sponding embeddings on Sd−1 projected by the feature extractor f . To simultaneously guarantee the
diversity and semantic consistency of the augmented views, we propose the Adversarial Contrastive
Loss (AdvCon Loss) for the generative network G as

Ladv =
1

M

N∑
i=1

M∑
j=1

(
v⊤
i vij − γ

)2
+ λadv ·

N∑
i=1

log

M∑
j1<j2

exp
(
u⊤
ij1uij2/τadv

)
, (1)

where uij := v⊥
ij/||v⊥

ij || with v⊥
ij = vij − (v⊤

i vij) · vi denoting the orthogonal component of vij

with respect to vi, and γ, λadv and τadv are positive tuning parameters.

From the perspective of alignment and uniformity, the first term on the right-hand side of Equation 1
aligns the semantics of the augmented views and the source sample by restricting the L2 distance
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between their embeddings to r =
√
2− 2γ. On the other hand, the second term fosters the diversity

of views by minimizing the pairwise Gaussian potential (Wang & Isola, 2020) for unit vectors as

Gt(u,v) = e−||u−v||2/2t = e−1/t · exp(u⊤v/t) for u,v ∈ Sd−1 and t > 0,

which further fosters a uniform distribution of uij as explained in the following proposition.

Proposition 1. For any v0 ∈ Sd−1 and Sr(v0) := {v ∈ Rd : ||v − v0|| = r} with 0 < r < 2, let
S∗r(v0) := {u ∈ Sr(v0) ∩ Sd−1} denote the non-empty intersection between the two hyperspheres.
Then the normalized surface area measure σ inducing uniform distribution on S∗r(v0) is the unique
solution to

min
µ∈M(S∗r(v0))

∫ ∫
Gt (noc(u1),noc(u2)) dµ(u1) dµ(u2),

where M(S∗r(v0)) denotes the set of Borel probability measures on S∗r(v0), Gt denotes the pairwise
Gaussian potential, and noc(u) = (u − (v⊤

0 u) · v0)/||u − (v⊤
0 u) · v0|| represents the normal-

ized orthogonal component of u with respect to v0. Moreover, the normalized counting measures
associated with the sequence of N point minimizers of Gt converge weak* to σ.
Remark 1. Notice that Gt (noc(u1),noc(u2)) = cr · Gt(u1,u2) for some constant cr under the
condition ||u1−v0|| = ||u2−v0|| = r , which does not generally hold without the constraint. As the
distances between the augmented and source embeddings are not universally equal even under the
alignment restriction, we exploit the normalized orthogonal components uij in Equation 1 to pursue
the uniformity on the hyperplane perpendicular to vi to eliminate the effect from the alignment term.

The conclusions in Proposition 1 can be achieved
through establishing a Borel isomorphism Sri-
vastava (2008) between S∗r(v0) and the unit hy-
persphere. The full proof is elaborated upon in
Appendix A. Proposition 1 indicates that the di-
verse and uniformly-distributed embeddings can
be achieved by minimizing the Gaussian poten-
tial under the constraint of L2 distance.

Consequently, by harmonizing the alignment and
uniformity regularization, the proposed AdvCon
loss encourages the generative model to synthe-
size diverse yet semantically coherent augmenta-
tions with embeddings uniformly distributed on
the surface of a small neighborhood of the source
embeddings. Refer to figure 2 for an intuitive ge-
ometric interpretation of the AdvCon loss on S2,
where the augmented views {v1j} are encour-
aged to be uniformly distributed on a circle in
the vicinity of the source embedding v1.
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Figure 2: An illustration of the AdvCon loss on
S2. The alignment term restricts ||v1 − v1j || to
r =

√
2− 2γ, while the uniformity term encour-

ages the orthogonal component v⊥
1j to be uni-

formly distributed on the circle centered at γ ·v1.

