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ABSTRACT

We introduce Stackelberg Learning from Human Feedback (SLHF), a new frame-
work for preference optimization. SLHF frames the alignment problem as a
sequential-move game between two policies: a Leader, which commits to an action,
and a Follower, which responds conditionally on the Leader’s action. This approach
decomposes preference optimization into a refinement problem for the Follower and
an optimization problem against an adversary for the Leader. Unlike Reinforcement
Learning from Human Feedback (RLHF), which assigns scalar rewards to actions,
or Nash Learning from Human Feedback (NLHF), which seeks a simultaneous-
move equilibrium, SLHF leverages the asymmetry of sequential play to capture
richer preference structures. The sequential design of SLHF naturally enables
inference-time refinement, as the Follower learns to improve the Leader’s actions,
and these refinements can be leveraged through iterative sampling. We compare the
solution concepts of SLHF, RLHF, and NLHF, and lay out key advantages in con-
sistency, data sensitivity, and robustness to intransitive preferences. Experiments
on large language models demonstrate that SLHF achieves strong alignment across
diverse preference datasets, scales from 0.5B to 8B parameters, and yields inference-
time refinements that transfer across model families without further fine-tuning.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has emerged as the dominant paradigm for
aligning Large Language Models (LLMs) with human preferences (Casper et al., 2023; Kaufmann
et al., 2023). The standard pipeline involves two stages: first, a reward model is trained on a dataset
of pairwise human comparisons, and second, a policy is optimized via reinforcement learning to
maximize this reward (Christiano et al., 2017; Ouyang et al., 2022). Despite its empirical success,
RLHF relies on a critical assumption that diverse human preferences can be faithfully represented by
a single real-valued reward function. In practice, this assumption often fails as scalar reward models
cannot capture intransitive preference structures. Even when preferences are transitive, widely used
formulations such as the Bradley-Terry model (Bradley and Terry, 1952) can yield learned rewards
that diverge from the underlying preferences (Bertrand et al., 2023).

A common alternative to reward models and the Bradley-Terry assumption are preference models
which directly model pairwise preferences (Jiang et al., 2023). However, when preferences exhibit
cycles, optimality becomes ill-defined because no single policy can dominate all others. Nash
Learning from Human Feedback (NLHF) proposes the Nash Equilibrium (NE) as a solution to this
problem by framing preference optimization as a two-player simultaneous-move game, where the
Nash equilibrium (NE) corresponds to a typically stochastic policy whose actions are preferred to
any other policy’s actions on average (Munos et al., 2024).

We expand on this game-theoretic perspective and introduce Stackelberg Learning from Human
Feedback (SLHF), which models alignment as a sequential-move game between a Leader and a
Follower inspired by Stackelberg dynamics (Stackelberg, 1952). In SLHF, a Leader first commits to
an action, and a Follower then responds conditional on the Leader’s choice. This asymmetry yields
two key advantages. First, the Follower solves a refinement problem rather than optimizing directly
against a non-stationary opponent and unobserved actions. This leads to more stable learning and
quicker adaptation to the changes in the Leader’s policy. Consequently, this faster rate of learning
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yields a more stationary feedback to the Leader that can anticipate the Follower’s refinement more
accurately and choose actions that are robust to subsequent improvements.

Perhaps more importantly, SLHF provides a principled method for inference-time refinement: the
ability to improve model outputs at inference-time via repeated sampling. This is particularly valuable
when the target preferences change between training and inference-time. Most commonly, models are
trained on preferences aggregated across diverse annotators that might induce intransitive preference
cycles (Section 4). However, at inference-time, outputs ultimately have to align with an individual’s
taste. SLHF realizes this refinement through its two components: the Leader policy produces an initial
response, and the Follower policy generates refined responses conditional on the previous output.
Unlike sampling from a static distribution, this produces a sequence of outputs that can efficiently
explore the preference space. Crucially, this allows for performance gains through inference-time
computation alone, without any need for additional training or external feedback.

In summary, our contributions are as follows:

• We introduce Stackelberg Learning from Human Feedback (SLHF), a preference optimization
framework that models alignment as a two-player sequential game. We formalize this game
over a learned pairwise preference model and show that SLHF admits a unique Stackelberg
equilibrium under standard regularity assumptions (Section 4).

• We propose STACKELBERGGDA, an algorithm that approximates the Stackelberg equilibrium via
two-timescale gradient descent ascent. Our algorithm benefits from online RL optimization with-
out the need of an explicit reward model or expensive inference with a mixture policy (Section 5).

• Our experimental results show that the Follower, conditioned on the Leader’s output, consistently
outperforms both RLHF and NLHF baselines, whereas the Leader performs similarly to the
approximated Nash policy. Furthermore, we show that the Follower generalizes across models,
improving outputs from independently trained policies without additional fine-tuning (Section 6).

2 RELATED WORK

Reinforcement Learning from Human Feedback (RLHF). RLHF optimizes policies using
human preferences expressed through pairwise comparisons or rankings rather than explicit numeric
rewards (Wirth et al., 2017; Kaufmann et al., 2023). The standard pipeline, introduced by Christiano
et al. (2017), trains a reward model from human comparisons and then treats this model as a proxy
reward for policy optimization, typically using PPO (Schulman et al., 2017). This framework has
driven progress in text summarization (Stiennon et al., 2020), question answering (Nakano et al.,
2021; Menick et al., 2022), and large language model fine-tuning (Ziegler et al., 2019; Bai et al., 2022;
Glaese et al., 2022; Ouyang et al., 2022). Recent work integrates reward and policy updates into a
bilevel optimization loop (Shen et al., 2024; Thoma et al., 2024; Makar-Limanov et al., 2024), but
the reliance on a real-valued reward model remains. In particular, SGPO (Chu et al., 2025) considers
a Stackelberg formulation between a policy and an adversarial preference distribution. In contrast,
our work frames preference optimization as a sequential-move game between two policies and does
not assume transitive preferences.

Limitations of Reward Modeling. Most RLHF implementations reduce preference learning to
scalar reward estimation, typically based on the Bradley-Terry model (Bradley and Terry, 1952).
While adequate for transitive, single-objective preferences, such models cannot represent intransitive
structures and potentially misrank even transitive ones under model misspecification (Bertrand
et al., 2023). Consequently, RLHF policies can be sensitive to the distribution of training compar-
isons (Munos et al., 2024) and prone to mode collapse under continued optimization (Xiao et al.,
2024). Intransitive preference cycles have been observed not only in human feedback (Duan et al.,
2017; Alós-Ferrer et al., 2022; Casper et al., 2023) but also in LLM-generated annotations (Dubois
et al., 2024; Xu et al., 2025). Our approach sidesteps these issues by optimizing directly over
pairwise preferences without imposing a scalar reward model.

Preference Optimization. To address the limitations of reward modeling in RLHF, IPO (Azar et al.,
2023) extends Direct Preference Optimization (DPO) (Rafailov et al., 2023) by optimizing for the
win rate against a reference policy. Nash Learning from Human Feedback (NLHF) casts the learning
problem as a two-player simultaneous-move game and introduces NASH-MD-PG and NASH-EMA-
PG to approximate the Nash Equilibrium (NE) of a learned preference model via mirror descent
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(Munos et al., 2024). Subsequent work has extended this perspective, proposing various algorithms to
optimize for (approximate) NE, including ONLINE-IPO (Calandriello et al., 2024), SPPO (Wu et al.,
2024), SPO (Swamy et al., 2024), INPO (Zhang et al., 2025), DNO (Rosset et al., 2024), RSPO (Tang
et al., 2025), NASH-RS (Liu et al., 2025) and MPO (Wang et al., 2025); sometimes with strong
last-iterate convergence guarantees, e.g., EGPO (Zhou et al., 2025) . Because simultaneous games are
symmetric, these methods typically converge to mixed strategies unless one option is overwhelmingly
preferred (Liu et al., 2025). In contrast, SLHF models alignment as a sequential Stackelberg game
in which a Leader commits first and a Follower responds conditionally. This asymmetry yields a
different solution concept that can admit deterministic equilibria in the non-regularized limit.

