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Abstract

We design a rectified linear unit-based multilayer neural network by mapping the
feature vectors to a higher dimensional space in every layer. We design the weight
matrices in every layer to ensure a reduction of the training cost as the number of
layers increases. Linear projection to the target in the higher dimensional space leads
to a lower training cost if a convex cost is minimized. An �2-norm convex constraint is
used in the minimization to reduce the generalization error and avoid overfitting. The
regularization hyperparameters of the network are derived analytically to guarantee a
monotonic decrement of the training cost, and therefore, it eliminates the need for
cross-validation to find the regularization hyperparameter in each layer. We show that
the proposed architecture is norm-preserving and provides an invertible feature vector
and, therefore, can be used to reduce the training cost of any other learning method
which employs linear projection to estimate the target.
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1 Introduction
Nonlinear mapping of low-dimensional signal to high-dimensional space is a traditional
method for constructing useful feature vectors, specifically for classification problems.
The intuition is that, by extending to a high dimension, the feature vectors of differ-
ent classes become easily separable by a linear classifier. The drawback of performing
classification in a higher dimensional space is the increased computational complexity.
This issue can be handled by a well-known method called “kernel trick” in which the
complexity depends only on the inner products in the high-dimensional space. Support
vector machine (SVM) [1] and kernel PCA (KPCA) [2] are examples of creating high-
dimensional features by employing the kernel trick. The choice of the kernel function is
a critical aspect that can affect the classification performance in the higher dimensional
space. A popular kernel is the radial basis function (RBF) kernel or Gaussian kernel, and its
good performance is justified by its ability tomap the feature vector to a very high, infinite,
dimensional space [3]. In this manuscript, we design a high-dimensional feature using
an artificial neural network (ANN) architecture to achieve a better classification perfor-
mance by increasing the number of layers. The architecture uses the rectified linear unit
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(ReLU) activation, predetermined orthonormal matrices, and a fixed structured matrix.
We refer to this as high-dimensional neural feature (HNF) throughout the manuscript.
Neural networks and deep learning architectures have received overwhelming atten-

tion over the last decade [4]. Appropriately trained neural networks have been shown
to outperform the traditional methods in different applications, for example, in clas-
sification and regression tasks [5, 6]. By the continually increasing computational
power, the field of machine learning is being enriched with active research pushing
classification performance to higher levels for several challenging datasets [7–9]. How-
ever, very little is known regarding how many numbers of neurons and layers are
required in a network to achieve better performance. Usually, some rule-of-thumb
methods are used for determining the number of neurons and layers in an ANN, or
an exhaustive search is employed which is extremely time-consuming [10]. In partic-
ular, the technical issue—guaranteeing performance improvement with increasing the
number of layers—is not straightforward in traditional neural network architectures,
e.g., deep neural network (DNN) [11], convolutional neural network (CNN) [12], and
recurrent neural network (RNN) [13]. We endeavor to address this technical issue by
mapping the feature vectors to a higher dimensional space using predefined weight
matrices.
There exist several works employing predefined weight matrices that do not need to

be learned. Scattering convolution network [14] is a famous example of these approaches
which employs wavelet-based scattering transform to design the weight matrices. Ran-
dom matrices have also been widely used as a mean for reducing the computational
complexity of neural networks while achieving comparable performance as with fully
learned networks [15–18]. In the case of the simple, yet effective, extreme learning
machine (ELM), the first layer of the network is assigned randomly chosen weights and
the learning takes place only at the end layer [19–22]. It has also been shown recently
that a similar performance to fully learned networks may be achieved by training a net-
work with most of the weights assigned randomly and only a small fraction of them being
updated throughout the layers [23]. It has been shown that networks with Gaussian ran-
dom weights provide a distance-preserving embedding of the input data [16]. The recent
work [18] designs a deep neural network architecture called progressive learning network
(PLN) which guarantees the reduction of the training cost with increasing the number of
layers. In PLN, every layer is comprised of a predefined random part and a projection part
which is trained individually using a convex cost function. These approaches indicate that
randomness has much potential in terms of high performance at low computational com-
plexity. We design a multilayer neural network using predefined orthonormal matrices,
e.g., random orthonormal matrix and DCT matrix, to ensure reducing the training cost
as the number of layers increases.

1.1 Our contributions

Motivated by the prior use of fixed matrices, we design the HNF architecture using an
appropriate combination of ReLU, random matrices, and fixed matrices. We use pre-
defined weight matrices in every layer of the network, and therefore, the architecture
does not suffer from the infamous vanishing gradient problem. We theoretically show
that the output of each layer provides a richer representation compared to the previous
layers if a convex cost is minimized to estimate the target. We use an �2-norm convex
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constraint to reduce the generalization error and avoid overfitting to the training data.
We analytically derive the regularization hyperparameter to ensure the decrement of the
training cost in each layer. Therefore, there is no need for cross-validation to find the
optimum regularization hyperparameters of the network. We show that the proposed
HNF is norm-preserving and invertible and, therefore, can be used to improve the perfor-
mance of other learning methods that use linear projection to estimate the target. Finally,
we show the classification performance of the proposed HNF against ELM and state-of-
the-art results. Note that a preliminary version of this manuscript has been submitted to
ICASSP 2020 recently.

