
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

STACKELBERG LEARNING FROM HUMAN FEEDBACK:
PREFERENCE OPTIMIZATION AS A SEQUENTIAL GAME

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Stackelberg Learning from Human Feedback (SLHF), a new frame-
work for preference optimization. SLHF frames the alignment problem as a
sequential-move game between two policies: a Leader, which commits to an action,
and a Follower, which responds conditionally on the Leader’s action. This approach
decomposes preference optimization into a refinement problem for the Follower and
an optimization problem against an adversary for the Leader. Unlike Reinforcement
Learning from Human Feedback (RLHF), which assigns scalar rewards to actions,
or Nash Learning from Human Feedback (NLHF), which seeks a simultaneous-
move equilibrium, SLHF leverages the asymmetry of sequential play to capture
richer preference structures. The sequential design of SLHF naturally enables
inference-time refinement, as the Follower learns to improve the Leader’s actions,
and these refinements can be leveraged through iterative sampling. We compare the
solution concepts of SLHF, RLHF, and NLHF, and lay out key advantages in con-
sistency, data sensitivity, and robustness to intransitive preferences. Experiments
on large language models demonstrate that SLHF achieves strong alignment across
diverse preference datasets, scales from 0.5B to 8B parameters, and yields inference-
time refinements that transfer across model families without further fine-tuning.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has emerged as the dominant paradigm for
aligning Large Language Models (LLMs) with human preferences (Casper et al., 2023; Kaufmann
et al., 2023). The standard pipeline involves two stages: first, a reward model is trained on a dataset
of pairwise human comparisons, and second, a policy is optimized via reinforcement learning to
maximize this reward (Christiano et al., 2017; Ouyang et al., 2022). Despite its empirical success,
RLHF relies on a critical assumption that diverse human preferences can be faithfully represented by
a single real-valued reward function. In practice, this assumption often fails as scalar reward models
cannot capture intransitive preference structures. Even when preferences are transitive, widely used
formulations such as the Bradley-Terry model (Bradley and Terry, 1952) can yield learned rewards
that diverge from the underlying preferences (Bertrand et al., 2023).

A common alternative to reward models and the Bradley-Terry assumption are preference models
which directly model pairwise preferences (Jiang et al., 2023). However, when preferences exhibit
cycles, optimality becomes ill-defined because no single policy can dominate all others. Nash
Learning from Human Feedback (NLHF) proposes the Nash Equilibrium (NE) as a solution to this
problem by framing preference optimization as a two-player simultaneous-move game, where the
Nash equilibrium (NE) corresponds to a typically stochastic policy whose actions are preferred to any
other policy’s actions on average (Munos et al., 2024). While appealing, simultaneous play forces
both players to optimize against a moving opponent which can hinder convergence.

We expand on this game-theoretic perspective and introduce Stackelberg Learning from Human
Feedback (SLHF), which models alignment as a sequential-move game between a Leader and a
Follower inspired by Stackelberg dynamics (Stackelberg, 1952). In SLHF, a Leader first commits to
an action, and a Follower then responds conditional on the Leader’s choice. This asymmetry yields
two key advantages. First, the Follower solves a refinement problem rather than optimizing directly
against a non-stationary opponent and unobserved actions. This leads to more stable learning and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

quicker adaptation to the changes in the Leader’s policy. Consequently, this faster rate of learning
yields a more stationary feedback to the Leader that can anticipate the Follower’s refinement more
accurately and choose actions that are robust to subsequent improvements.

Perhaps more importantly, SLHF provides a principled method for inference-time refinement: the
ability to improve model outputs at inference-time via repeated sampling. This is particularly valuable
when the target preferences change between training and inference-time. Most commonly, models are
trained on preferences aggregated across diverse annotators that might induce intransitive preference
cycles (Section 4). However, at inference-time, outputs ultimately have to align with an individual’s
taste. SLHF realizes this refinement through its two components: the Leader policy produces an initial
response, and the Follower policy generates refined responses conditional on the previous output.
Unlike sampling from a static distribution, this produces a sequence of outputs that can efficiently
explore the preference space. Crucially, this allows for performance gains through inference-time
computation alone, without any need for additional training or external feedback.

In summary, our contributions are as follows:

• We introduce Stackelberg Learning from Human Feedback (SLHF), a preference optimization
framework that models alignment as a two-player sequential game. We formalize this game
over a learned pairwise preference model and show that SLHF admits a unique Stackelberg
equilibrium under standard regularity assumptions (Section 4).

• We propose STACKELBERGGDA, an algorithm that approximates the Stackelberg equilibrium via
two-timescale gradient descent ascent. Our algorithm benefits from online RL optimization with-
out the need of an explicit reward model or expensive inference with a mixture policy (Section 5).

• Our experimental results show that the Follower, conditioned on the Leader’s output, consistently
outperforms both RLHF and NLHF baselines, whereas the Leader performs similarly to the
approximated Nash policy. Furthermore, we show that the Follower generalizes across models,
improving outputs from independently trained policies without additional fine-tuning (Section 6).

2 RELATED WORK

Reinforcement Learning from Human Feedback (RLHF). RLHF optimizes policies using
human preferences expressed through pairwise comparisons or rankings rather than explicit numeric
rewards (Wirth et al., 2017; Kaufmann et al., 2023). The standard pipeline, introduced by Christiano
et al. (2017), trains a reward model from human comparisons and then treats this model as a proxy
reward for policy optimization, typically using PPO (Schulman et al., 2017). This framework has
driven progress in text summarization (Stiennon et al., 2020), question answering (Nakano et al.,
2021; Menick et al., 2022), and large language model fine-tuning (Ziegler et al., 2019; Bai et al.,
2022; Glaese et al., 2022; Ouyang et al., 2022). Recent work integrates reward and policy updates
into a bilevel optimization loop (Shen et al., 2024; Thoma et al., 2024; Makar-Limanov et al., 2024),
but the reliance on a real-valued reward model remains.

Limitations of Reward Modeling. Most RLHF implementations reduce preference learning to
scalar reward estimation, typically based on the Bradley-Terry model (Bradley and Terry, 1952).
While adequate for transitive, single-objective preferences, such models cannot represent intransi-
tive structures and potentially misrank even transitive ones under model misspecification (Bertrand
et al., 2023). Consequently, RLHF policies can be sensitive to the distribution of training compar-
isons (Munos et al., 2024) and prone to mode collapse under continued optimization (Xiao et al., 2024).
Intransitive preference cycles have been observed not only in human feedback (Casper et al., 2023)
but also in LLM-generated annotations (Dubois et al., 2024; Xu et al., 2025). Our approach sidesteps
these issues by optimizing directly over pairwise preferences without imposing a scalar reward model.

Preference Optimization. To address the limitations of reward modeling in RLHF, IPO (Azar et al.,
2023) extends Direct Preference Optimization (DPO) (Rafailov et al., 2023) by optimizing for the
win rate against a reference policy. Nash Learning from Human Feedback (NLHF) casts the learning
problem as a two-player simultaneous-move game and introduces NASH-MD-PG and NASH-EMA-
PG to approximate the Nash Equilibrium (NE) of a learned preference model via mirror descent
(Munos et al., 2024). Subsequent work has extended this perspective, proposing various algorithms to
optimize for (approximate) NE, including ONLINE-IPO (Calandriello et al., 2024), SPPO (Wu et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2024), SPO (Swamy et al., 2024), INPO (Zhang et al., 2025), DNO (Rosset et al., 2024), RSPO (Tang
et al., 2025), NASH-RS (Liu et al., 2025), and MPO (Wang et al., 2025). Because simultaneous games
are symmetric, these methods typically converge to mixed strategies unless one option is overwhelm-
ingly preferred (Liu et al., 2025). In contrast, SLHF models alignment as a sequential Stackelberg
game in which a Leader commits first and a Follower responds conditionally. This asymmetry yields
a different solution concept that can admit deterministic equilibria in the non-regularized limit.

Inference-Time Preference Improvement. Improving the capabilities of LLMs through additional
computation at inference time has recently received significant attention, especially in verifiable
domains such as coding or mathematics (Welleck et al., 2024). Closest to our work are self-correction
algorithms that aim to improve their responses without external feedback at test-time. A natural
approach to self-correction is to provide instructions only without further training, which, however,
can lead to performance degradation (Huang et al., 2024; Zheng et al., 2024; Tyen et al., 2024; Qu
et al., 2024). Other work on training models for self-correction either assumes human or AI revisions
(Saunders et al., 2022; Qu et al., 2024) or a reward function scoring responses (Welleck et al., 2023;
Akyurek et al., 2023; Zhang et al., 2024; Kumar et al., 2025). Similarly to SLHF, Kumar et al. (2025)
also propose to train an LLM in a sequential manner, however, assume a reward model and train in
two-stages instead of a single loop. SLHF provides a unified alternative: its Leader-Follower structure
naturally supports inference-time refinement through iterative sampling, enabling self-improvement
on arbitrary preference signals without auxiliary reward models or multi-stage procedures.

3 PROBLEM STATEMENT

We consider a preference optimization problem over a finite set of contexts X and actions Y . The
contexts x are drawn from a fixed and known distribution ρ ∈ ∆X , where ∆X is the probability sim-
plex over X . A policy π : X → ∆Y maps each context x ∈ X to a discrete probability distribution
π(· | x) ∈ ∆Y , where ∆Y is the probability simplex over Y . We let Π ..= {π : X → ∆Y} denote the
set of all policies. In the language modeling setting,X typically models the set of prompts, Y the candi-
date responses, and π is the LLM that defines a conditional distribution over responses given prompts.