3.2 EXPLAINABLE GEOMETRIC AUGMENTATION

As highlighted by Chen et al. (2020), augmentations confined to the color space are not sufficient for
complex CL tasks, and the integration of geometric augmentations can markedly boost the quality
of learned representations. Among the spectrum of geometric augmentations, RandomCrop1 has
empirically validated its effectiveness across a multitude of applications, where the cropping cen-
ter is uniformly sampled on the source image and the cropping dimensions are determined by the
random area scale and aspect ratio. Nevertheless, as discussed by Peng et al. (2022), the uniformly
cropped regions can either include redundant noise due to substantial overlapping or exclude critical
task-relevant information due to excessive divergence.

To impose geometric diversity without sacrificing crucial information, we propose an explainable
cropping module named XCrop that leverages the gradient-based attributions to guide the selection
of cropped regions, ensuring they encompass diverse yet task-relevant regions. For views {xij =

1We omit the resize operation here as it is mandatory to align input dimensions.
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G(xi, zij)}Mj=1, let hyi(vij) denote the logit corresponding to the true label yi, which is linearly
transformed from the embedding vij = f(xij). The attribution score for sample xi is computed as

Attr(xi) =
1

M

∑M

j=1
∇xijhyi(f(xij)).

Notice that SmoothGrad (Smilkov et al., 2017) averages the gradients over the perturbed samples
xi + ϵij with ϵij ∼ N (0, σ2 · I). However, an improperly selected σ can result in the score func-
tion hyi remaining static or exhibiting high fluctuations across the perturbed samples. In contrast,
our method averages the gradients across the style-augmented views, which are generated to have
representations uniformly distributed around the source embedding. Therefore, the logits h(vij) are
expected to exhibit moderate variance, thereby leading to substantially robust interpretation results.

Subsequently, we proceed to compute the saliency map based on the attribution scores Attr(xi). We
first average the absolute values across the channel dimension, and then zero out the values that fall
below the λcrop-th quantile of each map. The saliency map is further evenly divided into P patches
with sj(xi) denoting the sum of saliency scores within the j-th patch. For M style-augmented
views, we sample M distinct patch locations from a multinomial distribution without replacement,
and then uniformly draw the cropping center for each view from the correspondingly sampled patch.
The multinomial distribution is parameterized by the saliency-based probability vector as

q = (q1, · · · , qP ) = Softmax

(
s1(xi)

τcrop
, · · · , sP (xi)

τcrop

)
,

where τcrop is the tuning parameter. Finally, the explainable cropping module can be formulated as
x̃ij = XCrop(xij , pj , sj , rj),

where pj specifies the sampled patch location, and sj and rj represent the random area scale
and aspect ratio, respectively. The explainable module enhances the geometric diversity of style-
augmented views by ensuring that each view contains different proportions of task-relevant regions.
For computational efficiency, it is practical to store the probability vector q for each sample and
update it at periodic intervals, thereby reducing the overhead associated with gradient calculations.

3.3 SUPERVISED REPRESENTATION LEARNING

The remaining objective is to learn domain-agnostic representations for classification from the aug-
mented views {x̃ij = XCrop(G(xi, zij))}N,M

i,j=1. Let the linear head h be parameterized by the
normalized weight matrix W = (w1, . . . ,wK) ∈ Rd×K , where wk ∈ Rd denotes the k-th column
satisfying ||wk||2 = 1. Under this formulation, wk can be conceptualized as the centroid of class k
on the unit hypersphere Sd−1. In order to encourage representations to align with their correspond-
ing class centroids, we introduce the Supervised Centroid Loss (SupCent Loss) of the form

Lsup = − 1

M

N∑
i=1

1

Ki

M∑
j=1

log
exp(ṽ⊤

ijwyi/τsup)∑K
k=1 exp(ṽ

⊤
ijwk/τsup)

+λsup ·log
K∑

k1<k2

exp
(
w⊤

k1
wk2

/τsup
)
, (2)

where ṽij = f(x̃ij) denotes the embedding of augmented view x̃ij , Ki = #{j ∈ [N ] : yj = yi}
denotes the number of samples belong to class yi, and τsup and λsup are some tuning parameters.

