
000 001 002 003 004 005 STACKELBERG LEARNING FROM HUMAN FEEDBACK: 006 PREFERENCE OPTIMIZATION AS A SEQUENTIAL GAME 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

ABSTRACT

030 We introduce Stackelberg Learning from Human Feedback (SLHF), a new frame-
031 work for preference optimization. SLHF frames the alignment problem as a
032 sequential-move game between two policies: a Leader, which commits to an action,
033 and a Follower, which responds conditionally on the Leader’s action. This approach
034 decomposes preference optimization into a refinement problem for the Follower and
035 an optimization problem against an adversary for the Leader. Unlike Reinforcement
036 Learning from Human Feedback (RLHF), which assigns scalar rewards to actions,
037 or Nash Learning from Human Feedback (NLHF), which seeks a simultaneous-
038 move equilibrium, SLHF leverages the asymmetry of sequential play to capture
039 richer preference structures. The sequential design of SLHF naturally enables
040 *inference-time refinement*, as the Follower learns to improve the Leader’s actions,
041 and these refinements can be leveraged through iterative sampling. We compare the
042 solution concepts of SLHF, RLHF, and NLHF, and lay out key advantages in con-
043 sistency, data sensitivity, and robustness to intransitive preferences. Experiments
044 on large language models demonstrate that SLHF achieves strong alignment across
045 diverse preference datasets, scales from 0.5B to 8B parameters, and yields inference-
046 time refinements that transfer across model families without further fine-tuning.
047

1 INTRODUCTION

048 Reinforcement Learning from Human Feedback (RLHF) has emerged as the dominant paradigm for
049 aligning Large Language Models (LLMs) with human preferences (Casper et al., 2023; Kaufmann
050 et al., 2023). The standard pipeline involves two stages: first, a reward model is trained on a dataset
051 of pairwise human comparisons, and second, a policy is optimized via reinforcement learning to
052 maximize this reward (Christiano et al., 2017; Ouyang et al., 2022). Despite its empirical success,
053 RLHF relies on a critical assumption that diverse human preferences can be faithfully represented by
054 a single real-valued reward function. In practice, this assumption often fails as scalar reward models
055 cannot capture *intransitive preference* structures. Even when preferences are transitive, widely used
056 formulations such as the Bradley-Terry model (Bradley and Terry, 1952) can yield learned rewards
057 that diverge from the underlying preferences (Bertrand et al., 2023).

058 A common alternative to reward models and the Bradley-Terry assumption are preference models
059 which directly model pairwise preferences (Jiang et al., 2023). However, when preferences exhibit
060 cycles, optimality becomes ill-defined because no single policy can dominate all others. Nash
061 Learning from Human Feedback (NLHF) proposes the Nash Equilibrium (NE) as a solution to this
062 problem by framing preference optimization as a two-player simultaneous-move game, where the
063 Nash equilibrium (NE) corresponds to a typically stochastic policy whose actions are preferred to
064 any other policy’s actions on average (Munos et al., 2024).

065 We expand on this game-theoretic perspective and introduce Stackelberg Learning from Human
066 Feedback (SLHF), which models alignment as a *sequential-move* game between a Leader and a
067 Follower inspired by Stackelberg dynamics (Stackelberg, 1952). In SLHF, a Leader first commits to
068 an action, and a Follower then responds conditional on the Leader’s choice. This asymmetry yields
069 two key advantages. First, the Follower solves a refinement problem rather than optimizing directly
070 against a non-stationary opponent and unobserved actions. This leads to more stable learning and
071 quicker adaptation to the changes in the Leader’s policy. Consequently, this faster rate of learning

054 yields a more stationary feedback to the Leader that can anticipate the Follower’s refinement more
055 accurately and choose actions that are robust to subsequent improvements.
056

057 Perhaps more importantly, SLHF provides a principled method for *inference-time refinement*: the
058 ability to improve model outputs at inference-time via repeated sampling. This is particularly valuable
059 when the target preferences change between training and inference-time. Most commonly, models are
060 trained on preferences aggregated across diverse annotators that might induce intransitive preference
061 cycles (Section 4). However, at inference-time, outputs ultimately have to align with an individual’s taste.
062 SLHF realizes this refinement through its two components: the Leader policy produces an initial
063 response, and the Follower policy generates refined responses conditional on the previous output.
064 Unlike sampling from a static distribution, this produces a sequence of outputs that can efficiently
065 explore the preference space. Crucially, this allows for performance gains through inference-time
066 computation alone, without any need for additional training or external feedback.
067

In summary, our contributions are as follows:

- 068 • We introduce Stackelberg Learning from Human Feedback (SLHF), a preference optimization
069 framework that models alignment as a two-player sequential game. We formalize this game
070 over a learned pairwise preference model and show that SLHF admits a unique Stackelberg
071 equilibrium under standard regularity assumptions (Section 4).
- 072 • We propose STACKELBERGGDA, an algorithm that approximates the Stackelberg equilibrium via
073 two-timescale gradient descent ascent. Our algorithm benefits from online RL optimization with-
074 out the need of an explicit reward model or expensive inference with a mixture policy (Section 5).
- 075 • Our experimental results show that the Follower, conditioned on the Leader’s output, consistently
076 outperforms both RLHF and NLHF baselines, whereas the Leader performs similarly to the
077 approximated Nash policy. Furthermore, we show that the Follower generalizes across models,
078 improving outputs from independently trained policies without additional fine-tuning (Section 6).

079 2 RELATED WORK

080 **Reinforcement Learning from Human Feedback (RLHF).** RLHF optimizes policies using
081 human preferences expressed through pairwise comparisons or rankings rather than explicit numeric
082 rewards (Wirth et al., 2017; Kaufmann et al., 2023). The standard pipeline, introduced by Christiano
083 et al. (2017), trains a reward model from human comparisons and then treats this model as a proxy
084 reward for policy optimization, typically using PPO (Schulman et al., 2017). This framework has
085 driven progress in text summarization (Stiennon et al., 2020), question answering (Nakano et al.,
086 2021; Menick et al., 2022), and large language model fine-tuning (Ziegler et al., 2019; Bai et al., 2022;
087 Glaese et al., 2022; Ouyang et al., 2022). Recent work integrates reward and policy updates into a
088 bilevel optimization loop (Shen et al., 2024; Thoma et al., 2024; Makar-Limanov et al., 2024), but
089 the reliance on a real-valued reward model remains. In particular, SGPO (Chu et al., 2025) considers
090 a Stackelberg formulation between a policy and an adversarial preference distribution. In contrast,
091 our work frames preference optimization as a sequential-move game between two policies and does
092 not assume transitive preferences.
093

094 **Limitations of Reward Modeling.** Most RLHF implementations reduce preference learning to
095 scalar reward estimation, typically based on the Bradley-Terry model (Bradley and Terry, 1952).
096 While adequate for transitive, single-objective preferences, such models cannot represent intransitive
097 structures and potentially misrank even transitive ones under model misspecification (Bertrand
098 et al., 2023). Consequently, RLHF policies can be sensitive to the distribution of training compar-
099 isons (Munos et al., 2024) and prone to mode collapse under continued optimization (Xiao et al.,
100 2024). Intransitive preference cycles have been observed not only in human feedback (Duan et al.,
101 2017; Alós-Ferrer et al., 2022; Casper et al., 2023) but also in LLM-generated annotations (Dubois
102 et al., 2024; Xu et al., 2025). Our approach sidesteps these issues by optimizing directly over
103 pairwise preferences without imposing a scalar reward model.

104 **Preference Optimization.** To address the limitations of reward modeling in RLHF, IPO (Azar et al.,
105 2023) extends Direct Preference Optimization (DPO) (Rafailov et al., 2023) by optimizing for the
106 win rate against a reference policy. Nash Learning from Human Feedback (NLHF) casts the learning
107 problem as a two-player simultaneous-move game and introduces NASH-MD-PG and NASH-EMA-
108 PG to approximate the Nash Equilibrium (NE) of a learned preference model via mirror descent

(Munos et al., 2024). Subsequent work has extended this perspective, proposing various algorithms to optimize for (approximate) NE, including ONLINE-IPO (Calandriello et al., 2024), SPPO (Wu et al., 2024), SPO (Swamy et al., 2024), INPO (Zhang et al., 2025), DNO (Rosset et al., 2024), RSPO (Tang et al., 2025), NASH-RS (Liu et al., 2025) and MPO (Wang et al., 2025); sometimes with strong last-iterate convergence guarantees, e.g., EGPO (Zhou et al., 2025). Because simultaneous games are symmetric, these methods typically converge to mixed strategies unless one option is overwhelmingly preferred (Liu et al., 2025). In contrast, SLHF models alignment as a sequential Stackelberg game in which a Leader commits first and a Follower responds conditionally. This asymmetry yields a different solution concept that can admit deterministic equilibria in the non-regularized limit.

Inference-Time Preference Improvement. Improving the capabilities of LLMs through additional computation at inference time has recently received significant attention, especially in verifiable domains such as coding or mathematics (Welleck et al., 2024). Closest to our work are self-correction algorithms that aim to improve their responses without external feedback at test-time. A natural approach to self-correction is to provide instructions only without further training, which, however, can lead to performance degradation (Huang et al., 2024; Zheng et al., 2024; Tyen et al., 2024; Qu et al., 2024). Other work on training models for self-correction either assumes human or AI revisions (Saunders et al., 2022; Qu et al., 2024) or a reward function scoring responses (Welleck et al., 2023; Akyurek et al., 2023; Zhang et al., 2024; Kumar et al., 2025). Similarly to SLHF, Kumar et al. (2025) also propose to train an LLM in a sequential manner, however, assume a reward model and train in two-stages instead of a single loop. SLHF provides a unified alternative: its Leader-Follower structure naturally supports inference-time refinement through iterative sampling, enabling self-improvement on arbitrary preference signals without auxiliary reward models or multi-stage procedures.

3 PROBLEM STATEMENT

We consider a preference optimization problem over a finite set of contexts \mathcal{X} and actions \mathcal{Y} . The contexts x are drawn from a fixed and known distribution $\rho \in \Delta_{\mathcal{X}}$, where $\Delta_{\mathcal{X}}$ is the probability simplex over \mathcal{X} . A policy $\pi : \mathcal{X} \rightarrow \Delta_{\mathcal{Y}}$ maps each context $x \in \mathcal{X}$ to a discrete probability distribution $\pi(\cdot | x) \in \Delta_{\mathcal{Y}}$, where $\Delta_{\mathcal{Y}}$ is the probability simplex over \mathcal{Y} . We let $\Pi := \{\pi : \mathcal{X} \rightarrow \Delta_{\mathcal{Y}}\}$ denote the set of all policies. In the language modeling setting, \mathcal{X} typically models the set of prompts, \mathcal{Y} the candidate responses, and π is the LLM that defines a conditional distribution over responses given prompts.

Let the *preference function* $p(y \succ y' | x)$ define the probability that y is preferred over y' given x . We adopt the convention of writing $y \succ_x y'$ when $p(y \succ y' | x) > 1/2$. Slightly overloading notation, the preference between two policies π and π' given context x is defined as

$$p(\pi \succ \pi' | x) := \mathbb{E}_{y \sim \pi(\cdot | x), y' \sim \pi'(\cdot | x)} [p(y \succ y' | x)]. \quad (1)$$

There are two common approaches to implementing the preference function p in practice. Let $\mathcal{D} = \{(x_i, y_i^w, y_i^l)\}_{i=1}^N$ be a preference dataset, where y_i^w and y_i^l denote the chosen and rejected actions in a pairwise comparison, respectively. One approach is to frame this as a binary classification problem on \mathcal{D} and train a parametrized model to estimate p (Jiang et al., 2023). Alternatively, in the language modeling setting, one could directly employ trained models to provide feedback by following instructions without additional training. This method is often referred to as LLM-as-a-judge (Gu et al., 2024).

