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ABSTRACT

The growing demand for text-to-image generation has led to rapid advances in
generative modeling. Recently, text-to-image diffusion models trained with flow
matching algorithms, such as FLUX, have achieved remarkable progress and
emerged as strong alternatives to conventional diffusion models. At the same time,
inference-time enhancement strategies have been shown to improve the generation
quality and text–prompt alignment of text-to-image diffusion models. However,
these techniques are mainly applicable to conventional diffusion models and usu-
ally fail to perform well on flow models. To bridge this gap, we propose Reflec-
tive Flow Sampling (RF-Sampling), a novel training-free inference enhancement
framework explicitly designed for flow models, especially for the CFG-distilled
variants (i.e., models distilled from CFG guidance techniques) like FLUX. RF-
Sampling leverages a linear combination of textual representations and integrates
them with flow inversion, allowing the model to explore noise spaces that are more
consistent with the input prompt. This approach provides a flexible and effective
means of enhancing inference without relying on CFG-specific mechanisms. Ex-
tensive experiments across multiple benchmarks demonstrate that RF-Sampling
consistently improves both generation quality and prompt alignment, whereas ex-
isting state-of-the-art inference enhancement methods such as Z-Sampling fail to
apply. Moreover, RF-Sampling is also the first inference enhancement method
that can exhibit test-time scaling ability to some extent on FLUX.

Figure 1: Qualitative comparisons with three representative flow models. Images for each prompt are synthe-
sized using the same random seed. More visualization results are in Appendix D.
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1 INTRODUCTION

Text-to-image (T2I) generation has become one of the most active areas in generative mod-
eling, driven by the growing demand for creating high-quality images from natural language
prompts (Rombach et al., 2022; Labs, 2024; Daniel Verdú, 2024; Esser et al., 2024). Recent ad-
vances in diffusion models and their training algorithms have led to remarkable progress, enabling
strong performance across diverse domains (Yang et al., 2023; Esser et al., 2024; Lipman et al., 2022;
Liu et al., 2022b; Ho et al., 2020). To further improve generation quality and prompt alignment, a
variety of inference enhancement methods have been proposed for diffusion models (Singhal et al.,
2025; Ma et al., 2025b; Ho & Salimans, 2022). Among them, inversion-based techniques such as
Z-Sampling (Bai et al., 2025a) exploit the discrepancy of the Classifier-Free Guidance (CFG) (Ho
& Salimans, 2022) parameter between denoising and DDIM inversion (Song et al., 2023a), while
recent weak-to-strong methods like W2SD-Sampling (Bai et al., 2025b) amplify semantic informa-
tion hidden in the noise latent to achieve state-of-the-art performance. These strategies demonstrate
the effectiveness of inference-time interventions for diffusion denoising processes.

At the same time, T2I diffusion models trained with flow matching algorithms (Lipman et al., 2022),
such as FLUX (Labs, 2024; Daniel Verdú, 2024), have recently emerged as promising alternatives
to conventional diffusion models, offering both competitive quality and efficient sampling. How-
ever, most existing inference enhancement methods are tightly coupled with conventional diffusion-
specific mechanism and fail to generalize to flow models. To mitigate this limitation, recent work
such as CFG-Zero* (Fan et al., 2025) has proposed optimized scaling and zero-init strategies to adapt
CFG-style guidance to flow matching. Nevertheless, the reliance on CFG-specific techniques still
restricts the broader applicability of inference enhancement strategies, especially as CFG-distilled
variants (Meng et al., 2023), such as FLUX, continue to gain traction as efficient T2I generators.

To fill this gap, we introduce Reflective Flow Sampling (RF-Sampling), a novel training-free infer-
ence enhance framework explicitly designed for flow models that bypasses the reliance on CFG-style
guidance entirely. Inspired by the key findings that rich semantic noise latent can improve the gen-
erative ability of conventional diffusion model (Wang et al., 2024; Bai et al., 2025a; Zhou et al.,
2025; Po-Yuan et al., 2023), our key idea is to interpolate textual representations and integrate them
with flow inversion, which allows the model to explore noise spaces that are more consistent with
the input prompt. We refer to such flow inversion as reflective flow, motivated by the term “diffu-
sion reflection” (Bai et al., 2025a). Our reflective flow mechanism provides a flexible, scalable, and
effective way to enhance inference without relying on CFG-specific mechanisms, making it widely
applicable across flow models, especially CFG-distilled variants, like FLUX.