1.2 Notations

We use the following notations unless otherwise noted: We use bold capital letters, e.g.,
W, to denote matrices and bold lowercase letters, e.g., x, to denote vectors. We use cal-
ligraphic letter M to denote a set and Mc to denote compliment set. The cardinality of
a set M is denoted by |M|. For a scalar x ∈ R, let us denote its sign and magnitude as
s(x) ∈ {−1,+1} and |x|, respectively, and write x = s(x)|x|. For a vector x, we define the
sign vector s(x) and magnitude vector |x| by the element-wise operation. We define g(·)
as a nonlinear function comprised of a stack of element-wise ReLU activation functions.
A vector x has non-negative part x+ and non-positive part x− such that x = x+ + x− and
g(x) = x+. We use ‖ · ‖ and ‖ · ‖F to denote �2-norm and Frobenius norm, respectively.
For example, it can be seen that ‖x‖2 = ‖x+‖2 + ‖x−‖2.

2 Proposedmethod
In this section, we illustrate the motivation to design a high-dimensional feature vector by
using ReLU activation function. We analyze the behavior of a single layer ReLU network
to the input perturbation noise and show that by mapping the feature vectors to a higher
dimension, we can increase the discrimination power of the ReLU network.
For an ANN, we wish to have noise robustness and discriminative power. We charac-

terize this in the following definition.

Definition 1 (Noise Robustness and Point Discrimination) Let x1 and x2 be two input
vectors such that x1 �= x2, and we have outputs of ANN t̃1 = f(x1) and t̃2 = f(x2). We can
characterize a perturbation scenario with the perturbation noise � as x2 = x1 + �. We
wish that the proposed ANN holds the property

c1‖x1 − x2‖2 ≤ ‖f(x1) − f(x2)‖2 ≤ c2‖x1 − x2‖2, (1)

where 0 < c1 ≤ 1 and c1 ≤ c2.

Note that the lower bound provides point discrimination power and the upper bound
provides noise robustness to the input.

2.1 Layer construction

We first concentrate on one block of ANN—this is called a layer in the neural network
literature. The layer has an input vector q ∈ R

m×1 and the output vector y = g(Wq).
The dimension of y is the number of neurons in the layer. If we can guarantee that the
layer of ANN provides noise robustness and point discrimination property, then the full
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ANN comprising of multiple layers connected sequentially can be guaranteed to hold
robustness and discriminative properties. We need to constructW in such a manner that
the layer has noise robustness and discriminative power according to Definition 1.

2.2 ReLU activation and a limitation

We first show three essential properties of ReLU function, required to develop our main
results. We then discuss one possible limitation of the ReLU function and propose a
remedy to circumvent the problem.

Property 1 (Scaling) ReLU function has a scaling property. If y = g(Wq), then ay =
g(W(aq)) for a scalar a ≥ 0.

Property 2 (Sparsity) ReLU function provides sparse output vector y such that ‖y‖0 ≤
dim(y).

Property 3 (Noise Robustness) Let us consider z = Wq. For two vectors q1 and q2, we
define corresponding vectors z1 = Wq1 and z2 = Wq2, and output vectors y1 = g(z1) =
g(Wq1) and y2 = g(z2) = g(Wq2). Now, we have the following relation

0 ≤ ‖y1 − y2‖2 = ‖g(z1) − g(z2)‖2 ≤ ‖z1 − z2‖2. (2)

The proof of Property 3 is shown in Appendix 1. The upper bound relation holds Lips-
chitz continuity that provides noise robustness. On the other hand, the lower bound being
zero cannot maintain a minimum distance between two points y1 and y2. An example of
extreme effect is that when z1 and z2 are non-positive vectors, we get ‖y1 − y2‖2 = 0.
This may limit the capacity of the ReLU function for achieving a good discriminative
power. A reason for the limitation “lower bound being zero” is due to the structure of the
input matrixW. We build an appropriate structure for the input matrix to circumvent the
limitation.
We now engineer a remedy for this limitation. Let us consider ȳ = g(Vz) = g(VWq),

where z = Wq ∈ R
n and V is a linear transform matrix. For two vectors q1 and q2, we

have corresponding vectors z1 = Wq1 and z2 = Wq2, and output vectors ȳ1 = g(Vz1)
and ȳ2 = g(Vz2). Our interest is to show that there exists a predefined matrixV for which
we have both noise robustness and discriminative power properties.