Intuitively, the first term on the right-hand side of Equation 2 aims to pull augmented embeddings
towards the centroids of their respective ground-truth classes, while simultaneously pushing them
away from the centroids of other classes. Concurrently, the second term encourages the class cen-
troids to be uniformly distributed on Sd−1 through minimizing the pairwise Gaussian potential as
proved by Wang & Isola (2020). These two terms are jointly optimized, with the objective of cluster-
ing embeddings from different classes onto disjoint hyperspherical caps, to facilitate the subsequent
classification capitalizing on the inherent linear separability of unit hyperspheres (See Appendix B).

In contrast to the supervised contrastive loss (Khosla et al., 2020), the SupCent loss focuses on the
interplay between individual embeddings and the class centroids, rather than the interactions among
embeddings belonging to the same class. The strategy can significantly improve computational ef-
ficiency by minimizing the cost of data communication across multiple devices in distributed train-
ing. Moreover, the SupCent loss reduces to the cross-entropy loss under the condition τsup = 1 and
λsup = 0 when assuming a balanced class distribution. However, the second term in the SupCent
loss, which promotes uniform class weights, substantially improve the linear separability of learned
representations. The empirical efficacy of the SupCent loss is further demonstrated in Section 4.2.
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4 EXPERIMENTS

4.1 DOMAIN GENERALIZATION PERFORMANCE

Baselines. We evaluate the GEADA framework on multiple domain generalization benchmarks,
including Digits, CIFAR-10-C, CIFAR-100-C (Hendrycks & Dietterich, 2019), PACS (Li et al.,
2017) and Office-Home (Venkateswara et al., 2017). We validate its efficacy through a relatively
comprehensive comparison with established baselines, including ERM baseline (Vapnik, 1999), data
augmentation baselines Mixup (Zhang et al., 2018), AutoAug (Cubuk et al., 2019) and AugMix
(Hendrycks et al., 2019), and domain generalization baselines JiGen (Carlucci et al., 2019), ADA
(Volpi et al., 2018), MixStyle (Zhou et al., 2020), RSC (Huang et al., 2020), RandConv (Xu et al.,
2021), L2D (Wang et al., 2021), MetaCNN (Wan et al., 2022), SelfReg (Kim et al., 2021), SagNet
(Nam et al., 2021), XDED (Lee et al., 2022) and ALT (Gokhale et al., 2023).

Setups. For fair comparison, we adopt the same training and evaluation protocols as most exist-
ing work, and only present the results reported in the original papers. Particularly, for Digits and
CIFAR-based benchmarks, the explainable cropping module is not implemented due to small im-
age sizes, while both style and geometric augmentations are applied to the PACS and Office-Home
benchmarks. Moreover, for the GEADA framework, we build the feature extractor f based on spe-
cific model architectures with the output dimension adjusted to d = 128 for projection, and the
mapping network m is chosen as a 6-layer MLP network with 512 hidden units. Then number of
views M is set to 4 across all benchmarks. Additional training details can be found in Appendix C.

4.1.1 DIGITS BENCHMARK

Datasets. The Digits benchmark comprises digit images sourced from five distinct domains: MNIST
(LeCun et al., 1989), MNIST-M (Ganin & Lempitsky, 2015), SYN (Ganin & Lempitsky, 2015),
SVHN (Netzer et al., 2011), and USPS (Denker et al., 1988). In adherence to the established con-
ventions (Volpi et al., 2018; Wang et al., 2021), we take the first 10, 000 training images of MNIST
as source samples and evaluate model performance on the test sets of the remaining datasets. For
the GEADA framework, we employ a feature extractor f based on LeNet (LeCun et al., 1989), and
the generative network g consists of 2 style modulation blocks with a base channel of 8.