This paper validates the significant effectiveness of RF-Sampling through extensive experiments
on multiple benchmarks. Our method consistently enhances both image quality and text–prompt
alignment across different settings, achieving top-1 performance in evaluations conducted by diverse
human preference models (Schuhmann; Xu et al., 2023; Kirstain et al., 2023; Wu et al., 2023).
To provide an intuitive illustration of this improvement, a representative visualization is shown in
Fig. 1. The images synthesized by RF-Sampling demonstrate a noticeable improvement in overall
quality, aesthetic style, and semantic faithfulness, along with numerical improvements. In contrast,
our experiments show that existing inference enhancement methods do not perform well and the
state-of-the-art diffusion-based inference enhancement methods cannot be directly applied to flow
models, highlighting the necessity of our approach. As Fig. 2 suggests, RF-Sampling is also the first
inference enhancement method that can exhibit test-time scaling ability to some extent on FLUX.
Moreover, we extend our method to several tasks like lora combination, image editing and video
synthesis to demonstrate the scalability of RF-Sampling.

2 RELATED WORK

2.1 TEXT-TO-IMAGE GENERATION

T2I generation is a rapidly evolving branch of generative modeling, aiming to synthesize realistic
images that align with given textual descriptions. Early methods primarily relied on autoregressive
models (Salimans et al., 2017; Chen et al., 2020) or generative adversarial networks (Goodfellow
et al., 2014; Mirza & Osindero, 2014). However, in recent years, Diffusion models (Ho et al., 2020;
Rombach et al., 2022) have emerged as the dominant paradigm in T2I due to their ability to generate
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Figure 2: RF-Sampling outperforms standard sampling with the same time consumption and significantly
enhances the performance of FLUX-Lite and FLUX-Dev. With the increase of inference time, RF-Sampling
consistently performs well, validating the scalability of our method.

high-quality and high-resolution images. These models generate images through a stepwise denois-
ing process, starting from a random noise image and gradually transforming it into a meaningful
image. In addition to conventional diffusion models, Flow Matching (Lipman et al., 2022; Liu et al.,
2022b) is an emerging diffusion model training technique that has rapidly gained traction as a strong
alternative. Flow matching learns a continuous transformation that smoothly maps a simple noise
distribution to the data distribution via matching the velocity. Unlike conventional diffusion models,
which require multiple discrete denoising steps, flow matching models such as FLUX (Labs, 2024;
Daniel Verdú, 2024) can achieve efficient sampling with fewer neural function evaluations (NFEs),
significantly reducing inference time while maintaining comparable, even superior generation qual-
ity to top conventional diffusion models. This efficiency advantage makes flow matching models
particularly attractive for applications requiring fast generation. Our work focuses on developing
dedicated inference enhancement strategies for these efficient flow models.

2.2 CFG-DISTILLED GUIDANCE

Classifier-Free Guidance (Ho & Salimans, 2021) has become a foundational technique in condi-
tional diffusion models, as it improves alignment between synthesized images and text prompts by
blending conditional and unconditional outputs during inference. Despite its effectiveness, CFG
doubles inference cost by requiring two forward passes per denoising step.

To mitigate this inefficiency, a class of methods termed CFG-distilled (Meng et al., 2023; Li et al.)
techniques has been proposed. These methods aim to replicate the benefits of CFG using a sin-
gle forward pass, thereby maintaining alignment quality while significantly reducing computational
overhead. From a deployment standpoint, CFG-distilled models, such as FLUX (Daniel Verdú,
2024; Labs et al., 2025) are particularly crucial: they preserve the alignment advantages of CFG
while drastically improving inference speed, making real-time or on-device applications feasible
without prohibitive computation requirements.

