
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2025

INTERPRETING AND STEERING LLM REPRESENTATIONS
WITH MUTUAL INFORMATION-BASED EXPLANATIONS ON
SPARSE AUTOENCODERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) excel at addressing general human queries, yet they can
falter or produce unexpected responses in specific scenarios. Gaining insight into the
internal states of LLMs is key to understanding their successes and failures, as well as
to refining their capabilities. Recent efforts have applied sparse autoencoders to learn a
feature basis for explaining LLM hidden spaces. However, current post-hoc explanation
methods can not effectively describe the semantic meaning of the learned features, and it
is difficult to steer LLM behaviors by manipulating these features. Our analysis reveals
that existing explanation methods suffer from the frequency bias issue, i.e., they tend to
focus on trivial linguistic patterns rather than semantics. To overcome this, we propose
explaining the learned features from a fixed vocabulary set to mitigate the frequency bias,
and designing a novel explanation objective based on the mutual information theory to
better express the meaning of the features. We further suggest two strategies to steer LLM
representations by modifying sparse feature activations in response to user queries during
runtime. Empirical results demonstrate that our method generates more discourse-level
explanations than the baselines, and can effectively steer LLM behaviors to defend against
jailbreak attacks in the wild. These findings highlight the value of explanations for steering
LLM representations in downstream applications.1

1 INTRODUCTION

Large language models (LLMs) have demonstrated strong capabilities in responding to general human re-
quests (Achiam et al., 2023; Dubey et al., 2024; Jiang et al., 2024). Meanwhile, we still often observe failed
or unexpected responses in certain situations (Ji et al., 2023; Wei et al., 2024). Gaining insight into the
factors behind their successes and failures is crucial for further improving these models. A straightforward
way to understand LLM behaviors is directly studying their hidden activations or internal weights. However,
it is non-trivial to interpret the hidden states of modern LLMs because of their polysemantic nature (Arora
et al., 2018; Scherlis et al., 2022), where each dimension of the spaces encodes multiple pieces of unique
features. This property allows LLMs to encode more features than the dimensions of their hidden space, but
it presents significant challenges for human interpretation and understanding.

Researchers have made significant efforts to overcome the polysemantic challenge. Linear probing (Camp-
bell et al., 2023; Burns et al.; Marks & Tegmark, 2023; Gurnee et al., 2023) is a conventional technique to
detect whether an LLM learns a particular feature of interest. Unfortunately, the feasibility of this technique
is bounded by its requirement of an annotated dataset with samples including or excluding certain features.

1We will release our code and data once accepted.

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2025

Our's 😁

TopAct 🙂

N2G 🙂

Sports competition and coaching strategies: Carolina; bid; coach; dominant; longest; score; game; calling; desired; hot.
Decision-making and evaluation of outcomes: tune; keen; heading; impact; profit; judge; reasoning; influential; correction; bear.
Interior design and household elements: mirror; tap; household; Hall; interior; echo; click; themes; Roman; elements.

Childhood experiences and nostalgia: like my father's when I was a child; amour of the city since he was a child; tricks when she was a kid; own
experiences of being bullied as a child; ft and Mel Brooks since he was a child.
Descriptive writing on textures: at least 100 words about the texture; sensory details to describe the colors, textures; Compare and contrast the
different textures; the scent of the ocean, and the texture; Incorporate elements such as textures.
Cooking instructions on boiling and adjusting heat levels: Bring to a boil, reduce heat; the boil once again and then reduce the heat; boil, you
will need to reduce the heat; Bring to a boil, then reduce heat; stirring occasionally.\n4. Reduce heat.

Shopping or going to a store: [MASK] to the store; going to the store; [MASK] to the store; went to the [MASK]; going to the store.
Cellular biology on histones and actin: histones; histone; [MASK]osin and actin; composed of actin; role of actin.
Postmodernism or post-structuralism themes: major figure in post; takes place in a post; to adjust to post; effects of post; politic context of post.

Figure 1: Examples of explanations for a sparse autoencoder trained on Mistral-7b-Instruct. We separate raw
extracted spans/words with “;” and boldface the automated summaries. Unlike other methods, our approach
tends to produce discourse-level explanations rather than those dominated by rigid linguistic patterns.

To reduce the need for annotated datasets, researchers (Cunningham et al., 2023; Wu et al., 2024; Freire
et al., 2024; Bricken et al., 2023) are switching to decomposing the hidden spaces of LLMs in an unsuper-
vised way. In this context, recent research has explored the sparse autoencoder (Olshausen & Field, 1997;
Makhzani & Frey, 2013) technique, demonstrating their effectiveness in learning a number of sparse features
as a basis to reconstruct the hidden spaces of advanced LLMs with hundreds of billions of parameters from
Anthropic (Templeton et al., 2024), OpenAI (Gao et al., 2024), and Google (Lieberum et al., 2024). These
sparse features are expected to be interpretable, since each feature should only react to a specific kind of
content, showing a monosemantic nature instead of a polysemantic one.

However, researchers find that the learned sparse features have not shown strong enough explainability to
meet our expectations, i.e., understanding LLM encoded features and even steering LLM behaviors. Specifi-
cally, Makelov et al. (2024) and Chaudhary & Geiger (2024) designed dedicated tasks to test whether sparse
autoencoders could detect sufficient features for certain tasks. However, they found that sparse autoencoders
cannot capture enough relevant features to meet these goals, even for simple and experimental-level tasks
with clear training samples. Meanwhile, researchers (Gao et al., 2024) also observed that many learned
sparse features from advanced LLMs could not be effectively explained with current techniques. These
headwinds undermine confidence in extending such techniques to real-world applications.

In this work, we enhance the interpretability and usability of sparse autoencoder features by introducing a
new post-hoc explanation method and strategies to steer LLM representations with these features. We first
formalize the text generation process with the topic model (Blei & Lafferty, 2006; Arora et al., 2016), reveal-
ing that sparse autoencoders learn both discourse topics and linguistic patterns as features simultaneously,
with linguistic patterns being less semantically critical but often dominating. To address this issue, we pro-
pose to leverage a fixed vocabulary set to collect explanations and ensure that critical information on learned
features is captured based on a mutual information-based objective. We also explore steering LLM repre-
sentations by modifying the activation of explained features during runtime. Figure 1 shows some examples
of explanations generated by our method compared to other explainers, and Figure 2 visualizes our pipeline
to steer LLMs with explained features. Experiments on open-source LLMs show that our method provides
more meaningful discourse-level explanations, and they are practically usable for downstream tasks. We
summarize our contributions as follows:

• Our theoretical analysis identifies a key challenge in explaining learned features from sparse autoencoders,
i.e., the frequency bias between the discourse and linguistic features.