Inference-Time Preference Improvement. Improving the capabilities of LLMs through additional
computation at inference time has recently received significant attention, especially in verifiable
domains such as coding or mathematics (Welleck et al., 2024). Closest to our work are self-correction
algorithms that aim to improve their responses without external feedback at test-time. A natural
approach to self-correction is to provide instructions only without further training, which, however,
can lead to performance degradation (Huang et al., 2024; Zheng et al., 2024; Tyen et al., 2024; Qu
et al., 2024). Other work on training models for self-correction either assumes human or AI revisions
(Saunders et al., 2022; Qu et al., 2024) or a reward function scoring responses (Welleck et al., 2023;
Akyurek et al., 2023; Zhang et al., 2024; Kumar et al., 2025). Similarly to SLHF, Kumar et al. (2025)
also propose to train an LLM in a sequential manner, however, assume a reward model and train in
two-stages instead of a single loop. SLHF provides a unified alternative: its Leader-Follower structure
naturally supports inference-time refinement through iterative sampling, enabling self-improvement
on arbitrary preference signals without auxiliary reward models or multi-stage procedures.

3 PROBLEM STATEMENT

We consider a preference optimization problem over a finite set of contexts X and actions Y . The
contexts x are drawn from a fixed and known distribution ρ ∈ ∆X , where ∆X is the probability sim-
plex over X . A policy π : X → ∆Y maps each context x ∈ X to a discrete probability distribution
π(· | x) ∈ ∆Y , where ∆Y is the probability simplex over Y . We let Π ..= {π : X → ∆Y} denote the
set of all policies. In the language modeling setting,X typically models the set of prompts, Y the candi-
date responses, and π is the LLM that defines a conditional distribution over responses given prompts.

Let the preference function p(y ≻ y′ | x) define the probability that y is preferred over y′ given x.
We adopt the convention of writing y ≻x y′ when p(y ≻ y′ | x) > 1/2. Slightly overloading notation,
the preference between two policies π and π′ given context x is defined as

p(π ≻ π′ | x) ..= Ey∼π(·|x),y′∼π′(·|x)
[
p(y ≻ y′ | x)

]
. (1)

There are two common approaches to implementing the preference function p in practice. Let D =
{(xi, y

w
i , y

l
i)}Ni=1 be a preference dataset, where ywi and yli denote the chosen and rejected actions in a

pairwise comparison, respectively. One approach is to frame this as a binary classification problem on
D and train a parametrized model to estimate p (Jiang et al., 2023). Alternatively, in the language mod-
eling setting, one could directly employ trained models to provide feedback by following instructions
without additional training. This method is often referred to as LLM-as-a-judge (Gu et al., 2024).

The core objective of preference optimization is to identify a policy that consistently generates optimal
or highly-preferred responses. The notion of an “optimal” policy is straightforward when preferences
are transitive. In such a case, for a given context x ∈ X , there exists an action y⋆x ∈ Y such that y⋆x ≻x

y for all y ∈ Y . This action is known as a Condorcet winner for x and represents the top element of the
induced total order. If every context x ∈ X admits a Condorcet winner, the optimal policy is simply
π⋆(x) = y⋆x. However, real preference data often contains cycles or other intransitivities, so a Con-
dorcet winner may not exist and policy optimality becomes ill-defined. To cope with such ambiguity,
prior work adopts different solution concepts, the two most common of which we briefly review below.

3.1 BACKGROUND ON EXISTING SOLUTION CONCEPTS AND APPROACHES

Reinforcement Learning from Human Feedback (RLHF). RLHF as proposed by Christiano et al.
(2017) and adapted to language modeling by Ziegler et al. (2019) splits preference optimization into
two steps. First, it assumes that the preference function p follows the Bradley-Terry model (Bradley
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and Terry, 1952) so that
p(y ≻ y′ | x) = σ(r(x, y)− r(x, y′)), (2)

where σ(x) = 1
1+exp(−x) is the sigmoid function and r : X ×Y → R is a real-valued reward function.

The reward function r is unknown so that an estimator r̂ is used that maximizes the log-likelihood of
the dataset D. In a second step, the policy π⋆ is chosen to maximize the expected reward with respect
to r̂ regularized by the Kullback-Leibler (KL) divergence against a fixed reference policy πref ∈ Π:

π⋆ ∈ argmax
π∈Π

Ex∼ρ

[
Ey∼π(·|x)

[
r̂(x, y)

]
− τKLx(π ∥πref)

]
. (3)

Here, τ ≥ 0 and KLx(π ∥πref) is computed between π(· | x) and πref(· | x). Under the Bradley-Terry
assumption, Equation (3) admits a unique closed-form solution (Rafailov et al., 2023). However,
additive score models like Bradley-Terry are provably limited in expressing cyclic or intransitive
preference structures, which have been empirically observed in both strategic games (Bertrand et al.,
2023) and human preference data (Duan et al., 2017; Alós-Ferrer et al., 2022; Casper et al., 2023).
Consequently, the optimal policy π⋆ depends critically on the data distribution in the training set
D, especially its sampling biases (Munos et al., 2024), which we elaborate more on in Section 4.1.

Nash Learning from Human Feedback (NLHF). NLHF avoids explicit reward modeling
by framing preference optimization as a two-player simultaneous game between two policies
π, π′ ∈ Π (Munos et al., 2024). The optimization problem is given by:

max
π∈Π

min
π′∈Π

Ex∼ρ

[
p(π ≻ π′ | x)− τKLx(π ∥πref) + τKLx(π

′ ∥πref)
]
. (4)

The solution to Equation (4) is a Nash equilibrium (π⋆, π′⋆), where neither side can be improved
unilaterally. The existence and uniqueness of this equilibrium follows from the concave-convex nature
of the objective (Munos et al., 2024). NLHF can incorporate online feedback and makes no structural
assumptions on preferences, but when no action is majority-preferred the equilibrium necessarily in-
volves mixed strategies (Liu et al., 2025), even in the absence of KL regularization when τ = 0. This
inherent stochasticity can be undesirable in applications where consistency and reliability are critical.

4 STACKELBERG LEARNING FROM HUMAN FEEDBACK (SLHF)

We now present Stackelberg Learning from Human Feedback (SLHF), a novel perspective on
the preference optimization problem. Inspired by Stackelberg games (Stackelberg, 1952), we cast
preference optimization as a sequential-move game between two players: the Leader and the Follower.
Given a context x, the Leader first chooses its action y ∼ π(· | x). The Follower then observes both
the context x and the Leader’s realized action y and responds with y′ ∼ ω(· | x, y). The Follower’s
policy ω is chosen from the set Ω = {ω : X × Y → ∆Y} which allows conditioning on both the
context and the Leader’s action. Formally, given reference policies πref ∈ Π and ωref ∈ Ω, the
optimization problem is defined as follows:

max
π∈Π

min
ω∈Ω

Ex∼ρ

[
Ey∼π(·|x)

[
Ey′∼ω(·|x,y)

[
p(y ≻ y′ | x)

]
+τFKLx,y(ω ∥ωref)

]
−τLKLx(π ∥πref)

]
(5)

where τL, τF ≥ 0 are player-specific regularization coefficients. We let f(π, ω) denote the objective
of Equation (5), which, in the absence of regularization, defines a sequential-move constant-sum game.

SLHF decomposes the preference optimization into two complementary roles, setting it apart from
single-policy methods like RLHF and NLHF. The Follower leverages its informational advantage of
observing the Leader’s committed action. This simplifies its task to learning a specialized refinement
policy that finds the best response to a known output, rather than optimizing against a non-stationary
opponent. The Leader, anticipating this refinement, learns to produce initial actions that remain
strong even after the Follower’s refinement. In Section 4.1, we illustrate that when preferences form
a cycle and no Condorcet winner exists, the Leader selects the least exploitable action, while the
Follower traverses the preference cycle, covering all plausibly optimal actions with minimal samples.