2.3 INFERENCE ENHANCEMENT FOR T2I GENERATION

To enhance the generation quality and text alignment of conventional diffusion models, researchers
have explored a range of inference enhancement strategies, which can be applied to pretrained mod-
els without requiring additional training. One key enhancement technique is Z-Sampling (Bai et al.,
2025a), which leverages differences in the CFG parameters during the denoising process and DDIM
inversion (Song et al., 2023a) to enhance the generation, suggesting that the noise latent space holds
rich semantic information crucial for image quality. Similarly, W2SD-Sampling (Bai et al., 2025b)
utilizes weak-to-strong techniques to enhance semantic information in the noise latent space, achiev-
ing state-of-the-art performance. Other methods, such as (Singhal et al., 2025; Ma et al., 2025b;
Wang et al., 2024; Zhou et al., 2025; Po-Yuan et al., 2023), have also explored improving generation
by manipulating the noise or latent space, indicating that intervention at the inference stage is an
effective direction. Furthermore, in the context of Flow Matching, CFG-Zero* (Fan et al., 2025)
mitigates the shortcomings of Flow CFG (Zheng et al., 2023) by incorporating an optimized scale
and zero-init, thereby refining the inference trajectory. Despite the significant success of these in-
ference enhancement strategies, they are typically tailored to the conventional diffusion models or
rely on specific inference mechanisms, such as CFG technique and particular inversion algorithms.
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As a result, these methods cannot be directly transferred to flow models, especially when dealing
with CFG-distilled variants. This limitation is particularly pressing as flow models gain increasing
popularity due to their efficiency advantages, making it crucial to address this gap.

3 METHOD

In this section, we discuss how to encode semantic information into latents through the prompt
embedding gap and derive the formulation of RF-Sampling.

3.1 FLOW MATCHING MODELS

Flow matching models represent a new class of generative models that synthesize images by solving
an ordinary differential equation(ODE). The core idea is to train a neural network, parameterized as
a vector field vθ(x, t), to predict the flow that pushes a simple prior distribution p0(x) (e.g., standard
Gaussian) to a complex target data distribution p1(x). The inference process then involves sampling
a point from the prior x0 ∼ p0(x) and solving the ODE:

dx

dt
= vθ(x, t), (1)

from t = 0 to t = 1 to obtain the final generated sample x1. For convenience, we refer to this class
of models as flow models throughout the paper.

(a) Standard

Standard
Reverse Sampling

One Step
 Inversion Sampling

 

Guidance
Scale

Prompt
Embedding

(b) Z-Sampling (c) RF-Sampling (Ours)

Noise Latent
Merge

Guidance
Gap

Embedding
Interpolation

 

Figure 3: Illustration of RF-Sampling. Compared to previous methods, RF-Sampling employs interpolation on
text embeddings similar to the traditional CFG, thereby enhancing the model’s generation quality and making
it more suitable for flow diffusion models, especially CFG-distilled models.

3.2 TEXT EMBEDDING FOR DIFFERENT PROCESS

For T2I generation, the vector field is conditioned on a text embedding c, denoted as vθ(x, t, c).
Unlike conventional diffusion models, where CFG relies on joint training with both conditional and
unconditional branches (Ho & Salimans, 2021; Fan et al., 2025), Some flow models are typically
trained only under conditional settings (Labs, 2024; Daniel Verdú, 2024). As a result, directly
using CFG techniques or adopting an empty-text embedding as guidance for this kind of CFG-
distilled flow models is inappropriate. To address this, we employ a linear interpolation between
the conditional text embedding ctext and an unconditional empty-text embedding cuncond, yielding
a mixed text embedding cmix. In addition, we introduce a the amplifying weight s to explicitly
amplify the semantic discrepancy arising from the different text embeddings used in the denoising
and inversion processes. The combination of text embedding can be described as:

cmix = β · ctext + (1− β) · cuncond,
cw = ctext + s · cmix,

(2)

where β is the interpolation weight directly controlling the difference between text prompt embed-
dings. A higher β typically leads to a stronger alignment with the prompt. Therefore, the combina-
tion of β and s enables us to adjust the degree of text guidance throughout the inference process.
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3.3 REFLECTIVE FLOW SAMPLING