Let the preference function p(y ≻ y′ | x) define the probability that y is preferred over y′ given x.
We adopt the convention of writing y ≻x y′ when p(y ≻ y′ | x) > 1/2. Slightly overloading notation,
the preference between two policies π and π′ given context x is defined as

p(π ≻ π′ | x) ..= Ey∼π(·|x),y′∼π′(·|x)
[
p(y ≻ y′ | x)

]
. (1)

There are two common approaches to implementing the preference function p in practice. Let D =
{(xi, y

w
i , y

l
i)}Ni=1 be a preference dataset, where ywi and yli denote the chosen and rejected actions in a

pairwise comparison, respectively. One approach is to frame this as a binary classification problem on
D and train a parametrized model to estimate p (Jiang et al., 2023). Alternatively, in the language mod-
eling setting, one could directly employ trained models to provide feedback by following instructions
without additional training. This method is often referred to as LLM-as-a-judge (Gu et al., 2024).

The core objective of preference optimization is to identify a policy that consistently generates optimal
or highly-preferred responses. The notion of an “optimal” policy is straightforward when preferences
are transitive. In such a case, for a given context x ∈ X , there exists an action y⋆x ∈ Y such that y⋆x ≻x

y for all y ∈ Y . This action is known as a Condorcet winner for x and represents the top element of the
induced total order. If every context x ∈ X admits a Condorcet winner, the optimal policy is simply
π⋆(x) = y⋆x. However, real preference data often contains cycles or other intransitivities, so a Con-
dorcet winner may not exist and policy optimality becomes ill-defined. To cope with such ambiguity,
prior work adopts different solution concepts, the two most common of which we briefly review below.

3.1 BACKGROUND ON EXISTING SOLUTION CONCEPTS AND APPROACHES

Reinforcement Learning from Human Feedback (RLHF). RLHF as proposed by Christiano et al.
(2017) and adapted to language modeling by Ziegler et al. (2019) splits preference optimization into
two steps. First, it assumes that the preference function p follows the Bradley-Terry model (Bradley
and Terry, 1952) so that

p(y ≻ y′ | x) = σ(r(x, y)− r(x, y′)), (2)
where σ(x) = 1

1+exp(−x) is the sigmoid function and r : X ×Y → R is a real-valued reward function.
The reward function r is unknown so that an estimator r̂ is used that maximizes the log-likelihood of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

the dataset D. In a second step, the policy π⋆ is chosen to maximize the expected reward with respect
to r̂ regularized by the Kullback-Leibler (KL) divergence against a fixed reference policy πref ∈ Π:

π⋆ ∈ argmax
π∈Π

Ex∼ρ

[
Ey∼π(·|x)

[
r̂(x, y)

]
− τKLx(π ∥πref)

]
. (3)

Here, τ ≥ 0 and KLx(π ∥πref) is computed between π(· | x) and πref(· | x). Under the Bradley-Terry
assumption, Equation (3) admits a unique closed-form solution (Rafailov et al., 2023). However,
additive score models like Bradley-Terry are provably limited in expressing cyclic or intransitive
preference structures, which have been empirically observed in both strategic games (Bertrand et al.,
2023) and human preference data (Alós-Ferrer et al., 2022; Casper et al., 2023). Consequently,
the optimal policy π⋆ depends critically on the data distribution in the training set D, especially its
sampling biases (Munos et al., 2024), which we elaborate more on in Section 4.1.

Nash Learning from Human Feedback (NLHF). NLHF avoids explicit reward modeling
by framing preference optimization as a two-player simultaneous game between two policies
π, π′ ∈ Π (Munos et al., 2024). The optimization problem is given by:

max
π∈Π

min
π′∈Π

Ex∼ρ

[
p(π ≻ π′ | x)− τKLx(π ∥πref) + τKLx(π

′ ∥πref)
]
. (4)

The solution to Equation (4) is a Nash equilibrium (π⋆, π′⋆), where neither side can be improved
unilaterally. The existence and uniqueness of this equilibrium follows from the concave-convex
nature of the objective (Munos et al., 2024). NLHF can incorporate online feedback and makes
no structural assumptions on preferences, but when no action is majority-preferred the equilibrium
necessarily involves mixed strategies (Liu et al., 2025). This inherent stochasticity can be undesirable
in applications where consistency and reliability are critical.

4 STACKELBERG LEARNING FROM HUMAN FEEDBACK (SLHF)

We now present Stackelberg Learning from Human Feedback (SLHF), a novel perspective on
the preference optimization problem. Inspired by Stackelberg games (Stackelberg, 1952), we cast
preference optimization as a sequential-move game between two players: the Leader and the Follower.
Given a context x, the Leader first chooses its action y ∼ π(· | x). The Follower then observes both
the context x and the Leader’s realized action y and responds with y′ ∼ ω(· | x, y). The Follower’s
policy ω is chosen from the set Ω = {ω : X × Y → ∆Y} which allows conditioning on both the
context and the Leader’s action. Formally, given reference policies πref ∈ Π and ωref ∈ Ω, the
optimization problem is defined as follows:

max
π∈Π

min
ω∈Ω

Ex∼ρ

[
Ey∼π(·|x)

[
Ey′∼ω(·|x,y)

[
p(y ≻ y′ | x)

]
+τFKLx,y(ω ∥ωref)

]
−τLKLx(π ∥πref)

]
(5)

where τL, τF ≥ 0 are player-specific regularization coefficients. We let f(π, ω) denote the objective
of Equation (5), which, in the absence of regularization, defines a sequential-move constant-sum game.

SLHF decomposes the preference optimization into two complementary roles, setting it apart from
single-policy methods like RLHF and NLHF. The Follower leverages its informational advantage of
observing the Leader’s committed action. This simplifies its task to learning a specialized refinement
policy that finds the best response to a known output, rather than optimizing against a non-stationary
opponent. The Leader, anticipating this refinement, learns to produce initial actions that remain
strong even after the Follower’s refinement. In Section 4.1, we illustrate that when preferences form
a cycle and no Condorcet winner exists, the Leader selects the least exploitable action, while the
Follower traverses the preference cycle, covering all plausibly optimal actions with minimal samples.

The formulation in (5) differs from standard Stackelberg settings (Conitzer and Sandholm, 2006),
where the Follower gets to condition on the Leader’s policy π only, not on the realized action y.
Allowing the Follower to observe y provides strictly more information whenever π is stochastic,
yielding a simpler and stationary best response problem. In this setting, the Leader gains no advantage
from randomizing, i.e., playing a stochastic policy.

In line with previous results that the RLHF problem (3) admits a closed-form solution, we show that
there exists a unique solution to the SLHF problem (5). The proof is deferred to the Appendix A.1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Table 1: Transitive individual annotator prefer-
ences over three options {A,B,C}.

Type Preference Relationship Proportion

a1 A ≻ B ≻ C α1

a2 B ≻ C ≻ A α2

a3 C ≻ A ≻ B α3

Table 2: The preference function p induced by
the population in Table 1.

A B C

A 0.5 1− α2 α1

B α2 0.5 1− α3

C 1− α1 α3 0.5

Proposition 1. Let τL, τF > 0 and suppose that πref(y | x) > 0 for all (x, y) ∈ X × Y . For
any preference function p(y ≻ y′ | x) there exists a unique solution (π⋆, ω⋆) to the preference
optimization problem in Equation (5).

The solution (π⋆, ω⋆) is called a Stackelberg equilibrium. It is folklore in the algorithmic game
theory literature that there exists a deterministic Stackelberg equilibrium when the Leader’s realized
action is observed by a best responding Follower, as there always exists a deterministic best response
for the Follower. Thus, there is no point in randomizing for the Leader. This stands in contrast to
the NE, which is in general stochastic. For completeness, we provide a proof in Appendix A.2.
Remark 2. For any preference function p(y ≻ y′ | x), the SLHF optimization problem (5) has a
deterministic solution (π⋆, ω⋆) whenever τL = τF = 0. Note that this solution may not necessarily
be unique due to the lack of regularization.

4.1 COMPARISON OF SOLUTION CONCEPTS

Before describing how to approximate the Stackelberg equilibrium, we first contrast RLHF, NLHF,
and SLHF in the Condorcet paradox (de Caritat Mis et al., 1785) described below. Consider a setting
with a single context |X | = 1 and three candidate actions Y = {A,B,C}. Let the preference function
p be given by the aggregate over the population of annotators, A = {a1, a2, a3}, defined in Table 1.
Each type of annotator has a strict preference ranking over Y and we aggregate their preferences as

p(y ≻ y′) =

3∑
i=1

αi1{y ≻ai
y′}, (6)

where 1{y ≻ai
y′} is 1 if y is preferred over y′ by the annotator type ai and 0 otherwise. Table 2

shows the aggregated preferences of the whole population. For example, p(A ≻ B) is the probability
that a randomly chosen annotator prefers A to B. This is true for annotator types a1 and a3 (from Ta-
ble 1), who make up a proportion α1+α3 of the population. Since α1+α2+α3 = 1, this is equivalent
to 1−α2, as shown in Table 2. A common example is to choose α1 = α2 = α3 = 1/3, which leads to
a cyclic relationship between three actions where A ≻ B ≻ C but C ≻ A. Hence, there exists no Con-
dorcet winner in this case. More generally, the interesting case is given by α1, α2, α3 < 1/2, and this
example is often referred to as the Condorcet paradox, because the annotators individually have tran-
sitive preferences (Table 1), but their aggregated preferences form a cycle (Table 2). For ease of pre-
sentation, we consider a non-regularized problem in the rest of this section so that τ = τL = τF = 0.

RLHF Solution. Our first observation is that the estimated reward function r̂ : X × Y → R
depends on the sampling distribution of the dataset D used to estimate r̂. Suppose D contains only
comparisons {A,B} and {B,C}, but not {A,C}. Because A ≻ B and B ≻ C for all annotators,
maximum-likelihood estimation, which fits a single underlying transitive reward function, yields
r̂(A) > r̂(B) > r̂(C), so the optimal policy is π⋆(A) = 1. However, different sampling patterns
(e.g., omitting {A,B}) can instead favor B or C. This illustrates a key limitation of RLHF, as its
solutions are sensitive to the specific comparisons present in D.