The core objective of preference optimization is to identify a policy that consistently generates optimal or highly-preferred responses. The notion of an “optimal” policy is straightforward when preferences are transitive. In such a case, for a given context $x \in \mathcal{X}$, there exists an action $y_x^* \in \mathcal{Y}$ such that $y_x^* \succ_x y$ for all $y \in \mathcal{Y}$. This action is known as a *Condorcet winner* for x and represents the top element of the induced total order. If every context $x \in \mathcal{X}$ admits a Condorcet winner, the optimal policy is simply $\pi^*(x) = y_x^*$. However, real preference data often contains cycles or other intransitivities, so a Condorcet winner may not exist and policy optimality becomes ill-defined. To cope with such ambiguity, prior work adopts different solution concepts, the two most common of which we briefly review below.

3.1 BACKGROUND ON EXISTING SOLUTION CONCEPTS AND APPROACHES

Reinforcement Learning from Human Feedback (RLHF). RLHF as proposed by Christiano et al. (2017) and adapted to language modeling by Ziegler et al. (2019) splits preference optimization into two steps. First, it assumes that the preference function p follows the Bradley-Terry model (Bradley

162 and Terry, 1952) so that

$$163 \quad p(y \succ y' \mid x) = \sigma(r(x, y) - r(x, y')), \quad (2)$$

164 where $\sigma(x) = \frac{1}{1+\exp(-x)}$ is the sigmoid function and $r : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ is a real-valued reward function.
165 The reward function r is unknown so that an estimator \hat{r} is used that maximizes the log-likelihood of
166 the dataset \mathcal{D} . In a second step, the policy π^* is chosen to maximize the expected reward with respect
167 to \hat{r} regularized by the Kullback-Leibler (KL) divergence against a fixed reference policy $\pi^{\text{ref}} \in \Pi$:
168

$$169 \quad \pi^* \in \arg \max_{\pi \in \Pi} \mathbb{E}_{x \sim \rho} \left[\mathbb{E}_{y \sim \pi(\cdot \mid x)} [\hat{r}(x, y)] - \tau \text{KL}_x(\pi \parallel \pi^{\text{ref}}) \right]. \quad (3)$$

171 Here, $\tau \geq 0$ and $\text{KL}_x(\pi \parallel \pi^{\text{ref}})$ is computed between $\pi(\cdot \mid x)$ and $\pi^{\text{ref}}(\cdot \mid x)$. Under the Bradley-Terry
172 assumption, Equation (3) admits a unique closed-form solution (Rafailov et al., 2023). However,
173 additive score models like Bradley-Terry are provably limited in expressing cyclic or intransitive
174 preference structures, which have been empirically observed in both strategic games (Bertrand et al.,
175 2023) and human preference data (Duan et al., 2017; Alós-Ferrer et al., 2022; Casper et al., 2023).
176 Consequently, the optimal policy π^* depends critically on the data distribution in the training set
177 \mathcal{D} , especially its sampling biases (Munos et al., 2024), which we elaborate more on in Section 4.1.
178

179 **Nash Learning from Human Feedback (NLHF).** NLHF avoids explicit reward modeling
180 by framing preference optimization as a two-player simultaneous game between two policies
181 $\pi, \pi' \in \Pi$ (Munos et al., 2024). The optimization problem is given by:

$$182 \quad \max_{\pi \in \Pi} \min_{\pi' \in \Pi} \mathbb{E}_{x \sim \rho} \left[p(\pi \succ \pi' \mid x) - \tau \text{KL}_x(\pi \parallel \pi^{\text{ref}}) + \tau \text{KL}_x(\pi' \parallel \pi^{\text{ref}}) \right]. \quad (4)$$

184 The solution to Equation (4) is a *Nash equilibrium* (π^*, π'^*) , where neither side can be improved
185 unilaterally. The existence and uniqueness of this equilibrium follows from the concave-convex nature
186 of the objective (Munos et al., 2024). NLHF can incorporate online feedback and makes no structural
187 assumptions on preferences, but when no action is majority-preferred the equilibrium necessarily in-
188 volves mixed strategies (Liu et al., 2025), even in the absence of KL regularization when $\tau = 0$. This
189 inherent stochasticity can be undesirable in applications where consistency and reliability are critical.
190

191 4 STACKELBERG LEARNING FROM HUMAN FEEDBACK (SLHF)

193 We now present Stackelberg Learning from Human Feedback (SLHF), a novel perspective on
194 the preference optimization problem. Inspired by Stackelberg games (Stackelberg, 1952), we cast
195 preference optimization as a *sequential-move* game between two players: the *Leader* and the *Follower*.
196 Given a context x , the Leader first chooses its action $y \sim \pi(\cdot \mid x)$. The Follower then observes both
197 the context x and the Leader's realized action y and responds with $y' \sim \omega(\cdot \mid x, y)$. The Follower's
198 policy ω is chosen from the set $\Omega = \{\omega : \mathcal{X} \times \mathcal{Y} \rightarrow \Delta_{\mathcal{Y}}\}$ which allows conditioning on both the
199 context and the Leader's action. Formally, given reference policies $\pi^{\text{ref}} \in \Pi$ and $\omega^{\text{ref}} \in \Omega$, the
200 optimization problem is defined as follows:

$$201 \quad \max_{\pi \in \Pi} \min_{\omega \in \Omega} \mathbb{E}_{x \sim \rho} \left[\mathbb{E}_{y \sim \pi(\cdot \mid x)} \left[\mathbb{E}_{y' \sim \omega(\cdot \mid x, y)} [p(y \succ y' \mid x)] + \tau^F \text{KL}_{x,y}(\omega \parallel \omega^{\text{ref}}) \right] - \tau^L \text{KL}_x(\pi \parallel \pi^{\text{ref}}) \right] \quad (5)$$

204 where $\tau^L, \tau^F \geq 0$ are player-specific regularization coefficients. We let $f(\pi, \omega)$ denote the objective
205 of Equation (5), which, in the absence of regularization, defines a sequential-move constant-sum game.

206 SLHF decomposes the preference optimization into two complementary roles, setting it apart from
207 single-policy methods like RLHF and NLHF. The Follower leverages its informational advantage of
208 observing the Leader's committed action. This simplifies its task to learning a specialized refinement
209 policy that finds the best response to a known output, rather than optimizing against a non-stationary
210 opponent. The Leader, anticipating this refinement, learns to produce initial actions that remain
211 strong even after the Follower's refinement. In Section 4.1, we illustrate that when preferences form
212 a cycle and no Condorcet winner exists, the Leader selects the least exploitable action, while the
213 Follower traverses the preference cycle, covering all plausibly optimal actions with minimal samples.

214 The formulation in (5) differs from standard Stackelberg settings (Conitzer and Sandholm, 2006),
215 where the Follower gets to condition on the Leader's policy π only, not on the realized action y .
Allowing the Follower to observe y provides strictly more information whenever π is stochastic,

216 Table 1: Transitive individual annotator prefer-
 217 ences over three options $\{A, B, C\}$.

Type	Preference Relationship	Proportion
a_1	$A \succ B \succ C$	α_1
a_2	$B \succ C \succ A$	α_2
a_3	$C \succ A \succ B$	α_3

218 Table 2: The preference function p induced by
 219 the population in Table 1.

	A	B	C
A	0.5	$1 - \alpha_2$	α_1
B	α_2	0.5	$1 - \alpha_3$
C	$1 - \alpha_1$	α_3	0.5

224 yielding a simpler and stationary best response problem. In this setting, the Leader gains no advantage
 225 from randomizing, i.e., playing a stochastic policy.

226 In line with previous results that the RLHF problem (3) admits a closed-form solution, we show
 227 that there exists a unique solution to the SLHF problem (5). The proof is deferred to the Section A.1.
 228 **Proposition 1.** *Let $\tau^L, \tau^F > 0$ and suppose that $\pi^{\text{ref}}(y \mid x) > 0$ for all $(x, y) \in \mathcal{X} \times \mathcal{Y}$. For
 229 any preference function $p(y \succ y' \mid x)$ there exists a unique solution (π^*, ω^*) to the preference
 230 optimization problem in Equation (5).*

231 The solution (π^*, ω^*) is called a *Stackelberg equilibrium*. It is folklore in the algorithmic game
 232 theory literature that there exists a deterministic Stackelberg equilibrium when the Leader's realized
 233 action is observed by a best responding Follower, as there always exists a deterministic best response
 234 for the Follower. Thus, there is no point in randomizing for the Leader. This stands in contrast to
 235 the NE, which is in general stochastic. For completeness, we provide a proof in Appendix A.2.

236 **Remark 2.** *For any preference function $p(y \succ y' \mid x)$, the SLHF optimization problem (5) has a
 237 deterministic solution (π^*, ω^*) whenever $\tau^L = \tau^F = 0$. Note that this solution may not necessarily
 238 be unique due to the lack of regularization.*

241 4.1 COMPARISON OF SOLUTION CONCEPTS

242 Before describing how to approximate the Stackelberg equilibrium, we first contrast RLHF, NLHF,
 243 and SLHF in the Condorcet paradox (de Caritat Mis et al., 1785) described below. Consider a setting
 244 with a single context $|\mathcal{X}| = 1$ and three candidate actions $\mathcal{Y} = \{A, B, C\}$. Let the preference function
 245 p be given by the aggregate over the population of annotators, $\mathcal{A} = \{a_1, a_2, a_3\}$, defined in Table 1.
 246 Each type of annotator has a strict preference ranking over \mathcal{Y} and we aggregate their preferences as

$$247 p(y \succ y') = \sum_{i=1}^3 \alpha_i \mathbf{1}\{y \succ_{a_i} y'\}, \quad (6)$$

248 where $\mathbf{1}\{y \succ_{a_i} y'\}$ is 1 if y is preferred over y' by the annotator type a_i and 0 otherwise. Table 2
 249 shows the aggregated preferences of the whole population. For example, $p(A \succ B)$ is the probability
 250 that a randomly chosen annotator prefers A to B . This is true for annotator types a_1 and a_3 (from Ta-
 251 ble 1), who make up a proportion $\alpha_1 + \alpha_3$ of the population. Since $\alpha_1 + \alpha_2 + \alpha_3 = 1$, this is equivalent
 252 to $1 - \alpha_2$, as shown in Table 2. A common example is to choose $\alpha_1 = \alpha_2 = \alpha_3 = 1/3$, which leads to
 253 a cyclic relationship between three actions where $A \succ B \succ C$ but $C \succ A$. Hence, there exists no Con-
 254 dorcet winner in this case. More generally, the interesting case is given by $\alpha_1, \alpha_2, \alpha_3 < 1/2$, and this
 255 example is often referred to as the *Condorcet paradox*, because the annotators individually have trans-
 256 itive preferences (Table 1), but their aggregated preferences form a cycle (Table 2). For ease of pre-
 257 sentation, we consider a non-regularized problem in the rest of this section so that $\tau = \tau^L = \tau^F = 0$.

258 **RLHF Solution.** Our first observation is that the estimated reward function $\hat{r} : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$
 259 depends on the sampling distribution of the dataset \mathcal{D} used to estimate \hat{r} . Suppose \mathcal{D} contains only
 260 comparisons $\{A, B\}$ and $\{B, C\}$, but not $\{A, C\}$. Because $A \succ B$ and $B \succ C$ for all annotators,
 261 maximum-likelihood estimation, which fits a single underlying transitive reward function, yields
 262 $\hat{r}(A) > \hat{r}(B) > \hat{r}(C)$, so the optimal policy is $\pi^*(A) = 1$. However, different sampling patterns
 263 (e.g., omitting $\{A, B\}$) can instead favor B or C . This illustrates a key limitation of RLHF, as its
 264 solutions are sensitive to the specific comparisons present in \mathcal{D} .

265 **Nash Equilibrium.** The NE of the matrix game defined in Table 2 is given by $\pi^*(A) = 1 - 2\alpha_3$,
 266 $\pi^*(B) = 1 - 2\alpha_1$, $\pi^*(C) = 1 - 2\alpha_2$. In the special case of $\alpha_1 = \alpha_2 = \alpha_3 = 1/3$, the NE is uniform

270 **Algorithm 1** STACKELBERGGDA

271
272 1: **procedure** STACKELBERGGDA($\mathcal{X}, \mathcal{Y}, \eta^L, \eta^F$)
273 2: Initialize the Leader and Follower policies π_1 and ω_1
274 3: **for** $i = 1, 2, \dots$ **do**
275 4: Update Leader's policy: $\pi_{i+1} = \pi_i + \eta^L \nabla_{\pi} f(\pi_i, \omega_i)$
276 5: Update Follower's policy: $\omega_{i+1} = \omega_i - \eta^F \nabla_{\omega} f(\pi_i, \omega_i)$
277 6: Project π_{i+1} and ω_{i+1} to their respective probability simplices
278 7: **end for**
279 8: **end procedure**

280

281
282
283
284 **User:** <user_prompt>
285 **Assistant:**

286 (a) Prompt received as the Leader agent

287
288
289
290 **User:** <user_prompt>
291 **Assistant:** <leader_response>
292
293 **User:** Improve the previous answer!
294 **Assistant:**

295 (b) Prompt received as the Follower agent

296 Figure 1: Prompt templates used to train a single-model for both Leader and Follower completions.

297 over \mathcal{Y} , i.e., it has the highest possible entropy. Unlike RLHF, this solution is dataset-independent, but it produces a fully stochastic policy that may be undesirable in applications requiring decisive outputs.