Building on the findings of Z-Sampling (Bai et al., 2025a), which demonstrated that diffusion mod-
els can accumulate prompt-related semantics in the latent noise by applying strong CFG guidance
during denoising and weaker CFG guidance during inversion, we propose a novel approach that by-
passes CFG guidance using a linear interpolation of textual representations. Specifically, our method
enables flow models to adopt stronger semantic guidance in the denoising phase while applying
weaker semantic influence during inversion. This design facilitates the accumulation of semantic in-
formation in the latent noise, thereby improving both image quality and text–image alignment. Our
approach introduces a three-stage “reflection” loop within each integration step of the ODE solver
as shown in Fig. 3. The core idea is to leverage a low-weight semantic guidance inversion to correct
the trajectory, ensuring the generated latent features remain in a semantically rich region.

Let xt be the latent feature at time step t, the standard text embedding c, and the standard guidance
scale w. Our method proceeds as follows for each step:

Stage 1: High-Weight Denoising First, we perform a standard denoising step using a relatively
high interpolation weight βhigh and a relatively high amplifying weight shigh to get the mixed
text embedding c′, according to Eqn. 2. We then take α steps of the ODE solver from t to t − α to
obtain the next latent feature xt−α:

xt−α = xt +

α∑
i=1

vθ(xt−i+1, t− i+ 1, c′)∆t (3)

where vθ is the conditioned vector field, α is the forward steps, and ∆t is the integration step size.
This stage ensures a rapid and strong alignment with the given text prompt.

Stage 2: Low-Weight Inversion This is the key stage of our method. Instead of directly using
the newly obtained xt−α, we perform a backward-step ODE solving from xt−α. Crucially, this
inversion uses a low interpolation weight βlow and a relatively low amplifying weight slow for the
mixed text embedding c′′, according to Eqn. 2. The corrected latent feature x′

t is obtained by:

x′
t = xt−α −

α∑
i=1

vθ(xt−α+i−1, t− α+ i− 1, c′′)∆t (4)

where x′
t is the corrected latent feature after inversion. This backward step effectively “reflects”

the high-weight-guided latent feature back towards a more semantically centered region of the la-
tent space. It filters out potential latent that have rich semantic information, providing a more text
information starting point for the next forward step.

Stage 3: Normal-Weight Denoising With the semantically corrected feature x′
t, we proceed with

the final denoising step for this time interval. In order to stabilize the denoising process, we balance
the weights between xt and x′

t using merge ratio γ. Then we utilize the standard text embedding c
and the standard guidance scale w to obtain the final latent feature for the next time step x′

t−1:

x′′
t = xt + γ · (xt − x′

t),

x′′
t−1 = x′′

t + vθ(x
′′
t , t, c)∆t

(5)

where x′′
t−1 is the final latent feature for the next time step. This step ensures that the generation

process continues to progress towards the target image distribution with an appropriate level of text
alignment, building on the refined latent feature from the inversion stage.

By repeating this three-stage process for each time step, RF-Sampling achieves a better high-quality
and semantically coherent image synthesis. The detail process is shown in Algorithm 1.

4 EXPERIMENT

4.1 EXPERIMENT SETTING

We conduct a comprehensive evaluation of several T2I diffusion models. For a detailed description
of the benchmarks, evaluation metrics, model architectures and hyperparameter settings, please refer
to Appendix B. Below is a summary of our experimental setup.
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Benchmarks. Our evaluation leverages several established benchmarks to assess a wide range of
capabilities. For human preference alignment, we use Pick-a-Pic (Kirstain et al., 2023) and HPD
v2 (Wu et al., 2023). To evaluate compositional reasoning, we employ DrawBench (Saharia et al.,
2022), GenEval (Ghosh et al., 2023), and T2I-Compbench (Huang et al., 2023). For text-to-video
(T2V) and in-context image generation, we utilize ChronoMagic-Bench-150 (Yuan et al., 2024)
and FLUX-Kontext-Bench (Labs et al., 2025), respectively.

Evaluation Metrics. To quantify model performance, we utilize several metrics designed to re-
flect human perception. These include PickScore (Kirstain et al., 2023), HPS v2 (Wu et al., 2023),
and ImageReward (Xu et al., 2023) for measuring alignment with human preferences, and the Aes-
thetic Score (AES) (Schuhmann) for assessing visual appeal. For T2V evaluation on ChronoMagic-
Bench-150, we use UMT-FVD, UMTScore, GPT4o-MTScore, and MTScore.