Nash Equilibrium. The NE of the matrix game defined in Table 2 is given by π⋆(A) = 1− 2α3,
π⋆(B) = 1− 2α1, π⋆(C) = 1− 2α2. In the special case of α1 = α2 = α3 = 1/3, the NE is uniform
over Y , i.e., it has the highest possible entropy. Unlike RLHF, this solution is dataset-independent, but
it produces a fully stochastic policy that may be undesirable in applications requiring decisive outputs.

Stackelberg Equilibrium. In SLHF, the players’ sequential roles resolve the cycle. The Follower’s
optimal strategy is straightforward as for any action y presented by the Leader, it plays the best

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Algorithm 1 STACKELBERGGDA

1: procedure STACKELBERGGDA(X ,Y, ηL, ηF)
2: Initialize the Leader and Follower policies π1 and ω1

3: for i = 1, 2, . . . do
4: Update Leader’s policy: πi+1 = πi + ηL∇πf(πi, ωi)
5: Update Follower’s policy: ωi+1 = ωi − ηF∇ωf(πi, ωi)
6: Project πi+1 and ωi+1 to their respective probability simplices
7: end for
8: end procedure

User: <user_prompt>
Assistant:

(a) Prompt received as the Leader agent

User: <user_prompt>
Assistant: <leader_response>
User: Improve the previous answer!
Assistant:

(b) Prompt received as the Follower agent

Figure 1: Prompt templates used to train a single-model for both Leader and Follower completions.

response y′ that beats it (i.e., C if y = A, etc.). The Leader, anticipating this deterministic best
response, chooses an initial robust action. This leads to the following equilibrium policies:

ω⋆(· | y) =


C if y = A w.p. 1
A if y = B w.p. 1
B if y = C w.p. 1

π⋆(·) =


A if α1 > max{α2, α3} w.p. 1
B if α2 > max{α1, α3} w.p. 1
C if α3 > max{α1, α2} w.p. 1

.

When α1 = α2 = α3 = 1/3, the Leader is indifferent, and any distribution over A,B,C (including the
uniform NE) is a valid Stackelberg equilibrium. Unlike RLHF, this solution requires no offline dataset,
and unlike NLHF, it admits a deterministic Leader and Follower policy when one type dominates.

Inference-Time Refinement. Motivated by applications such as text summarization, open-ended
generation, and audio-visual content creation, where users can reject outputs and request new
samples, we introduce the notion of inference-time refinement for preference optimization. At
inference-time, a single user interacts with the model and may resample actions until receiving
one that matches their preference, analogous to the pass@k metric in verifiable domains. This is
non-trivial because models are usually trained to reflect population preferences, yet deployment
requires adaptation to an individual user.

Consider the symmetric case α1 = α2 = α3 = 1/3, and without loss of generality, let the user be of
type a1 with ranking A ≻ B ≻ C. RLHF may return A, but depending on D it could also output B
or C, and repeated sampling offers no recourse. The NLHF solution is uniform over A,B,C, so the
probability of sampling A in a single draw is 1/3. By sampling N times, the probability of observing
at least one A is 1 − (2/3)N , i.e., 56% for N = 2 and 70% for N = 3. The SLHF solution starts
similarly: the first action is sampled from the Leader’s possibly uniform policy but subsequent actions
are drawn from the Follower’s policy, i.e., yi ∼ ω⋆(· | x, yi−1) for i ≥ 2. Following this structure,
the probability of sampling A within N = 2 steps increases to 67%, and for N = 3, the entire
preference cycle is traversed regardless of the Leader’s initial choice. Note that the SLHF solution
supports this refinement procedure without the need of additional training required at inference-time.

5 STACKELBERG GRADIENT DESCENT ASCENT (STACKELBERGGDA)

We now introduce STACKELBERGGDA, a two-timescale Gradient Descent-Ascent (GDA) algorithm
designed for the sequential-move preference optimization problem in Section 4. STACKELBERGGDA
performs simultaneously gradient ascent and descent update steps on the Leader and Follower policies,
π and ω, with step size ηL and ηF , respectively, to find the maxmin solution to f(π, ω) defined in
Equation (5). It is a two-timescale algorithm as we choose ηF > ηL resulting in ω adapting faster

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 3: Pairwise preference comparisons between the responses of QWEN2.5-0.5B, RLOO, NASH-
MD-PG, and STACKELBERGGDA algorithms. Each cell represents the preference model’s average
score for the row algorithm over the column algorithm.

QWEN2.5-0.5B RLOO NASH-MD-PG STACKELBERGGDA

LEADER FOLLOWER

QWEN2.5-0.5B 0.000 0.407 0.279 0.266 0.200
RLOO 0.593 0.000 0.393 0.387 0.344
NASH-MD-PG 0.721 0.607 0.000 0.497 0.406
STACKELBERGGDA-LEADER 0.734 0.613 0.503 0.000 0.395
STACKELBERGGDA-FOLLOWER 0.800 0.656 0.594 0.605 0.000

than π. We denote the two-timescale coefficient as κ = ηF
/ηL. After each update, both policies are

projected back onto their respective probability simplices to ensure feasibility.

The function f(π, ω) is concave in π and convex in ω.1 While standard gradient descent-ascent
with equal learning rates has ergodic convergence guarantees in this setting (Korpelevich, 1976;
Chen and Rockafellar, 1997; Nemirovski, 2004; Auslender and Teboulle, 2009; Nedić and Ozdaglar,
2009), we instead adopt a two-timescale variant. This choice is motivated by its stronger convergence
guarantees in more general nonconvex-concave regimes (Lin et al., 2025), as well as its empirical
success in both Actor-Critic methods (Prasad et al., 2015) and the training of Generative Adversarial
Networks (Heusel et al., 2017). This becomes especially valuable for the practical implementation
of STACKELBERGGDA for large state and action spaces and parameterized policies below.

Scalable Implementation of STACKELBERGGDA for LLM Fine-Tuning. Direct optimization
over the full policy spaces Π and Ω is infeasible when X and Y are large, as in LLM fine-tuning.
To address this challenge, we parametrize π and ω and estimate gradients from batches. Crucially
for LLM fine-tuning, the Leader and the Follower can share the same parametrization by using the
prompt template shown in Figure 1, which allows us to reduce the memory requirements. Complete
implementation details and pseudocode are provided in Appendix B.

6 EXPERIMENTS

We conduct a series of experiments to validate the Stackelberg formulation and the efficacy of
STACKELBERGGDA. Our evaluation is designed to answer three primary questions:
1) How does STACKELBERGGDA compare against established RLHF and NLHF baselines in a

controlled preference optimization task?
2) Can the Leader-Follower structure of SLHF enable effective inference-time refinement, and does

this capability generalize to improving outputs from other models?
3) Does the approach scale effectively to the large-scale, general-purpose fine-tuning of LLMs?
Section 6.1 addresses the first two questions by aligning models on a dataset with diverse human
preference signals. In the appendix, we also provide further results on iterative improvements
with increased inference-time computation (Appendix D.2), ablations of the hyperparameter κ
(Appendix D.3), and additional scaling results (Appendix D.4). Section 6.2 then tackles the third
question by applying STACKELBERGGDA within a large-scale, open-source post-training pipeline.

6.1 EMPIRICAL COMPARISON OF SOLUTION CONCEPTS

Dataset. We use the HELPSTEER2 dataset (Wang et al., 2024), which contains 11,826 human-
annotated single-turn dialogues, to estimate the preference function p and its prompts during the
training loops. We choose this dataset due to its high-quality human annotations along five attributes
(helpfulness, correctness, coherence, complexity, and verbosity) that allows us to estimate a diverse
preference profile. Further details on the preference model specification and the resulting intransitivity
are provided in Appendix D.1.

1This follows from Munos et al. (2024) For completeness, we provide a formal proof in Appendix A.3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 4: Test-time improvement using different models for the initial response (Leader) and the
improvement (Follower). Each cell represents the preference model’s average score for the Follower’s
responses over the Leader’s responses.

Leader

QWEN2.5-0.5B RLOO NASH-MD-PG STACKELBERGGDA

Fo
llo

w
er QWEN2.5-0.5B 0.549 0.443 0.363 0.362

RLOO 0.534 0.403 0.369 0.360
NASH-MD-PG 0.708 0.600 0.493 0.476
STACKELBERGGDA 0.803 0.665 0.600 0.606

Compared Methods. We compare STACKELBERGGDA with RLOO (Ahmadian et al., 2024) and
NASH-MD-PG (Munos et al., 2024) which represent the RLHF and NLHF frameworks, respectively.
All models are fine-tuned from the QWEN2.5-0.5B2 model and run for 1,000 gradient steps with
a batch size of B = 32. We sweep learning rates η ∈ {1e−6, 5e−6, 1e−5} and KL penalties
τ ∈ {0.001, 0.01, 0.1} for all algorithms. For NASH-MD-PG, we additionally vary the mixture
parameter β ∈ {0, 0.25, 0.5, 0.75, 1}, and for STACKELBERGGDA, the two-timescale coefficient κ ∈
{1, 5, 10}. Models are selected by average preference rate over QWEN2.5-0.5B yielding best setting
η = 1e−5 and τ = 0.001, with β = 0.75 for NASH-MD-PG and κ = 5 for STACKELBERGGDA.
All implementations use the Transformers (Wolf et al., 2020) and TRL (von Werra et al., 2020)
libraries, with the AdamW optimizer (Loshchilov and Hutter, 2019).

6.1.1 ROUND-ROBIN TOURNAMENT

Table 3 reports pairwise preference scores between the initial QWEN2.5-0.5B and the three fine-tuned
models. The first responses of STACKELBERGGDA-LEADER and NASH-MD-PG achieve roughly
73% preference over QWEN2.5-0.5B and 61% over RLOO, while tying at 50% when compared to
each other. This outcome aligns with settings where multiple high-quality responses exist and the
Stackelberg and Nash equilibria coincide (Section 4.1).