• We propose leveraging a fixed vocabulary set to mitigate the frequency bias for explaining learned features.
Experimental results show that our method provides more discourse-level explanations than the others.

• We propose steering LLM representations by modifying their activations in response to user inputs during
runtime. We apply this approach with our explanations to prevent real-world jailbreak attacks, and show
that the steered LLM achieves a significant safety improvement while baseline explanations fail.

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2025

𝐗

…

𝐗

Top-K
Activated

Reconstructed

Similarity
 Loss

Text Representations 𝐗

𝐗′

discourse
meanings

…

…
𝐀

𝐀′

Step 1: Learning sparse features
with Top-K sparse autoencoder.

Step 2: Explaining sparse features
with natural language tokens.

Step 3: Steering LLMs by enforcing
sparse features

 activated or deactivated.

…

𝐼𝑐 : contact, phone,

unit, accuracy, exact,

burning, location,

precise, details, smoke

monitor

backup

reporting

New York
Boston

Seattle

athe
of

𝒞
𝒱

Figure 2: Steering LLM representations with explanations from sparse autoencoders.

2 PRELIMINARY

2.1 PROBLEM STATEMENT

Let V denote the vocabulary set, and X be a text of length N , where each token xn ∈ V is the n-th token of
X . Given a large language model f , the embedding of X at a specific layer is denoted as X ∈ RN×D, where
D is latent dimension. Our goal is to interpret these embeddings by extracting semantic features from the
latent space. We assume that there are C learned feature vectors W ∈ RC×D, so that X can be decomposed
as a linear combination of these feature vectors, i.e., X ≈ AW, where A ∈ RL×C are weights of the linear
combination for the given instance X. Let Wc denote the c-th row of W. After the decomposition, X is
explainable if we could understand the semantic meaning of each learned feature vector Wc. To achieve
this, we aim at seeking a set of words Ic ⊂ V to explain each learned feature Wc with natural language.

2.2 LEARNING AND INTERPRETING LLMS WITH SPARSE AUTOENCODERS

Sparse autoencoders have shown great promise to learn the feature vectors for latent representation decom-
position and explaining LLMs in practice (Gao et al., 2024; Lieberum et al., 2024). A standard sparse
autoencoder (Olshausen & Field, 1997) is a two-layer multi-layer perceptron X̂ = σ(XW) ·W′⊤, where
W,W′ ∈ RD×C are trainable parameters and σ refers to the ReLU activation function. Typically, a tight
weight strategy is applied, i.e., W′ = W, and the trained weights W are considered as the learned feature
vectors. The traditional training objective of sparse autoencoders can be written as ||X− X̂||2 + λ||A||1,
where A = σ(XW) and λ ∈ R+ is a hyper-parameter to balance the impact of the sparsity constraint. The
Top-K sparse autoencoder (Makhzani & Frey, 2013) replaces the ReLU function with the Top-K activation,
enforcing each reconstruction to apply with no more than K learned features. Recent studies (Templeton
et al., 2024; Gao et al., 2024; Lieberum et al., 2024) have shown that Top-K sparse autoencoders can be
used to learn sparse features for reconstructing token-level representations from LLMs, where these sparse
features are expected to be interpretable by humans.

However, there are limited explorations on collecting a natural language explanation Ic for each of the
learned feature vectors Wc. The most intuitive strategy (Bricken et al., 2023) is collecting some N-gram
spans that could best activate the feature vector Wc over a large corpus. Some researchers (Gao et al., 2024)
leverage the Neuron-to-Graph (N2G) algorithm (Foote et al., 2023) to refine the N-gram spans for more
precise interpretations. However, it has been found (Gao et al., 2024) that these methods still fail to generate
explanations for a large number of learned features from sparse autoencoders trained for LLMs.

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2025

3 METHODOLOGY

This section first theoretically studies the properties of text generation for learning sparse autoencoders, com-
paring them to traditional image generation scenarios. With these insights, we propose a mutual information-
based post-hoc method to explain the semantics of feature vectors learned by a trained sparse autoencoder.
Finally, we design two strategies to steer LLM representations with the explained features.

3.1 LEARNING SPARSE FEATURES FROM TEXTUAL DATA

Conventional sparse autoencoders (Olshausen & Field, 1997) are developed based on an assumption for
image data, where each image is a linear combination of features. A sparse autoencoder learns an over-
complete set of visual features, so that any image can be decomposed and reconstructed with the learned
features. Early works (Bricken et al., 2023; Cunningham et al., 2023) borrow this framework from image
data to textual data, assuming that each token is linearly related to a set of features. However, they ignore
some natures of textual data, leading to a suboptimal solution to learning sparse features (Gao et al., 2024).

To start with our theoretical analysis, we consider the text generation task as a dynamic process under
the topic-model assumption (Steyvers & Griffiths, 2007; Arora et al., 2016; 2018), where each word xn is
generated at the n-th step. This topic model describes a dynamic process in which a person first comes
up with a topic cn they want to express in mind and then selects a word xn that best represents the topic
to say. Formally, this dynamic process can be driven by the random walk of a discourse vector ecn ∈ Rd

representing what it talks about. The discourse vector ecn does a slow random walk at each step n, i.e.,
ecn = ecn−1

+ eϵn , where eϵn ∼ N d(0, σ). Also, at each step, a word xn ∈ V is sampled based on the
discourse vector ecn . To this end, the text generation process for a sequence of words X is given by:

p(X) =

|X|∏
n=1

p(xn|cn) · p(cn|cn−1). (1)

Here, the word emission probability is modelled by p(xn|cn) =
exp(⟨exn ,ecn ⟩)∑
v∈V exp(⟨ev,ecn ⟩) (Steyvers & Griffiths,

2007), where ⟨·, ·⟩ indicates the dot product of two vectors. Since cn is a random walk of cn−1, the topic

transmission probability can be computed as p(cn|cn−1) = 1√
2π·σ · exp(−||ecn−ecn−1

||2
2σ) (Olshausen &

Field, 1997). Recall that ecn = ecn−1
+ eϵn , after a few straightforward derivations, we have

log p(X) ∝
N∑

n=1

⟨exn
, ec0⟩+

N∑
n=1

n∑
i=1

⟨exn
, eϵi⟩ −

1

2σ

∑
||eϵn ||2. (2)

Equation 2 reveals some critical characteristics of textual data that is different from image data. Firstly, there
is a shared discourse topic c0 across all words xn from the same sentence X , for n = 1, ..., N . However,
recent approaches that use sparse autoencoders for LLMs often treat the reconstruction loss for each token
independently, without adding constraints to capture the shared concepts. As a result, they fail to isolate the
features learned for discourse semantical topics (i.e., ec0) and linguistic patterns (i.e., eϵn). In other words,
each learned sparse feature may store both discourse and linguistic information, where the latter is less useful
for steering LLMs than the previous one. Additionally, discourse topics are rarer than linguistic patterns,
as each instance has N times more linguistic patterns than discourse topics, we call it the frequency bias.
This issue leads to the sparse features that prioritize capturing the linguistic patterns, raising the challenge
of interpreting the discourse topics encoded within LLMs.

