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Abstract

Energy-based models (EBMs) are a powerful class of probabilistic generative models due
to their flexibility and interpretability. However, relationships between potential flows
and explicit EBMs remain underexplored, while contrastive divergence training via im-
plicit Markov chain Monte Carlo (MCMC) sampling is often unstable and expensive in
high-dimensional settings. In this paper, we propose Variational Potential (VAPO) Flow
Bayes, a new energy-based generative framework that eliminates the need for implicit
MCMC sampling and does not rely on auxiliary networks or cooperative training. VAPO
learns an energy-parameterized potential flow by constructing a flow-driven density homo-
topy that is matched to the data distribution through a variational loss minimizing the
Kullback-Leibler divergence between the flow-driven and marginal homotopies. This prin-
cipled formulation enables robust and efficient generative modeling while preserving the
interpretability of EBMs. Experimental results on image generation, interpolation, out-
of-distribution detection, and compositional generation confirm the effectiveness of VAPO,
showing that our method performs competitively with existing approaches in terms of sam-
ple quality and versatility across diverse generative modeling tasks. The code is available
at https://github.com/ljun0004/VAPO.
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1 Introduction

Energy-based models (EBMs) have emerged as a flexible and expressive class of probabilistic generative
models (Nijkamp et al., 2019; Du & Mordatch, 2019; Grathwohl et al., 2020b; Gao et al., 2020; Du et al.,
2021; Gao et al., 2021; Grathwohl et al., 2020a; Yang et al., 2023; Zhu et al., 2024). By assigning a potential
energy that correlates with the unnormalized data likelihood (Song & Kingma, 2021), EBMs offer a structured
energy landscape for probability density estimation, providing several notable advantages. First, EBMs are
interpretable, as the underlying energy function can be visualized in terms of energy surfaces. Second,
they are highly expressive and do not impose strong architectural constraints (Bond-Taylor et al., 2022),
enabling them to capture complex data distributions. Third, EBMs exhibit inherent robustness to Out-of-
Distribution (OOD) inputs, given that regions with low likelihood are naturally penalized (Du & Mordatch,
2019; Grathwohl et al., 2020a). Building on their origins in Boltzmann machines (Hinton, 2002), EBMs also
share conceptual ties with statistical physics, allowing practitioners to adapt physical insights and tools for
model design and analysis (Feinauer & Lucibello, 2021). They have demonstrated promising performance in
various applications beyond image modeling, including text generation (Deng et al., 2020), robot learning
(Du et al., 2020), point cloud synthesis (Xie et al., 2021a), trajectory prediction (Pang et al., 2021; Wang
et al., 2023), molecular design (Liu et al., 2021), and anomaly detection (Yoon et al., 2023).

Despite these advantages, training deep EBMs often relies on implicit Markov Chain Monte Carlo (MCMC)
sampling for contrastive divergence. In high-dimensional settings, MCMC suffers from poor mode mixing
and slow mixing (Du & Mordatch, 2019; Nijkamp et al., 2019; Gao et al., 2020; Grathwohl et al., 2020a;
Nijkamp et al., 2022; Bond-Taylor et al., 2022), yielding biased estimates that may optimize unintended
objectives (Grathwohl et al., 2020b). Truncated chains, in particular, can lead models to learn an implicit
sampler rather than a true density, which prevents valid steady-state convergence and inflates computational
overhead. As a result, the generated samples can deviate significantly from the target distribution (Grathwohl
et al., 2020b). To mitigate these issues, some works propose auxiliary or cooperative strategies that learn
complementary models to either avoid MCMC via variational inference (Xiao et al., 2021a) or combine short-
run MCMC refinements with learned generator distributions (Xie et al., 2020; Grathwohl et al., 2021; Hill
et al., 2022). Nevertheless, these approaches could complicate model architectures and training procedures.

In parallel, flow-based models have advanced generative modeling by leveraging continuous normalizing
flows and optimal transport techniques to surpass diffusion models in sample quality and efficiency (Kim
et al., 2021; Song et al., 2021). Notable examples include Flow Matching (Lipman et al., 2023), which models
diffeomorphic mappings between noise and data; Rectified Flow (Liu et al., 2023b), which optimizes sampling
paths; Stochastic Interpolants (Albergo & Vanden-Eijnden, 2023; Rezende & Mohamed, 2015; Chen et al.,
2018), which incorporate stochastic processes into flows for complex data geometries; Schrödinger Bridge
Matching (Shi et al., 2023), which integrates entropy-regularized optimal transport with diffusion; and
Poisson Flow Generative Model (PFGM) (Xu et al., 2022), which introduces an augmented space governed
by the Poisson equation. However, these methods do not directly parameterize probability density and lack
the theoretical advantages of EBMs, such as generating conservative vector fields aligned with log-likelihood
gradients (Salimans & Ho, 2021).

Recent approaches, such as Action Matching (Neklyudov et al., 2023), explicitly model the energy (ac-
tion) to generate data-recovery vector fields, thus providing a structured approach to learning conservative
dynamics. Meanwhile, Diffusion Recovery Likelihood (DRL) (Gao et al., 2021) and Denoising Diffusion Ad-
versarial EBMs (DDAEBM) (Geng et al., 2024) refine conditional EBMs by improving sampling efficiency
and training stability through diffusion-based probability paths. However, a direct connection between
energy-parameterized flow models and explicit (marginal) EBMs remains unexplored, limiting the applica-
tion of flow-based techniques for learning EBMs. Furthermore, existing generative models have yet to adopt
variational formulations, such as the Deep Ritz method, to align the evolution of density paths.