The formulation in (5) differs from standard Stackelberg settings (Conitzer and Sandholm, 2006),
where the Follower gets to condition on the Leader’s policy π only, not on the realized action y.
Allowing the Follower to observe y provides strictly more information whenever π is stochastic,
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Table 1: Transitive individual annotator prefer-
ences over three options {A,B,C}.

Type Preference Relationship Proportion

a1 A ≻ B ≻ C α1

a2 B ≻ C ≻ A α2

a3 C ≻ A ≻ B α3

Table 2: The preference function p induced by
the population in Table 1.

A B C

A 0.5 1− α2 α1

B α2 0.5 1− α3

C 1− α1 α3 0.5

yielding a simpler and stationary best response problem. In this setting, the Leader gains no advantage
from randomizing, i.e., playing a stochastic policy.

In line with previous results that the RLHF problem (3) admits a closed-form solution, we show
that there exists a unique solution to the SLHF problem (5). The proof is deferred to the Section A.1.
Proposition 1. Let τL, τF > 0 and suppose that πref(y | x) > 0 for all (x, y) ∈ X × Y . For
any preference function p(y ≻ y′ | x) there exists a unique solution (π⋆, ω⋆) to the preference
optimization problem in Equation (5).

The solution (π⋆, ω⋆) is called a Stackelberg equilibrium. It is folklore in the algorithmic game
theory literature that there exists a deterministic Stackelberg equilibrium when the Leader’s realized
action is observed by a best responding Follower, as there always exists a deterministic best response
for the Follower. Thus, there is no point in randomizing for the Leader. This stands in contrast to
the NE, which is in general stochastic. For completeness, we provide a proof in Appendix A.2.
Remark 2. For any preference function p(y ≻ y′ | x), the SLHF optimization problem (5) has a
deterministic solution (π⋆, ω⋆) whenever τL = τF = 0. Note that this solution may not necessarily
be unique due to the lack of regularization.

4.1 COMPARISON OF SOLUTION CONCEPTS

Before describing how to approximate the Stackelberg equilibrium, we first contrast RLHF, NLHF,
and SLHF in the Condorcet paradox (de Caritat Mis et al., 1785) described below. Consider a setting
with a single context |X | = 1 and three candidate actions Y = {A,B,C}. Let the preference function
p be given by the aggregate over the population of annotators, A = {a1, a2, a3}, defined in Table 1.
Each type of annotator has a strict preference ranking over Y and we aggregate their preferences as

p(y ≻ y′) =

3∑
i=1

αi1{y ≻ai
y′}, (6)

where 1{y ≻ai y
′} is 1 if y is preferred over y′ by the annotator type ai and 0 otherwise. Table 2

shows the aggregated preferences of the whole population. For example, p(A ≻ B) is the probability
that a randomly chosen annotator prefers A to B. This is true for annotator types a1 and a3 (from Ta-
ble 1), who make up a proportion α1+α3 of the population. Since α1+α2+α3 = 1, this is equivalent
to 1−α2, as shown in Table 2. A common example is to choose α1 = α2 = α3 = 1/3, which leads to
a cyclic relationship between three actions where A ≻ B ≻ C but C ≻ A. Hence, there exists no Con-
dorcet winner in this case. More generally, the interesting case is given by α1, α2, α3 < 1/2, and this
example is often referred to as the Condorcet paradox, because the annotators individually have tran-
sitive preferences (Table 1), but their aggregated preferences form a cycle (Table 2). For ease of pre-
sentation, we consider a non-regularized problem in the rest of this section so that τ = τL = τF = 0.

RLHF Solution. Our first observation is that the estimated reward function r̂ : X × Y → R
depends on the sampling distribution of the dataset D used to estimate r̂. Suppose D contains only
comparisons {A,B} and {B,C}, but not {A,C}. Because A ≻ B and B ≻ C for all annotators,
maximum-likelihood estimation, which fits a single underlying transitive reward function, yields
r̂(A) > r̂(B) > r̂(C), so the optimal policy is π⋆(A) = 1. However, different sampling patterns
(e.g., omitting {A,B}) can instead favor B or C. This illustrates a key limitation of RLHF, as its
solutions are sensitive to the specific comparisons present in D.

Nash Equilibrium. The NE of the matrix game defined in Table 2 is given by π⋆(A) = 1− 2α3,
π⋆(B) = 1− 2α1, π⋆(C) = 1− 2α2. In the special case of α1 = α2 = α3 = 1/3, the NE is uniform
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Algorithm 1 STACKELBERGGDA

1: procedure STACKELBERGGDA(X ,Y, ηL, ηF )
2: Initialize the Leader and Follower policies π1 and ω1

3: for i = 1, 2, . . . do
4: Update Leader’s policy: πi+1 = πi + ηL∇πf(πi, ωi)
5: Update Follower’s policy: ωi+1 = ωi − ηF∇ωf(πi, ωi)
6: Project πi+1 and ωi+1 to their respective probability simplices
7: end for
8: end procedure

User: <user_prompt>
Assistant:

(a) Prompt received as the Leader agent

User: <user_prompt>
Assistant: <leader_response>
User: Improve the previous answer!
Assistant:

(b) Prompt received as the Follower agent

Figure 1: Prompt templates used to train a single-model for both Leader and Follower completions.

over Y , i.e., it has the highest possible entropy. Unlike RLHF, this solution is dataset-independent, but
it produces a fully stochastic policy that may be undesirable in applications requiring decisive outputs.

Stackelberg Equilibrium. In SLHF, the players’ sequential roles resolve the cycle. The Follower’s
optimal strategy is straightforward as for any action y presented by the Leader, it plays the best
response y′ that beats it (i.e., C if y = A, etc.). The Leader, anticipating this deterministic best
response, chooses an initial robust action. This leads to the following equilibrium policies:

ω⋆(· | y) =


C if y = A w.p. 1
A if y = B w.p. 1
B if y = C w.p. 1

π⋆(·) =


A if α1 > max{α2, α3} w.p. 1
B if α2 > max{α1, α3} w.p. 1
C if α3 > max{α1, α2} w.p. 1

.

When α1 = α2 = α3 = 1/3, the Leader is indifferent, and any distribution over A,B,C (including the
uniform NE) is a valid Stackelberg equilibrium. Unlike RLHF, this solution requires no offline dataset,
and unlike NLHF, it admits a deterministic Leader and Follower policy when one type dominates.

Inference-Time Refinement. Motivated by applications such as text summarization, open-ended
generation, and audio-visual content creation, where users can reject outputs and request new
samples, we introduce the notion of inference-time refinement for preference optimization. At
inference-time, a single user interacts with the model and may resample actions until receiving
one that matches their preference, analogous to the pass@k metric in verifiable domains. This is
non-trivial because models are usually trained to reflect population preferences, yet deployment
requires adaptation to an individual user.

Consider the symmetric case α1 = α2 = α3 = 1/3, and without loss of generality, let the user be of
type a1 with ranking A ≻ B ≻ C. RLHF may return A, but depending on D it could also output B
or C, and repeated sampling offers no recourse. The NLHF solution is uniform over A,B,C, so the
probability of sampling A in a single draw is 1/3. By sampling N times, the probability of observing
at least one A is 1 − (2/3)N , i.e., 56% for N = 2 and 70% for N = 3. The SLHF solution starts
similarly: the first action is sampled from the Leader’s possibly uniform policy but subsequent actions
are drawn from the Follower’s policy, i.e., yi ∼ ω⋆(· | x, yi−1) for i ≥ 2. Following this structure,
the probability of sampling A within N = 2 steps increases to 67%, and for N = 3, the entire
preference cycle is traversed regardless of the Leader’s initial choice. Note that the SLHF solution
supports this refinement procedure without the need of additional training required at inference-time.
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Table 3: Pairwise preference comparisons between the responses of QWEN2.5-0.5B, RLOO, NASH-
MD-PG, and STACKELBERGGDA algorithms. Each cell represents the preference model’s average
score for the row algorithm over the column algorithm.

