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Abstract

Model-based reinforcement learning (MBRL) hinges on a learned dynamics model
whose errors can compound along imagined rollouts. We study how encouraging
flatness in the model’s training loss affects downstream control, and show that
steering optimization toward flatter minima yields a better policy. Concretely,
we integrate Sharpness-Aware Minimization (SAM) into world-model training as
a drop-in objective, leaving the planner and policy components unchanged. On
the theory side, we derive PAC-Bayesian bounds that link first-order sharpness
to the value-estimation gap and the performance gap between model-optimal and
true-optimal policies, implying that flatter minima tighten both. Empirically, SAM
reduces measured sharpness and value-prediction error and improves returns across
HumanoidBench, Atari-100k, and high-DoF DeepMind Control tasks. Augmenting
existing MBRL algorithms with SAM increases mean return, with especially large
gains in settings with high dimensional state–action spaces. We further observe
positive transfer across algorithms and input modalities, including a transformer-
based world-model. These results position flat-minima training as a simple, general
mechanism for more robust MBRL without architectural changes. 1

1 Introduction

Model-based reinforcement learning (MBRL) involves learning the environment dynamics by training
an explicit dynamics world-model. With this model, an agent can simulate trajectories and cut
real environment interaction dramatically [7, 17–19, 44, 50], enabling strong sample efficiency
compared to model-free methods [5, 15, 38, 42, 43]. Yet these gains hinge on model fidelity:
prediction errors can compound across imagined rollouts [24, 49], especially under distribution
shift as the policy improves or when the data-collection policy differs from the control policy
[8, 9, 13, 22, 27, 29–31, 46]. In practice, latent imagination models may hallucinate on long horizons,
degrading downstream control [24]. A parallel literature in supervised learning links flat minima of
the training loss to better generalization and robustness [12, 14, 25, 26, 36, 48, 55], with benefits under
label imbalance, label noise, and distribution shift [3, 41, 45, 53, 54]. Sharpness-Aware Minimization
(SAM) achieves this by biasing optimization toward flatter minima. SAM-like updates have improved
policy-gradient and value-based agents [33, 34], but despite its centrality, the world-model in MBRL
has received little attention through the lens of flat minima.

This paper studies flat-minima training for world-models in MBRL. We integrate SAM into
the environment dynamics model objective as a drop-in change (no architectural or planning mod-
ifications), and examine how reducing sharpness of the model’s loss relates to rollout reliability
and control. Theoretically, we connect first-order sharpness to both value-estimation error and the
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sub-optimality of the model-optimal policy via PAC-Bayesian bounds. Empirically, we compare
standard return curves and value-prediction error versus Monte-Carlo estimates, probe sensitivity to
the SAM radius ρ, and report compute overhead. Our contributions can be summarised as follows:

• We propose a drop-in SAM for world-model training; planners/policies unchanged.
• Our theoretical contribution includes a PAC-Bayesian bound that links loss landscape sharpness to

value estimation error and performance gaps.
• Through hessian spectra, we show baseline minima is sharper. Our experiments provide evidence

that encouraging convergence to flatter minima also reduces sharpness and value-prediction error.
• We demonstrate the +89.1% mean return on HumanoidBench; +27.6% gains on Atari-100k on a

transformer world-model and +20.6% on high-DoF DMC environments.
• We observe that encouraging convergence to flatter minimum to different components of MBRL

has different effects. It helps dynamics model the most and can aid policy when applied to policy
loss, while it harms value/reward prediction heads.

Taken together, our results position flat-minima training as a general, drop-in mechanism for more
robust MBRL: it tightens theory-grounded error terms, measurably flattens the learned model’s
landscape, and yields stronger policies across algorithms, observation modalities, and challenging
high-DoF control tasks.

2 Related Works

A large body of work links the geometry of the loss landscape to generalization, with flatter minima
correlating with improved out-of-distribution performance [12, 20, 25]. Information-theoretic and
PAC-Bayesian perspectives explain this connection by relating flatness to shorter description length
and broader posteriors that are robust to perturbations [21, 37]. Comparative studies identify flatness
as a strong empirical predictor of generalization relative to gradient and spectral metrics [25],
and recent bounds formalize how optimizing for flatness tightens generalization guarantees [1, 11,
51]. Sharpness-Aware Minimization (SAM) biases training toward flatter regions via an inner
maximization over local perturbations followed by descent at the adversarial point [12]. Variants
improve robustness [47, 52], incorporate curvature/Fisher information [28], analyze convergence in
nonconvex settings [39], and address scale/efficiency (ASAM, Efficient SAM) [10, 32]. Empirically,
batch-size and architecture studies further support the flatness–generalization link [26, 35].

Figure 1: Illustrating value error and performance gap due to
model error in estimating true returns (V ) vs estimation (V̂ ).

MBRL attains high sample-efficiency
but is sensitive to model errors that
compound across long rollouts and
under distribution shift as policies im-
prove or when the data-collection and
control policies differ [8, 9, 13, 16,
22, 23, 27, 29–31, 46]. Remedies in-
clude conservative/uncertainty-aware
objectives [27], robust training [40],
ensembles [8], and smoothness con-
straints (e.g., Lipschitz control) [2].
Nonetheless, latent imagination mod-
els can hallucinate on long horizons
[16], motivating training schemes that
reduce sensitivity to parameter perturbations and shift. Applying sharpness-aware training within RL
has primarily targeted policy parameters, where flatter solutions improve plasticity and robustness
under perturbations and shifts [33, 34]. These results suggest that flatness benefits translate beyond
supervised learning. However, in MBRL the world-model has been comparatively underexplored
through the lens of flat minima.

Prior sharpness-aware RL mainly targets policy/value losses; we instead optimize the world-model
loss. We introduce a drop-in SAM objective for dynamics training (no planner/policy changes) and
derive PAC-Bayesian bounds linking first-order sharpness of the model-error landscape to value- and
performance-gap terms. Flat-minima training thus offers a simple, architecture-agnostic mechanism
complementary to robustness/uncertainty methods [2, 8, 16].
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3 Preliminaries

This section introduces fundamental concepts of MBRL, defines sharpness in loss landscapes, and
discusses the general benefits of converging to flatter minima.