Crucially, applying the FOLLOWER of STACKELBERGGDA to improve its own initial responses
yields a marked performance gain. It achieves 80% preference over QWEN2.5-0.5B, 66% over
RLOO, 60% over NASH-MD-PG, and even outperforms the responses it was conditioned on in
60.5% of comparisons. Thus, a two-turn inference procedure provides substantial gains at the cost of
a single additional generation.

6.1.2 INFERENCE-TIME REFINEMENT

We further evaluate each model’s ability to act as a Follower, refining outputs from other mod-
els. Although only STACKELBERGGDA is explicitly trained for this task (and only to best
respond to itself), we apply the same refinement procedure to all models to test their abil-
ity to generalize. Specifically, for every pair of Leader and Follower models selected from
QWEN2.5-0.5B, RLOO, NASH-MD-PG, STACKELBERGGDA, we first generate a response with
the selected Leader and then apply the Follower prompting template (Figure 1(b)) to produce a
potentially improved response. We refer to these as the Leader and Follower outputs, respectively.
Exhaustively evaluating all Leader-Follower pairs allows us to measure each model’s capacity for
inference-time refinement under diverse initial conditions. Table 4 reports the resulting preference
scores, which indicate how often the Follower output is preferred over the Leader’s generation.

STACKELBERGGDA consistently improves across all Leader models; most notably over QWEN2.5-
0.5B and RLOO, while achieving gains of up to 60% even when refining outputs from NASH-
MD-PG or itself. In contrast, QWEN2.5-0.5B and RLOO only improve upon responses from
QWEN2.5-0.5B and often degrade the quality of outputs from other Leaders. NASH-MD-PG can
enhance responses from QWEN2.5-0.5B and RLOO, but its 70% preference score over QWEN2.5-
0.5B still falls short of its own 73% self-improvement rate reported in Table 3. These findings extend
prior work on verifiable domains (Huang et al., 2024; Zheng et al., 2024; Tyen et al., 2024; Qu et al.,

2https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct

8

https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 5: AlpacaEval 2.0 results comparing trained models to GPT-4 TURBO. Length-controlled (LC)
winrate alleviate the length bias of the GPT-4 judge.

Model LC Winrate Winrate

GPT-4O-2024-05-13 57.46 51.33
LLAMA-3.1-TULU-3-8B-DPO 33.37 40.15
STACKELBERGGDA-FOLLOWER 28.89 61.58
STACKELBERGGDA-LEADER 27.09 49.24
META-LLAMA-3.1-8B-INSTRUCT 20.85 21.84
LLAMA-3.1-TULU-3-8B-SFT 8.83 14.26

2024) by showing that explicitly training to improve given outputs is crucial and mere instruction
prompting is insufficient to reliably enhance responses with respect to human preferences.

6.2 GENERAL PURPOSE FINE-TUNING

To evaluate STACKELBERGGDA for large-scale LLM fine-tuning in general chat applications, we
adopted the Tulu 3 post-training pipeline (Lambert et al., 2024). Using prompts from its preference
dataset3, we trained the 8B-parameter Supervised Fine-Tuned (SFT) checkpoint4, denoted LLAMA-
3.1-TULU-3-8B-SFT, with STACKELBERGGDA. Responses from the resulting Leader and Follower
policies were evaluated by the META-LLAMA-3.1-70B-INSTRUCT model (Weerawardhena et al.,
2025), used as an automatic preference judge. Final models were evaluated on AlpacaEval 2.0,
a benchmark shown to approximate human judgments (Dubois et al., 2024). We report both the
standard win rate and the Length-Controlled (LC) win rate, the latter designed to mitigate length bias
in LLM judge evaluations.

As shown in Table 5, both STACKELBERGGDA-LEADER and STACKELBERGGDA-FOLLOWER
substantially improve the win rates of the initial model and outperform META-LLAMA-3.1-
8B-INSTRUCT, which shares the same base model. While LLAMA-3.1-TULU-3-8B-DPO
and GPT-4O-2024-05-13 achieve higher LC win rates, STACKELBERGGDA attains superior
standard win rates surpassing even GPT-4O-2024-05-13, the top-performing model on the public
leaderboard.5 Notably, LLAMA-3.1-TULU-3-8B-DPO was trained on outputs generated by GPT-4,
the same model used for AlpacaEval 2.0’s evaluation, which may inflate its LC win rates and its
true performance is likely closer to STACKELBERGGDA ’s. We attribute the gap between LC and
standard win rates for STACKELBERGGDA to META-LLAMA-3.1-70B-INSTRUCT’s length bias
and consider refining the feedback source a promising avenue for future work.

7 CONCLUSION

We introduced Stackelberg Learning from Human Feedback (SLHF), a two-player sequential-move
framework that directly optimizes pairwise preference signals without requiring real-valued reward
models. We proposed STACKELBERGGDA to efficiently approximate the unique Stackelberg equi-
librium and scale to challenging tasks such as aligning LLMs with human preferences. Empirically,
STACKELBERGGDA’s Leader policy matches or exceeds standard baselines while the Follower policy
consistently improves outputs at inference time, even when paired with models it was not trained with.

Limitations. Similarly to NLHF, a key limitation of our approach is its reliance on a well-specified
and representative pairwise preference function, which can be challenging to obtain in open-ended
or under-specified domains. Moreover, although the sequential formulation enables inference-time
refinement through conditional generation, it currently operates without real-time user interaction.
Future work could integrate active preference elicitation and personalized refinement, allowing SLHF
to adapt dynamically to individual user preferences at test time.

3https://huggingface.co/datasets/allenai/llama-3.1-tulu-3-8b-preference-mixture
4https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-SFT
5https://tatsu-lab.github.io/alpaca_eval/

9

https://huggingface.co/datasets/allenai/llama-3.1-tulu-3-8b-preference-mixture
https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-SFT
https://tatsu-lab.github.io/alpaca_eval/

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

A. Ahmadian, C. Cremer, M. Gallé, M. Fadaee, J. Kreutzer, O. Pietquin, A. Üstün, and S. Hooker.
Back to basics: Revisiting REINFORCE-style optimization for learning from human feedback
in LLMs. In L.-W. Ku, A. Martins, and V. Srikumar, editors, Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2024.

A. F. Akyurek, E. Akyurek, A. Kalyan, P. Clark, D. T. Wijaya, and N. Tandon. RL4F: Generating
natural language feedback with reinforcement learning for repairing model outputs. In A. Rogers,
J. Boyd-Graber, and N. Okazaki, editors, Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), 2023.

C. Alós-Ferrer, E. Fehr, and M. Garagnani. Identifying nontransitive preferences. Technical report,
Working Paper, 2022.

A. Auslender and M. Teboulle. Projected subgradient methods with non-euclidean distances for
non-differentiable convex minimization and variational inequalities. Mathematical Programming,
120:27–48, 2009.

M. G. Azar, M. Rowland, B. Piot, D. Guo, D. Calandriello, M. Valko, and R. Munos. A General
Theoretical Paradigm to Understand Learning from Human Preferences. Proceedings of Machine
Learning Research, 238:4447–4455, 10 2023.

Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma, D. Drain, S. Fort, D. Ganguli,
T. Henighan, et al. Training a helpful and harmless assistant with reinforcement learning from
human feedback. arXiv preprint arXiv:2204.05862, 2022.

A. Beirami, A. Agarwal, J. Berant, J. Eisenstein, C. Nagpal, A. Theertha Suresh, G. Research,
and G. DeepMind. Theoretical guarantees on the best-of-n alignment policy. arXiv preprint
arXiv:2401.01879, 2024.

Q. Bertrand, W. M. Czarnecki, and G. Gidel. On the limitations of the elo, real-world games
are transitive, not additive. In Proceedings of The 26th International Conference on Artificial
Intelligence and Statistics, 2023.

R. A. Bradley and M. E. Terry. Rank analysis of incomplete block designs: I. the method of paired
comparisons. Biometrika, 39(3/4):324–345, 1952.

D. Calandriello, D. Guo, R. Munos, M. Rowland, Y. Tang, B. A. Pires, P. H. Richemond, C. Le Lan,
M. Valko, T. Liu, R. Joshi, Z. Zheng, and B. Piot. Human Alignment of Large Language Models
through Online Preference Optimisation. In Proceedings of the 41st International Conference on
Machine Learning, 2024.

S. Casper, X. Davies, C. Shi, T. K. Gilbert, J. Scheurer, J. Rando, R. Freedman, T. Korbak, D. Lindner,
P. Freire, T. Wang, S. Marks, C.-R. Segerie, M. Carroll, A. Peng, P. Christoffersen, M. Damani,
S. Slocum, U. Anwar, A. Siththaranjan, M. Nadeau, E. J. Michaud, J. Pfau, D. Krasheninnikov,
X. Chen, L. Langosco, P. Hase, E. Bıyık, A. Dragan, D. Krueger, D. Sadigh, and D. Hadfield-
Menell. Open Problems and Fundamental Limitations of Reinforcement Learning from Human
Feedback. arXiv preprint arXiv:2307.15217, 7 2023.

G. H. Chen and R. T. Rockafellar. Convergence rates in forward–backward splitting. SIAM Journal
on Optimization, 7(2):421–444, 1997.

P. F. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D. Amodei. Deep Reinforcement
Learning from Human Preferences. In Proceedings of the 31st Conference on Neural Information
Processing Systems, 2017.

V. Conitzer and T. Sandholm. Computing the optimal strategy to commit to. Proceedings of the ACM
Conference on Electronic Commerce, 2006:82–90, 2006.

J. A. N. de Caritat Mis et al. Essai sur l’application de l’analyse à la probabilité des décisions
rendues à la pluralité des voix. Imprimerie royale, 1785.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Y. Dubois, X. Li, R. Taori, T. Zhang, I. Gulrajani, J. Ba, C. Guestrin, P. Liang, and T. Hashimoto.
Alpacafarm: A simulation framework for methods that learn from human feedback. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023.