Results. Domain generalization performance
on the Digits benchmark is encapsulated in
Table 1. Remarkably, GEADA surpasses all
competing methods, achieving an average accu-
racy of 80.80%, which constitutes a remarkable
2.04% improvement over the previous state-of-
the-art. Importantly, GEADA exhibits marked
improvements in classification accuracies specif-
ically on MNIST-M, SYN, and SVHN datasets,
which are characterized by moderate to high do-
main shifts relative to the MNIST dataset. Mean-
while, the framework also achieves remarkable
performance on USPS, which has a relatively
small domain gap to the training source.

Table 1: Domain generalization accuracy (%) on the
Digits benchmark. Trained on the first 10, 000 train-
ing samples of MNIST and evaluated on rest testsets.

Method MNIST-M SVHN SYN USPS Avg.

ERM 52.72 27.83 39.65 76.94 49.29
JiGen 57.80 33.80 43.79 77.15 53.14
AugMix 53.36 25.96 42.90 96.12 54.59
ADA 60.41 35.51 45.32 77.26 54.62
RandConv 87.76 57.52 62.88 83.36 72.88
ALT 75.98 55.01 69.93 96.17 74.27
L2D 87.30 62.86 63.72 83.97 74.46
MetaCNN 88.27 66.50 70.66 89.64 78.76

GEADA 86.53 67.74 73.12 95.81 80.80
(std) (1.17) (0.93) (0.86) (0.55)

4.1.2 CIFAR-10-C AND CIFAR-100-C BENCHMARKS

Datasets. Both CIFAR-10-C and CIFAR-100-C benchmarks (Hendrycks & Dietterich, 2019) are
specifically designed to assess model robustness against common types of image corruptions. These
benchmarks are derived from the original CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009),
which contain 50, 000 training images and 10, 000 test images of 32× 32 pixel dimensions from 10
and 100 classes, respectively. The benchmarks extend the test sets by introducing 15 different types
of corruptions, each with five levels of severity. Here we use the uncorrupted training images as the
source domain, and report the average classification error on the corrupted test samples across all
severity levels. Moreover, we build the feature extractor f based on WideResNet-40-2 (Zagoruyko
& Komodakis, 2016), and the network g includes 2 style blocks with a base channel of 16.

7



Under review as a conference paper at ICLR 2024

Table 2: Single-domain accuracies (%) on PACS (A: Art Painting, C: Cartoon, S:Sketch, P:Photo).

Method A→C A→S A→P C→A C→S C→P S→A S→C S→P P→A P→C P→S Avg.

ERM 62.3 49.0 95.2 65.7 60.7 83.6 28.0 54.5 35.6 64.1 23.6 29.1 54.3
JiGen 57.0 50.0 96.1 65.3 65.9 85.5 26.6 41.1 42.8 62.4 27.2 35.5 54.6
MixStyle 65.5 49.8 96.7 69.9 64.5 85.3 27.1 50.9 32.6 67.7 38.9 39.1 57.4
RSC 62.5 53.1 96.2 68.9 70.3 85.8 37.9 56.3 47.4 66.3 26.4 32.0 58.6
SelfReg 65.2 55.9 96.6 72.0 70.0 87.5 37.1 54.0 46.0 67.7 28.9 33.7 59.5
SagNet 67.1 56.8 95.7 72.1 69.2 85.7 41.1 62.9 46.2 69.8 35.1 40.7 61.9
XDED 74.6 58.1 96.8 74.4 69.6 87.6 43.3 65.6 50.3 71.4 54.3 51.5 66.5

GEADA 76.2 64.5 94.9 78.3 76.9 86.1 56.2 63.1 52.4 68.1 56.4 61.7 69.6

Results. Generalization results on the corrupted
image benchmarks are listed in Table 3. No-
tably, GEADA achieves the second best perfor-
mance, surpassing all competing methods except
for AugMix (Hendrycks et al., 2019), which is
the state-of-the-art method dedicated to data cor-
ruption. The success of AugMix can be partially
attributed to the incorporation of a variety of
data augmentation techniques, such as rotation
and shear, which are not included in our frame-
work. It motivates us to explore the potential of
GEADA by introducing extra augmentations.