298
299 **Stackelberg Equilibrium.** In SLHF, the players' sequential roles resolve the cycle. The Follower's
300 optimal strategy is straightforward as for any action y presented by the Leader, it plays the best
301 response y' that beats it (i.e., C if $y = A$, etc.). The Leader, anticipating this deterministic best
302 response, chooses an initial robust action. This leads to the following equilibrium policies:

303
304
$$\omega^*(\cdot | y) = \begin{cases} C & \text{if } y = A \text{ w.p. 1} \\ A & \text{if } y = B \text{ w.p. 1} \\ B & \text{if } y = C \text{ w.p. 1} \end{cases} \quad \pi^*(\cdot) = \begin{cases} A & \text{if } \alpha_1 > \max\{\alpha_2, \alpha_3\} \text{ w.p. 1} \\ B & \text{if } \alpha_2 > \max\{\alpha_1, \alpha_3\} \text{ w.p. 1} \\ C & \text{if } \alpha_3 > \max\{\alpha_1, \alpha_2\} \text{ w.p. 1} \end{cases}$$

305 When $\alpha_1 = \alpha_2 = \alpha_3 = 1/3$, the Leader is indifferent, and any distribution over A, B, C (including the
306 uniform NE) is a valid Stackelberg equilibrium. Unlike RLHF, this solution requires no offline dataset,
307 and unlike NLHF, it admits a deterministic Leader and Follower policy when one type dominates.

308 **Inference-Time Refinement.** Motivated by applications such as text summarization, open-ended
309 generation, and audio-visual content creation, where users can reject outputs and request new
310 samples, we introduce the notion of *inference-time refinement* for preference optimization. At
311 inference-time, a single user interacts with the model and may resample actions until receiving
312 one that matches their preference, analogous to the *pass@k* metric in verifiable domains. This is
313 non-trivial because models are usually trained to reflect *population preferences*, yet deployment
314 requires adaptation to an *individual user*.

315 Consider the symmetric case $\alpha_1 = \alpha_2 = \alpha_3 = 1/3$, and without loss of generality, let the user be of
316 type a_1 with ranking $A \succ B \succ C$. RLHF may return A , but depending on \mathcal{D} it could also output B
317 or C , and repeated sampling offers no recourse. The NLHF solution is uniform over A, B, C , so the
318 probability of sampling A in a single draw is $1/3$. By sampling N times, the probability of observing
319 at least one A is $1 - (2/3)^N$, i.e., 56% for $N = 2$ and 70% for $N = 3$. The SLHF solution starts
320 similarly: the first action is sampled from the Leader's possibly uniform policy but subsequent actions
321 are drawn from the Follower's policy, i.e., $y_i \sim \omega^*(\cdot | x, y_{i-1})$ for $i \geq 2$. Following this structure,
322 the probability of sampling A within $N = 2$ steps increases to 67%, and for $N = 3$, the entire
323 preference cycle is traversed regardless of the Leader's initial choice. Note that the SLHF solution

324 Table 3: Pairwise preference comparisons between the responses of QWEN2.5-0.5B, RLOO, NASH-
325 MD-PG, and STACKELBERGGDA algorithms. Each cell represents the preference model’s average
326 score for the row algorithm over the column algorithm.

	QWEN2.5-0.5B	RLOO	NASH-MD-PG	STACKELBERGGDA	
				LEADER	FOLLOWER
QWEN2.5-0.5B	0.000	0.407	0.279	0.266	0.200
RLOO	0.593	0.000	0.393	0.387	0.344
NASH-MD-PG	0.721	0.607	0.000	0.497	0.406
STACKELBERGGDA-LEADER	0.734	0.613	0.503	0.000	0.395
STACKELBERGGDA-FOLLOWER	0.800	0.656	0.594	0.605	0.000

337 5 STACKELBERG GRADIENT DESCENT ASCENT (STACKELBERGGDA)

339 We now introduce STACKELBERGGDA, a two-timescale Gradient Descent-Ascent (GDA) algorithm
340 designed for the sequential-move preference optimization problem in Section 4. STACKELBERGGDA
341 performs simultaneously gradient ascent and descent update steps on the Leader and Follower policies,
342 π and ω , with step size η^L and η^F , respectively, to find the $\max \min$ solution to $f(\pi, \omega)$ defined in
343 Equation (5). It is a two-timescale algorithm as we choose $\eta^F > \eta^L$ resulting in ω adapting faster
344 than π . We denote the two-timescale coefficient as $\kappa = \eta^F / \eta^L$. After each update, both policies are
345 projected back onto their respective probability simplices to ensure feasibility.

346 The function $f(\pi, \omega)$ is concave in π and convex in ω .¹ While standard gradient descent-ascent
347 with equal learning rates has ergodic convergence guarantees in this setting (Korpelevich, 1976;
348 Chen and Rockafellar, 1997; Nemirovski, 2004; Auslender and Teboulle, 2009; Nedić and Ozdaglar,
349 2009), we instead adopt a two-timescale variant. This choice is motivated by its stronger convergence
350 guarantees in more general nonconvex-concave regimes (Lin et al., 2025), as well as its empirical
351 success in both Actor-Critic methods (Prasad et al., 2015) and the training of Generative Adversarial
352 Networks (Heusel et al., 2017). This becomes especially valuable for the practical implementation
353 of STACKELBERGGDA for large state and action spaces and parameterized policies below.

354 **Scalable Implementation of STACKELBERGGDA for LLM Fine-Tuning.** Direct optimization
355 over the full policy spaces Π and Ω is infeasible when \mathcal{X} and \mathcal{Y} are large, as in LLM fine-tuning. To
356 address this challenge, we parametrize π and ω and estimate gradients from batches. Crucially for
357 LLM fine-tuning, the Leader and the Follower can share the same parametrization by using the prompt
358 template shown in Figure 1, which allows us to reduce the memory requirements. **Additionally,**
359 **framing the Leader and the Follower policies as multi-turn dialogues enables us to use any policy**
360 **trained for multi-turn conversations as both π^{ref} and ω^{ref} .** All implementation details and pseudocode
361 are provided in Section B.

363 6 EXPERIMENTS

365 We conduct a series of experiments to validate the Stackelberg formulation and the efficacy of
366 STACKELBERGGDA. Our evaluation is designed to answer three primary questions:

- 368 1) How does STACKELBERGGDA compare against established RLHF and NLHF baselines in a
369 controlled preference optimization task?
- 370 2) Can the Leader-Follower structure of SLHF enable effective inference-time refinement, and does
371 this capability generalize to improving outputs from other models?
- 372 3) Does the approach scale effectively to the large-scale, general-purpose fine-tuning of LLMs?

373 Section 6.1 addresses the first two questions by aligning models on a dataset with diverse human
374 preference signals. In the appendix, we also provide further results on iterative improvements with
375 increased inference-time computation (Section D.2), ablations of the hyperparameter κ (Section D.3),
376

377 ¹This follows from Munos et al. (2024). For completeness, we provide a formal proof in Section A.3, and
378 discuss the convergence behavior and limitations of STACKELBERGGDA in Section A.4.

378
 379 Table 4: Test-time improvement using different models for the initial response (Leader) and the
 380 improvement (Follower). Each cell represents the preference model’s average score for the Follower’s
 381 responses over the Leader’s responses.

		Leader			
		QWEN2.5-0.5B	RLOO	NASH-MD-PG	STACKELBERGGDA
Follower	QWEN2.5-0.5B	0.549	0.443	0.363	0.362
	RLOO	0.534	0.403	0.369	0.360
	NASH-MD-PG	0.708	0.600	0.493	0.476
	STACKELBERGGDA	0.803	0.665	0.600	0.606

382
 383 and additional scaling results (Section D.4). Section 6.2 then tackles the third question by applying
 384 STACKELBERGGDA within a large-scale, open-source post-training pipeline.

385
 386 **6.1 EMPIRICAL COMPARISON OF SOLUTION CONCEPTS**

387
 388 **Dataset.** We use the HELPSTEER2 dataset (Wang et al., 2024), which contains 11,826 human-
 389 annotated single-turn dialogues, to estimate the preference function p and its prompts during the
 390 training loops. We choose this dataset due to its high-quality human annotations along five attributes
 391 (helpfulness, correctness, coherence, complexity, and verbosity) that allows us to estimate a diverse
 392 preference profile. Further details on the preference model specification and the resulting intransitivity
 393 are provided in Section D.1.

394
 395 **Compared Methods.** We compare STACKELBERGGDA with RLOO (Ahmadian et al., 2024) and
 396 NASH-MD-PG (Munos et al., 2024) which represent the RLHF and NLHF frameworks, respec-
 397 tively. We use these baselines because they are well-established and come with robust, well-tested
 398 open-source implementations. This ensures that our comparison reflects differences between the
 399 frameworks rather than implementation details. All models are fine-tuned from the QWEN2.5-
 400 0.5B² model and run for 1,000 gradient steps with a batch size of $B = 32$. We sweep learning
 401 rates $\eta \in \{1e-6, 5e-6, 1e-5\}$ and KL penalties $\tau \in \{0.001, 0.01, 0.1\}$ for all algorithms. For
 402 NASH-MD-PG, we additionally vary the mixture parameter $\beta \in \{0, 0.25, 0.5, 0.75, 1\}$, and for
 403 STACKELBERGGDA, the two-timescale coefficient $\kappa \in \{1, 5, 10\}$. Models are selected by aver-
 404 age preference rate over QWEN2.5-0.5B yielding best setting $\eta = 1e-5$ and $\tau = 0.001$, with
 405 $\beta = 0.75$ for NASH-MD-PG and $\kappa = 5$ for STACKELBERGGDA. All implementations use the
 406 Transformers (Wolf et al., 2020) and TRL (von Werra et al., 2020) libraries, with the AdamW
 407 optimizer (Loshchilov and Hutter, 2019).

408
 409 **6.1.1 ROUND-ROBIN TOURNAMENT**

410
 411 Table 3 reports pairwise preference scores between the initial QWEN2.5-0.5B and the three fine-tuned
 412 models. The first responses of STACKELBERGGDA-LEADER and NASH-MD-PG achieve roughly
 413 73% preference over QWEN2.5-0.5B and 61% over RLOO, while tying at 50% when compared to
 414 each other. This outcome aligns with settings where multiple high-quality responses exist and the
 415 Stackelberg and Nash equilibria coincide (Section 4.1).

416
 417 Crucially, applying the FOLLOWER of STACKELBERGGDA to improve its own initial responses
 418 yields a marked performance gain. It achieves 80% preference over QWEN2.5-0.5B, 66% over
 419 RLOO, 60% over NASH-MD-PG, and even outperforms the responses it was conditioned on in
 420 60.5% of comparisons. Thus, a two-turn inference procedure provides substantial gains at the cost of
 421 a single additional generation.

422
 423 **6.1.2 INFERENCE-TIME REFINEMENT**

424
 425 We further evaluate each model’s ability to act as a Follower, refining outputs from other mod-
 426 els. Although only STACKELBERGGDA is explicitly trained for this task (and only to best

427
 428 ²<https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct>

432 Table 5: AlpacaEval 2.0 results comparing trained models to GPT-4 TURBO. Length-controlled (LC)
 433 winrate alleviate the length bias of the GPT-4 judge.