Flow Models. Our analysis focuses on five state-of-the-art flow models. For T2I generation, we
evaluate FLUX-Dev (Labs, 2024), its lightweight variant FLUX-Lite (Daniel Verdú, 2024), and
StableDiffusion-3.5 (Esser et al., 2024). For T2V generation, we use Wan2.1-T2V-1.3B (Wan
et al., 2025), and for in-context image editing, we evaluate FLUX-Kontext (Labs et al., 2025).

4.2 MAIN EXPERIMENT

Table 1: Main experiments on HPDv2 (Wu et al., 2023) dataset across 3 different models. The ex-
periments show the consistent superior performance compared with previous methods, highlighting
the effectiveness of our RF-Sampling. Note that other baselines are not applicable to FLUX.

Animation Concept-art Painting Photo Average
Model Method

AES(↑) HPSv2(↑) AES(↑) HPSv2(↑) AES(↑) HPSv2(↑) AES(↑) HPSv2(↑) AES(↑) HPSv2(↑)

Standard 5.9474 30.93 6.1926 28.59 6.4161 28.84 5.4077 27.66 5.9909 29.01
GI (Kynkäänniemi et al., 2024) 5.9814 26.23 6.2188 23.48 6.2188 23.61 5.3417 23.81 5.9401 24.28
Z-Sampling (Bai et al., 2025a) 5.8729 30.58 6.0427 27.58 6.2579 28.21 5.4394 27.92 5.9032 28.57
CFG++ (Chung et al., 2024) 5.8329 29.81 6.0969 27.41 6.3206 27.81 5.3969 27.04 5.9118 28.02
CFG-Zero* (Fan et al., 2025) 5.9743 31.22 6.2066 29.27 6.4280 29.22 5.4190 27.65 6.0061 29.34

SD3.5
(28 steps)

RF-Sampling 6.0164 31.71 6.2093 29.80 6.3702 29.77 5.4973 28.51 6.0243 29.95

Standard 6.2635 31.96 6.5378 30.01 6.7381 30.67 5.8132 29.04 6.3381 30.42FLUX-Lite
(28 steps) RF-Sampling 6.4350 32.78 6.6240 30.70 6.7832 30.95 5.9864 29.93 6.4572 31.09

Standard 6.1459 32.26 6.4934 30.56 6.4934 31.27 5.6515 29.64 6.1960 30.93FLUX-Dev
(50 steps) RF-Sampling 6.1866 32.40 6.5153 30.80 6.5153 31.45 5.6799 29.81 6.2243 31.12

Table 2: Main experiments on Pick-a-Pic (Kirstain et al., 2023) and DrawBench (Saharia et al.,
2022) datasets across 3 different models. Obviously, our proposed RF-Sampling exhibits superior
performance across 4 different metrics. Note that other baselines are not applicable to FLUX.

Pick-a-Pic DrawBench
Model Method

PickScore(↑) ImageReward(↑) AES(↑) HPSv2(↑) PickScore(↑) ImageReward(↑) AES(↑) HPSv2(↑)
Standard 21.99 85.13 5.9435 29.32 22.60 86.02 5.4591 27.76

GI 21.19 28.94 5.9534 24.63 22.11 47.53 5.4279 23.96
Z-Sampling 21.73 89.03 5.9091 28.84 22.55 92.05 5.4784 28.06

CFG++ 21.79 85.17 5.8821 28.50 22.54 81.80 5.3757 27.18
CFG-Zero* 21.88 86.78 5.9536 29.37 22.66 91.90 5.4511 28.10

SD3.5
(28 steps)

RF-Sampling 21.99 101.50 5.9981 29.90 22.64 94.10 5.4915 28.74
Standard 21.91 86.64 6.3224 30.12 22.59 86.51 6.2635 31.96FLUX-Lite

(28 steps) RF-Sampling 22.05 99.21 6.5379 31.16 22.69 96.15 6.4350 32.79
Standard 22.06 97.47 6.2464 30.49 22.84 99.73 6.1459 32.39FLUX-Dev