To address the computational challenges of existing energy-based methods, we propose Variational Potential
(VAPO) Flow Bayes, a novel energy-based generative framework grounded in variational principles that
eliminates the need for auxiliary models and implicit MCMC sampling. VAPO employs the Deep Ritz
method to learn an energy-parameterized potential flow, ensuring alignment between the flow-driven density
homotopy and the data-recovery likelihood homotopy. To address the intractability of homotopy matching,
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we formulate a variational loss function that minimizes the Kullback-Leibler (KL) divergence between these
density homotopies. Additionally, we validate the learned potential energy as an effective parameterization
of the stationary Boltzmann energy. Through empirical validations, we benchmark VAPO against state-of-
the-art generative models, showcasing its competitive performance in Fréchet Inception Distance (FID) for
image generation and excellent OOD detection with high Area Under the Receiver Operating Characteristic
Curve (AUROC) scores across multiple datasets.

2 Background and Related Works

In this section, we provide an overview of EBMs, particle flow, and the Deep Ritz method, collectively
forming the cornerstone of the proposed VAPO framework.

2.1 Energy-based Models (EBMs)

Denote x̄ ∈ Ω ⊆ Rn as the training data, EBMs approximate the data likelihood pdata(x̄) via defining a
Boltzmann distribution

pB(x) = eΦB(x)

Z
(1)

where ΦB is the Boltzmann energy parameterized via neural networks and Z =
∫

Ω eΦB(x) dx is the nor-
malizing constant. Given that this partition function is analytically intractable for high-dimensional data,
EBMs perform the Maximum Likelihood Estimation (MLE) by minimizing the negative log-likelihood loss
LMLE(θ) = −Epdata(x̄)[log pB(x̄)] = Epdata(x̄)

[
ΦB(x̄)

]
− Epdata(x̄)

[
log Z

]
. The gradient of this MLE loss

with respect to model parameters θ is approximated via the contrastive divergence (Hinton, 2002) loss
∇θLMLE = Epdata(x̄)

[
∇θΦB(x̄)

]
−EpB(x)

[
∇θΦB(x)

]
. Nonetheless, EBMs are computationally intensive due

to the implicit MCMC generating procedure required for generating negative samples x ∼ pB(x) implicitly
during training.

2.2 Particle Flow

Particle flow, introduced by Daum & Huang (2007), is a class of nonlinear Bayesian filtering (sequential
inference) methods designed to approximate the posterior distribution p(xt | x̄≤t) of the sampling process
given observations. While closely related to normalizing flows (Rezende & Mohamed, 2015) and neural
ordinary differential equations (ODEs) (Chen et al., 2018), these frameworks do not explicitly accommodate
a Bayes update. Instead, particle flow achieves Bayes update p(xt | x̄≤t) ∝ p(xt | x̄<t) p(x̄t | xt, x̄<t) by
transporting the prior samples xt ∼ p(xt | x̄<t) through an ODE dx

dt = v(x, t) parameterized by a velocity
field v(x, t), over pseudo-time t ∈ [0, 1]. The velocity field is designed such that the sample density follows
a log-homotopy that induces the Bayes update. Despite its effectiveness in time-series inference (Pal et al.,
2021b; Chen et al., 2019b; Yang et al., 2014) and its robustness against the curse of dimensionality (Surace
et al., 2019), particle flow, particularly potential flow where the velocity field v(x, t) = Φ(x, t) is the gradient
of potential energy, remains largely unexplored in energy-based generative modeling.

2.3 Deep Ritz Method

The Deep Ritz method is a deep learning-based variational numerical approach, originally proposed by E &
Yu (2018), for solving scalar elliptic partial differential equations (PDEs) in high dimensions. Consider the
following Poisson’s equation, fundamental to many physical models:

∆xu(x) = Γ(x), x ∈ Ω
u(x) = 0, x ∈ ∂Ω

(2)

where ∆x is the Laplace operator, and ∂Ω denotes the boundary of Ω. For a Sobolev function u ∈ H1
0(Ω)

(definition in Proposition 2) and square-integrable Γ ∈ L2(Ω), the variational principle ensures that a weak

3



Published in Transactions on Machine Learning Research (05/2025)

solution of the Euler-Lagrange boundary value equation (2) is equivalent to the variational problem of
minimizing the Dirichlet energy (Müller & Zeinhofer, 2019), as follows:

u = arg min
v

∫
Ω

(
1
2 ∥∇xv(x)∥2 − Γ(x) v(x)

)
dx + η

∫
∂Ω

v(x)2 dx (3)

where ∇x denotes the Del operator (gradient). In particular, the Deep Ritz method parameterizes the trial
function v using neural networks and performs the optimization (3) via stochastic gradient descent. To
enforce the Dirichlet boundary condition, the second component of the Dirichlet energy (3), weighted by a
positive constant η, must be evaluated on the boundary ∂Ω. This necessitates acquiring additional boundary
samples x ∈ ∂Ω during neural network training, thereby introducing extra computational overhead. The
Deep Ritz method is predominantly applied for finite element analysis (Liu et al., 2023a) due to its versatility
and effectiveness in handling high-dimensional PDE systems. In (Olmez et al., 2020), the Deep Ritz method
is employed to solve the density-weighted Poisson equation arising from the feedback particle filter (Yang
et al., 2013). However, its application in generative modeling remains unexplored.

3 Variational Potential (VAPO) Flow Bayes

In this section, we introduce VAPO, a novel energy-based generative modeling framework inspired by par-
ticle flow and the Deep Ritz method. VAPO encompasses four key elements: constructing a Bayesian
marginal homotopy between the Gaussian prior and data likelihood (Section 3.1), designing a potential flow
that aligns the flow-driven homotopy with the marginal homotopy (Section 3.2), formulating a variational
loss function using the Deep Ritz method (Section 3.4), and establishing connections between homotopy
matching, diffusion, and EBMs (Section 3.3).