3.1 Model-Based Reinforcement Learning (MBRL)

In a Markov Decision Process (MDP), an agent interacts with an environment by taking an action at in
a state st, receiving a reward rt, and transitioning to a new state st+1 according to unknown dynamics
P (st+1|st, at) and reward function r(st, at). The agent’s goal is to learn a policy π(at|st) that
maximizes the expected discounted sum of future rewards, V π(s0) = Eπ,P [

∑∞
t=0 γ

trt|s0], where
γ ∈ [0, 1) is the discount factor. In MBRL, we learn an explicit model of the dynamics P̂θ(st+1|st, at)
and/or reward function r̂θ(st, at), collectively denoted as the world-model M̂θ, parameterized by
θ. This model is typically trained by minimizing a loss function LS(θ) on a dataset S of collected
transitions (st, at, rt, st+1). For example, LS(θ) could be the mean squared error (MSE) between
predicted and actual next states:

LS(θ) =
1

|S|
∑

(s,a,s′)∈S

∥ŝ′θ(s, a)− s′∥2,

where ŝ′θ(s, a) is the model’s prediction for the next state. Once learned, M̂θ can be used for planning
(e.g., Model Predictive Control), policy optimization via simulated experience, or to compute value
functions V̂ π(s0) based on model roll-outs. A critical challenge in MBRL is ensuring the learned
model M̂θ generalizes well, especially to state-action pairs encountered as the policy improves or
during planning, which may differ from the training data distribution [9, 31]. Poor generalization
can lead to compounding errors in multi-step predictions, degrading the quality of planned actions
and learned policies [23]. The robustness of the model to such distributional shifts and to inherent
uncertainties is paramount for effective MBRL. We later define dπ as the discounted state-action
occupancy measure for a policy π.

3.2 Flat Minima, Generalization and Sharpness-Aware Minimization

In this subsection we briefly introduce the notions of flat and sharp minima for world-model training,
define the first-order sharpness (R

(1)
ρ ), and explain why flatter regions tend to generalize better

through both an intuitive robustness perspective and a PAC-Bayesian view that ties sharpness to
complexity terms in generalization bounds. We then present SAM and its practical surrogate objective
as a way to bias optimization toward flatter minima. This setup prepares the ground for our later
results that relate model sharpness to value-prediction error and to the sub-optimality of the policy
induced by the learned model.

3.2.1 Flat Minima and Generalization

Let LS(θ) be the empirical loss of a dynamics model with parameters θ ∈ Rd on a training dataset S .
A parameter vector θ⋆ is said to lie in a flat minimum if the loss function LS(θ) is locally insensitive
to small perturbations around θ⋆. Conversely, a sharp minimum exhibits a rapid increase in loss even
for small perturbations. More formally, for a small radius ρ > 0, a flat minimum satisfies:

max
∥ϵ∥2≤ρ

LS(θ
⋆ + ϵ) ≈ LS(θ

⋆).

In this paper, we primarily consider First-order sharpness (R(1)
ρ (θ)), which quantifies the maximum

squared norm of the gradient in a ρ-neighborhood around θ:

R(1)
ρ (θ) := max

∥ϵ∥2≤ρ
∥∇θLS(θ + ϵ)∥22. (1)

A small value of R(1)
ρ (θ) indicates that the gradients remain small within the neighborhood, character-

istic of a flatter region. Crucially, extensive empirical studies have shown that sharp minima correlate
with poor model generalization and vice versa [12, 25, 26]. Intuitively, this can be explained with a
robustness argument: a sharp minimum in the loss landscape implies potentially large changes in the
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loss for small errors in parameter estimation or shifts in data. Flat minima in the model loss landscape
are associated with better generalization. A model residing in a flat minimum is less sensitive to small
variations in its parameters, which typically translates to more robust predictions. This robustness
helps mitigate the compounding of errors during multi-step predictions and improves resilience to
shifts in the state-action visitation distribution as the policy evolves. Smoother Jacobians of the model
function with respect to its inputs and parameters, often found in flatter regions, contribute to this
stability [33].

The benefits of flat minima can also be understood from a PAC-Bayesian viewpoint [37]. If we
consider a distribution q(θ′) centered around the learned parameters θ (e.g., θ is the mean or mode
of q), flatter minima correspond to broader posterior distributions q(θ′) that still maintain low loss.
Standard PAC-Bayesian generalization bounds often include a complexity term related to the KL-
divergence between the posterior q(θ′) and a prior p(θ′). For certain choices of prior and posterior,
this KL-divergence term can be related to sharpness measures like R(1)

ρ [1, 11]. Minimizing sharpness
can thus lead to tighter PAC-Bayesian bounds on the true risk (e.g., multi-step prediction error) of the
learned model, providing a theoretical underpinning for the empirical observation that flatter minima
generalize better.

3.2.2 Sharpness-Aware Minimization

Having established the importance of flat minima for generalization, we now introduce Sharpness-
Aware Minimization (SAM) as a technique to achieve such minima for dynamics models in MBRL.
We then present our theoretical results linking the sharpness of the learned model to MBRL perfor-
mance. Sharpness-Aware Minimization (SAM) [12] is an optimization procedure designed to steer
the learning process towards flatter minima. Instead of minimizing the original model loss LS(θ)
(e.g., MSE for next-state predictions), SAM aims to minimize a modified sharpness-regularized loss,
LSAM
S (θ), which considers the worst-case loss value in a local neighborhood:

min
θ

max
∥ϵ∥2≤ρ

LS(θ + ϵ)︸ ︷︷ ︸
=:LSAM

S (θ)

+λ∥θ∥22, (2)

where λ is a weight-decay coefficient and ρ is the radius of the L2-ball. The inner maximization
problem seeks an adversarial perturbation ϵ that maximizes the loss. This is typically approximated
by a single gradient ascent step:

max
∥ϵ∥2≤ρ

LS(θ + ϵ) ≈ LS

(
θ + ρ

∇θLS(θ)

∥∇θLS(θ)∥2

)
. (3)

The parameters θ are then updated using the gradient of this surrogate loss. A single SAM step
thus involves two forward-backward passes: one to compute ∇θLS(θ) (to find the ascent direction)
and another to compute the gradient of the loss at the perturbed point for the parameter update. By
minimizing LSAM

S (θ), SAM effectively penalizes sharp regions where LS(θ + ϵ) can be much larger
than LS(θ), thereby encouraging convergence to flatter minima where R

(1)
ρ (θ) (as defined in Eq. 1)

is smaller.

4 Sharpness-Aware Minimization for Dynamics Models

We now connect the concept of flat minima, as promoted by SAM, to the performance of MBRL
agents. Our theoretical motivation demonstrates that reducing the sharpness of the learned dynamics
model can lead to tighter bounds on policy performance. Recall that M̂θ is the learned dynamics
model, V π(s0) is the true expected return, and V̂ π(s0) is the model-estimated return. We define
L̂(θ;π) as the empirical one-step model error, representing the average discrepancy (e.g., in terms
of state prediction and reward prediction) between the model M̂θ and the true environment when
evaluated on data generated under policy π. This L̂(θ;π) measures the model’s performance on the
true dynamics distribution induced by π, which might differ from the training loss LS(θ) defined
over a fixed dataset S . The theorems below relate this policy-dependent model error and its sharpness
to value estimation and policy performance. Let Mloss be an upper bound on the per-sample one-step
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model error, n be the number of samples used to estimate L̂(θ;π), d the number of model parameters,
ρ the perturbation radius for sharpness, and δ the confidence parameter. Ω(d, n, ρ, δ) represents a
model complexity or capacity term.