435 Model	436 LC Winrate	437 Winrate
GPT-4O-2024-05-13	57.46	51.33
LLAMA-3.1-TULU-3-8B-DPO	33.37	40.15
STACKELBERGGDA-FOLLOWER	28.89	61.58
STACKELBERGGDA-LEADER	27.09	49.24
META-LLAMA-3.1-8B-INSTRUCT	20.85	21.84
LLAMA-3.1-TULU-3-8B-SFT	8.83	14.26

444 respond to itself), we apply the same refinement procedure to all models to test their ability
 445 to generalize. Specifically, for every pair of Leader and Follower models selected from
 446 QWEN2.5-0.5B, RLOO, NASH-MD-PG, STACKELBERGGDA, we first generate a response with
 447 the selected Leader and then apply the Follower prompting template (Figure 1(b)) to produce a
 448 potentially improved response. We refer to these as the Leader and Follower outputs, respectively.
 449 Exhaustively evaluating all Leader-Follower pairs allows us to measure each model’s capacity for
 450 inference-time refinement under diverse initial conditions. Table 4 reports the resulting preference
 451 scores, which indicate how often the Follower output is preferred over the Leader’s generation.

452 STACKELBERGGDA consistently improves across all Leader models; most notably over QWEN2.5-
 453 0.5B and RLOO, while achieving gains of up to 60% even when refining outputs from NASH-
 454 MD-PG or itself. In contrast, QWEN2.5-0.5B and RLOO only improve upon responses from
 455 QWEN2.5-0.5B and often degrade the quality of outputs from other Leaders. NASH-MD-PG can
 456 enhance responses from QWEN2.5-0.5B and RLOO, but its 70% preference score over QWEN2.5-
 457 0.5B still falls short of its own 73% self-improvement rate reported in Table 3. These findings extend
 458 prior work on verifiable domains (Huang et al., 2024; Zheng et al., 2024; Tyen et al., 2024; Qu et al.,
 459 2024) by showing that explicitly training to improve given outputs is crucial and mere instruction
 460 prompting is insufficient to reliably enhance responses with respect to human preferences.

462 6.2 GENERAL PURPOSE FINE-TUNING

464 To evaluate STACKELBERGGDA for large-scale LLM fine-tuning in general chat applications, we
 465 adopted the Tulu 3 post-training pipeline (Lambert et al., 2024). Using prompts from its preference
 466 dataset³, we trained the 8B-parameter Supervised Fine-Tuned (SFT) checkpoint⁴, denoted LLAMA-
 467 3.1-TULU-3-8B-SFT, with STACKELBERGGDA. Responses from the resulting Leader and Follower
 468 policies were evaluated by the META-LLAMA-3.1-70B-INSTRUCT model (Weerawardhena et al.,
 469 2025), used as an automatic preference judge. Final models were evaluated on AlpacaEval 2.0,
 470 a benchmark shown to approximate human judgments (Dubois et al., 2024). We report both the
 471 standard win rate and the Length-Controlled (LC) win rate, the latter designed to mitigate length bias
 472 in LLM judge evaluations.

473 As shown in Table 5, both STACKELBERGGDA-LEADER and STACKELBERGGDA-FOLLOWER
 474 substantially improve the win rates of the initial model and outperform META-LLAMA-3.1-
 475 8B-INSTRUCT, which shares the same base model. While LLAMA-3.1-TULU-3-8B-DPO
 476 and GPT-4O-2024-05-13 achieve higher LC win rates, STACKELBERGGDA attains superior
 477 standard win rates surpassing even GPT-4O-2024-05-13, the top-performing model on the public
 478 leaderboard.⁵ Notably, LLAMA-3.1-TULU-3-8B-DPO was trained on outputs generated by GPT-4,
 479 the same model used for AlpacaEval 2.0’s evaluation, which may inflate its LC win rates and its
 480 true performance is likely closer to STACKELBERGGDA’s. We attribute the gap between LC and
 481 standard win rates for STACKELBERGGDA to META-LLAMA-3.1-70B-INSTRUCT’s length bias
 482 and consider refining the feedback source a promising avenue for future work.

483 ³<https://huggingface.co/datasets/allenai/llama-3.1-tulu-3-8b-preference-mixture>

484 ⁴<https://huggingface.co/allenai/llama-3.1-Tulu-3-8B-SFT>

485 ⁵https://tatsu-lab.github.io/llama_eval/

486 7 CONCLUSION 487

488 We introduced Stackelberg Learning from Human Feedback (SLHF), a two-player sequential-move
489 framework that directly optimizes pairwise preference signals without requiring real-valued reward
490 models. We proposed STACKELBERGGDA to efficiently approximate the unique Stackelberg equi-
491 librium and scale to challenging tasks such as aligning LLMs with human preferences. Empirically,
492 STACKELBERGGDA’s Leader policy matches or exceeds standard baselines while the Follower policy
493 consistently improves outputs at inference time, even when paired with models it was not trained with.
494

495 **Limitations.** Similarly to NLHF, a key limitation of our approach is its reliance on a well-specified
496 and representative pairwise preference function, which can be challenging to obtain in open-ended
497 or under-specified domains. Moreover, although the sequential formulation enables inference-time
498 refinement through conditional generation, it currently operates without real-time user interaction.
499 Future work could integrate active preference elicitation and personalized refinement, allowing
500 SLHF to adapt dynamically to individual user preferences at test time. **Finally, STACKELBERGGDA**
501 **currently has ergodic but not last-iterate guarantees; developing SLHF algorithms with last-iterate**
502 **convergence (e.g., via extragradient/optimistic or mirror-prox) is an open direction.**
503

504 REFERENCES

505 A. Ahmadian, C. Cremer, M. Gallé, M. Fadaee, J. Kreutzer, O. Pietquin, A. Üstün, and S. Hooker.
506 Back to basics: Revisiting REINFORCE-style optimization for learning from human feedback
507 in LLMs. In L.-W. Ku, A. Martins, and V. Srikanth, editors, *Proceedings of the 62nd Annual*
508 *Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, 2024.

509 A. F. Akyurek, E. Akyurek, A. Kalyan, P. Clark, D. T. Wijaya, and N. Tandon. RL4F: Generating
510 natural language feedback with reinforcement learning for repairing model outputs. In A. Rogers,
511 J. Boyd-Graber, and N. Okazaki, editors, *Proceedings of the 61st Annual Meeting of the Association*
512 *for Computational Linguistics (Volume 1: Long Papers)*, 2023.

513 C. Alós-Ferrer, E. Fehr, and M. Garagnani. Identifying nontransitive preferences. Technical report,
514 Working Paper, 2022.

515 A. Auslender and M. Teboulle. Projected subgradient methods with non-euclidean distances for
516 non-differentiable convex minimization and variational inequalities. *Mathematical Programming*,
517 120:27–48, 2009.

518 M. G. Azar, M. Rowland, B. Piot, D. Guo, D. Calandriello, M. Valko, and R. Munos. A General
519 Theoretical Paradigm to Understand Learning from Human Preferences. *Proceedings of Machine*
520 *Learning Research*, 238:4447–4455, 10 2023.

521 Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma, D. Drain, S. Fort, D. Ganguli,
522 T. Henighan, et al. Training a helpful and harmless assistant with reinforcement learning from
523 human feedback. *arXiv preprint arXiv:2204.05862*, 2022.

524 A. Beirami, A. Agarwal, J. Berant, J. Eisenstein, C. Nagpal, A. Theertha Suresh, G. Research,
525 and G. DeepMind. Theoretical guarantees on the best-of-n alignment policy. *arXiv preprint*
526 *arXiv:2401.01879*, 2024.

527 Q. Bertrand, W. M. Czarnecki, and G. Gidel. On the limitations of the elo, real-world games
528 are transitive, not additive. In *Proceedings of The 26th International Conference on Artificial*
529 *Intelligence and Statistics*, 2023.

530 R. A. Bradley and M. E. Terry. Rank analysis of incomplete block designs: I. the method of paired
531 comparisons. *Biometrika*, 39(3/4):324–345, 1952.

532 D. Calandriello, D. Guo, R. Munos, M. Rowland, Y. Tang, B. A. Pires, P. H. Richemond, C. Le Lan,
533 M. Valko, T. Liu, R. Joshi, Z. Zheng, and B. Piot. Human Alignment of Large Language Models
534 through Online Preference Optimisation. In *Proceedings of the 41st International Conference on*
535 *Machine Learning*, 2024.

540 S. Casper, X. Davies, C. Shi, T. K. Gilbert, J. Scheurer, J. Rando, R. Freedman, T. Korbak, D. Lindner,
541 P. Freire, T. Wang, S. Marks, C.-R. Segerie, M. Carroll, A. Peng, P. Christoffersen, M. Damani,
542 S. Slocum, U. Anwar, A. Siththaranjan, M. Nadeau, E. J. Michaud, J. Pfau, D. Krasheninnikov,
543 X. Chen, L. Langosco, P. Hase, E. Büyükk, A. Dragan, D. Krueger, D. Sadigh, and D. Hadfield-
544 Menell. Open Problems and Fundamental Limitations of Reinforcement Learning from Human
545 Feedback. *arXiv preprint arXiv:2307.15217*, 7 2023.

546 G. H. Chen and R. T. Rockafellar. Convergence rates in forward–backward splitting. *SIAM Journal*
547 *on Optimization*, 7(2):421–444, 1997.

548 P. F. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D. Amodei. Deep Reinforcement
549 Learning from Human Preferences. In *Proceedings of the 31st Conference on Neural Information*
550 *Processing Systems*, 2017.

551 X. Chu, Z. Zhang, T. Jia, and Y. Jin. Stackelberg game preference optimization for data-efficient
552 alignment of language models, 2025.

553 V. Conitzer and T. Sandholm. Computing the optimal strategy to commit to. *Proceedings of the ACM*
554 *Conference on Electronic Commerce*, 2006:82–90, 2006.

555 J. A. N. de Caritat Mis et al. *Essai sur l'application de l'analyse à la probabilité des décisions*
556 *rendues à la pluralité des voix*. Imprimerie royale, 1785.

557 J. Duan, J. Li, Y. Baba, and H. Kashima. A generalized model for multidimensional intransitivity.
558 In J. Kim, K. Shim, L. Cao, J.-G. Lee, X. Lin, and Y.-S. Moon, editors, *Advances in Knowledge*
559 *Discovery and Data Mining*, pages 840–852, Cham, 2017. Springer International Publishing. ISBN
560 978-3-319-57529-2.

561 Y. Dubois, X. Li, R. Taori, T. Zhang, I. Gulrajani, J. Ba, C. Guestrin, P. Liang, and T. Hashimoto.
562 Alpacafarm: A simulation framework for methods that learn from human feedback. In *Thirty-*
563 *seventh Conference on Neural Information Processing Systems*, 2023.

564 Y. Dubois, B. Galambosi, P. Liang, and T. B. Hashimoto. Length-controlled alpacaeval: A simple
565 way to debias automatic evaluators. *arXiv preprint arXiv:2404.04475*, 2024.

566 J. Eisenstein, C. Nagpal, A. Agarwal, A. Beirami, A. D’Amour, D. Dvijotham, A. Fisch, K. Heller,
567 S. Pfohl, D. Ramachandran, P. Shaw, and J. Berant. Helping or herding? reward model ensembles
568 mitigate but do not eliminate reward hacking, 2024.

569 M. Geist, B. Scherrer, and O. Pietquin. A Theory of Regularized Markov Decision Processes. In
570 *Proceedings of the 36th International Conference on Machine Learning*, 2019.

571 A. Glaese, N. McAleese, M. Trębacz, J. Aslanides, V. Firoiu, T. Ewalds, M. Rauh, L. Weidinger,
572 M. Chadwick, P. Thacker, et al. Improving alignment of dialogue agents via targeted human
573 judgements. *arXiv preprint arXiv:2209.14375*, 2022.

574 J. Gu, X. Jiang, Z. Shi, H. Tan, X. Zhai, C. Xu, W. Li, Y. Shen, S. Ma, H. Liu, Y. Wang, and J. Guo.
575 A Survey on LLM-as-a-Judge. 11 2024.

576 M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two
577 time-scale update rule converge to a local nash equilibrium. In *Proceedings of the Thirty-first*
578 *International Conference on Neural Information Processing Systems*, 2017.

579 E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA: Low-rank
580 adaptation of large language models. In *International Conference on Learning Representations*,
581 2022.

