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ABSTRACT

Large language models (LLMs) excel at addressing general human queries, yet they can
falter or produce unexpected responses in specific scenarios. Gaining insight into the
internal states of LLMs is key to understanding their successes and failures, as well as
to refining their capabilities. Recent efforts have applied sparse autoencoders to learn a
feature basis for explaining LLM hidden spaces. However, current post-hoc explanation
methods can not effectively describe the semantic meaning of the learned features, and it
is difficult to steer LLM behaviors by manipulating these features. Our analysis reveals
that existing explanation methods suffer from the frequency bias issue, i.e., they tend to
focus on trivial linguistic patterns rather than semantics. To overcome this, we propose
explaining the learned features from a fixed vocabulary set to mitigate the frequency bias,
and designing a novel explanation objective based on the mutual information theory to
better express the meaning of the features. We further suggest two strategies to steer LLM
representations by modifying sparse feature activations in response to user queries during
runtime. Empirical results demonstrate that our method generates more discourse-level
explanations than the baselines, and can effectively steer LLM behaviors to defend against
jailbreak attacks in the wild. These findings highlight the value of explanations for steering
LLM representations in downstream applications.1

1 INTRODUCTION

Large language models (LLMs) have demonstrated strong capabilities in responding to general human re-
quests (Achiam et al., 2023; Dubey et al., 2024; Jiang et al., 2024). Meanwhile, we still often observe failed
or unexpected responses in certain situations (Ji et al., 2023; Wei et al., 2024). Gaining insight into the
factors behind their successes and failures is crucial for further improving these models. A straightforward
way to understand LLM behaviors is directly studying their hidden activations or internal weights. However,
it is non-trivial to interpret the hidden states of modern LLMs because of their polysemantic nature (Arora
et al., 2018; Scherlis et al., 2022), where each dimension of the spaces encodes multiple pieces of unique
features. This property allows LLMs to encode more features than the dimensions of their hidden space, but
it presents significant challenges for human interpretation and understanding.

Researchers have made significant efforts to overcome the polysemantic challenge. Linear probing (Camp-
bell et al., 2023; Burns et al.; Marks & Tegmark, 2023; Gurnee et al., 2023) is a conventional technique to
detect whether an LLM learns a particular feature of interest. Unfortunately, the feasibility of this technique
is bounded by its requirement of an annotated dataset with samples including or excluding certain features.

1We will release our code and data once accepted.
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Our's 😁

TopAct 🙂

N2G 🙂

Sports competition and coaching strategies: Carolina; bid; coach; dominant; longest; score; game; calling; desired; hot.
Decision-making and evaluation of outcomes: tune; keen; heading; impact; profit; judge; reasoning; influential; correction; bear.
Interior design and household elements: mirror; tap; household; Hall; interior; echo; click; themes; Roman; elements.

Childhood experiences and nostalgia: like my father's when I was a child; amour of the city since he was a child; tricks when she was a kid; own
experiences of being bullied as a child; ft and Mel Brooks since he was a child.
Descriptive writing on textures: at least 100 words about the texture; sensory details to describe the colors, textures; Compare and contrast the
different textures; the scent of the ocean, and the texture; Incorporate elements such as textures.
Cooking instructions on boiling and adjusting heat levels: Bring to a boil, reduce heat; the boil once again and then reduce the heat; boil, you
will need to reduce the heat; Bring to a boil, then reduce heat; stirring occasionally.\n4. Reduce heat.

Shopping or going to a store: [MASK] to the store; going to the store; [MASK] to the store; went to the [MASK]; going to the store.
Cellular biology on histones and actin: histones; histone; [MASK]osin and actin; composed of actin; role of actin.
Postmodernism or post-structuralism themes: major figure in post; takes place in a post; to adjust to post; effects of post; politic context of post.

Figure 1: Examples of explanations for a sparse autoencoder trained on Mistral-7b-Instruct. We separate raw
extracted spans/words with “;” and boldface the automated summaries. Unlike other methods, our approach
tends to produce discourse-level explanations rather than those dominated by rigid linguistic patterns.

To reduce the need for annotated datasets, researchers (Cunningham et al., 2023; Wu et al., 2024; Freire
et al., 2024; Bricken et al., 2023) are switching to decomposing the hidden spaces of LLMs in an unsuper-
vised way. In this context, recent research has explored the sparse autoencoder (Olshausen & Field, 1997;
Makhzani & Frey, 2013) technique, demonstrating their effectiveness in learning a number of sparse features
as a basis to reconstruct the hidden spaces of advanced LLMs with hundreds of billions of parameters from
Anthropic (Templeton et al., 2024), OpenAI (Gao et al., 2024), and Google (Lieberum et al., 2024). These
sparse features are expected to be interpretable, since each feature should only react to a specific kind of
content, showing a monosemantic nature instead of a polysemantic one.

However, researchers find that the learned sparse features have not shown strong enough explainability to
meet our expectations, i.e., understanding LLM encoded features and even steering LLM behaviors. Specifi-
cally, Makelov et al. (2024) and Chaudhary & Geiger (2024) designed dedicated tasks to test whether sparse
autoencoders could detect sufficient features for certain tasks. However, they found that sparse autoencoders
cannot capture enough relevant features to meet these goals, even for simple and experimental-level tasks
with clear training samples. Meanwhile, researchers (Gao et al., 2024) also observed that many learned
sparse features from advanced LLMs could not be effectively explained with current techniques. These
headwinds undermine confidence in extending such techniques to real-world applications.