Proposition 1 Let us construct a Vmatrix as follows

V =
[

In
−In

]
� Vn. (3)

For the output vectors ȳ1 = g(Vnz1) ∈ R
2n and ȳ2 = g(Vnz2) ∈ R

2n, we have ‖ȳ1‖2 =
‖z1‖2 and ‖ȳ2‖2 = ‖z2‖2 and

0 <
1
2
‖z1 − z2‖2 ≤ ‖ȳ1 − ȳ2‖2 ≤ ‖z1 − z2‖2. (4)

The proof of the above proposition can be found in Appendix 2. Based on the above
proposition, we can interpret the effect of noise passing through such layer. Let z2 =
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z1 +�z, where �z is a small perturbation noise. Note that �z = z1 −z2 = W[q1 −q2]=
W�q. To investigate effect of perturbation noise, we now state our main assumption.

Assumption 1 Given a small ‖�z‖2, the sign patterns of z1 and z2 do not differ signifi-
cantly. On the other hand, for a large perturbation noise ‖�z‖2, the sign patterns of z1 and
z2 vary significantly.

The above assumption means that for a small ‖�z‖2, the set M(z1, z2) = {i|s(z1(i)) =
s(z2(i)) �= 0} is close to a full set and Mc(z1, z2) is close to an empty set. On the other
hand, for a large ‖�z‖2, the set M(z1, z2) = {i|s(z1(i)) = s(z2(i)) �= 0} is close to an
empty set andMc(z1, z2) is close to a full set. Considering Assumption 1, we can present
the following remark regarding the effect of noise in the layer.

Remark 1 (Effect of perturbation noise) For a small perturbation noise ‖�z‖2, we have
‖ȳ1 − ȳ2‖2 ≈ ‖z1 − z2‖2. On the other hand, a large perturbation noise is attenuated.

This follows from the proof of Proposition 1, specifically Eqs. (28) and (29a). In fact, if
Mc = ∅, then ‖ȳ1 − ȳ2‖2 = ‖z1 − z2‖2. We interpret that a small perturbation noise
passes through the single layer g(Vz) almost not attenuated. Let us construct an illustra-
tive example. Assume that Mc(z1, z2) is a full set and ∀i ∈ Mc, |z1(i)| = |z2(i)|. In that
case, ‖ȳ1 − ȳ2‖2 = 0.5‖z1 − z2‖2 and we can comment that the perturbation noise is
attenuated.

3 High-dimensional neural feature
In this section, we employ the proposed weight matrix in (3) to construct a multilayer
ANN. We show that by designing the weight matrices in every layer, it is possible to con-
struct a network that provides noise robustness and point discrimination according to
Definition 1.
Let us establish the relation between the input vector q ∈ R

m and output vector ȳ ∈
R
2n. For two vectors q1 and q2, we have corresponding vectors z1 = Wq1 and z2 =

Wq2, and output vectors ȳ1 = g(Vnz1) = g(VnWq1) and ȳ2 = g(Vnz2) = g(VnWq2).
Our interest is to show that it is possible to construct a W ∈ R

n×m matrix for which
we have both noise robustness and discriminative power properties. We can construct
W ∈ R

n×m as orthonormal matrix, such that n ≥ m and W
W = Im. In that case, we
have ‖q1 − q2‖2 = ‖z1 − z2‖2 for any pair of (q1,q2). By combining the this relation with
Eq. (4), we conclude the following proposition.

Proposition 2 Consider the single layer network ȳ = g(Vnz) = g(VnWq) where W ∈
R
n×m is an orthonormal matrix, such that n ≥ m and W
W = Im. Then, ‖ȳ‖2 = ‖q‖2,

and for every two vectors q1 and q2, the following inequality holds

1
2
‖q1 − q2‖2 ≤ ‖ȳ1 − ȳ2‖2 ≤ ‖q1 − q2‖2. (5)

The above proposition shows that by designing the weight matrix in a single layer net-
work, it is possible to provide point discrimination and noise robustness according to
Definition 1. Note that the weight matrix W can be any orthonormal matrix such as
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instances of random orthonormal matrix and DCT matrix. By considering the relation
�z = W�q, we can present a similar argument as in Remark 1. We interpret that a small
perturbation noise ‖�q‖2 passes through the single layer g(VWq) almost not attenuated.
This is stated in the following remark.

Remark 2 (Effect of perturbation noise) For a small ‖�q‖2, we have ‖ȳ1 − ȳ2‖2 ≈
‖q1 − q2‖2. On the other hand, a large perturbation noise is attenuated.

By directly using Proposition 1, we can present a similar bound in regard to the
perturbation of the weight matrix W in a single layer construction. We can show that
the perturbation norm in the output due to the perturbation to the weight matrix has an
upper bound that is a scaled version of the input norm. The scaling parameter ‖�W‖2F is
small for a small perturbation. The following remark illustrates this point in detail.