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2025

3.2 EXPLAINING LEARNED FEATURES WITH NATURAL LANGUAGE

To interpret the learned features {wc}Cc=1, existing works (Bricken et al., 2023; Gao et al., 2024; Lieberum
et al., 2024) typically enumerate a large number of text spans, and then treat those whose hidden represen-
tations could most activate the learned features as the interpretations of the learned features. This method
generally works well for interpreting the captured linguistic patterns in the feature vector as these patterns
are frequently presented in the corpus, but they are hard to discover the stored discourse topics because the
more frequent linguistic patterns dominate (see discussions in Sec. 4.2.2), leading to lower interpretability to
a large number of the learned features (Gao et al., 2024). Since our goal is to understand and control LLMs,
we aim to interpret those discourse topics within a feasible budget cost.

To tackle the challenge of frequency bias, we propose to leverage a fixed vocabulary set V of a general
corpus instead of its raw texts. Specifically, our goal is to seek a K-word set Ic ⊂ V that can describe most
information of the c-th feature. Mathematically, we measure the information of the c-th feature described
by a given word set with their mutual information (Cover, 1999). To this end, the objective of constructing
a natural language explanation for the c-th feature is defined as

I∗
c = argmax

V′⊂V,|V|=K

MI(V ′; C) ∝ argmin
V′⊂V,|V′|=K

I(C|V ′)

= argmax
V′⊂V,|V′|=K

∑
c∈U(C)

∑
w∈V′

p(c)p(w|c)logp(c|w)

∝ argmax
V′⊂V,|V′|=K

∑
c∈U(C)

∑
w∈V′

p(w|c)logp(c|w),
(3)

where U(C) is the neighbor of a learned feature C. By leveraging the output word representations ew of
word w and learned feature vector Wc, we propose to estimate p(w|c) and p(c|w) by

p(w|c) = exp(⟨ew,Wc⟩)∑
w′∈V exp(⟨ew′ ,Wc⟩)

, p(c|w) = exp(⟨ew,Wc⟩)∑
c′∈C exp(⟨ew,Wc′⟩)

. (4)

Compared with a trivial strategy that simply obtains K words whose embeddings maximally activate the
feature vector, this mutual information-based method reveals the importance of normalizing activations of a
single word across all learned features. In other words, if a word embedding constantly leads to a significant
large dot product with all features, the word will not express enough specificity to any certain feature.

3.3 STEERING LLMS WITH EXPLAINED FEATURES

Given learned features {wc}Cc=1 and their explanations {Ic}Cc=1, we could identify a subset of the features
S = {ws}Ss=1 ⊂ {wc}Cc=1 that are correlated with a specific LLM behavior we are interested in based on
their explanations (e.g., harmful knowledge or safety awareness in our study). This process can be either
manually or automatically (Bills et al., 2023). Considering the hidden representations of an input prompt as
X, we propose two strategies to steer LLM representations with the identified features S during runtime.

Amplification. We amplify α times of the activations on our identified feature vectors, i.e., X′ = X + α ·
ReLU(XS)S⊤, where S is matrix form of the identified set S, and α is a hyper-parameter. We encourage
LLMs to be more aware of the identified features if α > 0, and pay less attention to them if α < 0.
Especially, α = −1 indicates that we erase the LLM’s awareness of the identified features.

Calibration. We enforce LLMs to focus on the identified features to a certain level β, i.e., X′ = X −
ReLU(XS)S⊤+β · s̄, where s̄ = 1

S

∑
ws is the mean vector of S and β is a hyper-parameter. This strategy

basically shifts the LLM’s hidden space toward the center of our target feature vectors.

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2025

The above two strategies are responsible for different purposes of steering LLMs, and they could work
together. We would also emphasize that the proposed strategies are efficient as we only monitor a subset of
our interested features S instead of the entire set of learned sparse features W.

4 EXPERIMENTS

This section investigates two research questions. RQ1: Does the proposed method generate more discourse-
level explanations than traditional methods? RQ2: Whether these discourse-level explanations are useful in
steering LLM behaviors? To answer these questions, we first train a Top-K sparse autoencoder for open-
sourced LLMs as our foundation (Sec. 4.1). We then compare the explanations of the trained sparse autoen-
coder with our proposed and other explanation methods for RQ1 (Sec. 4.2). We finally explore the usability
of these explanations for downstream tasks, i.e., jailbreak defense, for RQ2 (Sec. 4.3).

4.1 GENERAL SETTINGS

Language Models. In this work, we study LLMs from the Mistral family (Jiang et al., 2023) as it has
demonstrated its strong usability in the wild. In particular, we choose the Mistral-7B-Instruct model, focus-
ing on its 8th layer, the most shadow layer in previous practices (Lieberum et al., 2024). Without specific,
the greedy search with a maximum of 512 new tokens is applied to our experiments for reproducibility.

Datasets. Since our goal is to develop sparse autoencoders for understanding and controlling LLMs for
different applications, we select various instruction-tuning datasets for training our backbone sparse autoen-
coder. In specific, we contain the training subset of the ShareGPT (RyokoAI, 2023), UltraChat (Ding et al.,
2023), HH-RLHF (Bai et al., 2022), WebGLM-QA (Liu et al., 2023), Evol-Instruct (Xu et al., 2023), and
HelpSteer2 (Wang et al., 2024) datasets. For the UltraChat dataset, we randomly sample 400K instances
from its training subset. We also drop duplicate prompts across different datasets. To this end, we have
retained about 711K unique user queries covering diverse topics and user intents. We randomly select 90%
of samples to form our training set, and the rest is our validation set. Overall, we collect 113M tokens for
training and 12M tokens for validating, with an average length of 177.9 tokens per query.