In this work, we enhance the interpretability and usability of sparse autoencoder features by introducing a
new post-hoc explanation method and strategies to steer LLM representations with these features. We first
formalize the text generation process with the topic model (Blei & Lafferty, 2006; Arora et al., 2016), reveal-
ing that sparse autoencoders learn both discourse topics and linguistic patterns as features simultaneously,
with linguistic patterns being less semantically critical but often dominating. To address this issue, we pro-
pose to leverage a fixed vocabulary set to collect explanations and ensure that critical information on learned
features is captured based on a mutual information-based objective. We also explore steering LLM repre-
sentations by modifying the activation of explained features during runtime. Figure 1 shows some examples
of explanations generated by our method compared to other explainers, and Figure 2 visualizes our pipeline
to steer LLMs with explained features. Experiments on open-source LLMs show that our method provides
more meaningful discourse-level explanations, and they are practically usable for downstream tasks. We
summarize our contributions as follows:

• Our theoretical analysis identifies a key challenge in explaining learned features from sparse autoencoders,
i.e., the frequency bias between the discourse and linguistic features.

• We propose leveraging a fixed vocabulary set to mitigate the frequency bias for explaining learned features.
Experimental results show that our method provides more discourse-level explanations than the others.

• We propose steering LLM representations by modifying their activations in response to user inputs during
runtime. We apply this approach with our explanations to prevent real-world jailbreak attacks, and show
that the steered LLM achieves a significant safety improvement while baseline explanations fail.
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Figure 2: Steering LLM representations with explanations from sparse autoencoders.

2 PRELIMINARY

2.1 PROBLEM STATEMENT

Let V denote the vocabulary set, and X be a text of length N , where each token xn ∈ V is the n-th token of
X . Given a large language model f , the embedding of X at a specific layer is denoted as X ∈ RN×D, where
D is latent dimension. Our goal is to interpret these embeddings by extracting semantic features from the
latent space. We assume that there are C learned feature vectors W ∈ RC×D, so that X can be decomposed
as a linear combination of these feature vectors, i.e., X ≈ AW, where A ∈ RL×C are weights of the linear
combination for the given instance X. Let Wc denote the c-th row of W. After the decomposition, X is
explainable if we could understand the semantic meaning of each learned feature vector Wc. To achieve
this, we aim at seeking a set of words Ic ⊂ V to explain each learned feature Wc with natural language.

2.2 LEARNING AND INTERPRETING LLMS WITH SPARSE AUTOENCODERS

Sparse autoencoders have shown great promise to learn the feature vectors for latent representation decom-
position and explaining LLMs in practice (Gao et al., 2024; Lieberum et al., 2024). A standard sparse
autoencoder (Olshausen & Field, 1997) is a two-layer multi-layer perceptron X̂ = σ(XW) ·W′⊤, where
W,W′ ∈ RD×C are trainable parameters and σ refers to the ReLU activation function. Typically, a tight
weight strategy is applied, i.e., W′ = W, and the trained weights W are considered as the learned feature
vectors. The traditional training objective of sparse autoencoders can be written as ||X− X̂||2 + λ||A||1,
where A = σ(XW) and λ ∈ R+ is a hyper-parameter to balance the impact of the sparsity constraint. The
Top-K sparse autoencoder (Makhzani & Frey, 2013) replaces the ReLU function with the Top-K activation,
enforcing each reconstruction to apply with no more than K learned features. Recent studies (Templeton
et al., 2024; Gao et al., 2024; Lieberum et al., 2024) have shown that Top-K sparse autoencoders can be
used to learn sparse features for reconstructing token-level representations from LLMs, where these sparse
features are expected to be interpretable by humans.

However, there are limited explorations on collecting a natural language explanation Ic for each of the
learned feature vectors Wc. The most intuitive strategy (Bricken et al., 2023) is collecting some N-gram
spans that could best activate the feature vector Wc over a large corpus. Some researchers (Gao et al., 2024)
leverage the Neuron-to-Graph (N2G) algorithm (Foote et al., 2023) to refine the N-gram spans for more
precise interpretations. However, it has been found (Gao et al., 2024) that these methods still fail to generate
explanations for a large number of learned features from sparse autoencoders trained for LLMs.

3
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3 METHODOLOGY

This section first theoretically studies the properties of text generation for learning sparse autoencoders, com-
paring them to traditional image generation scenarios. With these insights, we propose a mutual information-
based post-hoc method to explain the semantics of feature vectors learned by a trained sparse autoencoder.
Finally, we design two strategies to steer LLM representations with the explained features.

3.1 LEARNING SPARSE FEATURES FROM TEXTUAL DATA

Conventional sparse autoencoders (Olshausen & Field, 1997) are developed based on an assumption for
image data, where each image is a linear combination of features. A sparse autoencoder learns an over-
complete set of visual features, so that any image can be decomposed and reconstructed with the learned
features. Early works (Bricken et al., 2023; Cunningham et al., 2023) borrow this framework from image
data to textual data, assuming that each token is linearly related to a set of features. However, they ignore
some natures of textual data, leading to a suboptimal solution to learning sparse features (Gao et al., 2024).