Theorem 1 (Return-estimation gap). For any policy π and discount γ ∈ [0, 1). Let L̂(θ;π) be the
empirical model error under π computed from n i.i.d. samples, and assume the per-sample loss is
bounded by Mloss and the first-order sharpness of minimum R

(1)
ρ (θ;π), for any initial state s0 we

have, with probability at least 1− δ,∣∣V π(s0)− V̂ π(s0)
∣∣ ≤ γ

(1− γ)2

[
L̂(θ;π) +R(1)

ρ (θ;π) +
√
Mloss/n+Ω(d, n, ρ, δ)

]
.

The bound on the value-estimation gap, |V π − V̂ π|, decomposes into three interpretable terms. First,
L̂(θ;π) is the empirical one-step prediction error incurred by the learned dynamics M̂θ under policy
π; naturally, smaller prediction error tightens the bound. Second, R(1)

ρ (θ;π) measures the first-order
sharpness of the true model error landscape with respect to θ under policy π: a low value indicates
that the model’s error L(θ;π) is stable to small perturbations of the parameters θ, an essential property
because θ itself is only an estimate. Finally, the sampling- and capacity-related terms

√
Mloss/n

and Ω(d, n, ρ, δ) quantify residual uncertainty arising from finite data and model complexity. The
term γ

(1−γ)2 highlights how these one-step error and sharpness concerns can be amplified over the

effective horizon of the task. Crucially, if the model error landscape is flat (small R(1)
ρ (θ;π)), the

value estimates V̂ π are more reliable.

Figure 2: Comparison of applying SAM to TD-MPC2 in dynamics model for high-Dof env. in DMC.
We observe a statistically significant improvement in policy in comparing TD-MPC2 + SAM (ours)
against TD-MPC2 (baseline). All experiments were run upto 2M env. steps and 4 seeds

Theorem 2 (Performance Gap). Let π∗ be the optimal policy in the true environment and π̂∗ be

the policy that is optimal according to the learned model M̂θ. If C = max(s,a)
dπ∗

(s,a)
dπ̂∗ (s,a)

is the
concentrability coefficient measuring the distribution mismatch between π∗ and π̂∗:

∣∣V π∗(s0)− V π̂∗(s0)
∣∣≤ γ(1 + C)

(1− γ)2

[
L̂(θ; π̂∗) +R(1)

ρ (θ; π̂∗) +
√

Mloss

n +Ω(d, n, ρ, δ)

]
.

This theorem addresses a pivotal question in MBRL: How closely does the policy π̂∗, derived from
our learned model M̂θ, perform compared to the true optimal policy π∗? The performance gap,
|V π∗(s0)− V π̂∗(s0)|, is bounded by terms analogous to Thm. 1, specifically the model’s one-step
error L̂(θ; π̂∗) and the sharpness of this error landscape R

(1)
ρ (θ; π̂∗). A key distinction is that these

terms are now evaluated under the model-optimal policy π̂∗, reflecting the model’s accuracy and
robustness in the regions it deems most promising for high returns. A low sharpness R(1)

ρ (θ; π̂∗) is
especially important, indicating that the model’s favorable assessment of π̂∗ is stable and less likely
to be an artifact of exploiting inaccuracies in a sharp area of its learned dynamics. The bound also
incorporates the concentrability coefficient C, which acknowledges that significant distributional
differences between π∗ and π̂∗ can widen the performance gap. A small R(1)

ρ (θ; π̂∗) suggests that the
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model’s assessment of π̂∗ is robust, making it more likely that π̂∗ is genuinely a good policy in the
true environment, not just an artifact of exploiting model inaccuracies in a sharp region of the model
error landscape.

Figure 3: Scatter plot of estimating true re-
turns V vs estimated returns V̂ . V̂ is closer to
V when we use SAM as our base optimizer
especially during the later env. steps.

Implications for SAM in MBRL. The dynamics
model in MBRL is typically trained by minimizing
a surrogate loss function, LS(θ) (e.g., mean squared
error of next-state predictions on a replay buffer S).
Standard optimizers aim to reduce LS(θ). SAM mod-
ifies this process to find parameters θ that not only
yield low LS(θ) but also reside in a flat region of this
training loss landscape (i.e., low R

(1)
ρ (θ) for LS , as

defined in Eq. 1). Thm. 1 and 2 feature L̂(θ;π) (the
empirical true model error under policy π) and its
sharpness R(1)

ρ (θ;π). The crucial connection is that
a model trained with SAM to achieve a flat minimum
for its training loss LS is expected to generalize better.
Better generalization implies that the model’s actual
predictive accuracy on states visited by π (related
to L̂(θ;π)) is more robust to variations in input and
parameters. This robustness, in turn, should translate
to a flatter landscape for the true model error, i.e., a
smaller R(1)

ρ (θ;π) as it appears in the theorems. Therefore, after achieving a low empirical model
error L̂(θ;π) (or L̂(θ; π̂∗)), the sharpness term R

(1)
ρ becomes a critical factor governing the reliability

of value estimates and the quality of the derived policy. By promoting convergence to flatter minima
of the training loss LS , SAM aims to reduce the corresponding sharpness R

(1)
ρ (θ;π) in the true

model error landscape. This, according to our theoretical motivation, tightens the bounds on both
value estimation error and the suboptimality of the learned policy, providing a principled reason for
expecting improved performance from SAM-trained dynamics models in MBRL.

5 Experiments

We evaluate whether training the world-model with SAM improves downstream control by encour-
aging convergence to flatter minima. The theoretical results in Sec. 4 motivate the expectation
that flatter minima should reduce value-estimation error and narrow the gap between model-optimal
and true-optimal policies. To test this claim without altering planner or policy architectures, we
integrate SAM solely into the dynamics loss of established MBRL agents and assess performance
across state-based high-degree-of-freedom (DoF) control (DMC App. Tab. 10 and HumanoidBench
Fig. 4) and pixel-based discrete control (Atari-100k) Tab. 1. Our evaluation reports returns and
sharpness Tab. 8 via top Hessian eigenvalues and value-prediction V̂ π against Monte-Carlo returns
V π Fig. 3, and records compute overhead. Baseline hyper-parameters follow the original papers;
SAM introduces a single radius parameter ρ App. Tab. 4.