Training Details. Our training procedures and hyper-parameter settings majorly follow the previous
works (Bricken et al., 2023; Gao et al., 2024; Lieberum et al., 2024). Specifically, we initialize C = 216

feature vectors for an Top-K sparse autoencoder with Kaiming initialization (He et al., 2015). Here, C = 216

is set according to the scaling law between the number of features C and the number of training tokens Z
found by Gao et al. (2024), i.e., C = O(Zγ), where γ ≈ 0.60 for GPT2-small and γ ≈ 0.65 for GPT-4.2.
To prevent dead neurons, we also apply the tied-weight strategy as suggested by Gao et al. (2024). We use
Adam optimizer (Kingma, 2014) with a constant learning rate of 1e−3 and epsilon of 6.25e−10 to train a
total of 4 epochs. The hyper-parameters β1 and β2 of the optimizer are 0.9 and 0.999 following Gao et al.
(2024), respectively. We set the batch size as 512 queries, leading to around 90K tokens per gradient update,
which is as the same volume as Gao et al. (2024). The mixed precision training strategy (Micikevicius et al.,
2017) is also applied to speed up the training process as Lieberum et al. (2024) found that it only shows a
slightly worse impact on the model performance. Top-K sparse autoencoder has an initial sparsity K = 200,
and it gradually decreases to the target sparsity K = 20 in the first 50% training samples of the first epoch.

Explanation Baselines. Our study considers several existing works for sparse autoencoder explanations as
baselines. TopAct (Bricken et al., 2023) collects a mount of text spans from the corpus that could maximally
activate it. N2G (Gao et al., 2024) steps further by masking some words from the activated spans that show

2Empirically, γ ≈ 0.5978 in our study.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2025

Table 1: Qualitative analysis on generated explanations. Both TopAct and N2G tend to collect raw explana-
tions sharing the same word-level patterns, while our method captures more discourse-level explanations.

Method Summary Raw Explanation

Ours

Art evaluation and critique. commonly; impact; cater; widely; normally; gallery; judge;
pros; independent; accurately

Analysis of performance metrics. landscape; graph; retirement; performance; communication;
density; cut; golf; measure; measures

Temporal concepts and sequences in
narratives.

previously; suddenly; repeated; history; once; initially; near-
est; already; normally; originally

TopAct

Evaluation criteria for assessments or
analyses in various contexts.

What criteria does Pitchfork use to; What evaluation criteria
will Kumar organization use to; and what criteria were used;
market? what specific criteria should be used; needed to con-
duct a comprehensive analysis and the criteria used

Instructional prompts or commands
for providing steps in a process.

[INST] Provide step; [INST] Provide step; [INST] Provide
step; [INST] Provide step; [INST] Provide step

Repetition of the word ”again” in var-
ious contexts

ideas and produce compelling content — again; Pine View
School again; technologies segment is again; pushed on the
ceiling,and again; Echoed through the valley, again

N2G

Data format: Comma-Separated Val-
ues (CSV).

CSV; CSV; CSV; CSV; csv[MASK]

Scheduling and managing appoint-
ments.

schedule appoint; upcoming appoint[MASK]; appointment;
appointment; upcoming appoint[MASK]

Video game titles. Final Fant; Final Fant; Final Fant; Final Fant; Metal Gear

limited contributions to the activations. We collect their activated spans, with a maximum of 10 tokens, over
the entire validation set, and we keep the most activated span from each entry to increase their diversity.

4.2 EVALUATING EXPLANATIONS OF SPARSE FEATURES

Exactly measuring the explanation quality of features from sparse autoencoders is still an open question (Ra-
jamanoharan et al., 2024b). One that is commonly applied is conducting human studies (Bricken et al., 2023;
Rajamanoharan et al., 2024a; Gao et al., 2024; Rajamanoharan et al., 2024b), where the human subjects are
asked to determine whether an explanation is meaningful or not. We follow this paradigm to evaluate the
explanations from different methods, and we scale up this process by replacing human subjects with GPT-4o
as existing works (Bricken et al., 2023; Bills et al., 2023; Rajamanoharan et al., 2024b).

4.2.1 EXPERIMENTAL DESIGNS

We conduct both qualitative and quantitative analyses of the explanations with the help of our machine
annotator. Given a feature vector and its raw explanations, the machine annotator is called to provide a short
summary of the explanations with an option to say “Cannot Tell” in case the raw explanations make no sense
(please check details in Appendix. A). Here, the raw explanations of TopAct and N2G are the top-5 most
activated text spans, while our method chooses the top-10 words over a vocabulary set consisting of the 5000
most common words in the training set. Once the summary is collected, we call the machine annotator in
a new thread to judge whether the raw explanations are relevant to the given summary. We follow previous
work (Rajamanoharan et al., 2024b) to give the judgment with some options, namely “yes”, “probably”,
“maybe”, and “no”, where in our study, we treat the summaries are judged with “yes” or “probably” as

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2025

successfully explained. Table 1 shows some randomly selected cases with a judgment “yes” and the text
spans or words are separated with the symbol “;”. We also report the percentage of successfully explained
the raw explanations from various explainers in Table 2.

4.2.2 RESULTS

TopAct and N2G tend to collect text spans sharing the same lexical patterns, while our method prefers
words sharing a concise topic. In Table 1, we could first see that these explanations marked with “yes”
are highly interpretable, demonstrating the effectiveness of using machine annotators to replace human an-
notators for scaling up the evaluation process. While both baselines and our proposed method generate
reasonable explanations, we also find some different characters from their raw explanations. In specific, the
raw explanations of TopAct or N2G typically share the same linguistic phrases, such as “used to” for the first
case of TopAct and “CSV” for the first case of N2G. However, the selected words with our method do not
appear as such lexical-level phrases; instead, the group of them illustrates a concise topic. This difference
highlights the motivation of our research to find discourse-level explanations.

Table 2: Explanation rates of
learned sparse features on the
features only activated valida-
tion set or overall features.