Remark 3 (Sensitivity to the weight matrix) Let the weight matrix W be perturbed by
�W. The effective weight matrix is W + �W. For an input q and the respective outputs
ȳ = g(VnWq) and ȳ� = g(Vn[W + �W]q), we have

‖ȳ − ȳ�‖2 ≤ ‖�W‖2F‖q‖2. (6)

The proof can be found in Appendix 3.

3.1 Multilayer construction

A feedforward ANN is comprised of similar operational layers in a chain. Let us consider
two layers in feedforward connection, e.g., l-th and (l + 1)-th layers of an ANN. For the
l-th layer, we use a superscript (l) to denote appropriate variables and parameters. Let the
l-th layer hasm(l) nodes. The input to the lth layer is q(l) = ȳ(l−1). The output of l-th layer
ȳ(l) = g

(
Vn(l)z(l)) = g

(
Vn(l)W(l)q(l)) is next used as the input to the (l + 1)-th layer, that

means ȳ(l) = q(l+1). Thus, the output of (l + 1)-th layer is

ȳ(l+1) = g
(
Vn(l+1)z(l+1)

)
= g

(
Vn(l+1)W(l+1)q(l+1)

)
= g

(
Vn(l+1)W(l+1)g

(
Vn(l)W(l)q(l)

))
(7)

Now, for the two vectors q(l)
1 and q(l)

2 , we have the following relations in l-layer based on
Proposition 2

1
2
‖q(l)

1 − q(l)
2 ‖2 ≤ ‖ȳ(l)

1 − ȳ(l)
2 ‖2 ≤ ‖q(l)

1 − q(l)
2 ‖2. (8)

We present the above results as the following theorem to provide noise robustness
and discrimination power properties of the proposed ANN and call it high-dimensional
neural feature (HNF) afterwards.

Theorem 1 The proposed HNF uses ReLU activation function and is constructed as
follows:

(a) The HNF is comprised of L-layers where the l-th layer has the corresponding
structure ȳ(l) = g(Vn(l)W(l)ȳ(l−1)). The L-layers are in a chain. The input to the
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first layer is q(1) = x. The output of HNF is

ȳ(L) = g(Vn(L)W(L)g(. . . g(Vn(1)W(1)x))).

(b) In the HNF,W(l) ∈ R
n(l)×m(l) matrices are orthonormal matrices with appropriate

sizes, that is n(l) ≥ m(l) andm(l) = 2n(l−1).

Then, ‖ȳ(L)‖2 = ‖x‖2, and the construted HNF provides noise robustness and discrimina-
tive power properties that are characterized by the following relation

1
2L

‖x1 − x2‖2 ≤ ‖ȳ(L)
1 − ȳ(L)

2 ‖2 ≤ ‖x1 − x2‖2, (9)

where x1 ∈ R
m(1) and x2 ∈ R

m(1) are two input vectors to the HNF and their corresponding
outputs are ȳ(L)

1 and ȳ(L)
2 , respectively.

Note that a similar argument as in Remark 2 holds here as well.We interpret that a small
perturbation noise passes through the multilayer structure almost not attenuated. On
the other hand, a large perturbation noise is attenuated in every layer. Using Theorem 1,
we follow similar arguments as in Remark 3 in regard to the perturbation of the weight
matricesW(l) in every layer of the HNF.

Remark 4 (Sensitivity to the weight matrix) Consider a scenario where the weight
matrix W(l) is perturbed by �W(l). The effective weight matrix is W(l) + �W(l). We can
show that

‖ȳ(L) − ȳ(L)
� ‖2 ≤

L∏
l=1

‖�W(L)‖2F‖x‖2. (10)

4 Reduction of training cost
In this section, we analyze the effectiveness of the weightmatrixV in the sense of reducing
the training cost. We show that the proposed HNF provides lower training costs as the
number of layers increases. We also present how the proposed structure can be used to
reduce the training cost of other learningmethodswhich employ linear projection to the target.
Consider a dataset containing N samples of pairwise P-dimensional input data x ∈ R

P

and Q-dimensional target vector t ∈ R
Q as D = {(x, t)}. Let us construct two single

layer neural networks and compare effectiveness of their feature vectors. In one network,
we construct the feature vector as y = g(Wx), and in the other network, we build the
feature vector ȳ = g(VnWx). We use the same input vector x, predetermined weight
matrixW ∈ R

n×P , and ReLU activation function g(·) for both networks. However, in the

second network, the effective weight matrix is VnW where Vn =
[

In
−In

]
∈ R

2n×n is

fully predetermined. To predict the target, we use a linear projection of feature vector. Let
the predicted target for the first network be Oy, and the predicted target for the second
network Ōȳ. Note that O ∈ R

Q×n and Ō ∈ R
Q×2n. By using �2-norm regularization, we

find optimal solutions for the following convex optimization problems.