582 J. Huang, X. Chen, S. Mishra, H. S. Zheng, A. W. Yu, X. Song, and D. Zhou. Large language
583 models cannot self-correct reasoning yet. In *Proceedings of the Twelfth International Conference*
584 *on Learning Representations*, 2024.

585 D. Jiang, X. Ren, and B. Y. Lin. LLM-BLENDER: Ensembling Large Language Models with
586 Pairwise Ranking and Generative Fusion. In *Proceedings of the 61st Annual Meeting of the*
587 *Association for Computational Linguistics*, volume 1, 2023.

594 T. Kaufmann, P. Weng, V. Bengs, and E. Hüllermeier. A Survey of Reinforcement Learning from
595 Human Feedback. *arXiv preprint arXiv:2312.14925*, 2023.
596

597 G. M. Korpelevich. The extragradient method for finding saddle points and other problems. *Matecon*,
598 12:747–756, 1976.

599 A. Kumar, V. Zhuang, R. Agarwal, Y. Su, J. D. Co-Reyes, A. Singh, K. Baumli, S. Iqbal, C. Bishop,
600 R. Roelofs, L. M. Zhang, K. McKinney, D. Shrivastava, C. Paduraru, G. Tucker, D. Precup,
601 F. Behbahani, and A. Faust. Training language models to self-correct via reinforcement learning.
602 In *Proceedings of the Thirteenth International Conference on Learning Representations*, 2025.
603

604 N. Lambert, J. Morrison, V. Pyatkin, S. Huang, H. Ivison, F. Brahman, L. J. V. Miranda, A. Liu,
605 N. Dziri, S. Lyu, Y. Gu, S. Malik, V. Graf, J. D. Hwang, J. Yang, R. L. Bras, O. Tafjord, C. Wilhelm,
606 L. Soldaini, N. A. Smith, Y. Wang, P. Dasigi, and H. Hajishirzi. Tulu 3: Pushing Frontiers in Open
607 Language Model Post-Training. 11 2024.

608 B. Y. Lin, A. Ravichander, X. Lu, N. Dziri, M. Sclar, K. Chandu, C. Bhagavatula, and Y. Choi. The
609 unlocking spell on base LLMs: Rethinking alignment via in-context learning. In *The Twelfth
610 International Conference on Learning Representations*, 2024.

611 T. Lin, C. Jin, and M. I. Jordan. Two-timescale gradient descent ascent algorithms for nonconvex
612 minimax optimization. *Journal of Machine Learning Research*, 26(11):1–45, 2025.

613 K. Liu, Q. Long, Z. Shi, W. J. Su, and J. Xiao. Statistical impossibility and possibility of aligning
614 llms with human preferences: From condorcet paradox to nash equilibrium. *arXiv preprint
arXiv:2503.10990*, 2025.

615 I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In *Proceedings of the Interna-
616 tional Conference on Learning Representations*, 2019.

617 J. Makar-Limanov, A. Prakash, D. Goktas, N. Ayanian, and A. Greenwald. Sta-rlhf: Stackelberg
618 aligned reinforcement learning with human feedback. In *Coordination and Cooperation for
619 Multi-Agent Reinforcement Learning Methods Workshop*, 2024.

620 J. Menick, M. Trebacz, V. Mikulik, J. Aslanides, F. Song, M. Chadwick, M. Glaese, S. Young,
621 L. Campbell-Gillingham, G. Irving, et al. Teaching language models to support answers with
622 verified quotes. *arXiv preprint arXiv:2203.11147*, 2022.

623 R. Munos, M. Valko, D. Calandriello, M. G. Azar, M. Rowland, D. Guo, Y. Tang, M. Geist,
624 T. Mesnard, A. Michi, M. Selvi, S. Girgin, N. Momchev, O. Bachem, D. J. Mankowitz, D. Precup,
625 B. Piot, and G. Deepmind. Nash Learning from Human Feedback. In *Proceedings of the 41st
626 International Conference on Machine Learning*, 2024.

627 R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, V. Kosaraju, W. Saunders,
628 et al. Webgpt: Browser-assisted question-answering with human feedback. *arXiv preprint
arXiv:2112.09332*, 2021.

629 A. Nedić and A. Ozdaglar. Subgradient methods for saddle-point problems. *Journal of optimization
630 theory and applications*, 142:205–228, 2009.

631 A. Nemirovski. Prox-method with rate of convergence $o(1/t)$ for variational inequalities with lipschitz
632 continuous monotone operators and smooth convex-concave saddle point problems. *SIAM Journal
633 on Optimization*, 15(1):229–251, 2004.

634 L. G. Openai, J. Schulman, O. Jacob, and H. Openai. Scaling Laws for Reward Model Overoptimiza-
635 tion. In *International Conference on Machine Learning*, 2023. ISBN 2210.10760v1.

636 L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang Sandhini Agarwal
637 Katarina Slama Alex Ray John Schulman Jacob Hilton Fraser Kelton Luke Miller Maddie Simens
638 Amanda Askell, P. Welinder Paul Christiano, J. Leike, and R. Lowe. Training language models
639 to follow instructions with human feedback. In *Proceedings of the 36th Conference on Neural
640 Information Processing Systems*, 2022.

648 H. Prasad, P. LA, and S. Bhatnagar. Two-timescale algorithms for learning nash equilibria in general-
649 sum stochastic games. In *Proceedings of the 2015 International Conference on Autonomous Agents*
650 and *Multiagent Systems*, 2015.

651

652 Y. Qu, T. Zhang, N. Garg, and A. Kumar. Recursive introspection: Teaching language model agents
653 how to self-improve. *Advances in Neural Information Processing Systems*, 2024.

654 Qwen, :, A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei,
655 H. Lin, J. Yang, J. Tu, J. Zhang, J. Yang, J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao, K. Yang,
656 L. Yu, M. Li, M. Xue, P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Tang, T. Xia, X. Ren, X. Ren,
657 Y. Fan, Y. Su, Y. Zhang, Y. Wan, Y. Liu, Z. Cui, Z. Zhang, and Z. Qiu. Qwen2.5 Technical Report.
658 *arXiv preprint arXiv:2412.15115v2*, 12 2024.

659

660 R. Rafailov, A. Sharma, E. Mitchell, S. Ermon, C. D. Manning, and C. Finn. Direct Preference Opti-
661 mization: Your Language Model is Secretly a Reward Model. In *Advances in Neural Information*
662 *Processing Systems*, 2023. ISBN 2305.18290v2.

663 C. Rosset, C.-A. Cheng, A. Mitra, M. Santacroce, A. Awadallah, and T. Xie. Direct Nash Optimiza-
664 tion: Teaching Language Models to Self-Improve with General Preferences. In *arXiv preprint*
665 *arXiv:2404.03715*, 2024.

666

667 W. Saunders, C. Yeh, J. Wu, S. Bills, L. Ouyang, J. Ward, and J. Leike. Self-critiquing models for
668 assisting human evaluators. *arXiv preprint arXiv:2206.05802*, 2022.

669

670 J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
671 algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

672

673 P. G. Sessa, R. Dadashi, L. Hussenot, J. Ferret, N. Vieillard, A. Ramé, B. Shariari, S. Perrin, A. Friesen,
674 G. Cideron, S. Girgin, P. Stanczyk, A. Michi, D. Sinopalnikov, S. Ramos, A. Héliou, A. Severyn,
675 M. Hoffman, N. Momchev, O. Bachem, and G. Deepmind. BOND: Aligning LLMs with Best-of-N
676 Distillation. *arXiv preprint arXiv:2407.14622*, 2024.

677

678 Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang, Y. Li, Y. Wu, et al.
679 Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv*
680 *preprint arXiv:2402.03300*, 2024.

681

682 H. Shen, Z. Yang, and T. Chen. Principled penalty-based methods for bilevel reinforcement learning
683 and rlhf. In *Proceedings of the 41st International Conference on Machine Learning*, 2024.

684

685 H. v. Stackelberg. *Theory of the market economy*. Oxford University Press, 1952.

686

687 N. Stiennon, L. Ouyang, J. Wu, D. M. Ziegler, R. Lowe, C. Voss, and A. Radford Dario Amodei
688 Paul Christiano. Learning to summarize from human feedback. In *Proceedings of the 34th*
689 *Conference on Neural Information Processing Systems*, 2020.

690

691 G. Swamy, C. Dann, R. Kidambi, Z. S. Wu, and A. Agarwal. A Minimaxalist Approach to
692 Reinforcement Learning from Human Feedback RLHF / PbRL. In *Proceedings of the 41st*
693 *International Conference on Machine Learning*, 2024.

694

695 X. Tang, S. Yoon, S. Son, H. Yuan, Q. Gu, and I. Bogunovic. Game-theoretic regularized self-play
696 alignment of large language models. *arXiv preprint arXiv:2503.00030*, 2025.

697

698 V. Thoma, B. Pásztor, A. Krause, G. Ramponi, and Y. Hu. Contextual bilevel reinforcement learning
699 for incentive alignment. In *Proceedings of the Thirty-eighth Annual Conference on Neural*
700 *Information Processing Systems*, 2024.

701 G. Tyen, H. Mansoor, V. Cărbune, Y. P. Chen, and T. Mak. Llms cannot find reasoning errors, but can
702 correct them given the error location. In *Findings of the Association for Computational Linguistics*
703 *ACL 2024*, 2024.

L. von Werra, Y. Belkada, L. Tunstall, E. Beeching, T. Thrush, N. Lambert, S. Huang, K. Rasul, and
704 Q. Gallouédec. Trl: Transformer reinforcement learning, 2020.

702 M. Wang, C. Ma, Q. Chen, L. Meng, Y. Han, J. Xiao, Z. Zhang, J. Huo, W. J. Su, and Y. Yang. Magnetic
703 preference optimization: Achieving last-iterate convergence for language model alignment.
704 In *The Thirteenth International Conference on Learning Representations*, 2025.

705 Z. Wang, Y. Dong, O. Delalleau, J. Zeng, G. Shen, D. Egert, J. J. Zhang, M. N. Sreedhar, and
706 O. Kuchaiev. Helpsteer 2: Open-source dataset for training top-performing reward models. In
707 *Proceedings of the Thirty-eight Conference on Neural Information Processing Systems*, 2024.

708 S. Weerawardhena, P. Kassianik, B. Nelson, B. Saglam, A. Vellore, A. Priyanshu, S. Vijay, M. Aufiero,
709 A. Goldblatt, F. Burch, E. Li, J. He, D. Kedia, K. Oshiba, Z. Yang, Y. Singer, and A. Karbasi.
710 Llama-3.1-foundationai-securityllm-8b-instruct technical report, 2025.

711 S. Welleck, X. Lu, P. West, F. Brahman, T. Shen, D. Khashabi, and Y. Choi. Generating Sequences
712 by Learning to Self-Correct. In *Proceedings of the Eleventh International Conference on Learning
713 Representations*, 2023.

714 S. Welleck, A. Bertsch, M. Finlayson, H. Schoelkopf, A. Xie, G. Neubig, I. Kulikov, and Z. Har-
715 chaoui. From decoding to meta-generation: Inference-time algorithms for large language models.
716 *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856.

717 R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
718 learning. *Machine learning*, 8:229–256, 1992.

719 C. Wirth, R. Akrou, G. Neumann, and J. Fürnkranz. A survey of preference-based reinforcement
720 learning methods. *Journal of Machine Learning Research*, 18(136):1–46, 2017.

721 T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
722 M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao,
723 S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush. Transformers: State-of-the-art natural language
724 processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language
725 Processing: System Demonstrations*, 2020.

726 Y. Wu, Z. Sun, H. Yuan, K. Ji, Y. Yang, and Q. Gu. Self-Play Preference Optimization for Language
727 Model Alignment. *arXiv preprint arXiv:2405.00675*, 2024.

728 J. Xiao, Z. Li, X. Xie, E. Getzen, C. Fang, Q. Long, and W. J. Su. On the algorithmic bias of aligning
729 large language models with rlhf: Preference collapse and matching regularization. *arXiv preprint
730 arXiv:2405.16455*, 2024.

731 Y. Xu, L. Ruis, T. Rocktäschel, and R. Kirk. Investigating non-transitivity in llm-as-a-judge. *arXiv
732 preprint arXiv:2502.14074*, 2025.