Table 3: Domain generalization error (%) on CIFAR-
10-C and CIFAR-100-C across five severity levels.

Method CIFAR-10-C CIFAR-100-C

ERM 26.9 53.3
Mixup 22.3 50.4
AutoAug 23.9 49.6
AugMix 11.2 35.9
XDED 18.5 46.6

GEADA 14.3 42.8

4.1.3 PACS AND OFFICE-HOME BENCHMARKS

Datasets. PACS (Li et al., 2017) and Office-Home (Venkateswara et al., 2017) benchmarks have
been created to evaluate model generalization capability on various domains. Specifically, PACS
benchmark consists of totally 9, 991 images in 7 categories from four distinct domains, including
Photo, Art Painting, Cartoon and Sketch. Meanwhile, Office-Home benchmark contains 15, 500
images from four domains, including Artistic, Clip Art, Product and Real-World, with each domain
containing 65 object categories found typically in office and home settings. For PACS, we choose
each training domain as the source domain and evaluate model performance on the remaining three
domains separately. For Office-Home, we employ the leave-one-domain-out protocol, where one
domain is selected as the test domain and the rest are treated as the source domain. For both bench-
marks, the feature extractor is built on the ResNet-18 (He et al., 2016) backbone.

PACS results. SDG results on the PACS benchmark are summarized in Table 2, where GEADA
achieves the best overall performance with a remarkable leading of 3.1% compared to the previous
state-of-the-art XDED. Notably, the improvement mainly comes from the performance boost regard-
ing the challenging Sketch domain, where GEADA obtains 12.9%, 10.2% and 6.6% improvement
in S→A, P→S and C→S scenarios, respectively. In general, GEADA achieves a more balanced
performance across all domains, indicating its effectiveness against a wider range of domain shifts.

Office-Home results. In Table 4, the leave-one-
domain-out performance on the Office-Home
benchmark is reported. GEADA achieves the
best overall performance with a modest but note-
worthy improvement of approximately 0.5%.
While the performance in less challenging cases
(P and R) is slightly compromised, GEADA ex-
hibits significant gains in more difficult scenar-
ios (A and C). The promising performance of
GEADA on both the CIFAR-100-C and Office-
Home benchmarks affirms its efficacy, even in
settings with a large number of classes.

Table 4: Leave-one-domain-out accuracies (%) on
Office-Home (A:Artistic C:Clipart P:Product R:Real).

Method A C P R Avg.

ERM 58.9 49.4 74.3 76.2 64.7
JiGen 53.0 47.4 71.4 72.7 61.2
MixStyle 58.7 53.4 74.2 75.9 65.5
RSC 58.4 47.9 71.6 74.5 63.1
SagNet 60.2 45.3 70.4 73.3 62.3
XDED 60.8 57.1 75.3 76.5 67.4

GEADA 62.3 59.2 74.7 75.2 67.9
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Figure 3: Single-domain generalization performance on (a) PACS benchmark with varying number
of views and (b) Digits benchmark with different loss functions for representation learning.

4.2 ABLATION STUDIES

We proceed to conduct ablation studies to examine the effect of several critical factors in our frame-
work, including the number of augmented views, choice of loss functions and the XCrop module.

Number of augmented views. We first investigate the influence of the number of augmented views
M on the PACS benchmark. We set the effective batch size, calculated as Batch Size ×M , to 512
during the experiment. Figure 3(a) shows that GEADA attains its peak performance when M = 4.
We hypothesize that a small M does not provide sufficient diversity for effective representation
learning. Conversely, when M is sufficiently large, further increasing M may not yield additional
diversity due to the uniformity of the views. Moreover, it may also dilute the class-specific informa-
tion in each batch, given the constraints of the effective batch size.

Loss function for representation learning. As discussed in Section 3.3, the proposed SupCent loss
shares conceptual similarities with the supervised contrastive (SupCon) loss and the cross-entropy
(CE) loss. We then examine the effect of the loss function on the Digits benchmark. As depicted
in Figure 3(b), the SupCent loss achieves significant improvement over the CE loss, possibly due to
the uniformity of the class centroids. Moreover, the SupCent loss achieves comparable performance
with the SupCon loss as both of them are designed to pull together embeddings from same class.
However, the SupCent loss is more efficient by reducing the cost of data communication.