O� = argmin
O

E
[‖t − Oy‖2] s.t. ‖O‖2F ≤ ε, (11a)

Ō� = argmin
Ō

E
[‖t − Ōȳ‖2] s.t. ‖Ō‖2F ≤ ε, (11b)
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where the expectation operation is done by sample averaging over all N data points in
the training dataset. The regularization parameter ε is the same for the two networks. By
defining z � Wx, we have

ȳ =
[

z+

−z−

]
=

[
y

−z−

]
. (12)

The above relation is due to the special structure of Vn and the use of ReLU activation
g(·). Note that the solution Ō� =[O� 0] exists in the feasible set of the minimization
(11b), i.e., ‖[O� 0] ‖2F ≤ ε, where 0 is a zero matrix of size Q× n. Therefore, we can show
the optimal costs of the two networks have the following relation

E
[‖t − Ō�ȳ‖2] ≤ E

[‖t − O�y‖2] , (13)

where the equality happens when Ō� =[O� 0]. Any other optimal solution of Ō will lead
to inequality relation due to the convexity of the cost. Therefore, we can conclude that the
feature vector ȳ of the second network is richer than the feature vector y of the first net-
work in the sense of reduced training cost. The proposed structure provides an additional
property for the feature vector ȳ which we state in the following proposition. The proof
idea of the proposition will be used in the next section to construct a multilayer structure,
and therefore, we present the proof here.

Proposition 3 For the feature vector ȳ = g(VnWx), there exists an invertible mapping
h(ȳ) = x when the weight matrixW is full-column rank.

Proof We now state lossless flow property (LFP), as used in [17, 24]. A nonlinear func-
tion g(·) holds the LFP if there exist two linear transformations V and U such that
Ug(Vz) = z,∀z ∈ R

n. It is shown in [17] that ReLU holds LFP. In other words, if V �

Vn =
[

In
−In

]
∈ R

2n×n and U � Un = [In − In] ∈ R
n×2n, then Ung(Vnz) = z holds for

every z when g(·) is ReLU. Letting z = Wx, we can easily find x = W†z = W†Unȳ, where
† denotes pseudo-inverse when W is a full-column rank matrix. Therefore, the resulting
inverse mapping h would be linear.

4.1 Reduction of training cost with depth

In this section, we show that the proposed HNF provides lower training costs as the
number of layers increases. Consider an L-layer feedforward network according to our
proposed structure on the weight matrices as follows

ȳ(L) = g(Vn(L)W(L)g(. . . g(Vn(1)W(1)x))). (14)

Note that 2n(L) is the number of neurons in the L-th layer of the network. The input-
output relation in each layer is characterized by

ȳ(1) = g(Vn(1)W(1)x), (15a)

ȳ(l) = g(Vn(l)W(l)ȳ(l−1)), 2 ≤ l ≤ L, (15b)

where W(1) ∈ R
n(1)×P , W(l) ∈ R

n(l)×m(l) , and m(l) = 2n(l−1) for 2 ≤ l ≤ L. Let the
predicted target using the l-th layer feature vector ȳ(l) beOlȳ(l). We find optimal solutions
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for the following convex optimization problems

O�
l−1 = argmin

O
E

[
‖t − Oȳ(l−1)‖2

]
s.t. ‖O‖2F ≤εl−1, (16a)

O�
l = argmin

O
E

[
‖t − Oȳ(l)‖2

]
s.t. ‖O‖2F ≤εl. (16b)

Let us define z(l) � W(l)y(l−1). Assuming that weight matrices W(l) are full-column
rank, we can similarly derive y(l−1) =[W(l)]† z(l). By using Proposition 3, we have z(l) =
Un(l) ȳ(l), and then, we can write the following relations

ȳ(l−1) =[W(l)]† z(l) =[W(l)]†Un(l) ȳ(l), (17)

where Un(l) =[ In(l) − In(l) ]. If we choose O�
l = O�

l−1[W
(l)]†Un(l) , by using (17), we

can easily see that O�
l ȳ

(l) = O�
l−1ȳ

(l−1). Therefore, by including O�
l−1[W

(l)]†Un(l) in
the feasible set of the minimization (16b), we can guarantee that the optimal cost of l-
th layer would be lower or equal than that of layer (l − 1). In particular, by choosing
εl = ‖O�

l−1[W
(l)]†Un(l)‖2F , we can see that the optimal costs follow the relation

E
[
‖t − O�

l ȳ
(l)‖2

]
≤ E

[
‖t − O�

l−1ȳ
(l−1)‖2

]
, (18)

where the equality happens when we have O�
l = O�

l−1[W
(l)]†Un(l) . Any other optimal

solution of Ol will lead to inequality relation due to the convexity of the cost. Therefore,
we can conclude that the feature vector ȳ(l) of an l-layer network is richer than the feature
vector ȳ(l−1) of an (l − 1)-layer network in the sense of reduced training cost. Note that if
we choose the weight matrixW(l) to be orthonormal, then

εl = ‖O�
l−1[W

(l)]
 Un(l)‖2F
= trace

[
2In(l)W(l)[O�

l−1]

 O�

l−1[W
(l)]