Y. Dubois, B. Galambosi, P. Liang, and T. B. Hashimoto. Length-controlled alpacaeval: A simple
way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

J. Eisenstein, C. Nagpal, A. Agarwal, A. Beirami, A. D’Amour, D. Dvijotham, A. Fisch, K. Heller,
S. Pfohl, D. Ramachandran, P. Shaw, and J. Berant. Helping or herding? reward model ensembles
mitigate but do not eliminate reward hacking, 2024.

M. Geist, B. Scherrer, and O. Pietquin. A Theory of Regularized Markov Decision Processes. In
Proceedings of the 36th International Conference on Machine Learning, 2019.

A. Glaese, N. McAleese, M. Trębacz, J. Aslanides, V. Firoiu, T. Ewalds, M. Rauh, L. Weidinger,
M. Chadwick, P. Thacker, et al. Improving alignment of dialogue agents via targeted human
judgements. arXiv preprint arXiv:2209.14375, 2022.

J. Gu, X. Jiang, Z. Shi, H. Tan, X. Zhai, C. Xu, W. Li, Y. Shen, S. Ma, H. Liu, Y. Wang, and J. Guo.
A Survey on LLM-as-a-Judge. 11 2024.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium. In Proceedings of the Thirty-first
International Conference on Neural Information Processing Systems, 2017.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA: Low-rank
adaptation of large language models. In International Conference on Learning Representations,
2022.

J. Huang, X. Chen, S. Mishra, H. S. Zheng, A. W. Yu, X. Song, and D. Zhou. Large language
models cannot self-correct reasoning yet. In Proceedings of the Twelfth International Conference
on Learning Representations, 2024.

D. Jiang, X. Ren, and B. Y. Lin. LLM-BLENDER: Ensembling Large Language Models with
Pairwise Ranking and Generative Fusion. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics, volume 1, 2023.

T. Kaufmann, P. Weng, V. Bengs, and E. Hüllermeier. A Survey of Reinforcement Learning from
Human Feedback. arXiv preprint arXiv:2312.14925, 2023.

G. M. Korpelevich. The extragradient method for finding saddle points and other problems. Matecon,
12:747–756, 1976.

A. Kumar, V. Zhuang, R. Agarwal, Y. Su, J. D. Co-Reyes, A. Singh, K. Baumli, S. Iqbal, C. Bishop,
R. Roelofs, L. M. Zhang, K. McKinney, D. Shrivastava, C. Paduraru, G. Tucker, D. Precup,
F. Behbahani, and A. Faust. Training language models to self-correct via reinforcement learning.
In Proceedings of the Thirteenth International Conference on Learning Representations, 2025.

N. Lambert, J. Morrison, V. Pyatkin, S. Huang, H. Ivison, F. Brahman, L. J. V. Miranda, A. Liu,
N. Dziri, S. Lyu, Y. Gu, S. Malik, V. Graf, J. D. Hwang, J. Yang, R. L. Bras, O. Tafjord, C. Wilhelm,
L. Soldaini, N. A. Smith, Y. Wang, P. Dasigi, and H. Hajishirzi. Tulu 3: Pushing Frontiers in Open
Language Model Post-Training. 11 2024. URL http://arxiv.org/abs/2411.15124.

T. Lin, C. Jin, and M. I. Jordan. Two-timescale gradient descent ascent algorithms for nonconvex
minimax optimization. Journal of Machine Learning Research, 26(11):1–45, 2025.

K. Liu, Q. Long, Z. Shi, W. J. Su, and J. Xiao. Statistical impossibility and possibility of aligning
llms with human preferences: From condorcet paradox to nash equilibrium. arXiv preprint
arXiv:2503.10990, 2025.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In Proceedings of the Interna-
tional Conference on Learning Representations, 2019.

11

http://arxiv.org/abs/2411.15124

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

J. Makar-Limanov, A. Prakash, D. Goktas, N. Ayanian, and A. Greenwald. Sta-rlhf: Stackelberg
aligned reinforcement learning with human feedback. In Coordination and Cooperation for
Multi-Agent Reinforcement Learning Methods Workshop, 2024.

J. Menick, M. Trebacz, V. Mikulik, J. Aslanides, F. Song, M. Chadwick, M. Glaese, S. Young,
L. Campbell-Gillingham, G. Irving, et al. Teaching language models to support answers with
verified quotes. arXiv preprint arXiv:2203.11147, 2022.

R. Munos, M. Valko, D. Calandriello, M. G. Azar, M. Rowland, D. Guo, Y. Tang, M. Geist,
T. Mesnard, A. Michi, M. Selvi, S. Girgin, N. Momchev, O. Bachem, D. J. Mankowitz, D. Precup,
B. Piot, and G. Deepmind. Nash Learning from Human Feedback. In Proceedings of the 41st
International Conference on Machine Learning, 2024.

R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, V. Kosaraju, W. Saunders,
et al. Webgpt: Browser-assisted question-answering with human feedback. arXiv preprint
arXiv:2112.09332, 2021.

A. Nedić and A. Ozdaglar. Subgradient methods for saddle-point problems. Journal of optimization
theory and applications, 142:205–228, 2009.

A. Nemirovski. Prox-method with rate of convergence o (1/t) for variational inequalities with lipschitz
continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal
on Optimization, 15(1):229–251, 2004.

L. G. Openai, J. Schulman, O. Jacob, and H. Openai. Scaling Laws for Reward Model Overoptimiza-
tion. In International Conference on Machine Learning, 2023. ISBN 2210.10760v1.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang Sandhini Agarwal
Katarina Slama Alex Ray John Schulman Jacob Hilton Fraser Kelton Luke Miller Maddie Simens
Amanda Askell, P. Welinder Paul Christiano, J. Leike, and R. Lowe. Training language models
to follow instructions with human feedback. In Proceedings of the 36th Conference on Neural
Information Processing Systems, 2022.

H. Prasad, P. LA, and S. Bhatnagar. Two-timescale algorithms for learning nash equilibria in general-
sum stochastic games. In Proceedings of the 2015 International Conference on Autonomous Agents
and Multiagent Systems, 2015.

Y. Qu, T. Zhang, N. Garg, and A. Kumar. Recursive introspection: Teaching language model agents
how to self-improve. Advances in Neural Information Processing Systems, 2024.

Qwen, :, A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei,
H. Lin, J. Yang, J. Tu, J. Zhang, J. Yang, J. Yang, J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao, K. Yang,
L. Yu, M. Li, M. Xue, P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Tang, T. Xia, X. Ren, X. Ren,
Y. Fan, Y. Su, Y. Zhang, Y. Wan, Y. Liu, Z. Cui, Z. Zhang, and Z. Qiu. Qwen2.5 Technical Report.
arXiv preprint arXiv:2412.15115v2, 12 2024.

R. Rafailov, A. Sharma, E. Mitchell, S. Ermon, C. D. Manning, and C. Finn. Direct Preference Opti-
mization: Your Language Model is Secretly a Reward Model. In Advances in Neural Information
Processing Systems, 2023. ISBN 2305.18290v2.

C. Rosset, C.-A. Cheng, A. Mitra, M. Santacroce, A. Awadallah, and T. Xie. Direct Nash Optimiza-
tion: Teaching Language Models to Self-Improve with General Preferences. In arXiv preprint
arXiv:2404.03715, 2024.

W. Saunders, C. Yeh, J. Wu, S. Bills, L. Ouyang, J. Ward, and J. Leike. Self-critiquing models for
assisting human evaluators. arXiv preprint arXiv:2206.05802, 2022.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

P. G. Sessa, R. Dadashi, L. Hussenot, J. Ferret, N. Vieillard, A. Ramé, B. Shariari, S. Perrin, A. Friesen,
G. Cideron, S. Girgin, P. Stanczyk, A. Michi, D. Sinopalnikov, S. Ramos, A. Héliou, A. Severyn,
M. Hoffman, N. Momchev, O. Bachem, and G. Deepmind. BOND: Aligning LLMs with Best-of-N
Distillation. arXiv preprint arXiv:2407.14622, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

H. Shen, Z. Yang, and T. Chen. Principled penalty-based methods for bilevel reinforcement learning
and rlhf. In Proceedings of the 41st International Conference on Machine Learning, 2024.

H. v. Stackelberg. Theory of the market economy. Oxford University Press, 1952.

N. Stiennon, L. Ouyang, J. Wu, D. M. Ziegler, R. Lowe, C. Voss, and A. Radford Dario Amodei
Paul Christiano. Learning to summarize from human feedback. In Proceedings of the 34th
Conference on Neural Information Processing Systems, 2020.

G. Swamy, C. Dann, R. Kidambi, Z. S. Wu, and A. Agarwal. A Minimaximalist Approach to
Reinforcement Learning from Human Feedback RLHF / PbRL. In Proceedings of the 41st
International Conference on Machine Learning, 2024.

X. Tang, S. Yoon, S. Son, H. Yuan, Q. Gu, and I. Bogunovic. Game-theoretic regularized self-play
alignment of large language models. arXiv preprint arXiv:2503.00030, 2025.

V. Thoma, B. Pásztor, A. Krause, G. Ramponi, and Y. Hu. Contextual bilevel reinforcement learning
for incentive alignment. In Proceedings of the Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

G. Tyen, H. Mansoor, V. Cărbune, Y. P. Chen, and T. Mak. Llms cannot find reasoning errors, but can
correct them given the error location. In Findings of the Association for Computational Linguistics
ACL 2024, 2024.

L. von Werra, Y. Belkada, L. Tunstall, E. Beeching, T. Thrush, N. Lambert, S. Huang, K. Rasul, and
Q. Gallouédec. Trl: Transformer reinforcement learning, 2020.

M. Wang, C. Ma, Q. Chen, L. Meng, Y. Han, J. Xiao, Z. Zhang, J. Huo, W. J. Su, and Y. Yang. Mag-
netic preference optimization: Achieving last-iterate convergence for language model alignment.
In The Thirteenth International Conference on Learning Representations, 2025.