3.1 Interpolating Between Prior and Data Likelihood: Log-Homotopy Bayesian Transport

Let x̄ ∈ Ω denote the training data, with likelihood pdata(x̄), and let x ∈ Ω represent the generative
samples. First, we define a Gaussian prior q(x) = N (0, ω2I) and a Gaussian conditional data likelihood
p(x̄ | x) = N (x̄; x, ν2I), both with isotropic covariances. This data likelihood satisfies the state space model
x = x̄ + ν ϵ, where ϵ is the standard Gaussian noise. The standard deviation ν is usually set to be small so
that x closely resembles x̄. The aim of flow-based generative modeling is to learn a density homotopy (path)
interpolating between the prior and the data likelihood for generative modeling. On that account, consider
the following conditional (data-conditioned) probability density log-homotopy ρ : Ω2 × [0, 1] → R:

ρ(x | x̄, t) = eh(x|x̄,t)∫
Ω eh(x|x̄,t) dx

(4)

where h : Ω2 × [0, 1] → R is a log-linear function:

h(x | x̄, t) = α(t) log q(x) + β(t) log p(x̄ | x) (5)

where α : [0, 1] → [0, 1] and β : [0, 1] → [0, 1] are both monotonically increasing functions parameterized
by time t. The following proposition shows that this log-homotopy transformation results in a Gaussian
perturbation kernel.
Proposition 1. Consider a Gaussian prior q(x) = N (x; 0, ω2I) and a conditional data likelihood p(x̄ | x) =
N (x̄; x, ν2I). The log-homotopy transport (4) corresponds to a Gaussian perturbation kernel ρ(x | x̄, t) =
N
(
x; µ(t) x̄, σ(t)2I

)
, characterized by the time-varying mean and standard deviation:

µ(t) = sigmoid
(

log
(

β(t)
α(t)

ω2

ν2

))
, σ(t) =

√
ν2

β(t) µ(t) (6)

where sigmoid(z) = 1
1+e−z denotes the logistic (sigmoid) function.

Proof. Refer to Appendix C.1.
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Hence, the density homotopy equation 4 represents a tempered Bayesian transport mapping from the Gaus-
sian prior q(x) to the posterior kernel

ρ(x | x̄, 1) = eh(x|x̄,1)∫
Ω eh(x|x̄,1) dx

= p(x̄ | x) q(x)∫
Ω p(x̄ | x) q(x) dx

= p(x | x̄) (7)

which is the maximum a posteriori estimation centered on discrete data samples. To approximate the
intractable data likelihood, we can then consider the following marginal probability density homotopy:

ρ̄(x, t) =
∫

Ω
pdata(x̄) ρ(x | x̄, t) dx̄, (8)

where it remains that p(x, 0) = q(x), and we have ρ̄(x, 1) =
∫

Ω pdata(x̄) p(x | x̄) dx̄ = p(x). Therefore,
this marginal homotopy defines a data-recovery path interpolation between the Gaussian prior q(x) and
the approximate data likelihood p(x). In particular, p(x) represents a Bayesian approximation of the true
data likelihood, by convolving the discrete data likelihood pdata(x̄) with the posterior distribution p(x | x̄).
Nevertheless, the marginalization in (8) is intractable, thereby precluding a closed-form solution for the
marginal homotopy. To overcome this challenge, we propose a potential flow-driven density homotopy,
whose time evolution is aligned with this data-recovery marginal homotopy.

3.2 Modeling Potential Flow in a Data-Recovery Homotopy Landscape

Our goal is to model a potential flow whose density evolution aligns with the marginal homotopy, thereby
directing samples toward the data likelihood. We begin by deriving the time evolution of the marginal
homotopy in the following proposition.
Proposition 2. Consider the conditional homotopy ρ(x | x̄, t) in (4) with Gaussian conditional data likeli-
hood p(x̄ | x) = N (x̄; x, ν2I). Then, the time evolution (derivative) of the marginal homotopy ρ̄(x, t) is given
by the following partial differential equation (PDE):

∂ρ̄(x, t)
∂t

= −1
2 Epdata(x̄)

[
ρ(x | x̄, t)

(
γ(x, x̄, t) − γ̄(x, x̄, t)

)]
(9)

where γ denotes the innovation term

γ(x, x̄, t) = α̇(t)
ω2 ∥x∥2 + β̇(t)

ν2 ∥x − x̄∥2 (10)

Here, α̇(t) and β̇(t) denote the time-derivatives, and γ̄(x, x̄, t) = Eρ(x|x̄,t)[γ(x, x̄, t)] denotes the expectation.

Proof. Refer to Appendix C.2.

A potential flow involves subjecting the prior samples to an energy-generated velocity field, where their
trajectories (x(t)) satisfy the following ODE:

dx(t)
dt

= ∇xΦ(x, t) (11)

where Φ : Ω× [0, 1] → R is a scalar potential energy, and ∇x denotes the Del operator (gradient) with respect
to the data samples x(t). The vector field ∇xΦ ∈ Ω represents the divergence (irrotational) component in the
Helmholtz decomposition. By incorporating this potential flow, the flow-driven density homotopy ρΦ(x, t)
evolves via the continuity equation (Gardiner, 2009):

∂ρΦ(x, t)
∂t

= − ∇x ·
(

ρΦ(x, t) ∇xΦ(x, t)
)

(12)

which corresponds to the transport equation for modeling fluid advection. Our aim is to model the potential
energy such that the evolution of the prior density under the potential flow emulates the evolution of the
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marginal homotopy. In other words, we seek to achieve homotopy matching, ρΦ ≡ ρ̄, by aligning their
respective time evolutions as described in (9) and (12). This leads to the following PDE, which takes the
form of a density-weighted Poisson equation:

∇x ·
(

ρΦ(x, t) ∇xΦ(x, t)
)

= 1
2 Epdata(x̄)