QWEN2.5-0.5B RLOO NASH-MD-PG STACKELBERGGDA

LEADER FOLLOWER

QWEN2.5-0.5B 0.000 0.407 0.279 0.266 0.200
RLOO 0.593 0.000 0.393 0.387 0.344
NASH-MD-PG 0.721 0.607 0.000 0.497 0.406
STACKELBERGGDA-LEADER 0.734 0.613 0.503 0.000 0.395
STACKELBERGGDA-FOLLOWER 0.800 0.656 0.594 0.605 0.000

5 STACKELBERG GRADIENT DESCENT ASCENT (STACKELBERGGDA)

We now introduce STACKELBERGGDA, a two-timescale Gradient Descent-Ascent (GDA) algorithm
designed for the sequential-move preference optimization problem in Section 4. STACKELBERGGDA
performs simultaneously gradient ascent and descent update steps on the Leader and Follower policies,
π and ω, with step size ηL and ηF , respectively, to find the maxmin solution to f(π, ω) defined in
Equation (5). It is a two-timescale algorithm as we choose ηF > ηL resulting in ω adapting faster
than π. We denote the two-timescale coefficient as κ = ηF

/ηL. After each update, both policies are
projected back onto their respective probability simplices to ensure feasibility.

The function f(π, ω) is concave in π and convex in ω.1 While standard gradient descent-ascent
with equal learning rates has ergodic convergence guarantees in this setting (Korpelevich, 1976;
Chen and Rockafellar, 1997; Nemirovski, 2004; Auslender and Teboulle, 2009; Nedić and Ozdaglar,
2009), we instead adopt a two-timescale variant. This choice is motivated by its stronger convergence
guarantees in more general nonconvex-concave regimes (Lin et al., 2025), as well as its empirical
success in both Actor-Critic methods (Prasad et al., 2015) and the training of Generative Adversarial
Networks (Heusel et al., 2017). This becomes especially valuable for the practical implementation
of STACKELBERGGDA for large state and action spaces and parameterized policies below.

Scalable Implementation of STACKELBERGGDA for LLM Fine-Tuning. Direct optimization
over the full policy spaces Π and Ω is infeasible when X and Y are large, as in LLM fine-tuning. To
address this challenge, we parametrize π and ω and estimate gradients from batches. Crucially for
LLM fine-tuning, the Leader and the Follower can share the same parametrization by using the prompt
template shown in Figure 1, which allows us to reduce the memory requirements. Additionally,
framing the Leader and the Follower policies as multi-turn dialogues enables us to use any policy
trained for multi-turn conversations as both πref and ωref. All implementation details and pseudocode
are provided in Section B.

6 EXPERIMENTS

We conduct a series of experiments to validate the Stackelberg formulation and the efficacy of
STACKELBERGGDA. Our evaluation is designed to answer three primary questions:
1) How does STACKELBERGGDA compare against established RLHF and NLHF baselines in a

controlled preference optimization task?

2) Can the Leader-Follower structure of SLHF enable effective inference-time refinement, and does
this capability generalize to improving outputs from other models?

3) Does the approach scale effectively to the large-scale, general-purpose fine-tuning of LLMs?
Section 6.1 addresses the first two questions by aligning models on a dataset with diverse human
preference signals. In the appendix, we also provide further results on iterative improvements with
increased inference-time computation (Section D.2), ablations of the hyperparameter κ (Section D.3),

1This follows from Munos et al. (2024). For completeness, we provide a formal proof in Section A.3, and
discuss the convergence behavior and limitations of STACKELBERGGDA in Section A.4.
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Table 4: Test-time improvement using different models for the initial response (Leader) and the
improvement (Follower). Each cell represents the preference model’s average score for the Follower’s
responses over the Leader’s responses.

Leader

QWEN2.5-0.5B RLOO NASH-MD-PG STACKELBERGGDA

Fo
llo

w
er QWEN2.5-0.5B 0.549 0.443 0.363 0.362

RLOO 0.534 0.403 0.369 0.360
NASH-MD-PG 0.708 0.600 0.493 0.476
STACKELBERGGDA 0.803 0.665 0.600 0.606

and additional scaling results (Section D.4). Section 6.2 then tackles the third question by applying
STACKELBERGGDA within a large-scale, open-source post-training pipeline.

6.1 EMPIRICAL COMPARISON OF SOLUTION CONCEPTS

Dataset. We use the HELPSTEER2 dataset (Wang et al., 2024), which contains 11,826 human-
annotated single-turn dialogues, to estimate the preference function p and its prompts during the
training loops. We choose this dataset due to its high-quality human annotations along five attributes
(helpfulness, correctness, coherence, complexity, and verbosity) that allows us to estimate a diverse
preference profile. Further details on the preference model specification and the resulting intransitivity
are provided in Section D.1.

Compared Methods. We compare STACKELBERGGDA with RLOO (Ahmadian et al., 2024) and
NASH-MD-PG (Munos et al., 2024) which represent the RLHF and NLHF frameworks, respec-
tively. We use these baselines because they are well-established and come with robust, well-tested
open-source implementations. This ensures that our comparison reflects differences between the
frameworks rather than implementation details. All models are fine-tuned from the QWEN2.5-
0.5B2 model and run for 1,000 gradient steps with a batch size of B = 32. We sweep learning
rates η ∈ {1e−6, 5e−6, 1e−5} and KL penalties τ ∈ {0.001, 0.01, 0.1} for all algorithms. For
NASH-MD-PG, we additionally vary the mixture parameter β ∈ {0, 0.25, 0.5, 0.75, 1}, and for
STACKELBERGGDA, the two-timescale coefficient κ ∈ {1, 5, 10}. Models are selected by aver-
age preference rate over QWEN2.5-0.5B yielding best setting η = 1e−5 and τ = 0.001, with
β = 0.75 for NASH-MD-PG and κ = 5 for STACKELBERGGDA. All implementations use the
Transformers (Wolf et al., 2020) and TRL (von Werra et al., 2020) libraries, with the AdamW
optimizer (Loshchilov and Hutter, 2019).

6.1.1 ROUND-ROBIN TOURNAMENT

Table 3 reports pairwise preference scores between the initial QWEN2.5-0.5B and the three fine-tuned
models. The first responses of STACKELBERGGDA-LEADER and NASH-MD-PG achieve roughly
73% preference over QWEN2.5-0.5B and 61% over RLOO, while tying at 50% when compared to
each other. This outcome aligns with settings where multiple high-quality responses exist and the
Stackelberg and Nash equilibria coincide (Section 4.1).

Crucially, applying the FOLLOWER of STACKELBERGGDA to improve its own initial responses
yields a marked performance gain. It achieves 80% preference over QWEN2.5-0.5B, 66% over
RLOO, 60% over NASH-MD-PG, and even outperforms the responses it was conditioned on in
60.5% of comparisons. Thus, a two-turn inference procedure provides substantial gains at the cost of
a single additional generation.

6.1.2 INFERENCE-TIME REFINEMENT

We further evaluate each model’s ability to act as a Follower, refining outputs from other mod-
els. Although only STACKELBERGGDA is explicitly trained for this task (and only to best

2https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct
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Table 5: AlpacaEval 2.0 results comparing trained models to GPT-4 TURBO. Length-controlled (LC)
winrate alleviate the length bias of the GPT-4 judge.

Model LC Winrate Winrate

GPT-4O-2024-05-13 57.46 51.33
LLAMA-3.1-TULU-3-8B-DPO 33.37 40.15
STACKELBERGGDA-FOLLOWER 28.89 61.58
STACKELBERGGDA-LEADER 27.09 49.24
META-LLAMA-3.1-8B-INSTRUCT 20.85 21.84
LLAMA-3.1-TULU-3-8B-SFT 8.83 14.26

respond to itself), we apply the same refinement procedure to all models to test their abil-
ity to generalize. Specifically, for every pair of Leader and Follower models selected from
QWEN2.5-0.5B, RLOO, NASH-MD-PG, STACKELBERGGDA, we first generate a response with
the selected Leader and then apply the Follower prompting template (Figure 1(b)) to produce a
potentially improved response. We refer to these as the Leader and Follower outputs, respectively.
Exhaustively evaluating all Leader-Follower pairs allows us to measure each model’s capacity for
inference-time refinement under diverse initial conditions. Table 4 reports the resulting preference
scores, which indicate how often the Follower output is preferred over the Leader’s generation.