5.1 TD-MPC2 on DeepMind Control (DMC)

We build on TD-MPC2 [19] and isolate the effect of sharpness-aware training on the world-model by
applying SAM only to the dynamics loss while leaving the planner and policy unchanged. We evaluate
on high-DoF DeepMind Control tasks: humanoid_run, humanoid_walk, dog_run, dog_walk, and
dog_trot using the official TD-MPC2 replay and optimization schedules for 2M environment steps
per task. Results are averaged over four seeds and reported as mean ± SEM. To verify that SAM
actually finds flatter minima, we approximate the leading Hessian eigenvalues of the dynamics loss
via power iteration similar to [12] on replay mini-batches. To connect geometry to control quality,
we measure value-prediction error as the absolute gap between Monte-Carlo returns collected in the
environment and model-estimated returns. Unless otherwise noted, all hyper-parameters follow the
TD-MPC2 defaults, and the SAM radius ρ is selected via a small coarse grid in App. Tab. 5.
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Figure 4: Learning curves for TD-MPC2 (baseline) and TD-MPC2+SAM on 11 HumanoidBench
tasks, averaged over 4 seeds (shaded area is SEM). TD-MPC2+SAM demonstrates improved perfor-
mance across a majority of tasks.

5.2 TD-MPC2 on HumanoidBench

In HumanoidBench, we integrate SAM into TD-MPC2 by modifying only the dynamics component
of the world-model, replacing its training loss with a SAM surrogate while keeping the online planner,
policy architecture, replay buffer, and optimization schedule exactly as in the original algorithm.
We evaluate this SAM-augmented variant on the eleven-task locomotion suite for 2M environment
steps per task, sweeping the SAM radius ρ once per suite, and running four random seeds; we report
mean ± SEM and test for improvement using one-tailed paired t-tests across seeds (null: no gain;
alternative: SAM > baseline).Humanoid control couples high dimensionality and under-actuation
(25 DoF with 19 actuators for the body; with two hands the action space is 61 and the state is 151
dimensions), intermittent non-smooth contacts with sharp stability margins, and long horizons that
bind balance recovery to forward progress (e.g., hurdles, stairs, maze) or demand precise upper-
body coordination without degrading gait (e.g., reach, balance). We report results on 11 different
tasks in the suite that range in varying degree of hardness. By holding planning and policy fixed
and touching only the dynamics-model objective, the study cleanly attributes any gains in sample
efficiency, stability, or robustness to SAM’s effect on the learned model, making HumanoidBench a
stringent and informative testbed for SAM-enhanced model-based control.
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5.3 TWISTER on Atari 100k

In addition to continuous-control domains, we test whether the benefits of SAM on world-model
learning persist under pixel observations and discrete action spaces by applying the same modification
to TWISTER, a Dreamer-style agent that replaces the recurrent world-model with a transformer
while retaining the standard actor–critic heads. This experiment complements our HumanoidBench
study in two important ways. We consider 19/25 Atari-100k envs. due to compute constraints.
First, Atari-100k poses a stringent sample-efficiency test from raw RGB with a fixed 100k-step
budget, making it a natural counterpoint to high-DoF proprioceptive control; any improvement there
suggests that SAM’s effect is not tied to a particular modality or planner but to the robustness of the
learned world dynamics. Second, the original TWISTER paper argues that transformer world-models
better capture long-range temporal structure than recurrent variants, yet such high-capacity sequence
models are also susceptible to sharp minima during maximum-likelihood training [4]; inserting SAM
precisely at the world-model update probes whether flattening the loss landscape yields more stable
value targets and rollouts for the unchanged policy/value heads. Concretely, we evaluate TWISTER
and TWISTER+SAM on twenty Atari-100k games for 100k environment steps, average over five
seeds, and keep all hyperparameters identical except for the SAM radius ρ (swept on a small grid).

5.4 Results

We evaluate SAM as a drop-in change to the world-model loss in two settings TD-MPC2 for high-
DoF proprioceptive control and TWISTER for pixel-based Atari and observe consistent gains. On
HumanoidBench (11 tasks, 2M env. steps, 4 seeds) (Fig. 4, TD-MPC2+SAM improves mean return
by +89.1% over the TD-MPC2 baseline, with especially pronounced and often earlier-emerging
gains on locomotion-heavy tasks (e.g., walk, run, stand). Several tasks with small margins (stair,
sit_simple) show trends favoring SAM but with mixed statistical significance; per-task t-tests
are reported later (App. Tab. 3). Importantly, gains often appear early in training, consistent
with SAM stabilizing world-model rollouts used by MPC. On high-DoF DMC (Fig. 2, App. Tab.
10 ), SAM similarly improves performance across humanoid_run, humanoid_walk, dog_run,
dog_walk, and dog_trot at 2M steps (mean ± SEM over 4 seeds), yielding an average per-
task relative gain of +20.6%, with the largest boost on humanoid_run (+60.8%; see Tab. 10.

Figure 5: Returns on humanoid_run vs ρ for
TD-MPC2 + SAM

To probe modality and action-space generality, we
apply the same modification to TWISTER [6] on
Atari-100k (19 games, 100k steps, 5 seeds) as in
the case for TD-MPC2 on HumanoidBench and
high DoF-DMC envs. and find broad improvements
with the SAM-augmented agent, while keeping all
settings identical (Tab. 1); excluding Freeway
where both agents score 0, TWISTER+SAM achieves
a +27.6% improvement in human-normalized
score, with large wins in absolute performance on
Battle Zone (+87.6%), Frostbite (+314.9%),
Gopher (+97.3%), and Road Runner (+58.3%).
These results indicate that steering world-model train-
ing toward flatter minima reliably improves down-
stream control without changing the planner or pol-
icy, and that the effect transfers across algorithms,
observation modalities, and action spaces.