Explainable cropping. Following the setup in
Section 4.1.3, we examine the merits of XCrop
on the PACS and Office-Home benchmarks by
comparing it with RandomCrop under the same
settings. As shown in Table 5, GEADA signif-
icantly benefits from the attribution-based crop-
ping on both benchmarks to preserve key infor-
mation while making diverse augmentations.

Table 5: Average generalization accuracies (%) on
PACS and Office-Home with RandCrop or XCrop.

GEADA PACS Office-Home

RandCrop 66.1 65.8
XCrop 69.6 67.9

5 DISCUSSION

In this paper, we present the GEADA framework to address the challenge of SDG in image classi-
fication tasks. Guided by the AdvCon and SupCent losses, our framework generates diverse yet se-
mantically consistent style and geometric augmentations and learns domain-invariant features from
them. In light of the framework, we focus on employing CL-based losses for data augmentation
and representation learning, targeting two key augmentation types pivotal to image classification.
However, as indicated in Section 4.1.2, introducing extra diverse augmentations could yield further
improvements. Fortunately, the inherent flexibility of our framework allows for seamless incorpo-
ration of differentiable augmentation strategies. Future directions include extending the framework
to embrace additional augmentation types, aiming to enhance generalization across diverse tasks in
computer vision, audio processing, and natural language processing.
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A PROOF OF PROPOSITION 1

The proof of Proposition 1 relies on the strict positive definiteness of the Gaussian kernel and the
corresponding characterizations of the uniform distribution on Sd−1 as demonstrated as follows.

Lemma 1 (Borodachov et al. (2019); Wang & Isola (2020)). For any t > 0, the Gaussian kernel

Gt(u,v) = e−||u−v||2/2t

is strictly positive definite on Sd−1×Sd−1, i.e., if for any finite signed Borel measure µ on Sd−1, the
energy

IGt
[µ] =

∫
Sd−1

∫
Sd−1

Gt(u,v) dµ(u) dµ(v)

is well defined, we have IGt
[µ] ≥ 0 and the equality holds only if µ(A) = 0 for any A ∈ B(Sd−1).

Lemma 2 (Borodachov et al. (2019); Wang & Isola (2020)). Consider kernel Kf : Sd−1×Sd−1 7→
(−∞,+∞] of the form

Kf (u,v) = f(||u− v||2),
which takes the Gaussian kernel as a special case. If Kf is strictly positive definite on Sd−1 × Sd−1

and IKf
[σd−1] is finite, then the normalized surface area measure σd−1 is the unique minimizer of

min
µ∈M(Sd−1)

IKf
[µ] = min

µ∈M(Sd−1)

∫
Sd−1

∫
Sd−1

Kf (u,v) dµ(u) dµ(v).

Moreover, the normalized counting measures {µN}∞N=1 associated with the N -point Kf -energy
minimizers {U∗

N}∞N=1 given by

U∗
N = {u∗

1, · · · ,u∗
N} = argmin

u1,··· ,uN∈Sd−1

∑
1≤i<j≤N

Kf (ui,uj)

converge weak* to σd−1, that is, for any continuous function fc : Sd−1 7→ R, we have

lim
N→∞

∫
Sd−1

fc(u) dµN (u) =

∫
Sd−1

fc(u) dσd−1(u).

Proof of Proposition 4.1. Given any v0 ∈ Sd−1 and 0 < r < 2, to apply above results to the
intersection S∗r(v0) = Sr(v0)∩Sd−1, it is sufficient to establish the Borel isomorphism (Srivastava,
2008), a bimeasurable bijective mapping, between the intersection and a unit hypersphere.