STACKELBERGGDA consistently improves across all Leader models; most notably over QWEN2.5-
0.5B and RLOO, while achieving gains of up to 60% even when refining outputs from NASH-
MD-PG or itself. In contrast, QWEN2.5-0.5B and RLOO only improve upon responses from
QWEN2.5-0.5B and often degrade the quality of outputs from other Leaders. NASH-MD-PG can
enhance responses from QWEN2.5-0.5B and RLOO, but its 70% preference score over QWEN2.5-
0.5B still falls short of its own 73% self-improvement rate reported in Table 3. These findings extend
prior work on verifiable domains (Huang et al., 2024; Zheng et al., 2024; Tyen et al., 2024; Qu et al.,
2024) by showing that explicitly training to improve given outputs is crucial and mere instruction
prompting is insufficient to reliably enhance responses with respect to human preferences.

6.2 GENERAL PURPOSE FINE-TUNING

To evaluate STACKELBERGGDA for large-scale LLM fine-tuning in general chat applications, we
adopted the Tulu 3 post-training pipeline (Lambert et al., 2024). Using prompts from its preference
dataset3, we trained the 8B-parameter Supervised Fine-Tuned (SFT) checkpoint4, denoted LLAMA-
3.1-TULU-3-8B-SFT, with STACKELBERGGDA. Responses from the resulting Leader and Follower
policies were evaluated by the META-LLAMA-3.1-70B-INSTRUCT model (Weerawardhena et al.,
2025), used as an automatic preference judge. Final models were evaluated on AlpacaEval 2.0,
a benchmark shown to approximate human judgments (Dubois et al., 2024). We report both the
standard win rate and the Length-Controlled (LC) win rate, the latter designed to mitigate length bias
in LLM judge evaluations.

As shown in Table 5, both STACKELBERGGDA-LEADER and STACKELBERGGDA-FOLLOWER
substantially improve the win rates of the initial model and outperform META-LLAMA-3.1-
8B-INSTRUCT, which shares the same base model. While LLAMA-3.1-TULU-3-8B-DPO
and GPT-4O-2024-05-13 achieve higher LC win rates, STACKELBERGGDA attains superior
standard win rates surpassing even GPT-4O-2024-05-13, the top-performing model on the public
leaderboard.5 Notably, LLAMA-3.1-TULU-3-8B-DPO was trained on outputs generated by GPT-4,
the same model used for AlpacaEval 2.0’s evaluation, which may inflate its LC win rates and its
true performance is likely closer to STACKELBERGGDA ’s. We attribute the gap between LC and
standard win rates for STACKELBERGGDA to META-LLAMA-3.1-70B-INSTRUCT’s length bias
and consider refining the feedback source a promising avenue for future work.

3https://huggingface.co/datasets/allenai/llama-3.1-tulu-3-8b-preference-mixture
4https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-SFT
5https://tatsu-lab.github.io/alpaca_eval/
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7 CONCLUSION

We introduced Stackelberg Learning from Human Feedback (SLHF), a two-player sequential-move
framework that directly optimizes pairwise preference signals without requiring real-valued reward
models. We proposed STACKELBERGGDA to efficiently approximate the unique Stackelberg equi-
librium and scale to challenging tasks such as aligning LLMs with human preferences. Empirically,
STACKELBERGGDA’s Leader policy matches or exceeds standard baselines while the Follower policy
consistently improves outputs at inference time, even when paired with models it was not trained with.

Limitations. Similarly to NLHF, a key limitation of our approach is its reliance on a well-specified
and representative pairwise preference function, which can be challenging to obtain in open-ended
or under-specified domains. Moreover, although the sequential formulation enables inference-time
refinement through conditional generation, it currently operates without real-time user interaction.
Future work could integrate active preference elicitation and personalized refinement, allowing
SLHF to adapt dynamically to individual user preferences at test time. Finally, STACKELBERGGDA
currently has ergodic but not last-iterate guarantees; developing SLHF algorithms with last-iterate
convergence (e.g., via extragradient/optimistic or mirror-prox) is an open direction.
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A PROOFS

A.1 PROOF OF THEOREM 1

Proof. First, assume that the Leader’s policy π is fixed and consider the Follower’s optimization
problem

min
ω

Ex∼ρ,y∼π(·|x)
[
Ey′∼ω(·|x,y)[p(y ≻ y′ | x)] + τFKLx,y(ω ∥ωref)

]
. (7)

The optimization problem in (7) is equivalent to Equation (3) for the reward function r(x̃, y′) ..=
p(y ≻ y′ | x) with contexts x̃ = (x, y) and context distribution x̃ ∼ ρ⊗ π. As a result, Equation (7)
has a unique closed-form solution (Geist et al., 2019; Rafailov et al., 2023; Azar et al., 2023) given by

ω⋆(y′ | x, y) = 1

Z(x, y)
ωref(y′ | x, y) exp

(
1
τF p(y′ ≻ y | x)

)
where Z(x, y) =

∑
y′∈Y ωref(y′ | x, y) exp

(
1
τF p(y′ ≻ y | x)

)
is a partition factor that depends only

on (x, y) and πref. Hence, ω∗ can be expressed as a function of (x, y) and ωref without explicit
dependence on π.

Now, define the following reward function for the Leader’s optimization problem

r(x, y) ..= Ey′∼ω⋆(·|x,y)[p(y ≻ y′ | x)]. (8)

Note that ω⋆ is unique so that r(x, y) is a scalar. We can now restate Equation (5) for the Leader’s
optimization problem as

max
π

Ex∼ρ

[
Ey∼π(·|x)[r(x, y)]− τLKLx(π ∥πref)

]
which is again a KL-regularized optimization problem that admits a closed-form solution

π⋆(y | x) = 1

Z(x)
πref(y | x) exp

(
1
τL r(x, y)

)
.
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A.2 PROOF OF THEOREM 2

Proof. This lemma is folklore in the algorithmic game theory community and can be quickly verified.

Let x ∈ X . Given any action y ∈ Y , there exists a not necessarily unique y′ ∈ Y minimizing
p(y ≻ y′ | x). Hence, irrespective of the Leader’s policy π(· | x), there always exists a Follower’s
deterministic best response policy ωbr(· | x, y) with ωbr(y

′ | x, y) = 1 for some y′. In other words,
the Follower always has a deterministic best response policy.

Similarly, the optimization problem for the Leader given some context x reduces to finding y
that maximizes Ey′∼ωbr(·|x,y)[p(y ≻ y′ | x)] so that the SLHF optimization problem admits a
determinsitic solution.

A.3 CONCAVE-CONVEX PROPERTY OF f

We show here that the objective function f in Equation (5) of the Stackelberg optimization problem
is concave-convex. Similar results were established in the context of NLHF by Munos et al. (2024).

Throughout this section, we assume |X| = 1 and omit x from the notation for clarity. All results
extend directly to the general case with a finite context space X .

Then, the objective function of Equation (5) is given by

f(π, ω) = Ey∼π(·),y′∼ω(·|y)
[
p(y ≻ y′)

]
− τLKL

(
π ∥πref)+ τFEy∼π(·)[KLy

(
ω ∥ωref)]. (9)

The first term is bilinear in π and ω, as shown by expanding the expectation:

Ey∼π(·),y′∼ω(·|y)
[
p(y ≻ y′)

]
=

∑
y∈Y

π(y)
∑
y′∈Y

p(y ≻ y′)ω(y′ | y).

The KL terms are convex in their respective arguments. Hence, f is bilinear when τL = τF = 0.