5.5 Ablation and Sensitivity

Radius ablation and choice. Sweeping the SAM radius ρ yields a characteristic unimodal response
(Fig. 5). Very small ρ under-regularizes and recovers the baseline. Very large ρ over-perturbs
parameters and can destabilize training. To minimize tuning we fix a single ρ per setting based on
the sweep: ρ=1.0 × 10−3 for Atari-100k, ρ=2.5 × 10−5 for high-DoF DMC, and ρ=0.00125 for
HumanoidBench with a targeted exception of ρ=0.005 on sit_simple and sit_hard. These suites
prefer different magnitudes, which we attribute to observation modality and model capacity. Adaptive
variants such as ASAM [32] can further reduce tuning effort.
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Table 1: Performance comparison across 20 Atari games. TWISTER and its SAM-augmented variant
are benchmarked against prior model-based methods (TWIM, IRIS, Dreamer v3) and baseline agents
(Random, Human, Simple). TWISTER w/ SAM consistently improves performance in challenging
environments, demonstrating the effectiveness of sharpness-aware optimization in MBRL

Game Random Human Simple TWIM IRIS Dreamer v3 TWISTER TWISTER w/ SAM
Alien 228 7128 617 675 420 959 823 947
Amidar 6 1720 74 122 143 139 172 172
Assault 222 742 527 683 1524 706 777 1102
Asterix 210 8503 1128 1116 854 932 1132 1030
Bank Heist 14 753 34 467 53 649 673 886
Battle Zone 2360 37188 4031 5068 13074 12250 5452 10230
Boxing 0 12 8 78 70 78 80 86
Demon Attack 152 1971 208 350 2034 303 286 293
Freeway 0 30 17 24 31 0 0 0
Frostbite 65 4335 237 1476 259 909 388 1610
Gopher 258 2412 597 1675 2236 3730 2078 4099
Hero 1027 30826 2657 7254 7037 11161 9836 12320
James Bond 29 303 100 362 463 445 354 426
Kangaroo 52 3035 51 1240 838 4098 1349 1555
Ms Pacman 307 6952 1480 1588 999 1327 2319 2409
Pong -21 15 13 19 15 18 20 20
Road Runner 12 7845 5641 9107 9615 15565 9811 15532
Seaquest 68 42055 683 774 661 618 434 426
Up N Down 533 11693 3350 15982 3546 7600 4761 6857

Effect sizes and generality. Across suites, the same drop-in change produces consistent gains while
holding the planner and policy fixed. On HumanoidBench, TD-MPC2+SAM improves mean return
by +89.1%. On high-DoF DMC, we observe an average per-task relative gain of +20.6% (or +12.5%
when aggregating returns across tasks) with the largest boost on humanoid_run. On Atari-100k,
TWISTER+SAM achieves a +27.6% mean human-normalised performance improvement. These
effects are consistent with flatter world-model minima producing more stable rollouts.

Value–prediction error. To test whether flatter minima translate into better planning targets, we
compare model-estimated returns V̂ π(s0) with Monte-Carlo returns V π(s0) under matched initial
states, frozen policies, and horizons, and report E[ |V π(s0) − V̂ π(s0)| ] per task and seed (Fig.
3). TD-MPC2+SAM consistently reduces this value–estimation gap on HumanoidBench and high-
DoF DMC, with the largest decreases on locomotion-heavy tasks where compounding bias is most
pronounced. The reductions appear mid-training and persist to 2M steps, which aligns with our
theory in Sec. 4 that lowering first-order sharpness tightens the value-gap bound.

Where to apply SAM in TD-MPC2. We ablate the attachment point of SAM within TD-MPC2
(App. Tab. 7). Applying SAM only to the dynamics loss yields the largest and most reliable gains
and lowers value error. Applying SAM to reward or value heads is detrimental in our setting because
adversarial perturbations corrupt critic targets and planning costs. Policy-side SAM can help on some
tasks, but its effect is secondary. These findings provide further evidence supporting the approach to
regularize the model that mediates rollouts, not the scalar targets they produce.

Statistical significance. Per-task improvements on HumanoidBench are assessed with one-tailed
paired t-tests across seeds (alternative: SAM > baseline). Appendix Table 3 reports significant
gains on multiple tasks, including balance_hard/balance_simple (p=0.002), run (p=0.032),
and pole (p=0.024). The remaining tasks trend positive but do not reach α=0.05 with n=4 and
higher variance.

Compute considerations. Vanilla SAM adds one inner ascent and one outer descent per update.
In our implementation this is roughly a 1.7× wall-clock multiplier at fixed batch sizes with modest
memory overhead, and it does not change environment interaction. If wall-clock is constrained,
practitioners can apply SAM intermittently (every k model updates), anneal the inner step frequency
late in training, or cache shared activations to amortize the second backward pass.

6 Limitations

Our evaluation focuses on simulation (HumanoidBench, DMC, Atari-100k) and on two agents
(TD-MPC2 and TWISTER), suggesting but not proving broader generality; future work will test
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real robots, stronger dynamics shift, and additional MBRL methods. Results use four seeds for
HumanoidBench/DMC and five for Atari-100k with one-tailed paired (t)-tests (App. Table 3); some
tasks do not reach conventional significance at (α = 0.05). We keep TD-MPC2’s default, relatively
short MPC horizon; longer horizons remain to be explored. The theory treats mini-batches as
approximately independent; extending to standard mixing assumptions could strengthen guarantees.
Our robustness diagnostics (leading Hessian eigenvalues and value–prediction error) are informative
but cover a subset of tasks (App. Tab. 8, Fig. 3). Performance is somewhat sensitive to the SAM
radius (ρ); we select one value per suite with two task-specific exceptions, and vanilla SAM increases
training wall-clock by about (1.7×) at fixed batch sizes (App. G); adaptive or intermittent variants
may reduce tuning and cost. To isolate the effect of flatness we keep baseline hyperparameters as
published and vary only (ρ). For Atari we use TWISTER, so absolute scores may differ from prior
reports; we emphasize the relative improvements from adding SAM.

7 Conclusion

We studied sharpness-aware training for world-models in MBRL and showed that a simple, drop-in
SAM objective on the dynamics loss improves planning without changing the planner or policy.
Our analysis links first-order sharpness to both value-estimation error and the suboptimality of the
model-optimal policy. In particular, Thm. 2 implies that flatter minima reduce model bias and
tighten policy-performance guarantees. Empirically, these insights translate into stronger control.
TD-MPC2+SAM lifts HumanoidBench mean return by +89.1%. We observe consistent gains on high-
DoF DMC and broad improvements on Atari-100k with TWISTER while holding architectures and
hyperparameters fixed apart from the SAM radius ρ. Ablations indicate that targeting the dynamics
loss is the key lever. The added cost is modest in practice. Vanilla SAM introduces one inner ascent
and one outer descent per update, which we measure as roughly a 1.7× training-time multiplier at
fixed batch sizes, with no change in environment steps. In terms of practice, ρ is the main knob and
mild tuning suffices. SAM is complementary to data augmentation, explicit smoothness control,
and ensemble-based uncertainty and can be layered with these tools. Taken together, our theory and
experiments support a clear message. Encouraging the world-model to converge to flatter minima is a
principled and practical way to reduce model bias and improve downstream policies in model-based
RL.