Method Explanation Rate
Activated Overall

TopAct 59.16 23.17
N2G 38.79 15.13

Ours 67.39 66.98

Our method generates more reasonable explanations than that of
TopAct and N2G. Table 2 reports the percentage of learned sparse fea-
tures that are successfully explained, and we group them by those that
have been activated from the validation set or overall. We observe that
many learned features haven’t been reasonably explained with TopAct
or N2G because not enough patterns have been activated on the valida-
tion set, which is one of the drawbacks of relying on activating input text
for generations. One may argue that we can collect activated spans from
the training set. However, these activated patterns can be significantly bi-
ased, as the sparse autoencoder is supposed to overfit the training set (Tom
& Chris, 2023). Preparing a large validation set to ensure each learned
sparse feature collects enough activation spans weakens the usability of
these methods again. Even only considering the learned features that have been activated on the validation
set, the proposed method shows a stronger explainable rate than the baselines. It is not surprising that N2G
actually provides worse raw generations than TopAct, as we found evidence3 that N2G shows a stronger
preference for lexical patterns than TopAct, even if they are fake ones. These observations showcase the
challenge of interpreting the discourse-level meanings behind the learned sparse features.

4.3 USING EXPLAINED FEATURES FOR DOWNSTREAM TASKS

This section considers jailbreak defense as a downstream application to utilize our explained features. Our
goal is to defend jailbreak attacks while keeping its helpfulness in responding to normal queries. We choose
this task because of its generalizability across different scenarios that need to deploy LLMs. Also, existing
defense strategies haven’t shown practical utility due to their poor effectiveness or unbearable latency.

4.3.1 EXPERIMENTAL DESIGNS

We leverage two benchmarks to evaluate our downstream task performance. In specific, Salad-Bench (Li
et al., 2024) is introduced to evaluate the safety of LLMs, and MT-Bench (Zheng et al., 2023) is applied to
evaluate their general helpfulness. Two categories of the defense strategies that do not require any training

3For example, one sparse feature whose raw explanation of TopAct is “6th century (via History Magazine). Before
that”; “Prior to Chomsky’s work,”; and “Reference [2]: Before the GPS,”.It is clear that this feature captures “referring
related works”. However, N2G simplifies them to “Before that”; “Prior to [MASK]omsky’s work”; and “Before [MASK]
GPS,”, which obviously changes the meaning and concentrates on some trivial patterns, i.e., “Before” and “Prior to”.

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2025

Table 3: Defending Mistral-7b-Instruct from jailbreak attacks without model training. The Salad-Bench
reports the attack success rate (ASR) to illustrate the effectiveness of different models to prevent jailbreak
attacks, while the MT-Bench shows its automatic scoring results on the helpfulness of general user queries.

Category Method Salad-Bench (Safety) MT-Bench (Helpful)
ASR (↓) Time (↓) Score (↑) Time (↓)

w/o Defense 81.6 1.0x 6.5 1.0x

Perturbation

Random Patch 80.6 4.9x 3.8 1.6x
Random Insert 79.4 6.5x 3.7 1.6x
Random Swap 73.8 5.6x 3.0 1.6x

Self-Robustness 16.2 6.9x 5.3 16.9x

Prompting
SafePrompt 79.0 1.0x 6.5 1.0x

XSafePrompt 77.8 0.9x 6.1 0.9x
Self-Reminder 73.0 0.9x 6.3 0.9x

SAE Steer
(Ours)

Erase Harmful (EH) 81.0 1.0x 5.9 1.0x
Aware Secuirty (AS) 73.2 0.8x 6.0 0.9x

EH + AS 72.8 0.8x 5.9 0.9x

datasets are considered as the baseline methods, where the perturbation-based methods include Random
Patch/Insert/Swap (Robey et al., 2023) and Self-Paraphrase (Cao et al., 2023), and the prompting-based
methods include SafePrompt/XSafePrompt (Deng et al., 2023), and Self-Reminder (Xie et al., 2023). Since
most of the perturbation-based baselines are time-consuming, we randomly select 10% of the samples to
conduct a smaller test set for all our evaluations. Note that all baselines and our methods will not be trained
on any data in this experiment. The attack success rate (ASR) on Salad-Bench, GPT-4o-mini evaluates
MT-Bench scores, and the normalized consuming time are listed in Table 3.

To apply the proposed Amplification or Calibration techniques for jailbreak defense, we can consider three
specific strategies. (1) Erase Harmful (EH) monitors whether any “harmful” features are activated when
responding to user prompts, and erase them if so (i.e., Amplification with α = −1). (2) Aware Security (AS)
consistently activates those safety features during responding. (3) Applying both AS and EH strategies at the
same time. Here, we follow the hazard taxonomy of Llama3-Guard (Llama Team, 2024) to judge whether
each feature is harmful or not. Inspired by this hazard taxonomy, we manually craft a safeguarding taxonomy
listing 7 categories to classify safety strategies. We prompt GPT-4o-mini to provide the harmfulness and
safety labels for each learned feature by providing their explanations. To ensure labeling quality, we only
take the learned features with the explainable label “yes” into account. As a result, for our method, 141 and
48 features are selected for the AS and EH strategies, respectively. For hyper-parameter β of AS, we grid
search some numbers and find that 2.5 shows the best practice in balancing safety and overall helpfulness.
Table 3 and Figure 3 report the results with our explanations and baseline explanations, respectively.

4.3.2 RESULTS

Sparse autoencoder can steer LLMs behavior during runtime. First of all, we can read from Table 3
that all perturbation-based defense strategies are not practical for real-world use, as they either significantly
compromise overall helpfulness or introduce intolerable latency. In contrast, most prompting-based methods
maintain general helpfulness but fail to defend against jailbreak attacks. The notable exception is the state-of-
the-art baseline, Self-Reminder, which achieves safety and helpfulness within the same computing budget.
Compared with them, our proposed sparse-autoencoder-based methods exhibit a strong jailbreak defense
ability (Salad-Bench: 81.6 → 72.8) with only a minor reduction on helpfulness (MT-Bench: 6.5 → 6.0).
The success of our method in such a challenging task provides a promising direction for other scenarios.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2025

The key to preventing jailbreak attacks is not to forget harmful knowledge, but to enhance safety
awareness. One interesting finding from our experiment is that the strategy of erasing harmful knowledge
has no significant contribution to the jailbreak defense, contradicting our intuitive understanding of the
jailbreak defense. The significant improvement of our Aware Security strategy for jailbreak defense actually
aligns with the main idea of Self-Reminder – “remind ChatGPT to respond responsibly” (Xie et al., 2023).
This finding can benefit future works for jailbreak defense for large language models.

Top
Act

N2G Ours
70

75

80

85

90
w/o Defense

83
80.6

73.2

Sa
la

d-
B

en
ch

A
SR

Figure 3: Applying Aware Security
for jailbreak defense based on ex-
planations from different methods.