(50 steps) RF-Sampling 22.19 100.90 6.3113 31.06 22.93 106.21 6.1866 32.40

To validate the effectiveness of our method, we conduct evaluations using multiple human preference
models which score the images generated by our approach. Since prior inference enhancement
methods rely on CFG technique, they cannot be applied to CFG-distilled flow models. To further
validate our idea, we conduct additional analyses in the appendix. The results, as illustrated in
Fig. 6, Fig. 11 and Fig. 12, reveal that previous methods tend to cause the generated images to
deviate from the true data distribution, while RF-Sampling trajectories consistently demonstrate
strong convergence towards the real data distribution. Therefore, we use standard sampling as the
baseline for FLUX. The results in Tab. 1 and Tab. 2 prove that our method consistently achieves
top-1 performance across most metrics. In addition, we report preference-winning rate experiments
among different human preference models in Fig. 4 and Fig. 5, where our method achieves up to
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Figure 4: The winning rate of RF-Sampling over
other methods on SD3.5. The standard sam-
pling (baseline) winning rate defaults to 50%. The
results reveal the superiority of RF-Sampling in syn-
thesizing images with good quality.
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Figure 5: The winning rate of RF-Sampling
over other methods on FLUX. The standard sam-
pling (baseline) winning rate defaults to 50%. The
results reveal the superiority of RF-Sampling in syn-
thesizing images with good quality.

70% winning rate under certain expert preferences. Moreover, we evaluate our method on the T2I
and GenEval benchmarks to demonstrate its effectiveness. The corresponding results are provided in
the appendix, as shown in Tab. 6 and Tab. 7. To highlight the advantages of our approach, we provide
qualitative visualizations in Fig. 1, with additional synthesized examples in Appendix Sec. D. These
visualizations further highlight the enhanced inference capability of our method.

4.3 ABLATION STUDIES AND ADDITIONAL ANALYSIS.
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Figure 7: Ablation study on the effect of βlow and βhigh. No β means that we do not implement the interpo-
lation weight in Eqn. 2. The results reveal that following the high-weight denoising → low-weight inversion
paradigm can enchance the quality of synthesized images. The dotted lines represents the performance of the
standard method. This indicates that within a certain range of values, RF-Sampling perform better than the
standard one, demonstrating the robustness of it.
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Figure 6: Visualization of the sampling trajectories
sampled by our method and the standard approach.
Compared with Z-Sampling and W2SD (see Fig. 11
and Fig. 12 in Appendix), RF-Sampling produces re-
sults that better align with the real data distribution.

To better highlight the characteristics of our
method, we conducted extensive quantitative
and qualitative experiments, as presented be-
low. More results are provided in Appendix C.

High denoising and low inversion. To vali-
date the rationale behind the choice of the inter-
polation parameter β, we conduct experiments
with different settings of β. The results, shown
in Fig. 7, confirm the effectiveness of interpola-
tion and justify assigning higher weights to the
forward process while using lower weights for
the inverse process. As a complement, to pro-
vide a more intuitive understanding of the ef-
fect of varying β, we present the corresponding
visualizations in Fig. 13 and Fig. 14. In addi-
tion, to examine the effectiveness of parameter
s in amplifying the semantic gap, we perform
experiments as illustrated in Fig. 8. The results
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indicate that an appropriately larger gap can better guide the model to generate high-quality images.
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Figure 8: Ablation of the gap between shigh and slow. When the gap of shigh - slow increases within a certain
range, the quality of synthesized images improves. The dotted lines represents the performance of the standard
method. This indicates that within a certain range of values, RF-Sampling perform better than the standard one,
demonstrating the robustness of it.

Optimal Steps. To further validate the contribution of our method at each inference step, we
evaluate the proportion of steps performing reflection relative to the total number of inference steps.
The results, presented in Appendix Fig. 17, demonstrate that, in general, increasing the number of
reflection-enhanced steps leads to higher image generation quality.