To start with our theoretical analysis, we consider the text generation task as a dynamic process under
the topic-model assumption (Steyvers & Griffiths, 2007; Arora et al., 2016; 2018), where each word xn is
generated at the n-th step. This topic model describes a dynamic process in which a person first comes
up with a topic cn they want to express in mind and then selects a word xn that best represents the topic
to say. Formally, this dynamic process can be driven by the random walk of a discourse vector ecn ∈ Rd

representing what it talks about. The discourse vector ecn does a slow random walk at each step n, i.e.,
ecn = ecn−1

+ eϵn , where eϵn ∼ N d(0, σ). Also, at each step, a word xn ∈ V is sampled based on the
discourse vector ecn . To this end, the text generation process for a sequence of words X is given by:

p(X) =

|X|∏
n=1

p(xn|cn) · p(cn|cn−1). (1)

Here, the word emission probability is modelled by p(xn|cn) =
exp(⟨exn ,ecn ⟩)∑
v∈V exp(⟨ev,ecn ⟩) (Steyvers & Griffiths,

2007), where ⟨·, ·⟩ indicates the dot product of two vectors. Since cn is a random walk of cn−1, the topic

transmission probability can be computed as p(cn|cn−1) = 1√
2π·σ · exp(−||ecn−ecn−1

||2
2σ ) (Olshausen &

Field, 1997). Recall that ecn = ecn−1
+ eϵn , after a few straightforward derivations, we have

log p(X) ∝
N∑

n=1

⟨exn
, ec0⟩+

N∑
n=1

n∑
i=1

⟨exn
, eϵi⟩ −

1

2σ

∑
||eϵn ||2. (2)

Equation 2 reveals some critical characteristics of textual data that is different from image data. Firstly, there
is a shared discourse topic c0 across all words xn from the same sentence X , for n = 1, ..., N . However,
recent approaches that use sparse autoencoders for LLMs often treat the reconstruction loss for each token
independently, without adding constraints to capture the shared concepts. As a result, they fail to isolate the
features learned for discourse semantical topics (i.e., ec0 ) and linguistic patterns (i.e., eϵn ). In other words,
each learned sparse feature may store both discourse and linguistic information, where the latter is less useful
for steering LLMs than the previous one. Additionally, discourse topics are rarer than linguistic patterns,
as each instance has N times more linguistic patterns than discourse topics, we call it the frequency bias.
This issue leads to the sparse features that prioritize capturing the linguistic patterns, raising the challenge
of interpreting the discourse topics encoded within LLMs.

4
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3.2 EXPLAINING LEARNED FEATURES WITH NATURAL LANGUAGE

To interpret the learned features {wc}Cc=1, existing works (Bricken et al., 2023; Gao et al., 2024; Lieberum
et al., 2024) typically enumerate a large number of text spans, and then treat those whose hidden represen-
tations could most activate the learned features as the interpretations of the learned features. This method
generally works well for interpreting the captured linguistic patterns in the feature vector as these patterns
are frequently presented in the corpus, but they are hard to discover the stored discourse topics because the
more frequent linguistic patterns dominate (see discussions in Sec. 4.2.2), leading to lower interpretability to
a large number of the learned features (Gao et al., 2024). Since our goal is to understand and control LLMs,
we aim to interpret those discourse topics within a feasible budget cost.

To tackle the challenge of frequency bias, we propose to leverage a fixed vocabulary set V of a general
corpus instead of its raw texts. Specifically, our goal is to seek a K-word set Ic ⊂ V that can describe most
information of the c-th feature. Mathematically, we measure the information of the c-th feature described
by a given word set with their mutual information (Cover, 1999). To this end, the objective of constructing
a natural language explanation for the c-th feature is defined as

I∗
c = argmax

V′⊂V,|V|=K

MI(V ′; C) ∝ argmin
V′⊂V,|V′|=K

I(C|V ′)

= argmax
V′⊂V,|V′|=K

∑
c∈U(C)

∑
w∈V′

p(c)p(w|c)logp(c|w)

∝ argmax
V′⊂V,|V′|=K

∑
c∈U(C)

∑
w∈V′

p(w|c)logp(c|w),
(3)

where U(C) is the neighbor of a learned feature C. By leveraging the output word representations ew of
word w and learned feature vector Wc, we propose to estimate p(w|c) and p(c|w) by

p(w|c) = exp(⟨ew,Wc⟩)∑
w′∈V exp(⟨ew′ ,Wc⟩)

, p(c|w) = exp(⟨ew,Wc⟩)∑
c′∈C exp(⟨ew,Wc′⟩)

. (4)

Compared with a trivial strategy that simply obtains K words whose embeddings maximally activate the
feature vector, this mutual information-based method reveals the importance of normalizing activations of a
single word across all learned features. In other words, if a word embedding constantly leads to a significant
large dot product with all features, the word will not express enough specificity to any certain feature.

3.3 STEERING LLMS WITH EXPLAINED FEATURES

Given learned features {wc}Cc=1 and their explanations {Ic}Cc=1, we could identify a subset of the features
S = {ws}Ss=1 ⊂ {wc}Cc=1 that are correlated with a specific LLM behavior we are interested in based on
their explanations (e.g., harmful knowledge or safety awareness in our study). This process can be either
manually or automatically (Bills et al., 2023). Considering the hidden representations of an input prompt as
X, we propose two strategies to steer LLM representations with the identified features S during runtime.