In fact, with γ = 1 − r2/2 and rγ =
√

1− γ2, S∗r(v0) is equivalent to a hypersphere centered at
vγ = γ · v0 with a radius of rγ , restricted to the hyperplane Hγ(v0) = {u ∈ Rd : u⊤v0 = γ}.
Specifically, for any u ∈ S∗r(v0), we have

||u− vγ ||2 = ||u||2 + γ2||v0||2 − 2γ · u⊤v0 = 1− γ2.

On the other hand, for any u ∈ Hγ(v0) satisfying ||u− vγ ||2 = 1− γ2, we also have u ∈ S∗r(v0).

Without loss of generality, we assume v0 = e1 = (1, 0, · · · , 0)⊤, otherwise it can be achieved via
the rotation of axes. Then, any u ∈ S∗r(v0) can be expressed as u = (γ,w⊤)⊤, where w ∈ Rd−1

satisfying ||w||2 = r2γ = 1 − γ2. Consequently, there exists a bimeasurable bijective mapping
ϕ : S∗r(v0) 7→ Sd−2 given by

ϕ(u) = ϕ((γ,w⊤)⊤) = r−1
γ ·w = w̃ and ϕ−1(w̃) = (γ, rγ · w̃⊤)⊤ = (γ,w⊤)⊤ = u,

which leads to the Borel isomorphism between (S∗r(v0),B(S∗r(v0))) and (Sd−2,B(Sd−2)). Conse-
quently, for any probability measure µ ∈ M(Sd−2), let µ ◦ ϕ denote the pushforward measure of
µ under ϕ on (S∗r(v0),B(S∗r(v0))), that is, for any A ∈ B(S∗r(v0)), we have µ ◦ ϕ(A) = µ(ϕ(A)).
Analogously, for any ν ∈ M(S∗r(v0)), we can also define the pushforward measure ν ◦ ϕ−1 on
(Sd−2,B(Sd−2)). In particular, for the normalized surface area measures σ and σd−2 on S∗r(v0) and
Sd−2, respectively, we have σ = σd−2 ◦ ϕ and σd−2 = σ ◦ ϕ−1.
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Additionally, let Gt and G̃t denote the Gaussian kernels on Rd and Rd−1, respectively. Then for any
u1,u2 ∈ S∗r(v0) with w̃1 = ϕ(u1), w̃2 = ϕ(u2) ∈ Sd−2, we have

Gt(u1,u2) = e−||w1−w2||2/2t = e−r2γ ·||w̃1−w̃2||2/2t = G̃t/r2γ
(w̃1, w̃2). (3)

Therefore, applying Lemma 2, for any t > 0, we have

min
ν∈M(S∗r(v0))

IGt [ν] = min
ν∈M(S∗r(v0))

∫
S∗r(v0)

∫
S∗r(v0)

Gt(u1,u2) dν(u1) dν(u2)

= min
ν∈M(S∗r(v0))

∫
Sd−2

∫
Sd−2

Gt(ϕ
−1(w̃1), ϕ

−1(w̃2)) dν ◦ ϕ−1(w̃1) dν ◦ ϕ−1(w̃2)

= min
µ∈M(Sd−2)

∫
Sd−2

∫
Sd−2

G̃t/r2γ
(w̃1, w̃2) dµ(w̃1) dµ(w̃2)

=

∫
Sd−2

∫
Sd−2

G̃t/r2γ
(w̃1, w̃2) dσd−2(w̃1) dσd−2(w̃2)

=

∫
S∗r(v0)

∫
S∗r(v0)

Gt(u1,u2) dσ(u1) dσ(u2) = IGt
[σ],

indicating that the normalized surface area measure σ uniquely minimizes the Gt-energy on S∗r(v0).