Efficiency Analysis. To demonstrate the efficiency of our method, we conduct performance com-
parison experiments under the same number of inference steps. As shown in Fig. 2, the results
indicate that our method achieves better performance within the same inference steps. Furthermore,
to further improve efficiency, we conduct orthogonal experiments with Nunchaku (Li* et al., 2025), a
sampling acceleration method for FLUX. The results, presented in Tab. 3, show that our method can
be effectively combined with such acceleration techniques, highlighting its potential for speedup.

Table 3: Orthogonal experiments with Nunchaku (Li* et al., 2025), a sampling acceleration method
for FLUX. The results demonstrate the generalizability of RF-Sampling to sampling acceleration.

Model Method PickScore(↑) ImageReward(↑) AES(↑) HPSv2(↑)
Standard 21.91 86.64 6.3224 30.12

RF-Sampling 22.05 99.21 6.5379 31.16
Standard + Nunchaku 22.07 95.94 6.2303 30.47

FLUX-Lite
(28 steps)

RF-Sampling + Nunchaku 22.23 102.35 6.4171 30.86
Standard 22.06 97.47 6.2464 30.49

RF-Sampling 22.19 100.90 6.3113 31.06
Standard + Nunchaku 22.18 102.23 6.2203 30.73

FLUX-Dev
(50 steps)

RF-Sampling + Nunchaku 22.22 107.46 6.2672 30.90

4.4 GENERALIZATION TO OTHER TASKS

Figure 9: Image editing experiments on FLUX-Kontext Bench (Labs et al., 2025). Compared to the standard
sampling, RF-sampling enables a more precise understanding of the given instruction, thereby achieving accu-
rate image editing. For more examples, please see Appendix Fig. 29.

To further validate the generality and robustness of our approach, we extend its application beyond
the standard text-to-image generation task to image editing, video generation, and LoRA fine-tuning.
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Figure 10: We combine our proposed methods with existing LoRAs in FLUX community. Our RF-Sampling
can be directly applied to the corresponding downstream tasks. The synthesized images validate the effective-
ness and generalizability of our method.

Image Editing. As shown in Fig. 9 and Appendix Fig. 29, our method achieves a winning rate of
57% when evaluated under editing scenarios, highlighting its ability to preserve semantic alignment
and generate coherent modifications guided by textual instructions.

Video Generation. We further apply our method to the challenging task of video generation. The
results, presented in Appendix Fig. 18 and Tab. 5, indicate that our approach consistently enhances
video quality, confirming that the reflective mechanism generalizes well to sequential data.

LoRA Combination. Finally, we examine the compatibility of our method with lightweight fine-
tuning techniques. As shown in Fig. 10 and Appendix Fig. 28, our method remains effective when
combined with LoRA-based models, demonstrating that inference enhancements are orthogonal and
complementary to parameter-efficient adaptation strategies.

5 CONCLUSION

In this work, we introduced RF-Sampling, a novel training-free inference enhancement method
tailored for flow models, particularly those CFG-distilled variants. Our experiments demonstrate
that RF-Sampling significantly improves both generation quality and text-prompt alignment, out-
performing existing methods and achieving top-1 performance in various evaluations. Moreover,
unlike previous inversion-based techniques, like Z-Sampling, which have been shown experimen-
tally to cause the generated outputs to deviate from the true data distribution under guidance, RF-
Sampling maintains the normal distribution while providing more consistent semantic guidance.
This highlights the robustness of RF-Sampling as a reliable and flexible enhancement strategy for
flow-based models. Nevertheless, the underlying mechanism behind this phenomenon remains an
open question, which we leave as an important direction for future investigation.
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Ethics Statement. We propose RF-Sampling, a training-free inference method designed to en-
hance the semantic faithfulness of images generated by various diffusion models, necessitates care-
ful consideration of several ethical issues. Although RF-Sampling does not directly involve human
subjects, we are committed to ensuring that its applications respect user autonomy and promote
positive outcomes.

Reproducibility statement. We have made extensive efforts to ensure the reproducibility of our
work. The full algorithmic details of RF-Sampling, including pseudo-code and parameter settings,
are provided in the main paper and Appendix. All datasets used in our experiments are publicly
available, and we introduce them in Sec. B in the Appendix. Finally, we will release our code in the
supplementary materials.
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