We also apply the Aware Security strategy to the TopAct and N2G
explanations and report their results in Figure 3. Only N2G shows a
slight reduction in ASR versus the no-defense baseline. We have tuned
β but cannot see a clear improvement. One possible reason is that their
selected safety strategies are too lexical-level and fine-grained. Here
is an example feature that has been annotated with a “Physical De-
fense Category” as its summary is “Locking mechanisms or security
systems” with a raw explanation: “locks; locks; lock; have a two-stage
lock; lock.” To compare with, one of our method annotated with the
same category has a summary of “Emergency response and location
tracking” with a raw explanation “contact, phone, unit, accuracy, ex-
act, burning, location, precise, details, smoke.” These observations
highlight our motivation to explain discourse-level features.

5 RELATED WORKS

Modern large language models have shown promising text-generation abilities, prompting researchers to
explore their internal mechanisms. One approach (Belinkov et al., 2018; Jawahar et al., 2019; Rogers et al.,
2021) develops contrastive datasets to probe hidden states for specific features, but it is limited by the poly-
semantic nature of neurons (Elhage et al., 2022; Olah et al., 2020), making the explanations non-concise and
difficult to apply in downstream tasks. To overcome this, researchers (Bricken et al., 2023) propose learning
orthogonal basis vectors to better understand LLMs. Early works (Beren & Black, 2022; Wu et al., 2024)
applied singular vector analysis to identify concise, interpretable directions in neuron activations. Soon af-
ter, sparse autoencoders (Bricken et al., 2023; Cunningham et al., 2023) were introduced, allowing for a
more flexible settings. Sparse autoencoders, initially used to analyze image data (Olshausen & Field, 1997;
Makhzani & Frey, 2013), are now being applied to LLMs. Researchers from Anthropic (Bricken et al.,
2023) and EleutherAI (Cunningham et al., 2023) demonstrated that activations from smaller models like
GPT-2 and Pythia yield highly interpretable features. Subsequent studies showed these features help inter-
pret model behaviors in tasks like indirect object identification (Makelov, 2024), translation (Dumas et al.),
and circuit detection (Marks et al., 2024). Recent works (Templeton et al., 2024; Gao et al., 2024; Lieberum
et al., 2024) confirm this technique’s success with larger LLMs. Our study follows this path, and advances
by developing a method for generating discourse-level explanations to steer LLM representations.

6 CONCLUSIONS

This study steps a solid stamp toward understanding and steering LLM representations in the wild. Our
theoretical analysis first reveals a frequency bias between discourse and linguistic features learned by sparse
autoencoders. To eliminate this bias, we propose seeking words from a fixed vocabulary set and designing
a mutual-information-based objective to ensure the collected words capture the features’ meanings. Ad-
ditionally, we demonstrate that our steering strategies effectively enhance the safety of LLMs using our
mutual-information-based explanations, while baseline methods fail to achieve the same. Overall, this study
underscores the importance of discourse-level explanations in effectively controlling LLM behavior.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A latent variable model ap-
proach to pmi-based word embeddings. Transactions of the Association for Computational Linguistics,
4:385–399, 2016.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear algebraic structure of
word senses, with applications to polysemy. Transactions of the Association for Computational Linguis-
tics, 6:483–495, 2018.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with rein-
forcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Yonatan Belinkov, Lluı́s Màrquez, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, and James Glass. Evaluating
layers of representation in neural machine translation on part-of-speech and semantic tagging tasks. arXiv
preprint arXiv:1801.07772, 2018.

Beren and Sid Black. The singular value decompositions of transformer weight matrices are highly inter-
pretable. 2022.

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever, Jan
Leike, Jeff Wu, and William Saunders. Language models can explain neurons in language models. URL
https://openaipublic. blob. core. windows. net/neuron-explainer/paper/index. html.(Date accessed: 14.05.
2023), 2, 2023.

David M Blei and John D Lafferty. Dynamic topic models. In Proceedings of the 23rd international
conference on Machine learning, pp. 113–120, 2006.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick Turner,
Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas
Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina Nguyen, Brayden
McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and Christopher Olah. Towards
monosemanticity: Decomposing language models with dictionary learning. Transformer Circuits Thread,
2023. https://transformer-circuits.pub/2023/monosemantic-features/index.html.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in language
models without supervision. In The Eleventh International Conference on Learning Representations.

James Campbell, Richard Ren, and Phillip Guo. Localizing lying in llama: Understanding instructed dishon-
esty on true-false questions through prompting, probing, and patching. arXiv preprint arXiv:2311.15131,
2023.

Bochuan Cao, Yuanpu Cao, Lu Lin, and Jinghui Chen. Defending against alignment-breaking attacks via
robustly aligned llm. arXiv preprint arXiv:2309.14348, 2023.

Maheep Chaudhary and Atticus Geiger. Evaluating open-source sparse autoencoders on disentangling fac-
tual knowledge in gpt-2 small. arXiv preprint arXiv:2409.04478, 2024.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

11

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2025

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoencoders find
highly interpretable features in language models. arXiv preprint arXiv:2309.08600, 2023.

Yue Deng, Wenxuan Zhang, Sinno Jialin Pan, and Lidong Bing. Multilingual jailbreak challenges in large
language models. arXiv preprint arXiv:2310.06474, 2023.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun, and
Bowen Zhou. Enhancing chat language models by scaling high-quality instructional conversations. arXiv
preprint arXiv:2305.14233, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Clément Dumas, Veniamin Veselovsky, Giovanni Monea, Robert West, and Chris Wendler. How do llamas
process multilingual text? a latent exploration through activation patching. In ICML 2024 Workshop on
Mechanistic Interpretability.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec, Zac
Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposition. arXiv
preprint arXiv:2209.10652, 2022.

Alex Foote, Neel Nanda, Esben Kran, Ioannis Konstas, Shay Cohen, and Fazl Barez. Neuron to graph:
Interpreting language model neurons at scale. arXiv preprint arXiv:2305.19911, 2023.

Pedro Freire, ChengCheng Tan, Adam Gleave, Dan Hendrycks, and Scott Emmons. Uncovering latent
human wellbeing in language model embeddings. arXiv preprint arXiv:2402.11777, 2024.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever, Jan
Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv preprint arXiv:2406.04093,
2024.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bertsimas.
Finding neurons in a haystack: Case studies with sparse probing. Transactions on Machine Learning
Research, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE international conference on
computer vision, pp. 1026–1034, 2015.

Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah. What does bert learn about the structure of language?
In ACL 2019-57th Annual Meeting of the Association for Computational Linguistics, 2019.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM Computing
Surveys, 55(12):1–38, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b.
arXiv preprint arXiv:2310.06825, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford,
Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al. Mixtral of
experts. arXiv preprint arXiv:2401.04088, 2024.