]
= 2 trace

[
W(l)[O�

l−1]

 O�

l−1[W
(l)]


]
= 2 trace

[
[W(l)]
 W(l)[O�

l−1]

 O�

l−1

]
= 2 trace[ [O�

l−1]

 O�

l−1]= 2‖O�
l−1‖2F , (19)

where we have used the fact that Un(l) [Un(l) ]
 = 2In(l) . As we have ‖Ol−1‖2F ≤ εl−1, a
sufficient condition to guarantee the cost relation (18) is to use the relation between reg-
ularization parameters as εl ≥ 2εl−1. We can choose εl = 2εl−1 = 2l−1ε1. Note that the
regularization parameter ε1 in the first layer can also be determined analytically. Consider
O�

ls to be the solution of the following least-square optimization

O�
ls = argmin

O
E

[‖t − Ox‖2] . (20)

Note that the above minimization has a closed-form solution. Similar to the argument
in (18), by choosing ε1 = ‖O�

ls[W
(1)]†Un(1)‖2F , it can be easily seen that

E
[
‖t − O�

1ȳ(1)‖2
]

≤ E
[‖t − O�

lsx‖2
]
, (21)

where the equality happens only when we haveO�
1 = O�

ls[W
(1)]†Un(1) . Similar to Propo-

sition 3, we can prove the following proposition regarding the invertibility of the feature
vector at the l-th layer of the proposed structure.
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Proposition 4 For the feature vector ȳ(L) in (14), there exists an invertible mapping
function h̄(ȳ(L)) = x when the set of weight matrices {W(l)}Ll=1 are full-column rank.

Proof It can be proved by repeatedly using the lossless flow property (LFP) similar to
Proposition 3.

4.2 Reduction of training cost of ELM

Note that the feature vector ȳ(1) in (15a) can be any feature vector that is used for linear
projection to the target in any other learning method. In Section 4.1, we assume ȳ(1) to be
the feature vector constructed from x using thematrixV, and therefore, the regularization
parameter ε1 is derived to guarantee performance improvement compared to least-square
method as shown in (21). A potential extension would be to build the proposedHNF using
the feature vector ȳ(1) from other methods that employ linear projection to estimate the
target. For example, the extreme learning machine (ELM) uses a linear projection of the
nonlinear feature vector to predict the target [19]. In the following, we build the proposed
HNF by employing the feature vector used in ELM to improve the performance.
Similar to Eq. (18), we can show that it is possible to improve the feature vector of ELM

in the sense of training cost by using the proposed HNF. Consider ȳ(1) = g(W(1)x), to
be feature vector used in ELM for linear projection to the target. In the ELM framework,
W(1) ∈ R

n(1)×P is an instance of normal distribution, not necessarily full-column rank,
and g(·) can be any activation function, not necessarily ReLU. The optimal mapping to
the target in ELM is found by solving the following minimization problem.

O�
elm = argmin

O
E

[
‖t − Oȳ(1)‖2

]
. (22)

Note that this minimization problem has a closed-form solution. We construct the
feature vector in the second layer of the HNF as

ȳ(2) = g
(
Vn(2)W(2)ȳ(1)

)
, (23)

whereW(2) ∈ R
n(2)×m(2) andm(2) = n(1). The optimal mapping to the target by using this

feature vector can be found by solving

O�
2 = argmin

O
E

[
‖t − Oȳ(2)‖2

]
s.t. ‖O‖2F ≤ε2, (24)

where ε2 is the regularization parameter. By choosing ε2 = ‖O�
elm[W

(2)]†Un(2)‖2F , we can
see that the optimal costs follow the relation

E
[
‖t − O�

2ȳ(2)‖2
]

≤ E
[
‖t − O�

elmȳ
(1)‖2

]
, (25)

where the equality happens when we have O�
2 = O�

elm[W
(2)]†Un(2) . Otherwise, the

inequality has to follow. Similarly, we can continue to add more layer to improve the
performance. Specifically, for l-th layer of the HNF, we have ȳ(l) = g

(
Vn(l)W(l)ȳ(l−1)),

and we can show that Eq. (18) holds here as well when the set of matrices {W(l)}Ll=2 are
full-column rank.

4.3 Practical considerations

The dimension of feature vector ȳ(l) increases as the number of layers increases. For a
multilayer feedforward network, if we use orthonormal matrix W(l) for l-th layer, then
each layer produces a feature vector that has at least twice the dimension of the input
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feature vector. At the L-th layer, we get the dimension 2L times of the input data dimen-
sion. Note that ȳ = g(Vnz) is norm-preserving by Proposition 1, that means ‖ȳ‖2 = ‖z‖2.
Using this principle successively, the full network is also norm-preserving, that means
‖ȳ(L)‖2 = ‖x‖2. Therefore, as the layer number increases, the amplitudes of scalars of the
feature vector ȳ(L) diminish at the rate of 2L. We show that the proposed HNF does not
require a large number of layers to improve the performance. This also answers the natu-
ral question that whether many layers are practically required for an ANN. Note that since
the dimension of the feature vector ȳ(l) is growing exponentially as 2l, the proposed HNF
is not suitable for cases where the input dimension is too large. One way to circumvent
this issue is to employ the kernel trick [3] by using the feature vector ȳ(l). We will address
this solution in future works.