Amplification. We amplify α times of the activations on our identified feature vectors, i.e., X′ = X + α ·
ReLU(XS)S⊤, where S is matrix form of the identified set S, and α is a hyper-parameter. We encourage
LLMs to be more aware of the identified features if α > 0, and pay less attention to them if α < 0.
Especially, α = −1 indicates that we erase the LLM’s awareness of the identified features.

Calibration. We enforce LLMs to focus on the identified features to a certain level β, i.e., X′ = X −
ReLU(XS)S⊤+β · s̄, where s̄ = 1

S

∑
ws is the mean vector of S and β is a hyper-parameter. This strategy

basically shifts the LLM’s hidden space toward the center of our target feature vectors.

5
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The above two strategies are responsible for different purposes of steering LLMs, and they could work
together. We would also emphasize that the proposed strategies are efficient as we only monitor a subset of
our interested features S instead of the entire set of learned sparse features W.

4 EXPERIMENTS

This section investigates two research questions. RQ1: Does the proposed method generate more discourse-
level explanations than traditional methods? RQ2: Whether these discourse-level explanations are useful in
steering LLM behaviors? To answer these questions, we first train a Top-K sparse autoencoder for open-
sourced LLMs as our foundation (Sec. 4.1). We then compare the explanations of the trained sparse autoen-
coder with our proposed and other explanation methods for RQ1 (Sec. 4.2). We finally explore the usability
of these explanations for downstream tasks, i.e., jailbreak defense, for RQ2 (Sec. 4.3).

4.1 GENERAL SETTINGS

Language Models. In this work, we study LLMs from the Mistral family (Jiang et al., 2023) as it has
demonstrated its strong usability in the wild. In particular, we choose the Mistral-7B-Instruct model, focus-
ing on its 8th layer, the most shadow layer in previous practices (Lieberum et al., 2024). Without specific,
the greedy search with a maximum of 512 new tokens is applied to our experiments for reproducibility.

Datasets. Since our goal is to develop sparse autoencoders for understanding and controlling LLMs for
different applications, we select various instruction-tuning datasets for training our backbone sparse autoen-
coder. In specific, we contain the training subset of the ShareGPT (RyokoAI, 2023), UltraChat (Ding et al.,
2023), HH-RLHF (Bai et al., 2022), WebGLM-QA (Liu et al., 2023), Evol-Instruct (Xu et al., 2023), and
HelpSteer2 (Wang et al., 2024) datasets. For the UltraChat dataset, we randomly sample 400K instances
from its training subset. We also drop duplicate prompts across different datasets. To this end, we have
retained about 711K unique user queries covering diverse topics and user intents. We randomly select 90%
of samples to form our training set, and the rest is our validation set. Overall, we collect 113M tokens for
training and 12M tokens for validating, with an average length of 177.9 tokens per query.

Training Details. Our training procedures and hyper-parameter settings majorly follow the previous
works (Bricken et al., 2023; Gao et al., 2024; Lieberum et al., 2024). Specifically, we initialize C = 216

feature vectors for an Top-K sparse autoencoder with Kaiming initialization (He et al., 2015). Here, C = 216

is set according to the scaling law between the number of features C and the number of training tokens Z
found by Gao et al. (2024), i.e., C = O(Zγ), where γ ≈ 0.60 for GPT2-small and γ ≈ 0.65 for GPT-4.2.
To prevent dead neurons, we also apply the tied-weight strategy as suggested by Gao et al. (2024). We use
Adam optimizer (Kingma, 2014) with a constant learning rate of 1e−3 and epsilon of 6.25e−10 to train a
total of 4 epochs. The hyper-parameters β1 and β2 of the optimizer are 0.9 and 0.999 following Gao et al.
(2024), respectively. We set the batch size as 512 queries, leading to around 90K tokens per gradient update,
which is as the same volume as Gao et al. (2024). The mixed precision training strategy (Micikevicius et al.,
2017) is also applied to speed up the training process as Lieberum et al. (2024) found that it only shows a
slightly worse impact on the model performance. Top-K sparse autoencoder has an initial sparsity K = 200,
and it gradually decreases to the target sparsity K = 20 in the first 50% training samples of the first epoch.

Explanation Baselines. Our study considers several existing works for sparse autoencoder explanations as
baselines. TopAct (Bricken et al., 2023) collects a mount of text spans from the corpus that could maximally
activate it. N2G (Gao et al., 2024) steps further by masking some words from the activated spans that show

2Empirically, γ ≈ 0.5978 in our study.
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Table 1: Qualitative analysis on generated explanations. Both TopAct and N2G tend to collect raw explana-
tions sharing the same word-level patterns, while our method captures more discourse-level explanations.

Method Summary Raw Explanation

Ours

Art evaluation and critique. commonly; impact; cater; widely; normally; gallery; judge;
pros; independent; accurately

Analysis of performance metrics. landscape; graph; retirement; performance; communication;
density; cut; golf; measure; measures

Temporal concepts and sequences in
narratives.

previously; suddenly; repeated; history; once; initially; near-
est; already; normally; originally

TopAct

Evaluation criteria for assessments or
analyses in various contexts.

What criteria does Pitchfork use to; What evaluation criteria
will Kumar organization use to; and what criteria were used;
market? what specific criteria should be used; needed to con-
duct a comprehensive analysis and the criteria used

Instructional prompts or commands
for providing steps in a process.