733 M. Zamani, H. Abbaszadehpeivasti, and E. de Klerk. Convergence rate analysis of the gradient
734 descent–ascent method for convex–concave saddle-point problems. *Optimization Methods and
735 Software*, 39(5):967–989, 2024.

736 J. Zhang, M. Hong, and S. Zhang. On lower iteration complexity bounds for the convex concave
737 saddle point problems. *Mathematical Programming*, 194(1):901–935, 2022.

738 Y. Zhang, M. Khalifa, L. Logeswaran, J. Kim, M. Lee, H. Lee, and L. Wang. Small language models
739 need strong verifiers to self-correct reasoning. In L.-W. Ku, A. Martins, and V. Srikumar, editors,
740 *Findings of the Association for Computational Linguistics: ACL 2024*, 2024.

741 Y. Zhang, D. Yu, B. Peng, L. Song, Y. Tian, M. Huo, N. Jiang, H. Mi, and D. Yu. Iterative Nash Policy
742 Optimization: Aligning LLMs with General Preferences via No-Regret Learning. In *Proceedings
743 of the Thirteenth International Conference on Learning Representations*, 2025.

744 H. S. Zheng, S. Mishra, H. Zhang, X. Chen, M. Chen, A. Nova, L. Hou, H.-T. Cheng, Q. V. Le,
745 E. H. Chi, et al. Natural plan: Benchmarking llms on natural language planning. *arXiv preprint
746 arXiv:2406.04520*, 2024.

747 R. Zhou, M. Fazel, and S. S. Du. Extragradient preference optimization (egpo): Beyond last-iterate
748 convergence for nash learning from human feedback. *arXiv preprint arXiv:2503.08942*, 2025.

749 D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano, and G. Irving.
750 Fine-Tuning Language Models from Human Preferences. *arXiv preprint arXiv:1909.08593*, 2019.

751

756 CONTENTS OF APPENDIX

758	A Proofs	15
759	A.1 Proof of Theorem 1	15
760	A.2 Proof of Theorem 2	16
761	A.3 Concave-Convex Property of f	16
762	A.4 Comments on the Convergence of STACKELBERGGDA (Algorithm 1)	16
763		
764		
765		
766	B Scalable Implementation of STACKELBERGGDA	16
767		
768		
769	C Implementation Details	18
770		
771	D Additional Experimental Results	18
772	D.1 Preference Model	18
773	D.2 Iterative Improvements at Test-time	19
774	D.3 Ablation on the two-timescale coefficient	21
775		
776	D.4 Model Scaling	22
777		
778		

779 A PROOFS

780 A.1 PROOF OF THEOREM 1

781 *Proof.* First, assume that the Leader’s policy π is fixed and consider the Follower’s optimization
 782 problem

$$783 \min_{\omega} \mathbb{E}_{x \sim \rho, y \sim \pi(\cdot|x)} [\mathbb{E}_{y' \sim \omega(\cdot|x,y)} [p(y \succ y' | x)] + \tau^F \text{KL}_{x,y}(\omega \| \omega^{\text{ref}})]. \quad (7)$$

784 The optimization problem in (7) is equivalent to Equation (3) for the reward function $r(\tilde{x}, y') :=$
 785 $p(y \succ y' | x)$ with contexts $\tilde{x} = (x, y)$ and context distribution $\tilde{x} \sim \rho \otimes \pi$. As a result, Equation (7)
 786 has a unique closed-form solution (Geist et al., 2019; Rafailov et al., 2023; Azar et al., 2023) given by
 787

$$788 \omega^*(y' | x, y) = \frac{1}{Z(x, y)} \omega^{\text{ref}}(y' | x, y) \exp\left(\frac{1}{\tau^F} p(y' \succ y | x)\right)$$

789 where $Z(x, y) = \sum_{y' \in \mathcal{Y}} \omega^{\text{ref}}(y' | x, y) \exp\left(\frac{1}{\tau^F} p(y' \succ y | x)\right)$ is a partition factor that depends only
 790 on (x, y) and π^{ref} . Hence, ω^* can be expressed as a function of (x, y) and ω^{ref} without explicit
 791 dependence on π .

792 Now, define the following reward function for the Leader’s optimization problem

$$793 r(x, y) := \mathbb{E}_{y' \sim \omega^*(\cdot|x,y)} [p(y \succ y' | x)]. \quad (8)$$

794 Note that ω^* is unique so that $r(x, y)$ is a scalar. We can now restate Equation (5) for the Leader’s
 795 optimization problem as

$$803 \max_{\pi} \mathbb{E}_{x \sim \rho} [\mathbb{E}_{y \sim \pi(\cdot|x)} [r(x, y)] - \tau^L \text{KL}_x(\pi \| \pi^{\text{ref}})]$$

804 which is again a KL-regularized optimization problem that admits a closed-form solution

$$805 \pi^*(y | x) = \frac{1}{Z(x)} \pi^{\text{ref}}(y | x) \exp\left(\frac{1}{\tau^L} r(x, y)\right).$$

806 \square

810 **A.2 PROOF OF THEOREM 2**
811

812 *Proof.* This lemma is folklore in the algorithmic game theory community and can be quickly verified.
813

814 Let $x \in \mathcal{X}$. Given any action $y \in \mathcal{Y}$, there exists a not necessarily unique $y' \in \mathcal{Y}$ minimizing
815 $p(y \succ y' \mid x)$. Hence, irrespective of the Leader's policy $\pi(\cdot \mid x)$, there always exists a Follower's
816 deterministic best response policy $\omega_{\text{br}}(\cdot \mid x, y)$ with $\omega_{\text{br}}(y' \mid x, y) = 1$ for some y' . In other words,
817 the Follower always has a deterministic best response policy.
818

819 Similarly, the optimization problem for the Leader given some context x reduces to finding y
820 that maximizes $\mathbb{E}_{y' \sim \omega_{\text{br}}(\cdot \mid x, y)}[p(y \succ y' \mid x)]$ so that the SLHF optimization problem admits a
821 deterministic solution. \square
822

823 **A.3 CONCAVE-CONVEX PROPERTY OF f**
824

825 We show here that the objective function f in Equation (5) of the Stackelberg optimization problem
826 is concave-convex. Similar results were established in the context of NLHF by [Munos et al. \(2024\)](#).
827

828 Throughout this section, we assume $|X| = 1$ and omit x from the notation for clarity. All results
829 extend directly to the general case with a finite context space \mathcal{X} .
830

831 Then, the objective function of Equation (5) is given by
832

833
$$f(\pi, \omega) = \mathbb{E}_{y \sim \pi(\cdot), y' \sim \omega(\cdot \mid y)}[p(y \succ y')] - \tau^L \text{KL}(\pi \parallel \pi^{\text{ref}}) + \tau^F \mathbb{E}_{y \sim \pi(\cdot)}[\text{KL}_y(\omega \parallel \omega^{\text{ref}})]. \quad (9)$$
834

835 The first term is bilinear in π and ω , as shown by expanding the expectation:
836

837
$$\mathbb{E}_{y \sim \pi(\cdot), y' \sim \omega(\cdot \mid y)}[p(y \succ y')] = \sum_{y \in \mathcal{Y}} \pi(y) \sum_{y' \in \mathcal{Y}} p(y \succ y') \omega(y' \mid y).$$
838

839 The KL terms are convex in their respective arguments. Hence, f is bilinear when $\tau^L = \tau^F = 0$.
840

841 **A.4 COMMENTS ON THE CONVERGENCE OF STACKELBERGGDA (ALGORITHM 1)**
842

843 We here want to briefly comment on the ergodic convergence guarantee of STACKELBERGGDA
844 that is a consequence of well-known results in the literature. We also briefly discuss limitations and
845 future work to achieve better theoretical convergence guarantees by adapting existing ideas from the
846 optimization and NLHF literature to the SLHF problem.
847

848 As previously shown, the SLHF objective $f(\pi, \omega)$ is concave-convex. It is well-known that two-
849 timescale GDA then converges in the ergodic sense, i.e., the averaged iterates converge to the
850 equilibrium with gradient complexity $\mathcal{O}(\varepsilon^{-2})$ ([Nedić and Ozdaglar, 2009](#)). In the strongly-concave-
851 strongly-convex setting, standard results also tell us that two-timescale GDA converges in the
852 last-iterate with complexity $\mathcal{O}(\kappa^2 \log \frac{1}{\varepsilon})$ ([Zhang et al., 2022](#); [Zamani et al., 2024](#); [Lin et al., 2024](#)).
853 Unfortunately, the KL divergence is not strongly convex w.r.t. the ℓ_2 norm so that these results do not
854 directly apply, and deriving linear last-iterate guarantees for STACKELBERGGDA is challenging. In
855 future work, it will be interesting to analyze whether, e.g., extragradient ([Zhou et al., 2025](#)) or mirror
856 descent ([Munos et al., 2024](#)) approaches that have been successfully applied to NLHF, can be adapted
857 to the SLHF framework to guarantee fast last-iterate convergence.
858

859 **B SCALABLE IMPLEMENTATION OF STACKELBERGGDA**
860

861 When fine-tuning large language models, the context and action spaces \mathcal{X} and \mathcal{Y} are far too large to op-
862 timize over Π and Ω directly. To address this, we introduce a practical variant of STACKELBERGGDA
863 in Algorithm 2.
864

865 **Policy Parameterization.** We replace the tabular policies π and ω with neural parameterizations
866 π_θ and ω_ϕ (e.g., transformer networks). This renders the policy spaces tractable via their parameter
867 vectors θ and ϕ , however, the concave-convex property does not necessarily carry over to the
868 parameters θ and ϕ .
869

864 **Batched, Variance-reduced Gradient Estimates.** Exact evaluation of the expectations in ∇f is
 865 infeasible due to the expectation over the context and action spaces. Instead, at each iteration we
 866 sample a batch of size B :

868 $\{(x_i, y_i, y'_i, p_i)\}_{i=1}^B, x_i \sim \rho, y_i \sim \pi_\theta(\cdot | x_i), y'_i \sim \omega_\phi(\cdot | x_i, y_i), p_i = p(y_i \succ y'_i | x_i).$

870 We then form unbiased estimates as

872 $\hat{\nabla}_\theta f = \frac{1}{B} \sum_{i=1}^B (p_i - \tau^L k_i^L) \nabla_\theta \log \pi_\theta(y_i | x_i), \hat{\nabla}_\phi f = \frac{1}{B} \sum_{i=1}^B (p_i - \tau^F k_i^F) \nabla_\phi \log \omega_\phi(y'_i | x_i, y_i),$

875 with likelihood ratios $k_i^L = \frac{\pi_\theta(y_i | x_i)}{\pi^{\text{ref}}(y_i | x_i)}$ and $k_i^F = \frac{\omega_\phi(y'_i | x_i, y_i)}{\omega^{\text{ref}}(y'_i | x_i, y_i)}$. The derivation of these gradients follow
 876 the policy gradient method described in Williams (1992). The gradient estimators are naturally
 877 compatible with additional variance reduction techniques such as subtracting a constant baseline.

879 **Single-Model Instantiation.** Simultaneously training two billion-parameter transformer models
 880 is memory-prohibitive. Similarly to SCORE (Kumar et al., 2025), we collapse both Leader and
 881 Follower into one model π_θ by using distinct chat templates (Figure 1). When the model is only
 882 given the context x , we use the template in Figure 1(a) that only includes x as the prompt. When the
 883 model is given both the context x and an action y , we use the template in Figure 1(b) that includes
 884 both the context x and the action y , as well as a predefined instruction to improve the action y .

885 Then, letting $\kappa = \frac{\alpha^F}{\alpha^L}$ denote the two-timescale weight coefficient, we optimize the model to minimize
 886 the following loss function

888
$$\mathcal{L}(\theta) = -\frac{1}{B} \sum_{i=1}^B (p_i - \tau^L k_i^L) \log \pi_\theta(y_i | x_i) + \frac{\kappa}{B} \sum_{i=1}^B (p_i - \tau^F k_i^F) \log \pi_\theta(y'_i | x_i, y_i). \quad (10)$$

891 Gradient steps on $\mathcal{L}(\theta)$ realize the two-time-scale gradient descent-ascent updates via a single network,
 892 thereby substantially reducing memory usage.