[
ρ(x | x̄, t)

(
γ(x, x̄, t) − γ̄(x, x̄, t)

)]
(13)

However, this Poisson equation remains intractable due to the lack of a closed-form expression for ρΦ. To
overcome this limitation, we substitute the intractable ρΦ with the target marginal homotopy ρ̄, enabling
direct sampling and a variational principle approach. In the following proposition, we demonstrate that the
revised Poisson’s equation minimizes the KL divergence between the flow-driven and conditional homotopies,
yielding statistically optimal homotopy matching.
Proposition 3. Consider a potential flow of the form (11) and given that Φ ∈ H1

0(Ω, p), where Hn
0 denotes

the (Sobolev) space of n-times differentiable functions that are compactly supported, and square-integrable
with respect to marginal homotopy ρ̄(x, t). Solving for the potential energy Φ(x) that satisfies the following
density-weighted Poisson’s equation:

∇x ·
(

ρ̄(x, t) ∇xΦ(x, t)
)

= 1
2 Epdata(x̄)

[
ρ(x | x̄, t)

(
γ(x, x̄, t) − γ̄(x, x̄, t)

)]
(14)

is then equivalent to minimizing the KL divergence DKL
[
ρΦ(x, t)∥ρ̄(x, t)

]
between the flow-driven homotopy

and the conditional homotopy.

Proof. Refer to Appendix C.3.

Therefore, solving this density-weighted Poisson’s equation corresponds to performing a homotopy matching
ρΦ ≡ ρ̄. In the following section, we demonstrate that this homotopy matching gives rise to a Boltzmann
energy expressed in terms of the potential energy Φ when the marginal homotopy ρ̄ reaches its stationary
equilibrium, thereby establishing a connection between our proposed potential flow framework and EBMs.

3.3 Connections to Diffusion Process and Energy-Based Modeling

In this section, we clarify the relationship between diffusion models and flow matching within the homotopy
matching framework. Building on this insight, we establish a link between our proposed potential flow
framework and energy-based modeling.

First, we present results from diffusion models. It has been outlined in Song et al. (2021) that the condi-
tional density homotopy, represented by the Gaussian perturbation kernel ρ(x | x̄, t) = N

(
x; µ(t) x̄, σ(t)2I

)
,

characterizes a diffusion process governed by the following stochastic differential equation (SDE):

dx(t) = −f(t) x(t) dt + g(t) dW (t) (15)

where W (t) ∈ Rn denote the standard Wiener process. Note that the time parameterization with respect
to t here is the reverse of the conventional parameterization used in diffusion models, where the diffusion
process transitions from x(1) ∼ pdata(x̄) to x(0) ∼ q(x) = N (0, ω2I) as defined in Section 3.1. In addition,
the time-varying drift f : [0, 1] → R and diffusion g : [0, 1] → R coefficients are shown by Karras et al. (2022)
to be given by

f(t) = − µ̇(t)
µ(t) , g(t) = −

√
2 σ(t)

(
σ̇(t) + f(t) σ(t)

)
(16)

where µ̇(t) and σ̇(t) denote the time-derivatives. It has also been shown in Song et al. (2021) that the
following deterministic probability flow ODE:

dx(t)
dt

= −f(t) x(t) + 1
2 g(t)2 ∇x log ρ̄(x, t) (17)

results in the same marginal probability homotopy ρ̄(x, t) as the forward-time diffusion SDE (16). Subse-
quently, we highlight the link between the diffusion process and the vector field modeled in flow matching.
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Proposition 4. The conditional vector field in flow matching (Lipman et al., 2023), given by

dx(t)
dt

= v(x | x̄, t) = µ̇(t) x̄ + σ̇(t) ϵ (18)

with standard Gaussian noise ϵ ∼ N (0, I), satisfies the conditional probability flow ODE governing the
diffusion process conditioned on boundary condition x(1) ∼ pdata(x̄). It follows that the marginal vector
field, given by the law of iterated expectation (tower property) E[U |X = x] = E[E[U | X = x, Y ] | X = x]:

dx(t)
dt

= v(x, t) = Epdata(x̄|x)
[
v(x | x̄, t) | x

]
=
∫

Ω
v(x | x̄, t) ρ(x | x̄, t) pdata(x̄)

ρ̄(x, t) dx̄ (19)

also satisfies the marginal probability flow ODE (17).

Proof. Refer to Appendix C.4.

Building on this result, we establish a connection between the proposed potential flow framework and
EBMs. The following proposition demonstrates that homotopy matching, e.g., ρΦ ≡ ρ̄ leads to an energy-
parameterized Boltzmann equilibrium.
Proposition 5. Given that the flow-driven homotopy ρΦ(x, t) matches the data-recovery marginal homotopy
ρ̄(x, t), they exhibit the same Fokker–Planck dynamics. As the time-varying marginal density ρ̄(x, t) converges
to its stationary equilibrium ρ̄∞(x), i.e., when ∂ρ̄(x,t)

∂t → 0, the Fokker-Planck dynamics reach the Boltzmann
distribution (1), where the Boltzmann energy ΦB(x) is defined as follows:

ΦB(x) = 4 Φ∞(x) + f∞ ∥x∥2

g2
∞

(20)

where Φ∞(x), f∞, and g∞ denote the steady-state potential energy, drift, and diffusion coefficients, respec-
tively, associated with the stationary equilibrium.

Proof. Refer to Appendix C.5.

On that note, we uncover the connection between the proposed VAPO framework and EBMs, demonstrating
the validity of the potential energy as a parameterization of a Boltzmann energy. This holds provided that ρ̄
converges to its stationary equilibrium and ρΦ learns to match these convergent dynamics. In the following
section, we introduce a variational principle approach to solving the density-weighted Poisson equation (14),
thereby addressing the intractable homotopy matching problem.