[INST] Provide step; [INST] Provide step; [INST] Provide
step; [INST] Provide step; [INST] Provide step

Repetition of the word ”again” in var-
ious contexts

ideas and produce compelling content — again; Pine View
School again; technologies segment is again; pushed on the
ceiling,and again; Echoed through the valley, again

N2G

Data format: Comma-Separated Val-
ues (CSV).

CSV; CSV; CSV; CSV; csv[MASK]

Scheduling and managing appoint-
ments.

schedule appoint; upcoming appoint[MASK]; appointment;
appointment; upcoming appoint[MASK]

Video game titles. Final Fant; Final Fant; Final Fant; Final Fant; Metal Gear

limited contributions to the activations. We collect their activated spans, with a maximum of 10 tokens, over
the entire validation set, and we keep the most activated span from each entry to increase their diversity.

4.2 EVALUATING EXPLANATIONS OF SPARSE FEATURES

Exactly measuring the explanation quality of features from sparse autoencoders is still an open question (Ra-
jamanoharan et al., 2024b). One that is commonly applied is conducting human studies (Bricken et al., 2023;
Rajamanoharan et al., 2024a; Gao et al., 2024; Rajamanoharan et al., 2024b), where the human subjects are
asked to determine whether an explanation is meaningful or not. We follow this paradigm to evaluate the
explanations from different methods, and we scale up this process by replacing human subjects with GPT-4o
as existing works (Bricken et al., 2023; Bills et al., 2023; Rajamanoharan et al., 2024b).

4.2.1 EXPERIMENTAL DESIGNS

We conduct both qualitative and quantitative analyses of the explanations with the help of our machine
annotator. Given a feature vector and its raw explanations, the machine annotator is called to provide a short
summary of the explanations with an option to say “Cannot Tell” in case the raw explanations make no sense
(please check details in Appendix. A). Here, the raw explanations of TopAct and N2G are the top-5 most
activated text spans, while our method chooses the top-10 words over a vocabulary set consisting of the 5000
most common words in the training set. Once the summary is collected, we call the machine annotator in
a new thread to judge whether the raw explanations are relevant to the given summary. We follow previous
work (Rajamanoharan et al., 2024b) to give the judgment with some options, namely “yes”, “probably”,
“maybe”, and “no”, where in our study, we treat the summaries are judged with “yes” or “probably” as

7
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successfully explained. Table 1 shows some randomly selected cases with a judgment “yes” and the text
spans or words are separated with the symbol “;”. We also report the percentage of successfully explained
the raw explanations from various explainers in Table 2.

4.2.2 RESULTS

TopAct and N2G tend to collect text spans sharing the same lexical patterns, while our method prefers
words sharing a concise topic. In Table 1, we could first see that these explanations marked with “yes”
are highly interpretable, demonstrating the effectiveness of using machine annotators to replace human an-
notators for scaling up the evaluation process. While both baselines and our proposed method generate
reasonable explanations, we also find some different characters from their raw explanations. In specific, the
raw explanations of TopAct or N2G typically share the same linguistic phrases, such as “used to” for the first
case of TopAct and “CSV” for the first case of N2G. However, the selected words with our method do not
appear as such lexical-level phrases; instead, the group of them illustrates a concise topic. This difference
highlights the motivation of our research to find discourse-level explanations.

Table 2: Explanation rates of
learned sparse features on the
features only activated valida-
tion set or overall features.

Method Explanation Rate
Activated Overall

TopAct 59.16 23.17
N2G 38.79 15.13

Ours 67.39 66.98

Our method generates more reasonable explanations than that of
TopAct and N2G. Table 2 reports the percentage of learned sparse fea-
tures that are successfully explained, and we group them by those that
have been activated from the validation set or overall. We observe that
many learned features haven’t been reasonably explained with TopAct
or N2G because not enough patterns have been activated on the valida-
tion set, which is one of the drawbacks of relying on activating input text
for generations. One may argue that we can collect activated spans from
the training set. However, these activated patterns can be significantly bi-
ased, as the sparse autoencoder is supposed to overfit the training set (Tom
& Chris, 2023). Preparing a large validation set to ensure each learned
sparse feature collects enough activation spans weakens the usability of
these methods again. Even only considering the learned features that have been activated on the validation
set, the proposed method shows a stronger explainable rate than the baselines. It is not surprising that N2G
actually provides worse raw generations than TopAct, as we found evidence3 that N2G shows a stronger
preference for lexical patterns than TopAct, even if they are fake ones. These observations showcase the
challenge of interpreting the discourse-level meanings behind the learned sparse features.

4.3 USING EXPLAINED FEATURES FOR DOWNSTREAM TASKS

This section considers jailbreak defense as a downstream application to utilize our explained features. Our
goal is to defend jailbreak attacks while keeping its helpfulness in responding to normal queries. We choose
this task because of its generalizability across different scenarios that need to deploy LLMs. Also, existing
defense strategies haven’t shown practical utility due to their poor effectiveness or unbearable latency.