A.4 COMMENTS ON THE CONVERGENCE OF STACKELBERGGDA (ALGORITHM 1)

We here want to briefly comment on the ergodic convergence guarantee of STACKELBERGGDA
that is a consequence of well-known results in the literature. We also briefly discuss limitations and
future work to achieve better theoretical convergence guarantees by adapting existing ideas from the
optimization and NLHF literature to the SLHF problem.

As previously shown, the SLHF objective f(π, ω) is concave-convex. It is well-known that two-
timescale GDA then converges in the ergodic sense, i.e., the averaged iterates converge to the
equilibrium with gradient complexity O(ε−2) (Nedić and Ozdaglar, 2009). In the strongly-concave-
strongly-convex setting, standard results also tell us that two-timescale GDA converges in the
last-iterate with complexity O(κ2 log 1

ε ) (Zhang et al., 2022; Zamani et al., 2024; Lin et al., 2024).
Unfortunately, the KL divergence is not strongly convex w.r.t. the ℓ2 norm so that these results do not
directly apply, and deriving linear last-iterate guarantees for STACKELBERGGDA is challenging. In
future work, it will be interesting to analyze whether, e.g., extragradient (Zhou et al., 2025) or mirror
descent (Munos et al., 2024) approaches that have been successfully applied to NLHF, can be adapted
to the SLHF framework to guarantee fast last-iterate convergence.

B SCALABLE IMPLEMENTATION OF STACKELBERGGDA

When fine-tuning large language models, the context and action spacesX and Y are far too large to op-
timize over Π and Ω directly. To address this, we introduce a practical variant of STACKELBERGGDA
in Algorithm 2.

Policy Parameterization. We replace the tabular policies π and ω with neural parameterizations
πθ and ωϕ (e.g., transformer networks). This renders the policy spaces tractable via their parameter
vectors θ and ϕ, however, the concave-convex property does not necessarily carry over to the
parameters θ and ϕ.
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Batched, Variance-reduced Gradient Estimates. Exact evaluation of the expectations in ∇f is
infeasible due to the expectation over the context and action spaces. Instead, at each iteration we
sample a batch of size B:

{(xi, yi, y
′
i, pi)}Bi=1, xi ∼ ρ, yi ∼ πθ(· | xi), y

′
i ∼ ωϕ(· | xi, yi), pi = p(yi ≻ y′i | xi).

We then form unbiased estimates as

∇̂θf =
1

B

B∑
i=1

(
pi − τLkLi

)
∇θ log πθ(yi | xi), ∇̂ϕf =

1

B

B∑
i=1

(
pi − τF kFi

)
∇ϕ logωϕ(y

′
i | xi, yi),

with likelihood ratios kLi = πθ(yi|xi)
πref(yi|xi)

and kFi =
ωϕ(y

′
i|xi,yi)

ωref(y′
i|xi,yi)

. The derivation of these gradients follow
the policy gradient method described in Williams (1992). The gradient estimators are naturally
compatible with additional variance reduction techniques such as subtracting a constant baseline.

Single-Model Instantiation. Simultaneously training two billion-parameter transformer models
is memory-prohibitive. Similarly to SCORE (Kumar et al., 2025), we collapse both Leader and
Follower into one model πθ by using distinct chat templates (Figure 1). When the model is only
given the context x, we use the template in Figure 1(a) that only includes x as the prompt. When the
model is given both the context x and an action y, we use the template in Figure 1(b) that includes
both the context x and the action y, as well as a predefined instruction to improve the action y.

Then, letting κ = αF

αL denote the two-timescale weight coefficient, we optimize the model to minimize
the following loss function

L(θ) = − 1

B

B∑
i=1

(
pi − τLkLi

)
log πθ(yi | xi) +

κ

B

B∑
i=1

(
pi − τF kFi

)
log πθ

(
y′i | xi, yi

)
. (10)

Gradient steps onL(θ) realize the two-time-scale gradient descent-ascent updates via a single network,
thereby substantially reducing memory usage.

Algorithm 2 STACKELBERGGDA (Practical)

1: procedure STACKELBERGGDA(X ,Y, ρ, η)
2: Initialize the parameter θ for the shared model
3: for i = 1, 2, . . . do
4: for b = 1, . . . , B do
5: Sample prompt xb ∼ ρ
6: Sample Leader response using the prompt in Figure 1(a): yb ∼ πθ(· | xb)
7: Sample Follower response using the prompt in Figure 1(b): y′b ∼ πθ(· | xb, yb)
8: Observe preference feedback pb = p(yb ≻ y′b | xb)
9: end for

10: Update the weights θ according to the loss in Equation (10): θ ← θ − η∇θL(θ)
11: end for
12: end procedure

Computational Comparison. At training time, the computational cost of STACKELBERGGDA
is comparable to standard online RLHF/NLHF algorithms, with only marginal overhead from the
Follower’s prompt. Specifically, STACKELBERGGDA requires two samples per prompt, matching
most NLHF methods and remaining more efficient than algorithms like NASH-MD-PG (Munos
et al., 2024) or ONLINEIPO (Calandriello et al., 2024) that rely on expensive mixture policies. While
SPO (Swamy et al., 2024) uses only one sample, its efficacy on LLM-scale tasks is not yet explored.
Finally, compared to RLHF, STACKELBERGGDA avoids the high memory cost of PPO (Schulman
et al., 2017) which is due to the value function estimation. Recent memory-efficient RLHF methods,
such as RLOO (Ahmadian et al., 2024) and GRPO (Shao et al., 2024), only resolve this memory
issue by introducing sampling costs comparable to, or even higher than, STACKELBERGGDA.
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C IMPLEMENTATION DETAILS

Implementation Codebase. We trained RLOO6 and NASH-MD-PG7 using their implementations
in the TRL Python package (von Werra et al., 2020). For all training runs, including reward modeling,
we used Low-Rank Adaptation (LoRA) (Hu et al., 2022) with rank r = 32, scaling factor α = 64,
and dropout rate set to 0.1. The codebase with instructions is included in the supplementary material
for reproduction.

LLM-as-a-Judge Implementation. In Section 6.2, we used the prompt depicted in Figure 2 as an
input for META-LLAMA-3.1-70B-INSTRUCT to provide a feedback to STACKELBERGGDA during
training. We calculate the preference probability for the first completion as the softmax probability
for the two tokens corresponding to the model identifier strings.

Compute Resources. Experiments in Section 6.1 were conducted on a single node with 8 Nvidia
GeForce RTX 4090 GPUs. The total compute time, including hyperparameter sweeps, was approx-
imately 4,000 GPU-hours. The training run in Section 6.2 was conducted on a single node with 4
Nvidia GH200 GPUs using approximately 1,300 GPU-hours.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 PREFERENCE MODEL

We estimate the preference model used to fine-tune the LLMs by treating the five attributes
in the HELPSTEER2 datasets (Wang et al., 2024) as distinct annotators, denoted by the set
A = {helpfulness, correctness, coherence, complexity, verbosity}, and define ν as a uniform
distribution over A. For each attribute a ∈ A, we estimate a reward function r̂a using the Bradley-
Terry model and maximize the log-likelihood on the training dataset D = {(xi, y

w
i , y

l
i)}Ni=1

min
r

N∑
i=1

σ(r(xi, y
w
i )− r(xi, y

l
i)) + λ(r(xi, y

w
i ) + r(xi, y

l
i))

2.

We here decided which response is the winning and losing one in the dataset by comparing the
attribute scores provided by the annotators. The additional regularization ensures that the rewards
are centralized around zero (Eisenstein et al., 2024). For the attributes correctness, helpfulness, and
coherence, we consider higher scores to be better while for verbosity and complexity lower values
are more preferable. This is in accordance with the scoring criteria described in Wang et al. (2024).
Each reward function is trained independently, initialized from the QWEN2.5-1.5B8 model with a
single linear head. We train each model for 5 epochs on the training prompts and completions with
batch size 32, learning rate 1e−4, and regularization coefficient λ = 0.01. The final accuracies of
the models on the validation dataset are 78%, 65%, 61%, 60%, and 59% for verbosity, complexity,
correctness, helpfulness, and coherence, respectively.