3.4 Variational Potential Energy Loss Formulation: Deep Ritz Method

Solving the density-weighted Poisson’s equation (14) is particularly challenging in high-dimensional settings.
Numerical approximation struggles to scale with higher dimensionality, as selecting suitable basis functions,
such as in the Galerkin approximation, becomes increasingly complex (Yang et al., 2016). Similarly, a diffu-
sion map-based algorithm demands an exponentially growing number of particles to ensure error convergence
(Taghvaei et al., 2020). To address these challenges, we propose a variational loss function using the Deep
Ritz method. This approach casts Poisson’s equation as a variational problem compatible with stochastic
gradient descent. Consequently, the proposed approach solves Eq. (14), effectively aligning the flow-driven
homotopy with the marginal homotopy. Directly solving Poisson’s equation (14) is challenging. Therefore,
we first consider the following weak formulation:∫

Ω

1
2 Epdata(x̄)

[
ρ(x | x̄, t)

(
γ(x, x̄, t) − γ̄(x, x̄, t)

)]
Ψ dx =

∫
Ω

∇x ·
(

ρ̄(x, t) ∇xΦ(x, t)
))

Ψ dx (21)

This PDE must hold for all differentiable trial functions Ψ. In the following proposition, we introduce a
variational loss function that is equivalent to solving this weak formulation of the density-weighted Poisson’s
equation.

7
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Proposition 6. The variational problem of minimizing the following loss functional:

L(Φ, t) = Covρ(x|x̄,t) pdata(x̄)

[
Φ(x, t), γ(x, x̄, t)

]
+ Eρ̄(x,t)

[∥∥∇xΦ(x, t)
∥∥2
]

(22)

with respect to the potential energy Φ, is equivalent to solving the weak formulation (21) of the density-
weighted Poisson’s equation (14). Here, ∥ · ∥ denotes the Euclidean norm, and Cov denotes the covariance.
Furthermore, the variational problem (22) admits a unique solution Φ ∈ H1

0(Ω; ρ) if the marginal homotopy
p satisfy the Poincaré inequality:

Eρ̄(x,t)

[∥∥∇xΦ(x, t)
∥∥2
]

≥ η Eρ̄(x,t)

[∥∥Φ(x, t)
∥∥2
]

(23)

for some positive scalar constant η > 0 (spectral gap).

Proof. Refer to Appendix C.6.

Remark 1. The integration by parts in (66) and (87) require that the marginal density ρ̄(x) vanishes on the
boundary ∂Ω of some open, bounded domain Ω ⊂ Rn, so that the boundary integral

∫
∂Ω ρ̄(x) (∇xΦ·n̂) dx = 0

holds. In standard implementations, although the training data x̄ are typically normalized to lie within
[−1, 1]n, we may define the perturbed samples as x ∈ Ω ⊂ Rn, where Ω is chosen to contain the support
of the data distribution. Accordingly, the open bounded domain Ω can be defined sufficiently large so that
the conditional homotopy ρ(x | x̄, t) approaches zero at the boundary ∂Ω. Since ρ(x | x̄, t) is a Gaussian
perturbation kernel, it decays exponentially and is effectively negligible near the boundary, thereby satisfying
the required condition. As a result, the marginal distribution ρ̄(x, t) also vanishes at ∂Ω, ensuring the validity
of the integration by parts required to formulate both Proposition 3 Proposition 6.

Overall, Propositions 3 and 6 recast the intractable problem of minimizing the KL divergence between the
flow-driven homotopy and the marginal homotopy as an equivalent variational problem of solving the loss
function (22). By optimizing the potential energy with respect to this loss and transporting the prior samples
through the ODE (11), the prior particles evolve along a trajectory that aligns with the marginal homotopy.
In particular, the covariance loss here plays an important role by ensuring that the normalized innovation
(residual sum of squares) is inversely proportional to the potential energy. As a result, the energy-generated
velocity field ∇xΦ consistently points in the direction of greatest potential ascent, thereby driving the flow of
prior particles towards high likelihood regions. Given that homotopy matching is performed over the entire
time horizon, we apply stochastic integration to the loss function over time, where t ∼ U(0, tend) is drawn
from the uniform distribution.

3.5 Training Implementation

In our implementation, we adopt the Optimal Transport Flow Matching (OT-FM) framework (Lipman et al.,
2023) for training, where it corresponds to the SDE parameterization f(t) = − 1

t , g(t) =
√

2 (1−t)
t as outline

in (Kingma & Gao, 2023), or equivalently α(t) = ω2

1−t , β(t) = ν2 t
(1−t)2 for the log-homotopy transformation

derived in (5). To establish a Boltzmann equilibrium, we further require ∂ρ̄(x,t)
∂t → 0 so that the time-

varying marginal density ρ̄(x, t) converges to the stationary Boltzmann distribution. However, the Gaussian
perturbation kernel ρ(x | x̄, t) = N

(
µ(t) x̄, σ(t)2I

)
employed by the flow-based probability paths is defined

only over a finite time interval t ∈ [0, tmax]. Additionally, the marginal homotopy ρ̄(x, t) is not guaranteed
to reach equilibrium within this prescribed time window.