4.3.1 EXPERIMENTAL DESIGNS

We leverage two benchmarks to evaluate our downstream task performance. In specific, Salad-Bench (Li
et al., 2024) is introduced to evaluate the safety of LLMs, and MT-Bench (Zheng et al., 2023) is applied to
evaluate their general helpfulness. Two categories of the defense strategies that do not require any training

3For example, one sparse feature whose raw explanation of TopAct is “6th century (via History Magazine). Before
that”; “Prior to Chomsky’s work,”; and “Reference [2]: Before the GPS,”.It is clear that this feature captures “referring
related works”. However, N2G simplifies them to “Before that”; “Prior to [MASK]omsky’s work”; and “Before [MASK]
GPS,”, which obviously changes the meaning and concentrates on some trivial patterns, i.e., “Before” and “Prior to”.

8



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2025

Table 3: Defending Mistral-7b-Instruct from jailbreak attacks without model training. The Salad-Bench
reports the attack success rate (ASR) to illustrate the effectiveness of different models to prevent jailbreak
attacks, while the MT-Bench shows its automatic scoring results on the helpfulness of general user queries.

Category Method Salad-Bench (Safety) MT-Bench (Helpful)
ASR (↓) Time (↓) Score (↑) Time (↓)

w/o Defense 81.6 1.0x 6.5 1.0x

Perturbation

Random Patch 80.6 4.9x 3.8 1.6x
Random Insert 79.4 6.5x 3.7 1.6x
Random Swap 73.8 5.6x 3.0 1.6x

Self-Robustness 16.2 6.9x 5.3 16.9x

Prompting
SafePrompt 79.0 1.0x 6.5 1.0x

XSafePrompt 77.8 0.9x 6.1 0.9x
Self-Reminder 73.0 0.9x 6.3 0.9x

SAE Steer
(Ours)

Erase Harmful (EH) 81.0 1.0x 5.9 1.0x
Aware Secuirty (AS) 73.2 0.8x 6.0 0.9x

EH + AS 72.8 0.8x 5.9 0.9x

datasets are considered as the baseline methods, where the perturbation-based methods include Random
Patch/Insert/Swap (Robey et al., 2023) and Self-Paraphrase (Cao et al., 2023), and the prompting-based
methods include SafePrompt/XSafePrompt (Deng et al., 2023), and Self-Reminder (Xie et al., 2023). Since
most of the perturbation-based baselines are time-consuming, we randomly select 10% of the samples to
conduct a smaller test set for all our evaluations. Note that all baselines and our methods will not be trained
on any data in this experiment. The attack success rate (ASR) on Salad-Bench, GPT-4o-mini evaluates
MT-Bench scores, and the normalized consuming time are listed in Table 3.

To apply the proposed Amplification or Calibration techniques for jailbreak defense, we can consider three
specific strategies. (1) Erase Harmful (EH) monitors whether any “harmful” features are activated when
responding to user prompts, and erase them if so (i.e., Amplification with α = −1). (2) Aware Security (AS)
consistently activates those safety features during responding. (3) Applying both AS and EH strategies at the
same time. Here, we follow the hazard taxonomy of Llama3-Guard (Llama Team, 2024) to judge whether
each feature is harmful or not. Inspired by this hazard taxonomy, we manually craft a safeguarding taxonomy
listing 7 categories to classify safety strategies. We prompt GPT-4o-mini to provide the harmfulness and
safety labels for each learned feature by providing their explanations. To ensure labeling quality, we only
take the learned features with the explainable label “yes” into account. As a result, for our method, 141 and
48 features are selected for the AS and EH strategies, respectively. For hyper-parameter β of AS, we grid
search some numbers and find that 2.5 shows the best practice in balancing safety and overall helpfulness.
Table 3 and Figure 3 report the results with our explanations and baseline explanations, respectively.

4.3.2 RESULTS

Sparse autoencoder can steer LLMs behavior during runtime. First of all, we can read from Table 3
that all perturbation-based defense strategies are not practical for real-world use, as they either significantly
compromise overall helpfulness or introduce intolerable latency. In contrast, most prompting-based methods
maintain general helpfulness but fail to defend against jailbreak attacks. The notable exception is the state-of-
the-art baseline, Self-Reminder, which achieves safety and helpfulness within the same computing budget.
Compared with them, our proposed sparse-autoencoder-based methods exhibit a strong jailbreak defense
ability (Salad-Bench: 81.6 → 72.8) with only a minor reduction on helpfulness (MT-Bench: 6.5 → 6.0).
The success of our method in such a challenging task provides a promising direction for other scenarios.

9
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The key to preventing jailbreak attacks is not to forget harmful knowledge, but to enhance safety
awareness. One interesting finding from our experiment is that the strategy of erasing harmful knowledge
has no significant contribution to the jailbreak defense, contradicting our intuitive understanding of the
jailbreak defense. The significant improvement of our Aware Security strategy for jailbreak defense actually
aligns with the main idea of Self-Reminder – “remind ChatGPT to respond responsibly” (Xie et al., 2023).
This finding can benefit future works for jailbreak defense for large language models.
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Figure 3: Applying Aware Security
for jailbreak defense based on ex-
planations from different methods.

We also apply the Aware Security strategy to the TopAct and N2G
explanations and report their results in Figure 3. Only N2G shows a
slight reduction in ASR versus the no-defense baseline. We have tuned
β but cannot see a clear improvement. One possible reason is that their
selected safety strategies are too lexical-level and fine-grained. Here
is an example feature that has been annotated with a “Physical De-
fense Category” as its summary is “Locking mechanisms or security
systems” with a raw explanation: “locks; locks; lock; have a two-stage
lock; lock.” To compare with, one of our method annotated with the
same category has a summary of “Emergency response and location
tracking” with a raw explanation “contact, phone, unit, accuracy, ex-
act, burning, location, precise, details, smoke.” These observations
highlight our motivation to explain discourse-level features.