12

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2025

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Lijun Li, Bowen Dong, Ruohui Wang, Xuhao Hu, Wangmeng Zuo, Dahua Lin, Yu Qiao, and Jing Shao.
Salad-bench: A hierarchical and comprehensive safety benchmark for large language models. arXiv
preprint arXiv:2402.05044, 2024.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant Varma,
János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse autoencoders
everywhere all at once on gemma 2. arXiv preprint arXiv:2408.05147, 2024.

Xiao Liu, Hanyu Lai, Hao Yu, Yifan Xu, Aohan Zeng, Zhengxiao Du, Peng Zhang, Yuxiao Dong, and Jie
Tang. Webglm: Towards an efficient web-enhanced question answering system with human preferences.
In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
4549–4560, 2023.

AI @ Meta Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.
21783.

Aleksandar Makelov. Sparse autoencoders match supervised features for model steering on the ioi task. In
ICML 2024 Workshop on Mechanistic Interpretability, 2024.

Aleksandar Makelov, Georg Lange, and Neel Nanda. Towards principled evaluations of sparse autoencoders
for interpretability and control. In ICLR 2024 Workshop on Secure and Trustworthy Large Language
Models, 2024.

Alireza Makhzani and Brendan Frey. K-sparse autoencoders. arXiv preprint arXiv:1312.5663, 2013.

Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language model
representations of true/false datasets. arXiv preprint arXiv:2310.06824, 2023.

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller. Sparse
feature circuits: Discovering and editing interpretable causal graphs in language models. arXiv preprint
arXiv:2403.19647, 2024.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris
Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision training. arXiv
preprint arXiv:1710.03740, 2017.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter. Zoom in:
An introduction to circuits. Distill, 5(3):e00024–001, 2020.

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy employed
by v1? Vision research, 37(23):3311–3325, 1997.

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János Kramár,
Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoencoders. arXiv
preprint arXiv:2404.16014, 2024a.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse au-
toencoders. arXiv preprint arXiv:2407.14435, 2024b.

Alexander Robey, Eric Wong, Hamed Hassani, and George J Pappas. Smoothllm: Defending large language
models against jailbreaking attacks. arXiv preprint arXiv:2310.03684, 2023.

13

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2025

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology: What we know about how bert
works. Transactions of the Association for Computational Linguistics, 8:842–866, 2021.

RyokoAI. Sharegpt dataset. 2023.

Adam Scherlis, Kshitij Sachan, Adam S Jermyn, Joe Benton, and Buck Shlegeris. Polysemanticity and
capacity in neural networks. arXiv preprint arXiv:2210.01892, 2022.

Mark Steyvers and Tom Griffiths. Probabilistic topic models. In Handbook of latent semantic analysis, pp.
439–460. Psychology Press, 2007.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam
Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L Turner, Cal-
lum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers, Edward Rees, Joshua
Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan. Scaling monosemanticity: Ex-
tracting interpretable features from claude 3 sonnet. Transformer Circuits Thread, 2024. URL https:
//transformer-circuits.pub/2024/scaling-monosemanticity/index.html.

Henighan Tom and Olah Chris. Dictionary learning worries. https://transformer-circuits.
pub/2023/may-update/index.html#dictionary-worries, 2023.

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy J. Zhang,
Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev. Helpsteer2: Open-source dataset for training top-
performing reward models, 2024.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety training fail?
Advances in Neural Information Processing Systems, 36, 2024.

Xuansheng Wu, Wenlin Yao, Jianshu Chen, Xiaoman Pan, Xiaoyang Wang, Ninghao Liu, and Dong Yu.
From language modeling to instruction following: Understanding the behavior shift in llms after instruc-
tion tuning. In Proceedings of the 2024 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 2341–2369,
2024.

Yueqi Xie, Jingwei Yi, Jiawei Shao, Justin Curl, Lingjuan Lyu, Qifeng Chen, Xing Xie, and Fangzhao
Wu. Defending chatgpt against jailbreak attack via self-reminders. Nature Machine Intelligence, 5(12):
1486–1496, 2023.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv preprint
arXiv:2304.12244, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging llm-as-
a-judge with mt-bench and chatbot arena, 2023.

14

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2023/may-update/index.html#dictionary-worries
https://transformer-circuits.pub/2023/may-update/index.html#dictionary-worries

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2025

A SCALING UP WITH MACHINE ANNOTATORS

We build on recent progress in automated interpretation (Bills et al., 2023; Chaudhary & Geiger, 2024;
Gao et al., 2024; Lieberum et al., 2024) by utilizing advanced large language models to replicate human
annotators in producing high-level interpretations. This approach allows us to leverage machine annotators,
enabling us to scale our methods for analyzing the entire model and yielding more robust results.

We employ GPT-4o-mini 4 as our machine annotator. Our experiments utilize the gpt-4o-mini-2024-07-18
model with a hyper-parameter temperature=0 for greedy decoding. For each response, we allow a maximum
of 1024 tokens. To ensure the quality of automatic annotation, we design our prompting template with
both the role-playing strategy and presenting in-context examples. We list our prompting template for our
word-list-based explanation summarization and the explainability judgment as follows.

A.1 TEMPLATE 1

We directly append the words to this template to annotate the summary of the raw explanations with 10
selected words from our proposed method.

System : You a r e s t u d y i n g a n e u r a l ne twork . Each neuron l o o k s f o r one
p a r t i c u l a r c o n c e p t / t o p i c / theme / b e h a v i o r / p a t t e r n . Look a t some words
t h e neuron a c t i v a t e s f o r and g u e s s what t h e neuron i s l o o k i n g f o r . Pay
more a t t e n t i o n t o t h e words i n t h e f r o n t a s t h e y supposed t o be more
c o r r e l a t e d t o t h e neuron b e h a v i o r . Don ’ t l i s t examples o f words and keep
your summary as d e t a i l a s p o s s i b l e . I f you c a n n o t summarize most o f t h e
words , you s h o u l d say ” Cannot T e l l . ”

User : accommodation , r a c i a l , e t h n i c , d i s c r i m i n a t i o n , e q u a l i t y , a p a r t ,
u t t e r l y , l e g a l l y , s e p a r a t e l y , h o l d i n g , i m p l i c i t , u n f a i r , t o n e .
Agent : S o c i a l j u s t i c and d i s c r i m i n a t i o n .