The overall preference function p is then defined as

p(y ≻ y′ | x) = 1

|ν|
∑
a∈ν

1{r̂a(x, y) ≥ r̂a(x, y
′)}. (11)

We evaluate the non-transitivity of the preference model p defined in Equation (11) on the validation
prompts and five responses from each of the four models used for comparison in Section 6. For
each prompt, we construct a complete directed graph between the 20 completions as nodes and
edges directed from the non-preferred completion towards the preferred one. Figure 3 illustrates
this directed graph on the first prompt of the validation dataset. 57% of the directed graphs include
cycles, which illustrate the intransitivity of the preference function p on the completion space Y .
Furthermore, there are almost 19 million cycles in the dataset across all prompts. From these cycles,
5.79% is length 9 or shorter, 41.64% is between length 10 and 12, 42.72% is of length 13 or 14, and

6https://huggingface.co/docs/trl/main/en/rloo_trainer
7https://huggingface.co/docs/trl/main/en/nash_md_trainer
8https://huggingface.co/unsloth/Qwen2.5-1.5B-Instruct
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User:
I require a leaderboard for various large language models.
I’ll provide you with prompts given to these models
and their corresponding outputs. Your task is to assess
these responses and select the model that produces
the best output from a human perspective.

## Instruction

{
"instruction": """{prompt}"""

}

## Model Outputs

Here are the unordered outputs from the models.
Each output is associated with a specific model,
identified by a unique model identifier.

{
{

"model_identifier": "A",
"output": """{response0}"""

},
{

"model_identifier": "B",
"output": """{response1}"""

}
}

## Task

Evaluate the models on the basis of the quality
and relevance of their results, and select the model
that generated the best result. Reply with the
identifier of the best model. Our evaluation will only
take into account the first character of your answer,
so make sure it contains only one of the identifiers and nothing
else (no quotation marks, no spaces, no new lines, ...).

Assistant:

Figure 2: LLM-as-a-judge prompt for META-LLAMA-3.1-70B-INSTRUCT

9.85% is longer. Also, 33.31% of the prompts have at least one but no more than 9 cycles, 17.12%
has between 10 and 99, 3.63% has between 100 and 999, and 2.54% has at least 1000.

D.2 ITERATIVE IMPROVEMENTS AT TEST-TIME

We extend the experimental results from Section 6 by analyzing iterative improvements and per-
formance scaling with increased test-time computation. Our results suggests that with increasing
test-time computation the benefit of fine-tuning using both RLOO or NASH-MD-PG is negligible
compared to using the base model QWEN2.5-0.5B. In contrast, STACKELBERGGDA yields strict
improvements. Building on the example in Section 4.1, we assume that at test-time, a single annotator
a ∼ ν and a context x ∼ ρ are sampled.

For the base model QWEN2.5-0.5B and the models with fine-tuned with RLOO and NASH-MD-PG,
we independently sample N responses y1, . . . , yN . For STACKELBERGGDA, which inherently
supports iterative refinement, we generate the first sample from the Leader policy y1 ∼ π⋆(· | x),
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Figure 3: Directed graph based with completions generated by the fine-tuned models and edge
directions representing the preference between them.

and subsequent responses from the Follower policy yi ∼ ω⋆(· | x, yi−1) for i ≥ 2. We define
y1:N ..= (y1, . . . , yN ).

In line with prior work on Best-of-N sampling (Openai et al., 2023; Beirami et al., 2024; Dubois
et al., 2024; Sessa et al., 2024), we evaluate the quality of the N samples by computing the maximum
reward obtained for each attribute under the sampled annotator’s reward model, that is,

r̂Na (x, y1:N ) ..= max
y1,...,yN

r̂a(x, yi). (12)

Analogous to the preference function p defined in Section 3, in this section, we compare two models
π and π′ w.r.t. the preference functions derived from the annotator-specific reward functions under
Best-of-N sampling:

pNa (π ≻ π′ | x) ..= E y1:N∼π(·|x)
y′
1:N∼π′(·|x)

[
1{r̂aN (x, y1:N ) ≥ r̂aN (x, y′1:N )}

]
. (13)

Notational Note. We here adopt a slight abuse of notation. Specifically, we write y1:N ∼ π(· | x)
to denote the sampling of N responses from a model π, even though this notation does not faithfully
represent the sampling procedure used by STACKELBERGGDA. For QWEN2.5-0.5B, RLOO, and
NASH-MD-PG, the samples y1, . . . , yN are drawn i.i.d. from a single model π(· | x). In contrast, for
STACKELBERGGDA, the sampling process is inherently autoregressive: we first draw y1 ∼ π⋆(· | x)
from the Leader policy, and then generate yi ∼ ω⋆(· | x, yi−1) for i ≥ 2 using the Follower policy.
Despite this difference, we overload the notation y1:N ∼ π(· | x) to unify the presentation in
Equations (12) and (13). In the case of STACKELBERGGDA, this notation should be interpreted as
shorthand for the autoregressive sampling process described above.

Previous work has shown that Best-of-N sampling can rival the performance of RLHF-based fine-
tuning (Dubois et al., 2023; Sessa et al., 2024; Beirami et al., 2024). Motivated by this, we compare
the preference scores defined in Equation (13) of RLOO, NASH-MD-PG, and STACKELBERGGDA
with respect to the base model QWEN2.5-0.5B. Throughout this section, we consider the maximum
number of samples to be N = 5.

Results. Table 6 reports the preference scores for RLOO. While the model initially (i.e. N = 1)
performs competitively on complexity and verbosity attributes, iterative sampling reveals a collapse
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Table 6: Preference scores for RLOO versus QWEN2.5-0.5B across all attributes as a function of
the number of test-time samples N .

Attribute Number of Samples N

1 2 3 4 5

Coherence 0.521 0.338 0.262 0.207 0.164
Complexity 0.892 0.842 0.801 0.771 0.754
Correctness 0.388 0.212 0.139 0.098 0.070
Helpfulness 0.322 0.150 0.087 0.057 0.036
Verbosity 0.846 0.777 0.728 0.695 0.669

Average 0.594 0.464 0.403 0.366 0.338

into a single preference mode. In particular, we observed deterministic outputs for RLOO the generic
response: "I apologize, but I’m unable to engage in conversations about political topics. If you
have any other questions or need further assistance with a different subject, feel free to ask." As a
result, the model’s diversity and coverage deteriorate, and its overall preference scores (relative to
QWEN2.5-0.5B) decline sharply as N increases.

In contrast, NASH-MD-PG demonstrates some benefit from additional sampling, as shown in
Table 7. Its preference score for verbosity remains stable and it shows moderate improvement in
coherence. However, for the remaining attributes (correctness, helpfulness, and complexity) its gains
are slower than those achieved by QWEN2.5-0.5B with Best-of-N sampling. Consequently, the
overall preference score of NASH-MD-PG declines with increasing N , suggesting that the model
fine-tuned with NASH-MD-PG does not improve notably (compared to the base model) when the
number of samples drawn at test-time increases.

On the other hand, STACKELBERGGDA exhibits more favorable behavior. As shown in Table 8, while
the preference score on verbosity and complexity taper off with more samples, STACKELBERGGDA
achieves notably faster gains on coherence, correctness, and helpfulness. For these attributes, the
preference rate improves by 10 percentage points or more, making STACKELBERGGDA the only
method among the three to demonstrate consistent improvement over QWEN2.5-0.5B as N increases.
This means that the performance of STACKELBERGGDA effectively scales with test-time compute.

The strong emphasis on complexity and verbosity by RLOO is expected, as it optimizes the average
reward across all five attributes, and these two dimensions yield the highest values. However, for
NASH-MD-PG, this outcome is less expected. We hypothesize that it stems from its training objective,
which pits the policy against a mixture of the reference policy QWEN2.5-0.5B and the most recent
iteration. Once NASH-MD-PG outperforms QWEN2.5-0.5B on all attributes, it begins focusing
on attributes where further improvement over itself is possible, namely, complexity and verbosity.
Nevertheless, this skewed emphasis is suboptimal: annotators prefer models that perform well on
all attributes. In fact, a policy that focuses on coherence, correctness, and helpfulness is preferred
by 60% of the annotators. STACKELBERGGDA’s asymmetric formulation that trains a Leader and a
Follower policy separately (though potentially unified in a single model) helps mitigate this imbalance
across attributes. This leads to a more balanced policy that is preferred by a wider range of annotators.