Z. Wang, Y. Dong, O. Delalleau, J. Zeng, G. Shen, D. Egert, J. J. Zhang, M. N. Sreedhar, and
O. Kuchaiev. Helpsteer 2: Open-source dataset for training top-performing reward models. In
Proceedings of the Thirty-eight Conference on Neural Information Processing Systems, 2024.

S. Weerawardhena, P. Kassianik, B. Nelson, B. Saglam, A. Vellore, A. Priyanshu, S. Vijay, M. Aufiero,
A. Goldblatt, F. Burch, E. Li, J. He, D. Kedia, K. Oshiba, Z. Yang, Y. Singer, and A. Karbasi.
Llama-3.1-foundationai-securityllm-8b-instruct technical report, 2025. URL https://arxiv.
org/abs/2508.01059.

S. Welleck, X. Lu, P. West, F. Brahman, T. Shen, D. Khashabi, and Y. Choi. Generating Sequences
by Learning to Self-Correct. In Proceedings of the Eleventh International Conference on Learning
Representations, 2023.

S. Welleck, A. Bertsch, M. Finlayson, H. Schoelkopf, A. Xie, G. Neubig, I. Kulikov, and Z. Har-
chaoui. From decoding to meta-generation: Inference-time algorithms for large language models.
Transactions on Machine Learning Research, 2024. ISSN 2835-8856.

C. Wirth, R. Akrour, G. Neumann, and J. Fürnkranz. A survey of preference-based reinforcement
learning methods. Journal of Machine Learning Research, 18(136):1–46, 2017.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao,
S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, 2020.

Y. Wu, Z. Sun, H. Yuan, K. Ji, Y. Yang, and Q. Gu. Self-Play Preference Optimization for Language
Model Alignment. arXiv preprint arXiv:2405.00675, 2024.

J. Xiao, Z. Li, X. Xie, E. Getzen, C. Fang, Q. Long, and W. J. Su. On the algorithmic bias of aligning
large language models with rlhf: Preference collapse and matching regularization. arXiv preprint
arXiv:2405.16455, 2024.

13

https://arxiv.org/abs/2508.01059
https://arxiv.org/abs/2508.01059

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Y. Xu, L. Ruis, T. Rocktäschel, and R. Kirk. Investigating non-transitivity in llm-as-a-judge. arXiv
preprint arXiv:2502.14074, 2025.

Y. Zhang, M. Khalifa, L. Logeswaran, J. Kim, M. Lee, H. Lee, and L. Wang. Small language models
need strong verifiers to self-correct reasoning. In L.-W. Ku, A. Martins, and V. Srikumar, editors,
Findings of the Association for Computational Linguistics: ACL 2024, 2024.

Y. Zhang, D. Yu, B. Peng, L. Song, Y. Tian, M. Huo, N. Jiang, H. Mi, and D. Yu. Iterative Nash Policy
Optimization: Aligning LLMs with General Preferences via No-Regret Learning. In Proceedings
of the Thirteenth International Conference on Learning Representations, 2025.

H. S. Zheng, S. Mishra, H. Zhang, X. Chen, M. Chen, A. Nova, L. Hou, H.-T. Cheng, Q. V. Le,
E. H. Chi, et al. Natural plan: Benchmarking llms on natural language planning. arXiv preprint
arXiv:2406.04520, 2024.

D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano, and G. Irving.
Fine-Tuning Language Models from Human Preferences. arXiv preprint arXiv:1909.08593, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

CONTENTS OF APPENDIX

A Proofs 15

A.1 Proof of Proposition 1 . 15

A.2 Proof of Remark 2 . 15

A.3 Concave-Convex Property of f . 16

B Scalable Implementation of STACKELBERGGDA 16

C Implementation Details 17

D Additional Experimental Results 17

D.1 Preference Model . 17

D.2 Iterative Improvements at Test-time . 19

D.3 Ablation on the two-timescale coefficient . 21

D.4 Model Scaling . 22

A PROOFS

A.1 PROOF OF PROPOSITION 1

Proof. First, assume that the Leader’s policy π is fixed and consider the Follower’s optimization
problem

min
ω

Ex∼ρ,y∼π(·|x)
[
Ey′∼ω(·|x,y)[p(y ≻ y′ | x)] + τFKLx,y(ω ∥ωref)

]
. (7)

The optimization problem in (7) is equivalent to Equation (3) for the reward function r(x̃, y′) ..=
p(y ≻ y′ | x) with contexts x̃ = (x, y) and context distribution x̃ ∼ ρ⊗ π. As a result, Equation (7)
has a unique closed-form solution (Geist et al., 2019; Rafailov et al., 2023; Azar et al., 2023) given by

ω⋆(y′ | x, y) = 1

Z(x, y)
ωref(y′ | x, y) exp

(
1
τF p(y′ ≻ y | x)

)
where Z(x, y) =

∑
y′∈Y ωref(y′ | x, y) exp

(
1
τF p(y′ ≻ y | x)

)
is a partition factor that depends only

on (x, y) and πref. Hence, ω∗ can be expressed as a function of (x, y) and ωref without explicit
dependence on π.

Now, define the following reward function for the Leader’s optimization problem

r(x, y) ..= Ey′∼ω⋆(·|x,y)[p(y ≻ y′ | x)]. (8)

Note that ω⋆ is unique so that r(x, y) is a scalar. We can now restate Equation (5) for the Leader’s
optimization problem as

max
π

Ex∼ρ

[
Ey∼π(·|x)[r(x, y)]− τLKLx(π ∥πref)

]
which is again a KL-regularized optimization problem that admits a closed-form solution

π⋆(y | x) = 1

Z(x)
πref(y | x) exp

(
1
τL r(x, y)

)
.

A.2 PROOF OF REMARK 2

Proof. This lemma is folklore in the algorithmic game theory community and can be quickly verified.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Let x ∈ X . Given any action y ∈ Y , there exists a not necessarily unique y′ ∈ Y minimizing
p(y ≻ y′ | x). Hence, irrespective of the Leader’s policy π(· | x), there always exists a Follower’s
deterministic best response policy ωbr(· | x, y) with ωbr(y

′ | x, y) = 1 for some y′. In other words,
the Follower always has a deterministic best response policy.

Similarly, the optimization problem for the Leader given some context x reduces to finding y
that maximizes Ey′∼ωbr(·|x,y)[p(y ≻ y′ | x)] so that the SLHF optimization problem admits a
determinsitic solution.

A.3 CONCAVE-CONVEX PROPERTY OF f

We show here that the objective function f in Equation (5) of the Stackelberg optimization problem
is concave-convex. Similar results were established in the context of NLHF by Munos et al. (2024).

Throughout this section, we assume |X| = 1 and omit x from the notation for clarity. All results
extend directly to the general case with a finite context space X .

Then, the objective function of Equation (5) is given by

f(π, ω) = Ey∼π(·),y′∼ω(·|y)
[
p(y ≻ y′)

]
− τLKL

(
π ∥πref)+ τFEy∼π(·)[KLy

(
ω ∥ωref)]. (9)

The first term is bilinear in π and ω, as shown by expanding the expectation:

Ey∼π(·),y′∼ω(·|y)
[
p(y ≻ y′)

]
=

∑
y∈Y

π(y)
∑
y′∈Y

p(y ≻ y′)ω(y′ | y).

The KL terms are convex in their respective arguments. Hence, f is bilinear when τL = τF = 0, and
strongly concave-convex when τL, τF > 0.

B SCALABLE IMPLEMENTATION OF STACKELBERGGDA

When fine-tuning large language models, the context and action spacesX and Y are far too large to op-
timize over Π and Ω directly. To address this, we introduce a practical variant of STACKELBERGGDA
in Algorithm 2.

Policy Parameterization. We replace the tabular policies π and ω with neural parameterizations
πθ and ωϕ (e.g., transformer networks). This renders the policy spaces tractable via their parameter
vectors θ and ϕ, however, the concave-convex property does not necessarily carry over to the
parameters θ and ϕ.

Batched, Variance-reduced Gradient Estimates. Exact evaluation of the expectations in ∇f is
infeasible due to the expectation over the context and action spaces. Instead, at each iteration we
sample a batch of size B:

{(xi, yi, y
′
i, pi)}Bi=1, xi ∼ ρ, yi ∼ πθ(· | xi), y

′
i ∼ ωϕ(· | xi, yi), pi = p(yi ≻ y′i | xi).

We then form unbiased estimates as

∇̂θf =
1

B

B∑
i=1

(
pi − τLkLi

)
∇θ log πθ(yi | xi), ∇̂ϕf =

1

B

B∑
i=1

(
pi − τF kFi

)
∇ϕ logωϕ(y

′
i | xi, yi),

with likelihood ratios kLi = πθ(yi|xi)
πref(yi|xi)

and kFi =
ωϕ(y

′
i|xi,yi)

ωref(y′
i|xi,yi)

. The gradient estimators are naturally
compatible with additional variance reduction techniques such as subtracting a constant baseline.

Single-Model Instantiation. Simultaneously training two billion-parameter transformer models
is memory-prohibitive. Similarly to SCORE (Kumar et al., 2025), we collapse both Leader and
Follower into one model πθ by using distinct chat templates (Figure 1). When the model is only
given the context x, we use the template in Figure 1(a) that only includes x as the prompt. When the
model is given both the context x and an action y, we use the template in Figure 1(b) that includes
both the context x and the action y, as well as a predefined instruction to improve the action y.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Then, letting κ = αF

αL denote the two-timescale weight coefficient, we optimize the model to minimize
the following loss function

L(θ) = − 1

B

B∑
i=1

(
pi − τLkLi

)
log πθ(yi | xi) +

κ

B

B∑
i=1

(
pi − τF kFi

)
log πθ

(
y′i | xi, yi

)
. (10)

Gradient steps onL(θ) realize the two-time-scale gradient descent-ascent updates via a single network,
thereby substantially reducing memory usage.