894 **Algorithm 2** STACKELBERGGDA (Practical)

896 1: **procedure** STACKELBERGGDA($\mathcal{X}, \mathcal{Y}, \rho, \eta$)
 897 2: Initialize the parameter θ for the shared model
 898 3: **for** $i = 1, 2, \dots$ **do**
 899 4: **for** $b = 1, \dots, B$ **do**
 900 5: Sample prompt $x_b \sim \rho$
 901 6: Sample Leader response using the prompt in Figure 1(a): $y_b \sim \pi_\theta(\cdot | x_b)$
 902 7: Sample Follower response using the prompt in Figure 1(b): $y'_b \sim \pi_\theta(\cdot | x_b, y_b)$
 903 8: Observe preference feedback $p_b = p(y_b \succ y'_b | x_b)$
 904 9: **end for**
 905 10: Update the weights θ according to the loss in Equation (10): $\theta \leftarrow \theta - \eta \nabla_\theta \mathcal{L}(\theta)$
 906 11: **end for**
 12: **end procedure**

909 **Computational Comparison.** At training time, the computational cost of STACKELBERGGDA
 910 is comparable to standard online RLHF/NLHF algorithms, with only marginal overhead from the
 911 Follower’s prompt. Specifically, STACKELBERGGDA requires two samples per prompt, matching
 912 most NLHF methods and remaining more efficient than algorithms like NASH-MD-PG (Munos
 913 et al., 2024) or ONLINEIPO (Calandriello et al., 2024) that rely on expensive mixture policies. While
 914 SPO (Swamy et al., 2024) uses only one sample, its efficacy on LLM-scale tasks is not yet explored.
 915 Finally, compared to RLHF, STACKELBERGGDA avoids the high memory cost of PPO (Schulman
 916 et al., 2017) which is due to the value function estimation. Recent memory-efficient RLHF methods,
 917 such as RLOO (Ahmadian et al., 2024) and GRPO (Shao et al., 2024), only resolve this memory
 918 issue by introducing sampling costs comparable to, or even higher than, STACKELBERGGDA.

918 C IMPLEMENTATION DETAILS 919

920 **Implementation Codebase.** We trained RLOO⁶ and NASH-MD-PG⁷ using their implementations
921 in the TRL Python package (von Werra et al., 2020). For all training runs, including reward modeling,
922 we used Low-Rank Adaptation (LoRA) (Hu et al., 2022) with rank $r = 32$, scaling factor $\alpha = 64$,
923 and dropout rate set to 0.1. The codebase with instructions is included in the supplementary material
924 for reproduction.

925 **LLM-as-a-Judge Implementation.** In Section 6.2, we used the prompt depicted in Figure 2 as an
926 input for META-LLAMA-3.1-70B-INSTRUCT to provide a feedback to STACKELBERGGDA during
927 training. We calculate the preference probability for the first completion as the softmax probability
928 for the two tokens corresponding to the model identifier strings.

929 **Compute Resources.** Experiments in Section 6.1 were conducted on a single node with 8 Nvidia
930 GeForce RTX 4090 GPUs. The total compute time, including hyperparameter sweeps, was approx-
931 imately 4,000 GPU-hours. The training run in Section 6.2 was conducted on a single node with 4
932 Nvidia GH200 GPUs using approximately 1,300 GPU-hours.

933 D ADDITIONAL EXPERIMENTAL RESULTS

934 D.1 PREFERENCE MODEL

935 We estimate the preference model used to fine-tune the LLMs by treating the five attributes
936 in the HELPSTEER2 datasets (Wang et al., 2024) as distinct annotators, denoted by the set
937 $\mathcal{A} = \{\text{helpfulness}, \text{correctness}, \text{coherence}, \text{complexity}, \text{verbosity}\}$, and define ν as a uniform
938 distribution over \mathcal{A} . For each attribute $a \in \mathcal{A}$, we estimate a reward function \hat{r}_a using the Bradley-
939 Terry model and maximize the log-likelihood on the training dataset $\mathcal{D} = \{(x_i, y_i^w, y_i^l)\}_{i=1}^N$

$$940 \min_r \sum_{i=1}^N \sigma(r(x_i, y_i^w) - r(x_i, y_i^l)) + \lambda(r(x_i, y_i^w) + r(x_i, y_i^l))^2.$$

941 We here decided which response is the winning and losing one in the dataset by comparing the
942 attribute scores provided by the annotators. The additional regularization ensures that the rewards
943 are centralized around zero (Eisenstein et al., 2024). For the attributes correctness, helpfulness, and
944 coherence, we consider higher scores to be better while for verbosity and complexity lower values
945 are more preferable. This is in accordance with the scoring criteria described in Wang et al. (2024).
946 Each reward function is trained independently, initialized from the QWEN2.5-1.5B⁸ model with a
947 single linear head. We train each model for 5 epochs on the training prompts and completions with
948 batch size 32, learning rate $1e-4$, and regularization coefficient $\lambda = 0.01$. The final accuracies of
949 the models on the validation dataset are 78%, 65%, 61%, 60%, and 59% for verbosity, complexity,
950 correctness, helpfulness, and coherence, respectively.

951 The overall preference function p is then defined as

$$952 p(y \succ y' \mid x) = \frac{1}{|\nu|} \sum_{a \in \nu} \mathbf{1}\{\hat{r}_a(x, y) \geq \hat{r}_a(x, y')\}. \quad (11)$$

953 We evaluate the non-transitivity of the preference model p defined in Equation (11) on the validation
954 prompts and five responses from each of the four models used for comparison in Section 6. For
955 each prompt, we construct a complete directed graph between the 20 completions as nodes and
956 edges directed from the non-preferred completion towards the preferred one. Figure 3 illustrates
957 this directed graph on the first prompt of the validation dataset. 57% of the directed graphs include
958 cycles, which illustrate the intransitivity of the preference function p on the completion space \mathcal{Y} .
959 Furthermore, there are almost 19 million cycles in the dataset across all prompts. From these cycles,
960 5.79% is length 9 or shorter, 41.64% is between length 10 and 12, 42.72% is of length 13 or 14, and

961 ⁶https://huggingface.co/docs/trl/main/en/rloo_trainer

962 ⁷https://huggingface.co/docs/trl/main/en/nash_md_trainer

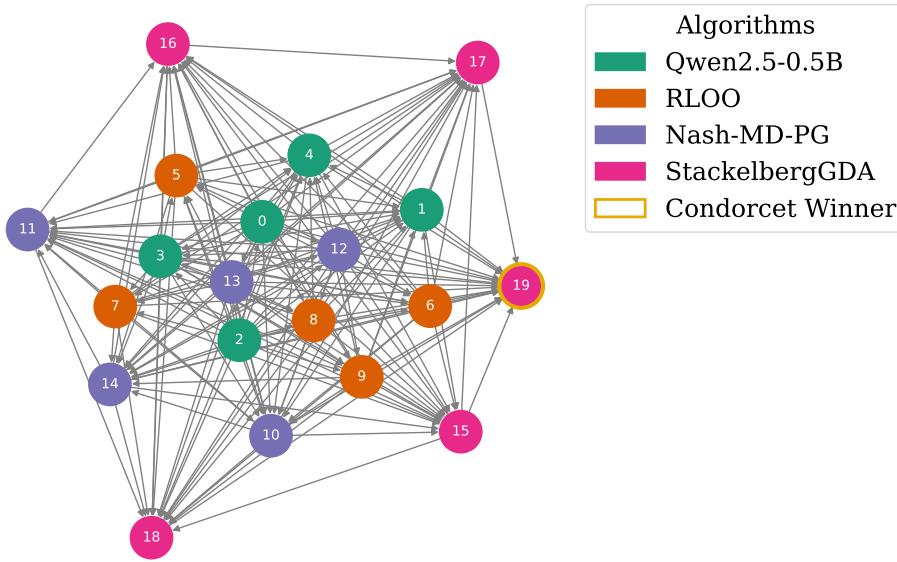
963 ⁸<https://huggingface.co/unsloth/Qwen2.5-1.5B-Instruct>

```

972     User:
973     I require a leaderboard for various large language models.
974     I'll provide you with prompts given to these models
975     and their corresponding outputs. Your task is to assess
976     these responses and select the model that produces
977     the best output from a human perspective.
978
979     ## Instruction
980
981     {
982         "instruction": """{prompt}"""
983     }
984
985     ## Model Outputs
986
987     Here are the unordered outputs from the models.
988     Each output is associated with a specific model,
989     identified by a unique model identifier.
990
991     {
992         {
993             "model_identifier": "A",
994             "output": """{response0}"""
995         },
996         {
997             "model_identifier": "B",
998             "output": """{response1}"""
999         }
1000
1001     ## Task
1002
1003     Evaluate the models on the basis of the quality
1004     and relevance of their results, and select the model
1005     that generated the best result. Reply with the
1006     identifier of the best model. Our evaluation will only
1007     take into account the first character of your answer,
1008     so make sure it contains only one of the identifiers and nothing
1009     else (no quotation marks, no spaces, no new lines, ...).
1010
1011     Assistant:
1012
1013     Figure 2: LLM-as-a-judge prompt for META-LLAMA-3.1-70B-INSTRUCT
1014
1015
1016     D.2 ITERATIVE IMPROVEMENTS AT TEST-TIME
1017
1018     We extend the experimental results from Section 6 by analyzing iterative improvements and per-
1019     formance scaling with increased test-time computation. Our results suggests that with increasing
1020     test-time computation the benefit of fine-tuning using both RLOO or NASH-MD-PG is negligible
1021     compared to using the base model QWEN2.5-0.5B. In contrast, STACKELBERGGDA yields strict
1022     improvements. Building on the example in Section 4.1, we assume that at test-time, a single annotator
1023      $a \sim \nu$  and a context  $x \sim \rho$  are sampled.
1024
1025     For the base model QWEN2.5-0.5B and the models with fine-tuned with RLOO and NASH-MD-PG,
1026     we independently sample  $N$  responses  $y_1, \dots, y_N$ . For STACKELBERGGDA, which inherently
1027     supports iterative refinement, we generate the first sample from the Leader policy  $y_1 \sim \pi^*(\cdot | x)$ ,

```

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045



1046 Figure 3: Directed graph based with completions generated by the fine-tuned models and edge
1047 directions representing the preference between them.
1048
1049

1050 and subsequent responses from the Follower policy $y_i \sim \omega^*(\cdot | x, y_{i-1})$ for $i \geq 2$. We define
1051 $y_{1:N} := (y_1, \dots, y_N)$.

1052 In line with prior work on Best-of- N sampling (Openai et al., 2023; Beirami et al., 2024; Dubois
1053 et al., 2024; Sessa et al., 2024), we evaluate the quality of the N samples by computing the maximum
1054 reward obtained for each attribute under the sampled annotator’s reward model, that is,
1055

$$\hat{r}_a^N(x, y_{1:N}) := \max_{y_1, \dots, y_N} \hat{r}_a(x, y_i). \quad (12)$$

1056 Analogous to the preference function p defined in Section 3, in this section, we compare two models
1057 π and π' w.r.t. the preference functions derived from the annotator-specific reward functions under
1058 Best-of- N sampling:

$$p_a^N(\pi \succ \pi' | x) := \mathbb{E}_{\substack{y_{1:N} \sim \pi(\cdot | x) \\ y'_{1:N} \sim \pi'(\cdot | x)}} \left[\mathbb{1}\{\hat{r}_N^a(x, y_{1:N}) \geq \hat{r}_N^a(x, y'_{1:N})\} \right]. \quad (13)$$

1059 **Notational Note.** We here adopt a slight abuse of notation. Specifically, we write $y_{1:N} \sim \pi(\cdot | x)$
1060 to denote the sampling of N responses from a model π , even though this notation does not faithfully
1061 represent the sampling procedure used by STACKELBERGGDA. For QWEN2.5-0.5B, RLOO, and
1062 NASH-MD-PG, the samples y_1, \dots, y_N are drawn i.i.d. from a single model $\pi(\cdot | x)$. In contrast, for
1063 STACKELBERGGDA, the sampling process is inherently autoregressive: we first draw $y_1 \sim \pi^*(\cdot | x)$
1064 from the Leader policy, and then generate $y_i \sim \omega^*(\cdot | x, y_{i-1})$ for $i \geq 2$ using the Follower policy.
1065 Despite this difference, we overload the notation $y_{1:N} \sim \pi(\cdot | x)$ to unify the presentation in
1066 Equations (12) and (13). In the case of STACKELBERGGDA, this notation should be interpreted as
1067 shorthand for the autoregressive sampling process described above.
1068

1069 Previous work has shown that Best-of- N sampling can rival the performance of RLHF-based fine-
1070 tuning (Dubois et al., 2023; Sessa et al., 2024; Beirami et al., 2024). Motivated by this, we compare
1071 the preference scores defined in Equation (13) of RLOO, NASH-MD-PG, and STACKELBERGGDA
1072 with respect to the base model QWEN2.5-0.5B. Throughout this section, we consider the maximum
1073 number of samples to be $N = 5$.