User : B . , M. , e . , R . , C . , OK. , A. , H. , D. , S . , J . , a l . , p . , T . , N. , W. ,
G. , a . C . , or , S t . , K . , a .m. , L . .
Agent : Cannot T e l l .

User : Scent , sme l l ed , f l i c k , p r e c i o u s , charm , brushed , s e a l e d , sme l l ,
b race , c u r i o s , s a c r e d , v a r i a t i o n , j e w e l r y , s e a t e d .
Agent : P e r c e p t i o n o f s c e n t s and p r e c i o u s o b j e c t s .

User : BP , HR, RR, O2 Sat , T , Ht , UO, BMI , BSA .
Agent : Medica l measurements i n emergency rooms .

User : a c t u a l , l i t e r a l , r e a l , Rea l l y , o p t i c a l , P h y s i c a l , REAL,
v i r t u a l , v i s u a l .
Agent : P e r c e p t i o n o f r e a l i t y .

User : Go , Python , Java , c ++ , python3 , c # , j ava , Ruby , Swi f t , PHP .
Agent : Morden programming l a n g u a g e .

User : 1939 −1945 , 1945 , 1942 , 1939 , 1940 , 1941 .

4https://platform.openai.com/docs/guides/gpt

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2025

Agent : Years o f t h e second wor ld war .

User : 1976 , 1994 , 1923 , 2018 , 2014 , 1876 , 1840 .
Agent : Cannot T e l l .

User :

A.2 TEMPLATE 2

Once we collect the summary of the raw explanation with the previous prompt, we then call the machine
annotator again in a separated thread to evaluate whether the summary is hallucinated or not by using the
following prompting template, where the placeholders “Summary” and “Raw Explanation” will be filled
with real data. Note that if the machine annotator gives “Cannot Tell” as its prediction in the summarization
stage, we will directly set the judgment for this task as “No”.

System : You a r e a l i n g u i s t i c e x p e r t . Analyze whe the r t h e words w e l l
r e p r e s e n t t h e c o n c e p t / t o p i c / theme / p a t t e r n . O r g a n i z e your f i n a l d e c i s i o n
i n t h e f o r m a t o f ” F i n a l D e c i s i o n : [[Yes / P r o b a b l y / Maybe / No]] ” .

User : Concept / Topic / Theme / P a t t e r n : {Summary } .
Words : {Raw E x p l a n a t i o n } .

Since baseline explainers (TopAct and N2G) consider N-gram spans as raw explanations, we found that
the previous word-list-based prompting template leads a poor performance for their interpretability. Thus,
we followed the strategies before to define the following text-span-based prompting templates. Here, the
in-context examples of text spans are collected from previous work (Bricken et al., 2023).

A.3 TEMPLATE 3

Similar to using Template 1 to summarize our extracted raw explanations, we append the extracted text spans
from TopAct or N2G to this template. Note that we numerate each extracted span with a unique index.

System : You a r e s t u d y i n g a n e u r a l ne twork . Each neuron l o o k s f o r one
p a r t i c u l a r c o n c e p t / t o p i c / theme / b e h a v i o r / p a t t e r n . Look a t some s p a n s t h e
neuron a c t i v a t e s f o r and g u e s s what t h e neuron i s l o o k i n g f o r . Pay more
a t t e n t i o n t o t h e [l a s t few words] o f each s p a n s i n t h e f r o n t a s t h e y
supposed t o be more c o r r e l a t e d t o t h e neuron b e h a v i o r . I g n o r e t h e [MASK]
p a t t e r n s i n t h e s p a n s . Don ’ t l i s t examples o f s p a n s and keep your summary
as d e t a i l a s p o s s i b l e . I f you c a n n o t summarize most o f t h e spans , you
s h o u l d say ” Cannot T e l l . ”

User : Span 1 : w. you tube . com / watch ? v=5qap5aO4z9A
Span 2 : you tube . come / yegfnfE7vgDI
Span 3 : { ’ token ’ : ’ bjXRewasE36ivPBx
Span 4 : / 2 0 2 3 / f i d ?=0gBcWbxPi8uC
Agent : Base64 e n c o d i n g f o r web deve lopment .

User : Span 1 : c r o s s − f u n c t i o n [MASK]
Span 2 : c r o s s − f u n c t i o n
Span 3 : [MASK] [MASK] c r o s s − f u n c t i o n \n
Agent : P a r t i c u l a r p h r a s e ’ c r o s s − f u n c t i o n ’ .

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2025

User : Span 1 : n o v e l s p e c t r o s c o p i c imaging p l a t f o r m
Span 2 : and p r o t e i n e v o l u t i o n a r y ne twork model ing
Span 3 : r e a c t i o n s − c e n t r i c b i o c h e m i c a l model
Span 4 : c h a p e r o n e i n t e r a c t i o n ne twork
Agent : B i o l o g i c a l t e r m s .

User : Span 1 : i s −17 a967
Span 2 : what i s 8b8 − 10 ad2
Span 3 : 83 −11111011001000001011
Span 4 : i s −c1290 − −1
Agent : S y n t h e t i c math : A r i t h m e t i c , numbers wi th s m a l l d i g i t s ,
i n u n u s u a l b a s e s .

User :

A.4 TEMPLATE 4

We evaluate the interpretability of the baseline methods using almost the same prompting text, where we only
change the phrase from “word” to “span” to fit the format of raw explanations from the baseline explainers.
Again, each text span is numerated with unique ids.

System : You a r e a l i n g u i s t i c e x p e r t . Analyze whe the r t h e t e x t s p a n s w e l l
r e p r e s e n t t h e c o n c e p t / t o p i c / theme / p a t t e r n . O r g a n i z e your f i n a l d e c i s i o n
i n t h e f o r m a t o f ” F i n a l D e c i s i o n : [[Yes / P r o b a b l y / Maybe / No]] ” .

User : Concept / Topic / Theme / P a t t e r n : {Summary } .
Spans : {Raw E x p l a n a t i o n } .

17

	Introduction
	Preliminary
	Problem Statement
	Learning and Interpreting LLMs with Sparse Autoencoders

	Methodology
	Learning Sparse Features from Textual Data
	Explaining Learned Features with Natural Language
	Steering LLMs with Explained Features

	Experiments
	General Settings
	Evaluating Explanations of Sparse Features
	Experimental Designs
	Results

	Using Explained Features for Downstream Tasks
	Experimental Designs
	Results

	Related Works
	Conclusions
	Scaling Up with Machine Annotators
	Template 1
	Template 2
	Template 3
	Template 4