5 RELATED WORKS

Modern large language models have shown promising text-generation abilities, prompting researchers to
explore their internal mechanisms. One approach (Belinkov et al., 2018; Jawahar et al., 2019; Rogers et al.,
2021) develops contrastive datasets to probe hidden states for specific features, but it is limited by the poly-
semantic nature of neurons (Elhage et al., 2022; Olah et al., 2020), making the explanations non-concise and
difficult to apply in downstream tasks. To overcome this, researchers (Bricken et al., 2023) propose learning
orthogonal basis vectors to better understand LLMs. Early works (Beren & Black, 2022; Wu et al., 2024)
applied singular vector analysis to identify concise, interpretable directions in neuron activations. Soon af-
ter, sparse autoencoders (Bricken et al., 2023; Cunningham et al., 2023) were introduced, allowing for a
more flexible settings. Sparse autoencoders, initially used to analyze image data (Olshausen & Field, 1997;
Makhzani & Frey, 2013), are now being applied to LLMs. Researchers from Anthropic (Bricken et al.,
2023) and EleutherAI (Cunningham et al., 2023) demonstrated that activations from smaller models like
GPT-2 and Pythia yield highly interpretable features. Subsequent studies showed these features help inter-
pret model behaviors in tasks like indirect object identification (Makelov, 2024), translation (Dumas et al.),
and circuit detection (Marks et al., 2024). Recent works (Templeton et al., 2024; Gao et al., 2024; Lieberum
et al., 2024) confirm this technique’s success with larger LLMs. Our study follows this path, and advances
by developing a method for generating discourse-level explanations to steer LLM representations.

6 CONCLUSIONS

This study steps a solid stamp toward understanding and steering LLM representations in the wild. Our
theoretical analysis first reveals a frequency bias between discourse and linguistic features learned by sparse
autoencoders. To eliminate this bias, we propose seeking words from a fixed vocabulary set and designing
a mutual-information-based objective to ensure the collected words capture the features’ meanings. Ad-
ditionally, we demonstrate that our steering strategies effectively enhance the safety of LLMs using our
mutual-information-based explanations, while baseline methods fail to achieve the same. Overall, this study
underscores the importance of discourse-level explanations in effectively controlling LLM behavior.

10
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A SCALING UP WITH MACHINE ANNOTATORS

We build on recent progress in automated interpretation (Bills et al., 2023; Chaudhary & Geiger, 2024;
Gao et al., 2024; Lieberum et al., 2024) by utilizing advanced large language models to replicate human
annotators in producing high-level interpretations. This approach allows us to leverage machine annotators,
enabling us to scale our methods for analyzing the entire model and yielding more robust results.

We employ GPT-4o-mini 4 as our machine annotator. Our experiments utilize the gpt-4o-mini-2024-07-18
model with a hyper-parameter temperature=0 for greedy decoding. For each response, we allow a maximum
of 1024 tokens. To ensure the quality of automatic annotation, we design our prompting template with
both the role-playing strategy and presenting in-context examples. We list our prompting template for our
word-list-based explanation summarization and the explainability judgment as follows.

A.1 TEMPLATE 1

We directly append the words to this template to annotate the summary of the raw explanations with 10
selected words from our proposed method.

System : You a r e s t u d y i n g a n e u r a l ne twork . Each neuron l o o k s f o r one
p a r t i c u l a r c o n c e p t / t o p i c / theme / b e h a v i o r / p a t t e r n . Look a t some words
t h e neuron a c t i v a t e s f o r and g u e s s what t h e neuron i s l o o k i n g f o r . Pay
more a t t e n t i o n t o t h e words i n t h e f r o n t a s t h e y supposed t o be more
c o r r e l a t e d t o t h e neuron b e h a v i o r . Don ’ t l i s t examples o f words and keep
your summary as d e t a i l a s p o s s i b l e . I f you c a n n o t summarize most o f t h e
words , you s h o u l d say ” Cannot T e l l . ”

User : accommodation , r a c i a l , e t h n i c , d i s c r i m i n a t i o n , e q u a l i t y , a p a r t ,
u t t e r l y , l e g a l l y , s e p a r a t e l y , h o l d i n g , i m p l i c i t , u n f a i r , t o n e .
Agent : S o c i a l j u s t i c and d i s c r i m i n a t i o n .

User : B . , M. , e . , R . , C . , OK. , A. , H. , D. , S . , J . , a l . , p . , T . , N. , W. ,
G. , a . C . , or , S t . , K . , a .m. , L . .
Agent : Cannot T e l l .

User : Scent , sme l l ed , f l i c k , p r e c i o u s , charm , brushed , s e a l e d , sme l l ,
b race , c u r i o s , s a c r e d , v a r i a t i o n , j e w e l r y , s e a t e d .
Agent : P e r c e p t i o n o f s c e n t s and p r e c i o u s o b j e c t s .

User : BP , HR, RR, O2 Sat , T , Ht , UO, BMI , BSA .
Agent : Medica l measurements i n emergency rooms .