To resolve these limitations of the flow-based probability paths, we explicitly enforce stationarity in our
training implementation, by imposing a steady-state equilibrium p∞(x) = ρ̄(x, t ≥ tmax) beyond some
cutoff time tmax < tend close to the terminal time. This steady-state equilibrium p∞(x) ≡ pB(x) thus
corresponds to the stationary Boltzmann distribution, parameterized by the energy function derived in (20)
with f∞ = f(tmax) and g∞ = g(tmax). Given that a steady-state equilibrium is enforced via p∞(x) = ρ̄(x, t ≥
tmax) ≈ pdata(x̄), the stationary Boltzmann distribution approximates the true data likelihood by design.
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Algorithm 1 VAPO Training
input: Initial model parameters θ, mean and standard deviation scheduling functions µ(t), σ(t), cutoff
time tmax, terminal time tend, decay exponent κ, spectral gap constant η, and batch size B.
repeat

Sample observed data x̄i ∼ pdata(x̄), ti ∼ U(0, tend), and ϵi ∼ N (0, I)
Set ti = min(ti, tmax) and sample xi ∼ ρ(x | x̄, ti) via reparameterization xi = µ(ti) x̄i + σ(ti) ϵi

Compute gradient ∇xΦθ(xi, ti) w.r.t. xi via backpropagation
Calculate VAPO loss 1

B

∑B
i=1 L(Φθ, ti), backpropagate and update model parameters θ

until convergence

Finally, our VAPO loss function is implemented as follows:

LVAPO(Φ) =
∫ tend

0
L(Φ, t) dt = EU(0,tend)

[
L(Φ, t)

]
(24)

where

L(Φ, t) = Covρ(x|x̄,t) pdata(x̄)

[
Φ(x, t), w(t) γ(x, x̄, t)

]
− ∇xΦ(x, t) · v(x | x̄, t)∥∥∇xΦ(x, t)

∥∥ ∥∥v(x | x̄, t)
∥∥

+ Eρ(x|x̄,t) pdata(x̄)

[∥∥∇(x,t)Φ(x, t)
∥∥2 + η

∥∥Φ(x, t)
∥∥2
] (25)

Here, we incorporate an additional cosine distance between the potential gradient ∇xΦ and the conditional
vector field in (18) to the loss function. While this cosine distance does not influence the learning of the
potential energy’s magnitude (magnitude learning is entirely supervised by the covariance loss), it enforces
directional alignment between the gradient and the vector field. To further enforce convergence toward a
steady-state potential Φ∞(x), we additionally encourage quasi-static dynamics by minimizing the Euclidean
norm of the time derivative

∣∣∂Φ
∂t

∣∣2 alongside the gradient norm during training. Also, a weighting w(t) =
(1 − t)κ with decay exponent κ > 1 is applied to the innovation term to balance the covariance loss across
time to stabilize training.

Considering that the marginal homotopy may not satisfy the Poincaré inequality (23), we include the right-
hand side of this inequality in the loss function to enforce the uniqueness of the minimizer. To empirically
validate the existence of a positive Poincaré constant η, Figure 11 plots the ratio between the mean gradient
norm E

[
∥∇xΦ∥2] and the mean energy norm E

[
∥Φ∥2] over training iterations on CIFAR-10, without applying

the additional Poincaré regularization loss. It shows that the ratio is bounded below by η = 6.81 × 10−5,
thereby confirming the existence of a positive Poincaré constant during training.

Nonetheless, our experiments indicate that the existence and magnitude of such an unenforced Poincaré
constant vary across different neural architectures. For completeness, we incorporate the Poincaré regular-
ization with a small η for both the WideResNet and U-Net models, which we fine-tune during training for
optimal results. The cutoff time tmax, terminal time tend, decay exponent κ, and spectral gap constant η are
hyperparameters to be determined during training. Algorithm 1 summarizes the training procedure of our
proposed VAPO framework.

4 Experiments

In this section, we validate the energy-based generative modeling capabilities of VAPO across several key
tasks. Section 4.1 explores 2D density estimation. Section 4.2 presents the unconditional generation and
spherical interpolation results on CIFAR-10 and CelebA. Section 4.4 evaluates mode coverage and model
generalization through energy histograms of train and test data and the nearest neighbors of generated
samples. Section 4.5 examines unsupervised OOD detection performance on various datasets. Section 4.6
verifies the convergence of long-run ODE samples to a Boltzmann equilibrium. Additional results on ablation
study and computational efficiency are provided in Appendix A. Additional discussions of the results are also
provided in Appendix B. Finally, implementation details, including architecture, training, numerical solvers,
datasets, and FID evaluation, are provided in Appendix D.
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Figure 1: 2D potential flow. Top: Sample trajectories from the Gaussian prior noise distribution (black) to
the target 2-Moons distribution (blue), driven by the potential energy Φ(x, t) and sampled using an ODE
solver. Bottom: Time evolution of the learned potential energy landscape Φ(x, t).

4.1 Density Estimation on 2D Data

To verify the convergence properties of the potential energy and to assess the validity of the Boltzmann
energy (20), we conduct density estimation on 2D synthetic datasets. Specifically, we learn a potential flow
that transforms an unimodal Gaussian prior distribution into a 2-Moons target distribution. Figure 1 shows
the sample trajectories driven by the potential flow dx(t) = ∇xΦ(x, t) dt, obtained via the deterministic Euler
solver. Figure 2 presents the sample trajectories and density estimation of the Boltzmann distribution pB ∝
eΦB(x), obtained via the Stochastic Gradient Langevin Dynamics (SGLD). Notably, both the potential energy
Φ(x) and the Boltzmann energy ΦB(x) exhibit stable convergence toward their steady-state equilibrium.
Furthermore, the results indicate that the estimated Boltzmann density closely aligns with the ground-
truth 2-Moons distribution. These results highlight the effectiveness of our variational principle approach in
learning the Boltzmann stationary distribution through homotopy matching against the stationary-enforced
marginal p∞(x).