Furthermore, for any t > 0 and each N > 0, denote the N -point minimizer of the G̃t/r2γ
-energy on

Sd−2 as
W ∗

N = {w̃∗
1 , · · · , w̃∗

N} = argmin
w̃1,··· ,w̃N∈Sd−2

∑
1≤i<j≤N

G̃t/r2γ
(w̃i, w̃j),

and let µN denote the normalized counting measure associated with W ∗
N . By Lemma 2, we know

that {µN}∞N=1 converge weak* to σd−2. According to Equation 3, the corresponding N -point con-
figuration U∗

N = {ϕ−1(w̃∗
1), · · · , ϕ−1(w̃∗

N )} minimizes the Gt-energy on S∗r(v0) as

U∗
N = {ϕ−1(w̃∗

1), · · · , ϕ−1(w̃∗
N )} = argmin

u1,··· ,uN∈S∗r(v0)

∑
1≤i<j≤N

Gt(ui,uj).

Denoting the associated normalized counting measure as νN , we have νN ◦ ϕ−1 = µN . Moreover,
for any continuous function fc : S∗r(v0) 7→ R, gc = fc ◦ ϕ−1 : Sd−2 7→ R is also a continuous
function due to the continuity of ϕ−1. Therefore, we have

lim
N→∞

∫
S∗r(v0)

fc(u) dνN (u) = lim
N→∞

∫
Sd−2

gc(w̃) dµN (w̃)

=

∫
Sd−2

gc(w̃) dσd−2(w̃)

=

∫
S∗r(v0)

fc(u) dσ(u),

implying {νN}∞N=1 converge weak* to the normalized surface area measure σ on S∗r(v0).

B LINEAR SEPARABILITY OF UNIT HYPERSPHERES

Unlike Euclidean spaces, the unit hypersphere provides linear separability for well-clustered points
as described in the following proposition.

Proposition 2. Let Vk = {v(k)
1 , · · · ,v(k)

Nk
} denotes the set of embeddings on Sd−1 corresponding to

samples from the k-th class, and let Ck = {v ∈ Sd−1 : v⊤ck ≥ bk} represents some hyperspherical
cap for k ∈ [K]. If embeddings from different classes are clustered on disjoint caps, that is, Vk ⊂ Ck

for k ∈ [K] and Ci ∩Cj = ∅ for i ̸= j, then the embeddings can be classified by a linear classifier.

Proof. The proof of Proposition 1 is straightforward. Given K disjoint hyperspherical caps Ck =
{v ∈ Sd−1 : v⊤ck ≥ bk} distributed according to the class label for k = 1, · · · ,K, we can build a
linear classifier of the form

f(v) = Wv − b,
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where W = [c1, · · · , cK ]⊤ and b = (b1, · · · , bK). Then for any embedding v ∈ ⋃K
k=1 Vk, one can

make correct label classification according to the non-negative entry of f(v).

Proposition 2 suggests to enforce the embeddings to be clustered on the disjoint hyperspherical caps
corresponding to their semantic labels to preserve the task-relevant information in embeddings.

C TRAINING DETAILS IN EXPERIMENTS

The training details regarding the GEADA framework on the Digits, CIFAR-10-C, CIFAR-100-C,
PACS and Office-Home benchmarks in Section 4 are summarized in Table 6.

Table 6: Hyperparameters for training GEADA on benchmarks in Section 4.

Hyperparameters Digits CIFAR-10-C CIFAR-100-C PACS Office-Home

Epochs 30 100 100 40 60
Batch size 128 128 128 64 64
τadv 0.1 0.2 0.2 0.2 0.2
λadv 0.5 0.5 0.5 0.2 0.2
τsup 0.3 0.3 0.3 0.3 0.3
λsup 1.0 1.0 0.5 1.0 0.5
τcrop - - - 0.3 0.3
λcrop - - - 0.75 0.75

Feature Extractor f

Optimizer Adam SGD SGD SGD SGD
Learning rate 0.001 0.1 0.1 0.001 0.001
Weight decay 0.0 1e-4 1e-4 5e-4 5e-4

Linear Head h

Optimizer Adam SGD SGD SGD SGD
Learning rate 0.005 0.002 0.002 0.001 0.001

Generative Network G

Optimizer Adam Adam Adam Adam Adam
Learning rate 0.01 0.01 0.01 0.005 0.005
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