User : a c t u a l , l i t e r a l , r e a l , Rea l l y , o p t i c a l , P h y s i c a l , REAL,
v i r t u a l , v i s u a l .
Agent : P e r c e p t i o n o f r e a l i t y .

User : Go , Python , Java , c ++ , python3 , c # , j ava , Ruby , Swi f t , PHP .
Agent : Morden programming l a n g u a g e .

User : 1939 −1945 , 1945 , 1942 , 1939 , 1940 , 1941 .

4https://platform.openai.com/docs/guides/gpt
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Agent : Years o f t h e second wor ld war .

User : 1976 , 1994 , 1923 , 2018 , 2014 , 1876 , 1840 .
Agent : Cannot T e l l .

User :

A.2 TEMPLATE 2

Once we collect the summary of the raw explanation with the previous prompt, we then call the machine
annotator again in a separated thread to evaluate whether the summary is hallucinated or not by using the
following prompting template, where the placeholders “Summary” and “Raw Explanation” will be filled
with real data. Note that if the machine annotator gives “Cannot Tell” as its prediction in the summarization
stage, we will directly set the judgment for this task as “No”.

System : You a r e a l i n g u i s t i c e x p e r t . Analyze whe the r t h e words w e l l
r e p r e s e n t t h e c o n c e p t / t o p i c / theme / p a t t e r n . O r g a n i z e your f i n a l d e c i s i o n
i n t h e f o r m a t o f ” F i n a l D e c i s i o n : [ [ Yes / P r o b a b l y / Maybe / No ] ] ” .

User : Concept / Topic / Theme / P a t t e r n : {Summary } .
Words : {Raw E x p l a n a t i o n } .

Since baseline explainers (TopAct and N2G) consider N-gram spans as raw explanations, we found that
the previous word-list-based prompting template leads a poor performance for their interpretability. Thus,
we followed the strategies before to define the following text-span-based prompting templates. Here, the
in-context examples of text spans are collected from previous work (Bricken et al., 2023).

A.3 TEMPLATE 3

Similar to using Template 1 to summarize our extracted raw explanations, we append the extracted text spans
from TopAct or N2G to this template. Note that we numerate each extracted span with a unique index.

System : You a r e s t u d y i n g a n e u r a l ne twork . Each neuron l o o k s f o r one
p a r t i c u l a r c o n c e p t / t o p i c / theme / b e h a v i o r / p a t t e r n . Look a t some s p a n s t h e
neuron a c t i v a t e s f o r and g u e s s what t h e neuron i s l o o k i n g f o r . Pay more
a t t e n t i o n t o t h e [ l a s t few words ] o f each s p a n s i n t h e f r o n t a s t h e y
supposed t o be more c o r r e l a t e d t o t h e neuron b e h a v i o r . I g n o r e t h e [MASK]
p a t t e r n s i n t h e s p a n s . Don ’ t l i s t examples o f s p a n s and keep your summary
as d e t a i l a s p o s s i b l e . I f you c a n n o t summarize most o f t h e spans , you
s h o u l d say ” Cannot T e l l . ”

User : Span 1 : w. you tube . com / watch ? v=5qap5aO4z9A
Span 2 : you tube . come / yegfnfE7vgDI
Span 3 : { ’ token ’ : ’ bjXRewasE36ivPBx
Span 4 : / 2 0 2 3 / f i d ?=0gBcWbxPi8uC
Agent : Base64 e n c o d i n g f o r web deve lopment .

User : Span 1 : c r o s s − f u n c t i o n [MASK]
Span 2 : c r o s s − f u n c t i o n
Span 3 : [MASK] [MASK] c r o s s − f u n c t i o n \n
Agent : P a r t i c u l a r p h r a s e ’ c r o s s − f u n c t i o n ’ .
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User : Span 1 : n o v e l s p e c t r o s c o p i c imaging p l a t f o r m
Span 2 : and p r o t e i n e v o l u t i o n a r y ne twork model ing
Span 3 : r e a c t i o n s − c e n t r i c b i o c h e m i c a l model
Span 4 : c h a p e r o n e i n t e r a c t i o n ne twork
Agent : B i o l o g i c a l t e r m s .

User : Span 1 : i s −17 a967
Span 2 : what i s 8b8 − 10 ad2
Span 3 : 83 −11111011001000001011
Span 4 : i s −c1290 − −1
Agent : S y n t h e t i c math : A r i t h m e t i c , numbers wi th s m a l l d i g i t s ,
i n u n u s u a l b a s e s .

User :

A.4 TEMPLATE 4

We evaluate the interpretability of the baseline methods using almost the same prompting text, where we only
change the phrase from “word” to “span” to fit the format of raw explanations from the baseline explainers.
Again, each text span is numerated with unique ids.

System : You a r e a l i n g u i s t i c e x p e r t . Analyze whe the r t h e t e x t s p a n s w e l l
r e p r e s e n t t h e c o n c e p t / t o p i c / theme / p a t t e r n . O r g a n i z e your f i n a l d e c i s i o n
i n t h e f o r m a t o f ” F i n a l D e c i s i o n : [ [ Yes / P r o b a b l y / Maybe / No ] ] ” .

User : Concept / Topic / Theme / P a t t e r n : {Summary } .
Spans : {Raw E x p l a n a t i o n } .
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