5 Results and discussion
In this section, we carry out experiments to validate the performance improvement
and observe the effect of using the matrix V in the architecture of an HNF. We report
our results for three popular datasets in the literature as in Table 1. Note that we only
choose the datasets where the input dimension is not very large due to the compu-
tational complexities. Letter dataset [27] contains a 16-dimensional feature vector for
each of the 26 English alphabets from A to Z. Shuttle dataset [28] belongs to the STAT-
LOG project and contains a 9-dimensional feature vector that deals with the positioning
of radiators in the space shuttles. MNIST dataset [29] contains gray-scale 28 × 28-
pixel images of hand-written digits. Note that in all three datasets, the target vector t
is one-hot vector of dimension Q (the number of classes). The optimization method
used for solving the minimization problem (16b) is the alternating direction method of
multipliers (ADMM) [30]. The number of iterations of ADMM is set to 100 in all the
simulations.
We carry out two sets of experiments. First, we implement the proposed HNF with a

fixed number of layers by using instances of random matrices for designing the weight
matrix in every layer. In this setup, the weight matrix W(l) ∈ R

n(l)×m(l) is an instance
of Gaussian distribution with appropriate size n(l) ≥ m(l) and entries drawn indepen-
dently fromN (0, 1) to ensure being full-column rank. Second, we construct the proposed
HNF by using discrete cosine transform (DCT), as an example of full-column rank weight
matrix, instead of random matrices. In this scenario, we may need to apply zero-padding
before DCT to build the weight matrixW(l) with appropriate dimension. The step size in
the ADMM algorithm is set accordingly in each of these experiments. Finally, we com-
pare the performance and computational complextiy of HNF and backpropagation over
the same-size network.

5.1 HNF using randommatrix

In this subsection, we construct the proposed HNF by using instances of Gaussian distri-
bution to design the weight matrixW(l). In particular, the entries of the weight matrix are
drawn independently fromN (0, 1). For simplicity, the number of nodes is chosen accord-
ing to n(l) = m(l) for l ≥ 2 in all the experiment. The number of nodes in the first layer
2n(1) is chosen for each dataset individually such that it satisfies n(1) ≥ P for every dataset
with input dimension P, as reported in Table 1. The step size in the ADMM algorithm is
set to 10−7 in all the simulations in this subsection.



Javid et al. EURASIP Journal on Advances in Signal Processing         (2020) 2020:40 Page 12 of 19

Table 1 Test classification accuracy of the proposed HNF for different datasets using randommatrices

Dataset Size of
training
data

Size of
testing
data

Input
dimension
(P)

Number
of classes
(Q)

Proposed HNF ELM Proposed HNF State-of-the-art
[reference]Accuracy n(1) L Accuracy Accuracy n(1) L

Letter 13,333 6667 16 26 93.3 250 5 88.3 94.6 1000 3 95.8 [25]

Shuttle 43,500 14,500 9 7 99.3 250 5 99.0 99.6 1000 3 99.9 [19]

MNIST 60,000 10,000 784 10 97.1 1000 5 96.9 97.7 4000 3 99.7 [26]

We implement two different scenarios. First, we implement the proposed HNF with
a fixed number of layers and show performance improvement throughout the lay-
ers. In this setup, the only hyperparameter that needs to be chosen is the number
of nodes in the first layer 2n(1). Note that the regularization parameter ε1 is chosen
such that it guarantees (21), and therefore eliminates the need for cross-validation in
the first layer. Second, we build the proposed HNF by using the ELM feature vector
in the first layer as in (23) and show the performance improvement throughout the
layers. In this setup, the only hyperparameter that needs to be chosen is the number
of nodes in the first layer n(1) which is the number of nodes of ELM to be exact. It
has been shown that ELM performs better as the number of hidden neuron increases
[24]; therefore, we choose a sufficiently large hidden neuron to make sure that ELM is
performing at its best. Note that the regularization parameter ε1 is chosen such that
it guarantees (25), and therefore eliminates the need for cross-validation. Finally, we
present the classification performance of the corresponding state-of-the-art results in
Table 1.
The performance results of the proposed HNFwith L = 5 layers are reported in Table 1.

We report test classification accuracy as a measure to evaluate the performance. Note
that the number of neurons 2n(1) in the first layer of HNF is chosen appropriately for
each dataset such that it satisfies n(1) ≥ P. For example, for MNIST dataset, we set n(1) =
1000 ≥ P = 784. The performance improvement in each layer of HNF is given in Fig. 1,
where train and test classification accuracy is shown versus total number of nodes in the
network

∑L
l=1 2n(l). Note that the total number of nodes being zero corresponds to direct

mapping of the input x to the target using least-squares according to (20). It can be seen
that the proposed HNF provides a substantial improvement in performance with a small
number of layers.