8 Future Work

We see three immediate directions. (i) Develop MBRL-specific sharpness-aware training—objectives
and schedules tailored to dynamics learning and planning. (ii) Validate the approach on real robots,
studying reliability under latency, safety limits, and non-stationary dynamics. (iii) Compare against
methods that may implicitly enforce flat minima (e.g., ensembles, noise/augmentation, Lipschitz
constraints), measuring both sharpness and control performance.
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A Notation Table

Table 2: Summary of Notation
Symbol Description

S Training dataset of transitions (fixed replay buffer)
s, s0, st State, initial state, state at time t
a, at Action, action at time t
θ Parameters of the world-model
d Dimensionality of model parameters θ
LS(θ) Empirical loss of the model on dataset S with parameters θ
L(θ;π) True (population) one-step model error under policy π

L̂(θ;π) Empirical one-step model error under policy π (on samples from dπ)
ρ Radius of the neighborhood for sharpness calculation / SAM perturbation
ϵ Perturbation vector for model parameters
R

(1)
ρ (θ) First-order sharpness of training loss LS(θ)

R
(1)
ρ (θ;π) First-order sharpness of true model error L(θ;π) (theory context)

LSAM
S (θ) Sharpness-Aware Minimization objective function

λ Weight decay coefficient (for SAM or general regularization)
M True MDP (Markov Decision Process)
M̂θ Learned model of the MDP, parameterized by θ
P (·|s, a) True transition probability function
P̂θ(·|s, a) Learned transition probability function
r(s, a) True reward function
r̂θ(s, a) Learned reward function (if part of the model)
π A policy π : S → A
π∗ Optimal policy in the true environment M
π̂∗ Optimal policy in the learned model M̂θ

V π(s0) True expected discounted return of policy π from s0
V̂ π(s0) Expected discounted return of policy π estimated by model M̂θ

γ Discount factor
dπ(s, a) Discounted state-action occupancy measure for policy π

n Number of samples (e.g., to estimate L̂(θ;π) or size of S)
δ Confidence parameter (e.g., 1− δ probability)

C Concentrability coefficient: max(s,a)
dπ∗

(s,a)
dπ̂∗ (s,a)

Mloss (in bounds) Upper bound on the per-sample one-step model error value
Ω(d, n, ρ, δ) Model complexity/capacity term in generalization bounds

B Proofs of Theoretical Results

In this section, we provide the proofs for Thm. 1 and Thm. 2 presented in Sec. 4. The proofs
leverage standard results from learning theory and model-based reinforcement learning.

B.1 Preliminaries for Proofs

We first recall two key results that will be used in the proofs.

Simulation Lemma. For any policy π, discount factor γ, and a world-model M̂θ whose one-step
population model error under π is L(θ;π) = E(s,a)∼dπ [∥P (·|s, a) − P̂θ(·|s, a)∥1], the difference
between the true value V π(s0) and the model-estimated value V̂ π(s0) is bounded (assuming rewards
rt ∈ [0, Rmax]):

|V π(s0)− V̂ π(s0)| ≤
γRmax

(1− γ)2
L(θ;π). (4)
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If rewards are part of the model error (e.g., bounded prediction error ϵr per step), the term L(θ;π) in
the bound effectively incorporates both transition and reward errors. For simplicity and consistency
with the main text where model error L̂ directly contributes to the value gap scaled by γ/(1− γ)2,
we’ll use a form of the simulation lemma where We define L(θ;π) := E(s,a)∼dπ [err(s, a)] leads to:

|V π(s0)− V̂ π(s0)| ≤
γ

(1− γ)2
E(s,a)∼dπ [err(s, a)]. (5)

We will denote E(s,a)∼dπ [err(s, a)] as L(θ;π), representing the true one-step prediction error of the
model under policy π.

Bound on Population Model Error. Given an empirical model error L̂(θ;π) calculated on a
training set of size n, its first-order sharpness R(1)

ρ (θ;π) (of the true model error landscape L(θ;π)),
a maximum per-sample loss Mloss, and model parameters θ ∈ Rd, the true population model error
L(θ;π) can be bounded. Specifically, with probability at least 1− δ:

L(θ;π) ≲ L̂(θ;π) +R(1)
ρ (θ;π) +

√
Mloss

n
+Ω(d, n, ρ, δ), (6)

where Ω(d, n, ρ, δ) is a model complexity term. The ≲ indicates an approximation or bound that may
hide constants. This type of bound often arises from PAC-Bayesian analysis or uniform convergence
arguments applied to sharpness-aware contexts.

B.2 Proof of Thm. 1 (Return-Estimation Gap)

Theorem 3 (Return-Estimation Gap Restated, cf. Thm. 1). For any policy π and discount factor
γ ∈ (0, 1), with probability at least 1−δ over n i.i.d. training samples for the model error estimation:

∣∣V π(s0)− V̂ π(s0)
∣∣ ≤ γ

(1− γ)2

[
L̂(θ;π) +R(1)

ρ (θ;π) +
√

Mloss

n +Ω(d, n, ρ, δ)

]
.

Proof. We start with the Simulation Lemma (Eq. 5):

|V π(s0)− V̂ π(s0)| ≤
γ

(1− γ)2
L(θ;π).

Now, we substitute the upper bound for the population model error L(θ;π) from Equation 6. This
bound holds with probability at least 1− δ:

L(θ;π) ≲ L̂(θ;π) +R(1)
ρ (θ;π) +

√
Mloss

n
+Ω(d, n, ρ, δ).

Plugging this into the simulation lemma bound, we get:

∣∣V π(s0)− V̂ π(s0)
∣∣ ≤ γ

(1− γ)2

[
L̂(θ;π) +R(1)

ρ (θ;π) +
√

Mloss

n +Ω(d, n, ρ, δ)

]
.

This completes the proof. The term L̂(θ;π) is the empirical one-step model error under policy π, and
R

(1)
ρ (θ;π) is the first-order sharpness of the true model error landscape L(θ;π).