D.3 ABLATION ON THE TWO-TIMESCALE COEFFICIENT

Table 9 and Table 10 present ablations on the follower weight parameter κ in STACKELBERGGDA’s
loss function (10) when fine-tuning the QWEN2.5-0.5B and QWEN2.5-1.5B models, respectively.
Each row reports the average preference scores over the corresponding initial policy, for both the
Leader and Follower policies, on the training and validation splits. These results highlight the
importance of balancing the two components of STACKELBERGGDA’s asymmetric training objective.
In general, moderate values of κ can help the Follower improve without compromising the Leader
too severely, but excessively large weights may impair both players.

In Table 9, we observe that increasing κ leads to a gradual decline in the Leader’s performance. While
the Follower benefits from increasing κ from 1 to 5, performance worsens at κ = 10 for both the
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Table 7: Preference scores for NASH-MD-PG versus QWEN2.5-0.5B across all attributes as a
function of the number of test-time samples N .

Attribute Number of Samples N

1 2 3 4 5

Coherence 0.731 0.743 0.757 0.763 0.760
Complexity 0.761 0.743 0.732 0.726 0.727
Correctness 0.633 0.615 0.620 0.617 0.615
Helpfulness 0.645 0.633 0.640 0.641 0.638
Verbosity 0.858 0.855 0.850 0.849 0.852

Average 0.726 0.718 0.720 0.719 0.718

Table 8: Preference scores for STACKELBERGGDA versus QWEN2.5-0.5B across all attributes as a
function of the number of test-time samples N .

Attribute Number of Samples N

1 2 3 4 5

Coherence 0.778 0.850 0.865 0.875 0.873
Complexity 0.714 0.666 0.628 0.600 0.592
Correctness 0.670 0.762 0.791 0.795 0.803
Helpfulness 0.692 0.767 0.783 0.786 0.791
Verbosity 0.833 0.820 0.798 0.777 0.765

Average 0.738 0.773 0.773 0.767 0.765

Leader and Follower, indicating an overemphasis on the Follower’s loss can destabilize the overall
optimization.

Table 10 shows a similar trend for the larger QWEN2.5-1.5B model. Due to the decrease of
performance above κ = 5 in Table 9, we carry out the ablation on a finer grid κ ∈ {1, 2, 3, 4, 5}.
Moreover, we evaluate each model after 2000 training steps as a larger base model requires more
gradient updates to converge. While the performance of κ = 1 stands out in Table 10, we observe that
it is overfitting to verbosity and complexity by responding to every prompt with short, non-informative
answers asking for further information such as "Certainly! If you need detailed insights on technical
topics like that, feel free to ask—I’m here to assist with informatively aligned queries!". On the
contrary to the collapse observed for RLOO in Section D.2, the model remains stochastic with
the responses having similar information content. This outcome demonstrates the effectiveness of
STACKELBERGGDA in optimizing its objective despite the qualitatively undesirable responses.

D.4 MODEL SCALING

We extend our round-robin comparison from Section 6.1.1 to larger models within the Qwen2.5
family, specifically, QWEN2.5-1.5B and QWEN2.5-3B (Qwen et al., 2024). These evaluations
demonstrate that STACKELBERGGDA continues to be on par or outperform baselines even as model
size increases. Since larger models require more training updates to reach convergence in our setup,
we train NASH-MD-PG for 1,500 steps and STACKELBERGGDA for 2,000 steps. The RLOO
method converges earlier and requires only 1,000 steps even for these larger models. We fix the
follower-weight parameter at κ = 5 for both scales, based on our ablation results in Section D.3.

Table 11 summarizes results for models fine-tuned from QWEN2.5-1.5B. Both NASH-MD-PG
and STACKELBERGGDA clearly outperform the base model and the RLOO baseline. While the
Leader policy of STACKELBERGGDA underperforms compared to NASH-MD-PG, the Follower
policy conditioned on the Leader’s responses matches or exceeds NASH-MD-PG’s performance,
mirroring the improvements observed when starting from the QWEN2.5-0.5B in Table 3. As noted
in Section D.3, this performance gap between the Leader and NASH-MD-PG could likely be reduced
by tuning κ, albeit at the potential cost of Follower quality.
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Table 9: Ablation on the follower weight parameter κ in STACKELBERGGDA’s loss function (10)
fine-tuning the QWEN2.5-0.5B model. Scores show the average preference over the base model.

Follower Weight κ Train Validation

Leader Follower Leader Follower

1 0.768 0.804 0.761 0.784
5 0.743 0.814 0.723 0.806
10 0.725 0.800 0.710 0.783

Table 10: Ablation on the follower weight parameter κ in STACKELBERGGDA’s loss function (10)
fine-tuning the QWEN2.5-1.5B model. Scores show the average preference over the base model.

Follower Weight κ Train Validation

Leader Follower Leader Follower

1 0.848 0.852 0.850 0.851
2 0.718 0.737 0.719 0.730
3 0.767 0.806 0.771 0.803
4 0.733 0.811 0.736 0.807
5 0.720 0.819 0.720 0.818

Table 12 shows analogous comparisons for models initialized from QWEN2.5-3B. Here, STACKEL-
BERGGDA again performs strongly, with its Follower policy matching or surpassing NASH-MD-PG
across most pairwise matchups, and both algorithms outperforming the base model. NASH-MD-PG
and STACKELBERGGDA are closely matched when compared directly. Due to compute limitations,
we capped training at 2,000 steps for these larger models. Nonetheless, the Leader policy continued
to improve near the end of training, suggesting further gains in preference score may be possible with
additional updates.
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Table 11: Pairwise preference comparisons between the responses of QWEN2.5-0.5B, QWEN2.5-
1.5B, RLOO, NASH-MD-PG, and STACKELBERGGDA algorithms. Fine-tuned models are trained
from the QWEN2.5-1.5B. Each cell shows the average preference score of the row model over the
column model.

QWEN2.5-0.5B QWEN2.5-1.5B RLOO NASH-MD-PG STACKELBERGGDA

LEADER FOLLOWER

QWEN2.5-0.5B 0.000 0.479 0.379 0.188 0.271 0.166
QWEN2.5-1.5B 0.521 0.000 0.401 0.209 0.293 0.187
RLOO 0.621 0.599 0.000 0.197 0.310 0.175
NASH-MD-PG 0.812 0.791 0.803 0.000 0.623 0.489
STACKELBERGGDA

LEADER
0.729 0.707 0.690 0.377 0.000 0.313

STACKELBERGGDA
FOLLOWER

0.834 0.813 0.825 0.511 0.687 0.000

Table 12: Pairwise preference comparisons between the responses of QWEN2.5-0.5B, QWEN2.5-3B,
RLOO, NASH-MD-PG, and STACKELBERGGDA algorithms. Fine-tuned models are trained from
the QWEN2.5-3B. Each cell shows the average preference score of the row model over the column
model.

QWEN2.5-0.5B QWEN2.5-3B RLOO NASH-MD-PG STACKELBERGGDA

LEADER FOLLOWER

QWEN2.5-0.5B 0.000 0.504 0.399 0.187 0.304 0.187
QWEN2.5-3B 0.496 0.000 0.412 0.199 0.319 0.179
RLOO 0.601 0.588 0.000 0.173 0.338 0.201
NASH-MD-PG 0.813 0.801 0.827 0.000 0.638 0.507
STACKELBERGGDA

LEADER
0.696 0.681 0.662 0.362 0.000 0.312

STACKELBERGGDA
FOLLOWER

0.813 0.821 0.799 0.493 0.688 0.000
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