Nonetheless, a standard formulation of the forward-time SDE (15), or equivalently, the marginal probability
flow ODE (17), is valid only in the case of a unimodal Gaussian prior, e.g., q(x) = ρ(x | x̄, t = 0) = N (0, ω2I),
as discussed in Kingma & Gao (2023). This assumption underpins the consistency of the Fokker–Planck
dynamics with the continuous-time diffusion framework, ensuring the validity of the stationary Boltzmann
energy in the limit. We acknowledge this limitation of our current framework. As a direction for future
work, we propose extending the forward-time SDE or ODE formulation of continuous-time diffusion to
be admissible for more general prior distributions, such as mixtures of Gaussians or learned priors, to
accommodate multi-modal data while maintaining consistency with our proposed energy-based framework.

4.2 Unconditional Image Generation

For image generation, we consider three VAPO model variants: an autonomous (independent of time)
energy model Φ(x) parameterized by Zagoruyko & Komodakis (2016), and a time-varying energy model
Φ(x, t) parameterized by U-Net (Ronneberger et al., 2015). Figure 3 shows the uncurated and unconditional

Figure 2: 2D Boltzmann density estimation. Top: Sample trajectories from the Gaussian prior noise distri-
bution (black) to the target 2-Moons distribution (blue), driven by the Boltzmann energy and sampled via
SGLD. Middle: Visualization of the log-density estimation (up to an additive constant) log pB(x) = ΦB(x)
parameterized by Boltzmann energy.
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Figure 3: Uncurated and unconditional samples generated for CIFAR-10 (left) and CelebA (right).

Figure 4: Compositional and conditional CelebA samples generated based on three attribute pairs.

image samples generated using the time-varying energy model on CIFAR-10 32 × 32 and CelebA 64 × 64.
The generated samples are of decent quality and resemble the original datasets, despite not having the
highest fidelity as achieved by state-of-the-art models. Table 1 summarizes the quantitative evaluations of
our framework in terms of FID (Heusel et al., 2017) scores on the CIFAR-10. In particular, the VAPO models
achieved FID scores competitive to existing generative models. Figures 7 and 8 show additional uncurated
samples of unconditional image generation on CIFAR-10 and CelebA, respectively.

4.3 Image Interpolation and Compositional Generation

To achieve smooth and semantically coherent image interpolation, we perform spherical interpolation between
two Gaussian noises and subsequently apply ODE sampling to the interpolated noises. Figures 9 and 10 show
additional interpolation results on CIFAR-10 and CelebA, respectively. For compositional sample generation,
we first train a class-conditioned energy model Φ(x, c), and then sample by averaging the conditional energies
across selected classes. Figure 4 presents compositional generation results conditioned on composite CelebA
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Figure 5: Generated CIFAR-10 samples and their five nearest neighbors in train set based on pixel distance.

attributes, specifically (Male, Young), (Male, Smile), and (Young, Smile). However, certain compositional
samples show limited variation across attribute pairs, suggesting that incorporating composition weights
could improve attribute-specific conditioning.

4.4 Model Generalization and Mode Evaluation

To evaluate the generalization capability of the VAPO model, Figure 5 presents the nearest neighbors of the
generated samples in the CIFAR-10 training set. The results show that nearest neighbors differ significantly
from the generated samples, suggesting that our model does not overfit the training data and generalizes
well to the underlying data distribution. To validate the mode coverage and over-fitting ability, Figure 6
presents a histogram of the CIFAR-10 training and test datasets across the potential energy estimated by
VAPO. The histogram shows that the learned energy model assigns similar energy values to images from
both sets. This indicates that the VAPO model generalizes well to unseen test data while maintaining broad
mode coverage of the training distribution.

Figure 6: Histogram of the CIFAR-10 training and test datasets across model-parameterized potential energy.
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Table 1: FID scores on unconditional CIFAR-10 image generation.

Energy-based Models FID ↓ Other Likelihood-based Models FID ↓
EBM-IG (Du & Mordatch, 2019) 38.2 ResidualFlow (Chen et al., 2019a) 47.4
EBM-FCE (Gao et al., 2020) 37.3 Glow (Kingma & Dhariwal, 2018) 46.0
CoopVAEBM (Xie et al., 2021b) 36.2 DC-VAE (Parmar et al., 2021) 17.9
CoopNets (Xie et al., 2020) 33.6 GAN-based Models
Divergence Triangle (Han et al., 2019) 30.1 SN-GAN (Miyato et al., 2018) 21.7
VERA (Grathwohl et al., 2021) 27.5 SNGAN-DDLS Che et al. (2020) 15.4
EBM-CD (Du et al., 2021) 25.1 BigGAN (Brock et al., 2019) 14.8
GEBM (Arbel et al., 2021) 19.3 Score-based and Diffusion Models
HAT-EBM (Hill et al., 2022) 19.3 NCSN-v2 (Song & Ermon, 2020) 10.9
CF-EBM (Zhao et al., 2020) 16.7 DDPM Distil (Luhman et al., 2021) 9.36
CoopFlow (Xie et al., 2022) 15.8 DDPM (Ho et al., 2020) 3.17
VAEBM (Xiao et al., 2021a) 12.2 NCSN++ (Song et al., 2021) 2.20
DRL (Gao et al., 2021) 9.58 Flow-based Models
CLEL (Lee et al., 2022) 8.61 Action Matching (Neklyudov et al., 2023) 10.0
DDAEBM (Geng et al., 2024) 4.82 Flow Matching (Lipman et al., 2023) 6.35
CDRL (Zhu et al., 2024) 3.68 Rectified Flow (Liu et al., 2023b) 4.85
VAPO (Autonomous) 14.5 DSBM (Shi et al., 2023) 4.51
VAPO (Time-varying) 6.72 PFGM (Xu et al., 2022) 2.35

Table 2: AUROC scores ↑ for OOD detection on several datasets.