B.3 Proof of Theorem 2 (Performance Gap)

Theorem 4 (Performance Gap Restated, cf. Theorem 2). Let π∗ be the optimal policy in the
true environment and π̂∗ be the policy that is optimal according to the learned model M̂θ. If

C = max(s,a)
dπ∗

(s,a)
dπ̂∗ (s,a)

is the concentrability coefficient measuring the distribution mismatch between
π∗ and π̂∗:∣∣V π∗(s0)− V π̂∗(s0)

∣∣≤ γ(1 + C)

(1− γ)2

[
L̂(θ; π̂∗) +R(1)

ρ (θ; π̂∗) +
√

Mloss

n +Ω(d, n, ρ, δ)

]
.
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Proof. Since π∗ is the optimal policy in the true environment M , we have V π∗
(s0) ≥ V π̂∗

(s0).
Therefore, the performance gap is:

|V π∗
(s0)− V π̂∗

(s0)| = V π∗
(s0)− V π̂∗

(s0). (7)

We can decompose this difference as:

V π∗
(s0)−V π̂∗

(s0) = [V π∗
(s0)− V̂ π∗

(s0)] + [V̂ π∗
(s0)− V̂ π̂∗

(s0)] + [V̂ π̂∗
(s0)−V π̂∗

(s0)]. (8)

Applying the Simulation Lemma (Equation 5) to the first and third terms:

|V π∗
(s0)− V̂ π∗

(s0)| ≤
γ

(1− γ)2
L(θ;π∗) (9)

|V̂ π̂∗
(s0)− V π̂∗

(s0)| ≤
γ

(1− γ)2
L(θ; π̂∗) (10)

Since π̂∗ is the optimal policy in the learned model M̂θ, we have V̂ π̂∗
(s0) ≥ V̂ π∗

(s0). Therefore,
the middle term in Equation 8 is non-positive:

V̂ π∗
(s0)− V̂ π̂∗

(s0) ≤ 0. (11)

Substituting these into Equation 8 and using the bounds from 9 and 10:

V π∗
(s0)− V π̂∗

(s0) ≤
γ

(1− γ)2
L(θ;π∗) + 0 +

γ

(1− γ)2
L(θ; π̂∗)

=
γ

(1− γ)2
[L(θ;π∗) + L(θ; π̂∗)]. (12)

Using the definition of the concentrability coefficient C = max(s,a)
dπ∗

(s,a)
dπ̂∗ (s,a)

, we can bound the model
error under π∗ in terms of the model error under π̂∗. Assuming the model error is an expectation over
the state-action distribution, L(θ;π) = E(s,a)∼dπ [err(s, a; θ)]:

L(θ;π∗) =
∑
s,a

dπ
∗
(s, a)err(s, a; θ) ≤

∑
s,a

C · dπ̂
∗
(s, a)err(s, a; θ) = C · L(θ; π̂∗).

Substituting this into Equation 12:

V π∗
(s0)− V π̂∗

(s0) ≤
γ

(1− γ)2
[C · L(θ; π̂∗) + L(θ; π̂∗)]

=
γ(1 + C)

(1− γ)2
L(θ; π̂∗). (13)

Finally, we substitute the upper bound for the population model error L(θ; π̂∗) from Equation 6,
which holds with probability at least 1− δ:

L(θ; π̂∗) ≲ L̂(θ; π̂∗) +R(1)
ρ (θ; π̂∗) +

√
Mloss

n
+Ω(d, n, ρ, δ).

Plugging this into Equation 13 yields the final result:∣∣V π∗(s0)− V π̂∗(s0)
∣∣≤ γ(1 + C)

(1− γ)2

[
L̂(θ; π̂∗) +R(1)

ρ (θ; π̂∗) +
√

Mloss

n +Ω(d, n, ρ, δ)

]
.

This completes the proof. The terms L̂(θ; π̂∗) and R
(1)
ρ (θ; π̂∗) refer to the empirical one-step model

error and the first-order sharpness of the true model error landscape L(θ; π̂∗), evaluated under the
model-optimal policy π̂∗.

C On the Correlation Between Loss Sharpness and Model Lipschitz
Continuity

In the context of model-based reinforcement learning, the smoothness of the learned dynamics model
M̂θ (parameterized by θ) can be crucial for robust planning and generalization. Lipschitz continuity
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is a common measure of such smoothness. Here, we briefly explore a tangential connection between
the sharpness of the model’s training loss and the Lipschitz properties of the model. While our main
theoretical results (Theorems 1 and 2) directly incorporate first-order sharpness R(1)

ρ , understanding
its relationship with other smoothness measures like Lipschitz constants can provide additional
intuition.

Let f̂θ(x) represent a component of our learned model (e.g., the next-state prediction function, where
x = (s, a) is a state-action pair) and f(x) be the corresponding true environment dynamics. The
model is trained to minimize a loss, commonly mean squared error (MSE) for continuous state
predictions:

L(θ) = Ex∼Px

[
(f(x)− f̂θ(x))

2
]
,

where Px is the distribution of training data.

[Lipschitz Continuity] A function g : X → Y (where Y could be Rk) is Lipschitz continuous with
constant Lg if for all x1, x2 ∈ X :

∥g(x1)− g(x2)∥Y ≤ Lg∥x1 − x2∥X .

[Second-Order Sharpness (Spectral Norm of Hessian)] A common measure of sharpness related to
the curvature of the loss landscape L(θ) at a point θ is the spectral norm of its Hessian matrix:

S2(θ) = ∥∇2
θL(θ)∥2.

While our main text focuses on first-order sharpness R
(1)
ρ (θ) (Eq. 1), S2(θ) provides another

perspective on local curvature. (Note: A related concept, R
(2)
ρ (θ), could involve maximizing

λmax(∇2
θθL(θ + ϵ)) over a neighborhood, but S2(θ) is the local Hessian norm at θ.)

We can show a relationship between this sharpness measure and the properties of f̂θ. The Hessian of
the MSE loss L(θ) is:

∇2
θL(θ) = ∇θ

(
Ex∼Px

[
−2(f(x)− f̂θ(x))∇θf̂θ(x)

])
= 2Ex∼Px

[
∇θf̂θ(x)

(
∇θf̂θ(x)

)⊤
− (f(x)− f̂θ(x))∇2

θf̂θ(x)

]
.

Taking spectral norms and using the triangle inequality:

S2(θ) = ∥∇2
θL(θ)∥2 ≤ 2

∥∥∥∥Ex∼Px

[
∇θf̂θ(x)

(
∇θf̂θ(x)

)⊤
]∥∥∥∥

2

+ 2
∥∥∥Ex∼Px

[
(f(x)− f̂θ(x))∇2

θf̂θ(x)
]∥∥∥

2

≤ 2Ex∼Px

[
∥∇θf̂θ(x)∥22

]
+ 2 sup

x
|f(x)− f̂θ(x)| · Ex∼Px

[
∥∇2

θf̂θ(x)∥2
]
.

(14)

The term ∥∇θf̂θ(x)∥2 represents the sensitivity of the model’s output to changes in its parameters
θ at a given input x. The term ∥∇2

θf̂θ(x)∥2 represents the curvature of the model function f̂θ with
respect to its parameters.