1074 **Results.** Table 6 reports the preference scores for RLOO. While the model initially (i.e. $N = 1$)
1075 performs competitively on complexity and verbosity attributes, iterative sampling reveals a collapse
1076

1080 Table 6: Preference scores for RLOO versus QWEN2.5-0.5B across all attributes as a function of
 1081 the number of test-time samples N .

Attribute	Number of Samples N				
	1	2	3	4	5
Coherence	0.521	0.338	0.262	0.207	0.164
Complexity	0.892	0.842	0.801	0.771	0.754
Correctness	0.388	0.212	0.139	0.098	0.070
Helpfulness	0.322	0.150	0.087	0.057	0.036
Verbosity	0.846	0.777	0.728	0.695	0.669
Average	0.594	0.464	0.403	0.366	0.338

1094 into a single preference mode. In particular, we observed deterministic outputs for RLOO the generic
 1095 response: *"I apologize, but I'm unable to engage in conversations about political topics. If you
 1096 have any other questions or need further assistance with a different subject, feel free to ask."* As a
 1097 result, the model's diversity and coverage deteriorate, and its overall preference scores (relative to
 1098 QWEN2.5-0.5B) decline sharply as N increases.

1099 In contrast, NASH-MD-PG demonstrates some benefit from additional sampling, as shown in
 1100 Table 7. Its preference score for verbosity remains stable and it shows moderate improvement in
 1101 coherence. However, for the remaining attributes (correctness, helpfulness, and complexity) its gains
 1102 are slower than those achieved by QWEN2.5-0.5B with Best-of- N sampling. Consequently, the
 1103 overall preference score of NASH-MD-PG declines with increasing N , suggesting that the model
 1104 fine-tuned with NASH-MD-PG does not improve notably (compared to the base model) when the
 1105 number of samples drawn at test-time increases.

1106 On the other hand, STACKELBERGGDA exhibits more favorable behavior. As shown in Table 8, while
 1107 the preference score on verbosity and complexity taper off with more samples, STACKELBERGGDA
 1108 achieves notably faster gains on coherence, correctness, and helpfulness. For these attributes, the
 1109 preference rate improves by 10 percentage points or more, making STACKELBERGGDA the only
 1110 method among the three to demonstrate consistent improvement over QWEN2.5-0.5B as N increases.
 1111 This means that the performance of STACKELBERGGDA effectively scales with test-time compute.

1112 The strong emphasis on complexity and verbosity by RLOO is expected, as it optimizes the average
 1113 reward across all five attributes, and these two dimensions yield the highest values. However, for
 1114 NASH-MD-PG, this outcome is less expected. We hypothesize that it stems from its training objective,
 1115 which pits the policy against a mixture of the reference policy QWEN2.5-0.5B and the most recent
 1116 iteration. Once NASH-MD-PG outperforms QWEN2.5-0.5B on all attributes, it begins focusing
 1117 on attributes where further improvement over itself is possible, namely, complexity and verbosity.
 1118 Nevertheless, this skewed emphasis is suboptimal: annotators prefer models that perform well on
 1119 all attributes. In fact, a policy that focuses on coherence, correctness, and helpfulness is preferred
 1120 by 60% of the annotators. STACKELBERGGDA's asymmetric formulation that trains a Leader and a
 1121 Follower policy separately (though potentially unified in a single model) helps mitigate this imbalance
 1122 across attributes. This leads to a more balanced policy that is preferred by a wider range of annotators.

1124 D.3 ABLATION ON THE TWO-TIMESCALE COEFFICIENT

1126 Table 9 and Table 10 present ablations on the follower weight parameter κ in STACKELBERGGDA's
 1127 loss function (10) when fine-tuning the QWEN2.5-0.5B and QWEN2.5-1.5B models, respectively.
 1128 Each row reports the average preference scores over the corresponding initial policy, for both the
 1129 Leader and Follower policies, on the training and validation splits. These results highlight the
 1130 importance of balancing the two components of STACKELBERGGDA's asymmetric training objective.
 1131 In general, moderate values of κ can help the Follower improve without compromising the Leader
 1132 too severely, but excessively large weights may impair both players.

1133 In Table 9, we observe that increasing κ leads to a gradual decline in the Leader's performance. While
 1134 the Follower benefits from increasing κ from 1 to 5, performance worsens at $\kappa = 10$ for both the

1134 Table 7: Preference scores for NASH-MD-PG versus QWEN2.5-0.5B across all attributes as a
 1135 function of the number of test-time samples N .

Attribute	Number of Samples N				
	1	2	3	4	5
Coherence	0.731	0.743	0.757	0.763	0.760
Complexity	0.761	0.743	0.732	0.726	0.727
Correctness	0.633	0.615	0.620	0.617	0.615
Helpfulness	0.645	0.633	0.640	0.641	0.638
Verbosity	0.858	0.855	0.850	0.849	0.852
Average	0.726	0.718	0.720	0.719	0.718

1147 Table 8: Preference scores for STACKELBERGGDA versus QWEN2.5-0.5B across all attributes as a
 1148 function of the number of test-time samples N .

Attribute	Number of Samples N				
	1	2	3	4	5
Coherence	0.778	0.850	0.865	0.875	0.873
Complexity	0.714	0.666	0.628	0.600	0.592
Correctness	0.670	0.762	0.791	0.795	0.803
Helpfulness	0.692	0.767	0.783	0.786	0.791
Verbosity	0.833	0.820	0.798	0.777	0.765
Average	0.738	0.773	0.773	0.767	0.765

1160 Leader and Follower, indicating an overemphasis on the Follower’s loss can destabilize the overall
 1161 optimization.

1163 Table 10 shows a similar trend for the larger QWEN2.5-1.5B model. Due to the decrease of
 1164 performance above $\kappa = 5$ in Table 9, we carry out the ablation on a finer grid $\kappa \in \{1, 2, 3, 4, 5\}$.
 1165 Moreover, we evaluate each model after 2000 training steps as a larger base model requires more
 1166 gradient updates to converge. While the performance of $\kappa = 1$ stands out in Table 10, we observe that
 1167 it is overfitting to verbosity and complexity by responding to every prompt with short, non-informative
 1168 answers asking for further information such as *“Certainly! If you need detailed insights on technical
 1169 topics like that, feel free to ask—I’m here to assist with informatively aligned queries!”*. On the
 1170 contrary to the collapse observed for RLOO in Section D.2, the model remains stochastic with
 1171 the responses having similar information content. This outcome demonstrates the effectiveness of
 1172 STACKELBERGGDA in optimizing its objective despite the qualitatively undesirable responses.

1173 D.4 MODEL SCALING

1175 We extend our round-robin comparison from Section 6.1.1 to larger models within the Qwen2.5
 1176 family, specifically, QWEN2.5-1.5B and QWEN2.5-3B (Qwen et al., 2024). These evaluations
 1177 demonstrate that STACKELBERGGDA continues to be on par or outperform baselines even as model
 1178 size increases. Since larger models require more training updates to reach convergence in our setup,
 1179 we train NASH-MD-PG for 1,500 steps and STACKELBERGGDA for 2,000 steps. The RLOO
 1180 method converges earlier and requires only 1,000 steps even for these larger models. We fix the
 1181 follower-weight parameter at $\kappa = 5$ for both scales, based on our ablation results in Section D.3.

1182 Table 11 summarizes results for models fine-tuned from QWEN2.5-1.5B. Both NASH-MD-PG
 1183 and STACKELBERGGDA clearly outperform the base model and the RLOO baseline. While the
 1184 Leader policy of STACKELBERGGDA underperforms compared to NASH-MD-PG, the Follower
 1185 policy conditioned on the Leader’s responses matches or exceeds NASH-MD-PG’s performance,
 1186 mirroring the improvements observed when starting from the QWEN2.5-0.5B in Table 3. As noted
 1187 in Section D.3, this performance gap between the Leader and NASH-MD-PG could likely be reduced
 1188 by tuning κ , albeit at the potential cost of Follower quality.

1188 Table 9: Ablation on the follower weight parameter κ in STACKELBERGGDA’s loss function (10)
1189 fine-tuning the QWEN2.5-0.5B model. Scores show the average preference over the base model.
1190

Follower Weight κ	Train		Validation	
	Leader	Follower	Leader	Follower
1	0.768	0.804	0.761	0.784
5	0.743	0.814	0.723	0.806
10	0.725	0.800	0.710	0.783

1197 Table 10: Ablation on the follower weight parameter κ in STACKELBERGGDA’s loss function (10)
1198 fine-tuning the QWEN2.5-1.5B model. Scores show the average preference over the base model.
1199

Follower Weight κ	Train		Validation	
	Leader	Follower	Leader	Follower
1	0.848	0.852	0.850	0.851
2	0.718	0.737	0.719	0.730
3	0.767	0.806	0.771	0.803
4	0.733	0.811	0.736	0.807
5	0.720	0.819	0.720	0.818

1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210 Table 12 shows analogous comparisons for models initialized from QWEN2.5-3B. Here, STACKEL-
1211 BERGGDA again performs strongly, with its Follower policy matching or surpassing NASH-MD-PG
1212 across most pairwise matchups, and both algorithms outperforming the base model. NASH-MD-PG
1213 and STACKELBERGGDA are closely matched when compared directly. Due to compute limitations,
1214 we capped training at 2,000 steps for these larger models. Nonetheless, the Leader policy continued
1215 to improve near the end of training, suggesting further gains in preference score may be possible with
1216 additional updates.
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
1248 Table 11: Pairwise preference comparisons between the responses of QWEN2.5-0.5B, QWEN2.5-
1249 1.5B, RLOO, NASH-MD-PG, and STACKELBERGGDA algorithms. Fine-tuned models are trained
1250 from the QWEN2.5-1.5B. Each cell shows the average preference score of the row model over the
1251 column model.

	QWEN2.5-0.5B	QWEN2.5-1.5B	RLOO	NASH-MD-PG	STACKELBERGGDA
				LEADER	FOLLOWER
QWEN2.5-0.5B	0.000	0.479	0.379	0.188	0.271
QWEN2.5-1.5B	0.521	0.000	0.401	0.209	0.293
RLOO	0.621	0.599	0.000	0.197	0.310
NASH-MD-PG	0.812	0.791	0.803	0.000	0.623
STACKELBERGGDA					0.489
LEADER	0.729	0.707	0.690	0.377	0.000
FOLLOWER	0.834	0.813	0.825	0.511	0.687
					0.000

1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275 Table 12: Pairwise preference comparisons between the responses of QWEN2.5-0.5B, QWEN2.5-3B,
1276 RLOO, NASH-MD-PG, and STACKELBERGGDA algorithms. Fine-tuned models are trained from
1277 the QWEN2.5-3B. Each cell shows the average preference score of the row model over the column
1278 model.

	QWEN2.5-0.5B	QWEN2.5-3B	RLOO	NASH-MD-PG	STACKELBERGGDA
				LEADER	FOLLOWER
QWEN2.5-0.5B	0.000	0.504	0.399	0.187	0.304
QWEN2.5-3B	0.496	0.000	0.412	0.199	0.319
RLOO	0.601	0.588	0.000	0.173	0.338
NASH-MD-PG	0.813	0.801	0.827	0.000	0.638
STACKELBERGGDA					0.507
LEADER	0.696	0.681	0.662	0.362	0.000
FOLLOWER	0.813	0.821	0.799	0.493	0.688
					0.000