Models CIFAR-10 Interpolation CIFAR-100 CelebA SVHN
PixelCNN (Salimans et al., 2017) 0.71 0.63 - 0.32
GLOW (Kingma & Dhariwal, 2018) 0.51 0.55 0.57 0.24
NVAE (Vahdat & Kautz, 2020) 0.64 0.56 0.68 0.42
EBM-IG (Du & Mordatch, 2019) 0.70 0.50 0.70 0.63
VAEBM (Xiao et al., 2021a) 0.70 0.62 0.77 0.83
CLEL (Lee et al., 2022) 0.72 0.72 0.77 0.98
DRL (Gao et al., 2021) - 0.44 0.64 0.88
CDRL (Zhu et al., 2024) 0.75 0.78 0.84 0.82
VAPO (Ours) 0.78 0.67 0.84 0.61

4.5 Out-of-Distribution Detection

Given that the potential flow corresponds to a stationary Boltzmann distribution, the Boltzmann energy
ΦB from (20) can be used to distinguish between in-distribution and OOD samples based on their assigned
energy values. Specifically, the potential energy model trained on the CIFAR-10 training set assigns energy
values to both in-distribution samples (CIFAR-10 test set) and OOD samples from various other image
datasets. We evaluate OOD detection performance using the AUROC metric, where a higher score reflects
better model’s efficacy in accurately assigning lower energy values to OOD samples. Table 2 compares the
AUROC scores of VAPO with those of various likelihood-based and EBMs. The results show that our model
performs exceptionally well on interpolated CIFAR-10 and CelebA 32 × 32, while performing moderately on
CIFAR-100 and SVHN.

4.6 Long-Run Steady-State Equilibrium

Figure 12 illustrates long-run ODE sampling over an extended time horizon t ∈ [0, 20] using the autonomous
energy model parameterized by WideResNet. Additionally, Figure 13 illustrates long-run ODE sampling
using the time-varying energy model parameterized by U-Net. The results indicate a similar deterioration
in image quality over extended time periods, albeit to a greater extent compared to the autonomous model.
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Figure 14 plots the mean gradient norm E
[
∥∇xΦ∥2] and the mean energy norm E

[
∥Φ∥2], neither of which

exhibit convergence. These results are consistent with those observed in EBMs trained using non-convergent
short-run MCMC (Agoritsas et al., 2023; Nijkamp et al., 2020). This issue arises from the inherent difficulty
neural network models face in learning complex energy landscapes in high-dimensional spaces. Regions
that remain unseen during training can correspond to poorly modeled areas of the energy landscape, often
resulting in the emergence of sharp local minima. Consequently, ODE-based sampling may become trapped
in these local minima, leading to mode collapse and poor mixing, which manifest as visual artifacts such as
excessive saturation and loss of background details.

To resolve these issues, we replace the deterministic ODE solver with the conventional SGLD sampler for
image generation, enabling sampling from the Boltzmann energy via xt+1 = xt + ∆t ∇xΦB(xt) +

√
2 ∆t ϵ

where ϵ ∼ N (0, λ2I) denotes isotropic Gaussian noise with temperature scale λ (standard deviation), and
∆t is the step size. The injected stochasticity from the diffusive noise in SGLD facilitates escape from local
minima and enhances mixing efficiency during sampling. As shown in Figures 15 and 17, SGLD mitigates
mode collapse and the long-run image samples converge well to the stationary equilibrium. Furthermore,
Figures 16 and 18 demonstrate that the gradient norm converges to zero, while the energy norm asymp-
totically stabilizes, indicating steady-state thermalization. These SDE-based sampling results confirm that
equilibrium convergence is achievable with a stochastic sampler. Nonetheless, the temperature scale λ must
be carefully tuned to balance convergence speed and sample quality. Moreover, our experiments show that
ODE-based sampling consistently yields better FID scores, potentially due to the deterministic nature of
the proposed potential flow and the straightness of the linearly interpolated OT-FM trajectories, which
contribute to sharper and more consistent sample generation.

5 Conclusion

We propose VAPO, a novel energy-based potential flow framework designed to reduce the computational
cost and instability typically associated with EBM training. Empirical results demonstrate that VAPO out-
performs several existing EBMs in unconditional image generation and achieves competitive performance in
OOD detection, highlighting its versatility across diverse generative modeling tasks. Despite these promising
results, future work will aim to refine the training strategy to improve scalability to higher-resolution images
and other data modalities, while addressing the limitations outlined in this work. Additionally, exploring
generative models that inherently incorporate Neumann boundary conditions into the design of their blur-
ring perturbation kernels (Rissanen et al., 2023; Hoogeboom & Salimans, 2023; Daras et al., 2023) presents
a promising direction for improving energy landscape modeling and enhancing sample diversity without
incurring the computational burden of long-run MCMC sampling.

Broader Impact Statement

Generative models represent a rapidly growing field of study with overarching implications in science and
society. Our work proposes a new generative model designed for efficient data generation and OOD detection,
with potential applications in fields such as medical imaging, entertainment, and content creation. However,
as with any powerful technology, generative models come with substantial risks, including the potential
misuse in creating deepfakes or misleading content that could undermine social security and trust. Given
this dual-use nature, it is essential to implement safeguards, such as classifier-based guidance, to prevent the
generation of biased or harmful content. Moreover, generative models are vulnerable to backdoor adversarial
attacks and can inadvertently amplify biases present in the training data, reinforcing social inequalities.
Although our work uses standard datasets, it is important to address how such biases are handled. We are
actively exploring methods to identify and mitigate biases during both the training and generation phases.
This includes employing fairness-aware training algorithms and evaluating the model’s output for biased
patterns. Furthermore, while this work demonstrates the potential benefits of generative models, the ethical
concerns surrounding their deployment must be considered. Addressing these issues will require ongoing
collaboration to develop frameworks for responsible use, including transparency, model interpretability, and
robust safeguards against malicious applications. By proactively engaging with these ethical concerns, the
broader community can contribute to the responsible advancement of generative modeling technologies.
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