Algorithm 2 STACKELBERGGDA (Practical)

1: procedure STACKELBERGGDA(X ,Y, ρ, η)
2: Initialize the parameter θ for the shared model
3: for i = 1, 2, . . . do
4: for b = 1, . . . , B do
5: Sample prompt xb ∼ ρ
6: Sample Leader response using the prompt in Figure 1(a): yb ∼ πθ(· | xb)
7: Sample Follower response using the prompt in Figure 1(b): y′b ∼ πθ(· | xb, yb)
8: Observe preference feedback pb = p(yb ≻ y′b | xb)
9: end for

10: Update the weights θ according to the loss in Equation (10): θ ← θ − η∇θL(θ)
11: end for
12: end procedure

C IMPLEMENTATION DETAILS

Implementation Codebase We trained RLOO6 and NASH-MD-PG7 using their implementations
in the TRL Python package (von Werra et al., 2020). For all training runs, including reward modeling,
we used Low-Rank Adaptation (LoRA) (Hu et al., 2022) with rank r = 32, scaling factor α = 64,
and dropout rate set to 0.1. The codebase with instructions is included in the supplementary material
for reproduction.

LLM-as-a-judge Implementation In Section 6.2, we used the prompt depicted in Figure 2 as an
input for META-LLAMA-3.1-70B-INSTRUCT to provide a feedback to STACKELBERGGDA during
training. We calculate the preference probability for the first completion as the softmax probability
for the two tokens corresponding to the model identifier strings.

Compute Resources Experiments in Section 6.1 were conducted on a single node with 8 Nvidia
GeForce RTX 4090 GPUs. The total compute time, including hyperparameter sweeps, was approx-
imately 4,000 GPU-hours. The training run in Section 6.2 was conducted on a single node with 4
Nvidia GH200 GPUs using approximately 1,300 GPU-hours.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 PREFERENCE MODEL

We estimate the preference model used to fine-tune the LLMs by treating the five attributes
in the HELPSTEER2 datasets (Wang et al., 2024) as distinct annotators, denoted by the set
A = {helpfulness, correctness, coherence, complexity, verbosity}, and define ν as a uniform
distribution over A. For each attribute a ∈ A, we estimate a reward function r̂a using the Bradley-
Terry model and maximize the log-likelihood on the training dataset D = {(xi, y

w
i , y

l
i)}Ni=1

min
r

N∑
i=1

σ(r(xi, y
w
i)− r(xi, y

l
i)) + λ(r(xi, y

w
i) + r(xi, y

l
i))

2.

6https://huggingface.co/docs/trl/main/en/rloo_trainer
7https://huggingface.co/docs/trl/main/en/nash_md_trainer

17

https://huggingface.co/docs/trl/main/en/rloo_trainer
https://huggingface.co/docs/trl/main/en/nash_md_trainer

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

User:
I require a leaderboard for various large language models.
I’ll provide you with prompts given to these models
and their corresponding outputs. Your task is to assess
these responses and select the model that produces
the best output from a human perspective.

Instruction

{
"instruction": """{prompt}"""

}

Model Outputs

Here are the unordered outputs from the models.
Each output is associated with a specific model,
identified by a unique model identifier.

{
{

"model_identifier": "A",
"output": """{response0}"""

},
{

"model_identifier": "B",
"output": """{response1}"""

}
}

Task

Evaluate the models on the basis of the quality
and relevance of their results, and select the model
that generated the best result. Reply with the
identifier of the best model. Our evaluation will only
take into account the first character of your answer,
so make sure it contains only one of the identifiers and nothing
else (no quotation marks, no spaces, no new lines, ...).

Assistant:

Figure 2: LLM-as-a-judge prompt for META-LLAMA-3.1-70B-INSTRUCT

We here decided which response is the winning and losing one in the dataset by comparing the
attribute scores provided by the annotators. The additional regularization ensures that the rewards
are centralized around zero (Eisenstein et al., 2024). For the attributes correctness, helpfulness, and
coherence, we consider higher scores to be better while for verbosity and complexity lower values
are more preferable. This is in accordance with the scoring criteria described in Wang et al. (2024).
Each reward function is trained independently, initialized from the QWEN2.5-1.5B8 model with a
single linear head. We train each model for 5 epochs on the training prompts and completions with
batch size 32, learning rate 1e−4, and regularization coefficient λ = 0.01. The final accuracies of
the models on the validation dataset are 78%, 65%, 61%, 60%, and 59% for verbosity, complexity,
correctness, helpfulness, and coherence, respectively.

8https://huggingface.co/unsloth/Qwen2.5-1.5B-Instruct

18

https://huggingface.co/unsloth/Qwen2.5-1.5B-Instruct

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

0
1

2

3

4
5

67
8

9

10

11
12

13

14

15

16
17

18

19

Algorithms
Qwen2.5-0.5B
RLOO
Nash-MD-PG
StackelbergGDA
Condorcet Winner

Figure 3: Directed graph based with completions generated by the fine-tuned models and edge
directions representing the preference between them.

The overall preference function p is then defined as

p(y ≻ y′ | x) = 1

|ν|
∑
a∈ν

1{r̂a(x, y) ≥ r̂a(x, y
′)}. (11)

We evaluate the non-transitivity of the preference model p defined in Equation (11) on the validation
prompts and five responses from each of the four models used for comparison in Section 6. For
each prompt, we construct a complete directed graph between the 20 completions as nodes and
edges directed from the non-preferred completion towards the preferred one. Figure 3 illustrates this
directed graph on the first prompt of the validation dataset. 57% of the directed graphs include cycles,
which illustrate the intransitivity of the preference function p on the completion space Y .

D.2 ITERATIVE IMPROVEMENTS AT TEST-TIME

We extend the experimental results from Section 6 by analyzing iterative improvements and per-
formance scaling with increased test-time computation. Our results suggests that with increasing
test-time computation the benefit of fine-tuning using both RLOO or NASH-MD-PG is negligible
compared to using the base model QWEN2.5-0.5B. In contrast, STACKELBERGGDA yields strict
improvements. Building on the example in Section 4.1, we assume that at test-time, a single annotator
a ∼ ν and a context x ∼ ρ are sampled.

For the base model QWEN2.5-0.5B and the models with fine-tuned with RLOO and NASH-MD-PG,
we independently sample N responses y1, . . . , yN . For STACKELBERGGDA, which inherently
supports iterative refinement, we generate the first sample from the Leader policy y1 ∼ π⋆(· | x),
and subsequent responses from the Follower policy yi ∼ ω⋆(· | x, yi−1) for i ≥ 2. We define
y1:N ..= (y1, . . . , yN).

In line with prior work on Best-of-N sampling (Openai et al., 2023; Beirami et al., 2024; Dubois
et al., 2024; Sessa et al., 2024), we evaluate the quality of the N samples by computing the maximum
reward obtained for each attribute under the sampled annotator’s reward model, that is,

r̂Na (x, y1:N) ..= max
y1,...,yN

r̂a(x, yi). (12)

Analogous to the preference function p defined in Section 3, in this section, we compare two models
π and π′ w.r.t. the preference functions derived from the annotator-specific reward functions under

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 6: Preference scores for RLOO versus QWEN2.5-0.5B across all attributes as a function of
the number of test-time samples N .

Attribute Number of Samples N

1 2 3 4 5

Coherence 0.521 0.338 0.262 0.207 0.164
Complexity 0.892 0.842 0.801 0.771 0.754
Correctness 0.388 0.212 0.139 0.098 0.070
Helpfulness 0.322 0.150 0.087 0.057 0.036
Verbosity 0.846 0.777 0.728 0.695 0.669

Average 0.594 0.464 0.403 0.366 0.338

Best-of-N sampling:

pNa (π ≻ π′ | x) ..= E y1:N∼π(·|x)
y′
1:N∼π′(·|x)

[
1{r̂aN (x, y1:N) ≥ r̂aN (x, y′1:N)}

]
. (13)

Notational Note. We here adopt a slight abuse of notation. Specifically, we write y1:N ∼ π(· | x)
to denote the sampling of N responses from a model π, even though this notation does not faithfully
represent the sampling procedure used by STACKELBERGGDA. For QWEN2.5-0.5B, RLOO, and
NASH-MD-PG, the samples y1, . . . , yN are drawn i.i.d. from a single model π(· | x). In contrast, for
STACKELBERGGDA, the sampling process is inherently autoregressive: we first draw y1 ∼ π⋆(· | x)
from the Leader policy, and then generate yi ∼ ω⋆(· | x, yi−1) for i ≥ 2 using the Follower policy.
Despite this difference, we overload the notation y1:N ∼ π(· | x) to unify the presentation in
Equations (12) and (13). In the case of STACKELBERGGDA, this notation should be interpreted as
shorthand for the autoregressive sampling process described above.

Previous work has shown that Best-of-N sampling can rival the performance of RLHF-based fine-
tuning (Dubois et al., 2023; Sessa et al., 2024; Beirami et al., 2024). Motivated by this, we compare
the preference scores defined in Equation (13) of RLOO, NASH-MD-PG, and STACKELBERGGDA
with respect to the base model QWEN2.5-0.5B. Throughout this section, we consider the maximum
number of samples to be N = 5.

Results. Table 6 reports the preference scores for RLOO. While the model initially (i.e. N = 1)
performs competitively on complexity and verbosity attributes, iterative sampling reveals a collapse
into a single preference mode. In particular, we observed deterministic outputs for RLOO the generic
response: "I apologize, but I’m unable to engage in conversations about political topics. If you
have any other questions or need further assistance with a different subject, feel free to ask." As a
result, the model’s diversity and coverage deteriorate, and its overall preference scores (relative to
QWEN2.5-0.5B) decline sharply as N increases.

In contrast, NASH-MD-PG demonstrates some benefit from additional sampling, as shown in
Table 7. Its preference score for verbosity remains stable and it shows moderate improvement in
coherence. However, for the remaining attributes (correctness, helpfulness, and complexity) its gains
are slower than those achieved by QWEN2.5-0.5B with Best-of-N sampling. Consequently, the
overall preference score of NASH-MD-PG declines with increasing N , suggesting that the model
fine-tuned with NASH-MD-PG does not improve notably (compared to the base model) when the
number of samples drawn at test-time increases.