If the model f̂θ(x) itself is "smooth" with respect to its inputs x (i.e., has a small Lipschitz constant
Lf̂x

= supx ∥∇xf̂θ(x)∥2) and also with respect to its parameters (i.e., ∥∇θf̂θ(x)∥2 and ∥∇2
θf̂θ(x)∥2

are bounded, perhaps by constants Lf̂θ
and Hf̂θ

respectively), then the sharpness S2(θ) tends to be

smaller, especially if the model error |f(x)− f̂θ(x)| is also small.

For instance, if we assume that for our parameterization, supx ∥∇θf̂θ(x)∥2 ≤ K1 and
supx ∥∇2

θf̂θ(x)∥2 ≤ K2, then:

S2(θ) ≤ 2K2
1 + 2∥f − f̂θ∥∞K2.

This inequality suggests that models whose output is less sensitive to parameter changes (smaller
K1,K2) and that fit the data well (small ∥f − f̂θ∥∞) tend to reside in regions of lower second-order
sharpness.
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While this provides a connection to a specific type of sharpness (S2(θ)), the first-order sharpness
R

(1)
ρ targeted by SAM is related (as discussed in Section 4, R(1)

ρ is an indicator of local flatness).
Methods that explicitly regularize the Lipschitz constant of the learned model (e.g., [2]) aim to
enforce smoothness directly. SAM, by seeking flat minima of the training loss, indirectly promotes
solutions where the loss (and thus often the model predictions) do not change drastically with small
parameter perturbations. This implies a form of robustness that is conceptually related to having a
small Lipschitz constant with respect to parameters, although SAM achieves this through a different
mechanism than direct Lipschitz regularization. Exploring the interplay between SAM-induced
flatness and explicit Lipschitz regularization of the world-model could be an interesting direction for
future research, potentially leading to even more robust and generalizable models.

D t-statistic tests on HumanoidBench

We assess whether adding SAM improves return using one-tailed paired t-tests across n=4 seeds per
task (null: no gain; alternative: SAM > baseline). Negative t indicates higher mean return with SAM
under this convention.

Table 3: One-tailed paired t-tests: TD-MPC2+SAM vs. TD-MPC2 on HumanoidBench (4 seeds).
Significance at α=0.05 in bold. The overall p-value using Fisher’s method is p = 0.0059

Task t-statistic p-value Significant?

balance_hard −5.83 0.002 Yes
balance_simple −8.31 0.002 Yes
stair −1.64 0.170 No
walk −1.69 0.184 No
run −3.78 0.032 Yes
stand −1.87 0.148 No
sit_simple −1.77 0.128 No
sit_hard −2.20 0.108 No
crawl 1.69 0.160 No
pole −3.19 0.024 Yes
hurdle −1.05 0.356 No

E SAM radius (ρ) ablation

We sweep ρ and observe a unimodal response: too small under-regularizes, too large over-perturbs,
with a broad optimum in the middle.

E.1 Suite-level choices used in the paper

Table 4: ρ values used for main results.
Suite / Task set ρ Rationale

HumanoidBench (most tasks) 1.25× 10−3 Best overall trade-off across tasks
sit_simple, sit_hard 5.0× 10−3 Stabilizes sit tasks

High-DoF DMC 2.5× 10−5 Prefers smaller steps in state-based control
Atari-100k (TWISTER) 1.0× 10−3 Robust on pixel-based discrete control

E.2 Per-task sensitivity examples

F SAM on different TD-MPC2 components

Unless otherwise noted, SAM is applied only to the dynamics loss. Ablating the attachment point on
humanoid_run (2M steps; 4 seeds):
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Table 5: Return on humanoid_run vs. ρ settings (mean ± SEM over 4 seeds). Settings are ordered
from smaller→larger ρ; best in bold.

Setting (ρ) 1× 10−3 5× 10−6 5× 10−7 1× 10−7 5× 10−8 1× 10−8

Episode return 348± 28 445± 56 492± 34 454± 17 439± 21 414± 21

Table 6: Score Bank Heist vs. ρ settings (mean ± SEM over 5 seeds).

Setting (ρ) 1× 10−1 1× 10−2 1× 10−3 1× 10−4 1× 10−5

Score 281± 277 714± 311 886± 445 785± 277 781± 213

Table 7: Where to apply SAM in TD-MPC2 (episode return; mean ± SEM).
Variant Apply SAM to Episode return

TD-MPC2 (baseline) — 301± 11
TD-MPC2 + SAM (ours) Dynamics 484± 19
TD-MPC2 + SAM Reward & Value 10± 3
TD-MPC2 + SAM Policy 463± 49

G Compute overhead

Vanilla SAM adds one inner ascent and one outer descent per model update. In our implementation this
is a ∼1.7× training-time multiplier at fixed batch sizes, with modest memory overhead; environment
interaction (sample complexity) is unchanged. When wall-clock is tight, apply SAM intermittently
(every kth model update), anneal the inner step frequency late in training, or reuse cached activations
to reduce the second backward pass cost.

H Max Hessian eigenvalue

We approximate the leading eigenvalue(s) of the Hessian of the dynamics loss via power iteration on
replay mini-batches after training. Lower values indicate flatter minima.

Table 8: Max Hessian eigenvalue λmax (arbitrary units; same scale across rows). Lower is flatter.
Task (2M steps) TD-MPC2 TD-MPC2 + SAM

humanoid_run 141.6 99.5
humanoid_walk 92.1 82.3
dog_run 80.3 46.5
dog_walk 69.5 40.1
dog_trot 53.8 31.6

I HumanoidBench Results
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Table 9: HumanoidBench returns (mean ± SEM over 4 seeds) for TD-MPC2 and TD-MPC2+SAM.
Metric balance_hard balance_simple stair walk run stand sit_simple sit_hard crawl pole hurdle
TD-MPC2 Episode Reward 48± 6 28± 8 66± 6 644± 281 67± 8 639± 240 515± 187 508± 298 896± 53 207± 35 51± 12
TD-MPC2 w/ SAM Episode Reward 82± 10 145± 27 77± 12 885± 44 302± 124 870± 58 773± 223 843± 64 846± 26 273± 22 71± 36

Table 10: High-DoF DMC results at 2M environment steps (mean ± SEM over n=4 seeds). Bold is
better.

Method humanoid_run humanoid_walk dog_run dog_walk dog_trot

TD-MPC2 301± 11 883± 13 428± 39 887± 46 891± 21
TD-MPC2 w/ SAM 484± 19 901± 4 552± 17 957± 6 920± 14

NeurIPS Paper Checklist

1. Claims
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Justification: The abstract and introduction claim that applying SAM to the world-model in
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Justification: The research does not involve crowdsourcing or human subjects.
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guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Large language models were not used as a core component of the proposed
methodology or experiments. Any LLM usage was restricted to assisting with writing,
editing, or formatting, which does not impact the scientific contributions of the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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