On the other hand, STACKELBERGGDA exhibits more favorable behavior. As shown in Table 8, while
the preference score on verbosity and complexity taper off with more samples, STACKELBERGGDA
achieves notably faster gains on coherence, correctness, and helpfulness. For these attributes, the
preference rate improves by 10 percentage points or more, making STACKELBERGGDA the only
method among the three to demonstrate consistent improvement over QWEN2.5-0.5B as N increases.
This means that the performance of STACKELBERGGDA effectively scales with test-time compute.

The strong emphasis on complexity and verbosity by RLOO is expected, as it optimizes the average
reward across all five attributes, and these two dimensions yield the highest values. However, for

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 7: Preference scores for NASH-MD-PG versus QWEN2.5-0.5B across all attributes as a
function of the number of test-time samples N .

Attribute Number of Samples N

1 2 3 4 5

Coherence 0.731 0.743 0.757 0.763 0.760
Complexity 0.761 0.743 0.732 0.726 0.727
Correctness 0.633 0.615 0.620 0.617 0.615
Helpfulness 0.645 0.633 0.640 0.641 0.638
Verbosity 0.858 0.855 0.850 0.849 0.852

Average 0.726 0.718 0.720 0.719 0.718

Table 8: Preference scores for STACKELBERGGDA versus QWEN2.5-0.5B across all attributes as a
function of the number of test-time samples N .

Attribute Number of Samples N

1 2 3 4 5

Coherence 0.778 0.850 0.865 0.875 0.873
Complexity 0.714 0.666 0.628 0.600 0.592
Correctness 0.670 0.762 0.791 0.795 0.803
Helpfulness 0.692 0.767 0.783 0.786 0.791
Verbosity 0.833 0.820 0.798 0.777 0.765

Average 0.738 0.773 0.773 0.767 0.765

NASH-MD-PG, this outcome is less expected. We hypothesize that it stems from its training objective,
which pits the policy against a mixture of the reference policy QWEN2.5-0.5B and the most recent
iteration. Once NASH-MD-PG outperforms QWEN2.5-0.5B on all attributes, it begins focusing
on attributes where further improvement over itself is possible, namely, complexity and verbosity.
Nevertheless, this skewed emphasis is suboptimal: annotators prefer models that perform well on
all attributes. In fact, a policy that focuses on coherence, correctness, and helpfulness is preferred
by 60% of the annotators. STACKELBERGGDA’s asymmetric formulation that trains a Leader and a
Follower policy separately (though potentially unified in a single model) helps mitigate this imbalance
across attributes. This leads to a more balanced policy that is preferred by a wider range of annotators.

D.3 ABLATION ON THE TWO-TIMESCALE COEFFICIENT

Table 9 and Table 10 present ablations on the follower weight parameter κ in STACKELBERGGDA’s
loss function (10) when fine-tuning the QWEN2.5-0.5B and QWEN2.5-1.5B models, respectively.
Each row reports the average preference scores over the corresponding initial policy, for both the
Leader and Follower policies, on the training and validation splits. These results highlight the
importance of balancing the two components of STACKELBERGGDA’s asymmetric training objective.
In general, moderate values of κ can help the Follower improve without compromising the Leader
too severely, but excessively large weights may impair both players.

In Table 9, we observe that increasing κ leads to a gradual decline in the Leader’s performance. While
the Follower benefits from increasing κ from 1 to 5, performance worsens at κ = 10 for both the
Leader and Follower, indicating an overemphasis on the Follower’s loss can destabilize the overall
optimization.

Table 10 shows a similar trend for the larger QWEN2.5-1.5B model. Due to the decrease of
performance above κ = 5 in Table 9, we carry out the ablation on a finer grid κ ∈ {1, 2, 3, 4, 5}.
Moreover, we evaluate each model after 2000 training steps as a larger base model requires more
gradient updates to converge. While the performance of κ = 1 stands out in Table 10, we observe that
it is overfitting to verbosity and complexity by responding to every prompt with short, non-informative
answers asking for further information such as "Certainly! If you need detailed insights on technical

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Table 9: Ablation on the follower weight parameter κ in STACKELBERGGDA’s loss function (10)
fine-tuning the QWEN2.5-0.5B model. Scores show the average preference over the base model.

Follower Weight κ Train Validation

Leader Follower Leader Follower

1 0.768 0.804 0.761 0.784
5 0.743 0.814 0.723 0.806
10 0.725 0.800 0.710 0.783

Table 10: Ablation on the follower weight parameter κ in STACKELBERGGDA’s loss function (10)
fine-tuning the QWEN2.5-1.5B model. Scores show the average preference over the base model.

Follower Weight κ Train Validation

Leader Follower Leader Follower

1 0.848 0.852 0.850 0.851
2 0.718 0.737 0.719 0.730
3 0.767 0.806 0.771 0.803
4 0.733 0.811 0.736 0.807
5 0.720 0.819 0.720 0.818

topics like that, feel free to ask—I’m here to assist with informatively aligned queries!". On the
contrary to the collapse observed for RLOO in Appendix D.2, the model remains stochastic with
the responses having similar information content. This outcome demonstrates the effectiveness of
STACKELBERGGDA in optimizing its objective despite the qualitatively undesirable responses.

D.4 MODEL SCALING

We extend our round-robin comparison from Section 6.1.1 to larger models within the Qwen2.5
family, specifically, QWEN2.5-1.5B and QWEN2.5-3B (Qwen et al., 2024). These evaluations
demonstrate that STACKELBERGGDA continues to be on par or outperform baselines even as model
size increases. Since larger models require more training updates to reach convergence in our setup,
we train NASH-MD-PG for 1,500 steps and STACKELBERGGDA for 2,000 steps. The RLOO
method converges earlier and requires only 1,000 steps even for these larger models. We fix the
follower-weight parameter at κ = 5 for both scales, based on our ablation results in Appendix D.3.

Table 11 summarizes results for models fine-tuned from QWEN2.5-1.5B. Both NASH-MD-PG
and STACKELBERGGDA clearly outperform the base model and the RLOO baseline. While the
Leader policy of STACKELBERGGDA underperforms compared to NASH-MD-PG, the Follower
policy conditioned on the Leader’s responses matches or exceeds NASH-MD-PG’s performance,
mirroring the improvements observed when starting from the QWEN2.5-0.5B in Table 3. As noted in
Appendix D.3, this performance gap between the Leader and NASH-MD-PG could likely be reduced
by tuning κ, albeit at the potential cost of Follower quality.

Table 12 shows analogous comparisons for models initialized from QWEN2.5-3B. Here, STACKEL-
BERGGDA again performs strongly, with its Follower policy matching or surpassing NASH-MD-PG
across most pairwise matchups, and both algorithms outperforming the base model. NASH-MD-PG
and STACKELBERGGDA are closely matched when compared directly. Due to compute limitations,
we capped training at 2,000 steps for these larger models. Nonetheless, the Leader policy continued
to improve near the end of training, suggesting further gains in preference score may be possible with
additional updates.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Table 11: Pairwise preference comparisons between the responses of QWEN2.5-0.5B, QWEN2.5-
1.5B, RLOO, NASH-MD-PG, and STACKELBERGGDA algorithms. Fine-tuned models are trained
from the QWEN2.5-1.5B. Each cell shows the average preference score of the row model over the
column model.

QWEN2.5-0.5B QWEN2.5-1.5B RLOO NASH-MD-PG STACKELBERGGDA

LEADER FOLLOWER

QWEN2.5-0.5B 0.000 0.479 0.379 0.188 0.271 0.166
QWEN2.5-1.5B 0.521 0.000 0.401 0.209 0.293 0.187
RLOO 0.621 0.599 0.000 0.197 0.310 0.175
NASH-MD-PG 0.812 0.791 0.803 0.000 0.623 0.489
STACKELBERGGDA

LEADER
0.729 0.707 0.690 0.377 0.000 0.313

STACKELBERGGDA
FOLLOWER

0.834 0.813 0.825 0.511 0.687 0.000

Table 12: Pairwise preference comparisons between the responses of QWEN2.5-0.5B, QWEN2.5-3B,
RLOO, NASH-MD-PG, and STACKELBERGGDA algorithms. Fine-tuned models are trained from
the QWEN2.5-3B. Each cell shows the average preference score of the row model over the column
model.

QWEN2.5-0.5B QWEN2.5-3B RLOO NASH-MD-PG STACKELBERGGDA

LEADER FOLLOWER

QWEN2.5-0.5B 0.000 0.504 0.399 0.187 0.304 0.187
QWEN2.5-3B 0.496 0.000 0.412 0.199 0.319 0.179
RLOO 0.601 0.588 0.000 0.173 0.338 0.201
NASH-MD-PG 0.813 0.801 0.827 0.000 0.638 0.507
STACKELBERGGDA

LEADER
0.696 0.681 0.662 0.362 0.000 0.312

STACKELBERGGDA
FOLLOWER

0.813 0.821 0.799 0.493 0.688 0.000

23

	Introduction
	Related Work
	Problem Statement
	Background on Existing Solution Concepts and Approaches

	Stackelberg Learning from Human Feedback (SLHF)
	Comparison of Solution Concepts

	Stackelberg Gradient Descent Ascent (StackelbergGDA)
	Experiments
	Empirical Comparison of Solution Concepts
	Round-Robin Tournament
	Inference-time Refinement

	General Purpose Fine-tuning

	Conclusion
	Proofs
	Proof of proposition:slhfexistanceuniqueness
	Proof of lemma:SLHFdeterministicsolution
	Concave-Convex Property of f

	Scalable Implementation of StackelbergGDA
	Implementation Details
	Additional Experimental Results
	Preference Model
	Iterative Improvements at Test-time
	Ablation on the two-timescale coefficient
	Model Scaling