Fig. 1 Training and testing accuracy against size of one instance of HNF. Size of an L-layer HNF is represented
by the number of randommatrix-based nodes, counted as

∑L
l=1 2n

(l) . Here, L = 5 for all three datasets. The
number of nodes in the first layer (2 n(1)) is set according to Table 1 for each dataset
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The corresponding performance for the case of using the ELM feature vector in the
first layer of HNF is reported in Table 1. It can be seen that HNF provides a tangi-
ble improvement in performance compared to ELM. Note that the number of neurons
in the first layer n(1) is, in fact, the same as the number of neurons used in ELM. We
choose n(1) to get the best performance for ELM in every dataset individually. The
number of layers in the network is set to L = 3 to avoid the increasing computa-
tional complexity. The performance improvement in each layer of HNF in this case is
given in Fig. 2, where train and test classification accuracy is shown versus total num-
ber of nodes in the network n(1) + ∑L

l=2 2n(l). Note that the initial point corresponding
to n(1) is in fact equal to the ELM performance reported in Table 1, which is derived
according to (22).
Finally, we compare the performance of the proposed HNF with the state-of-

the-art performance for these three datasets. We can see that the proposed HNF
provides competitive performance compared to state-of-the-art results in the lit-
erature. It is worth mentioning that we have not used any pre-processing tech-
nique to improve the performance as in the state-of-the-art, but it can be done in
future works.

5.2 HNF using DCT

In this subsection, we repeat the same experiments as in Section 5.1 by using DCT instead
of the Gaussian weight matrix. The number of nodes in each layer of the network is
chosen as in Section 5.1. We apply zero-padding before DCT in the first layer to build
the weight matrixW(1) ∈ R

n(1)×P with appropriate dimension for each dataset. Note that
n(l) = m(l) for l ≥ 2 in all the experiments, and therefore, there is no need to apply zero-
padding in the next layers. The step size in the ADMM algorithm is set to 102 in all the
simulations in this subsection.
We implement the same two scenarios. First, we implement the proposed HNF by using

DCT and show performance improvement throughout the layers. Second, we build the
proposed HNF by using the ELM feature vector in the first layer and DCTmatrices in the
next layers. Note that the regularization parameters εl for l ≥ 2 are chosen according to
(19). The choice of ε1 is such that it guarantees (21) and (25) according to each scenario.
The performance results of the proposed HNF by using DCT matrices are reported in

Table 2. Note that the number of neurons n(1) in the first layer and the number of layers

Fig. 2 Training and testing accuracy against size of one instance of HNF using ELM feature vector in the first
layer. Size of an L-layer HNF is represented by the number of randommatrix-based nodes, counted as
n(1) + ∑L

l=2 2n
(l) . Here, L = 3 for all three datasets. The number of nodes in the first layer (n(1)) is set

according to Table 1 for each dataset
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Fig. 3 Training and testing accuracy against size of HNF using DCT in every layer. Size of an L-layer HNF is
represented by the number of DCT-based nodes, counted as

∑L
l=1 2n

(l) . Here, L = 5 for all three datasets.
The number of nodes in the first layer (2 n(1)) is set according to Table 2 for each dataset

are the same as Table 1. The performance improvement in each layer of HNF is given in
Figs. 3 and 4. It can be seen that by using DCT in the proposed HNF, it is also possible to
improve the performance with a few layers.
Finally, we compare the performance of the DCT-based HNF and that of the random

matrix-based HNF as shown in Tables 1 and 2. We can see that using DCT as the weight
matrix is as powerful as using random weights in these three datasets.

5.3 Computational complexity

Finally, we compare test classification accuracy and computational complexity of HNF
with the backpropagation over the same learned HNF. We report training time of each
method in seconds.We run our experiments on a server withmultiprocessors and 256 GB
RAM. The optimization method used for backpropagation is ADAM [31] from Ten-
sorFlow. The learning rate of ADAM is chosen via cross-validation, and the number of
epochs is fixed to 1000 in all the experiments.
We construct HNF by using random weights and use the same number of layers and

nodes as in Table 1. Note that we do not use ELM feature vector in the first layer for this
experiments, although it is possible to use it in order to improve the performance. The
results are shown in Table 3. As expected, backpropagation can improve the performance,
except for Shuttle, at the cost of a significantly higher computational complexity. HNF, on
the other hand, does not require cross-validation and only performs training at the last

Fig. 4 Training and testing accuracy against size of HNF using ELM feature vector in the first layer and DCT in
the next layers. Size of an L-layer HNF is represented by the number of nodes, counted as n(1) + ∑L

l=2 2n
(l) .

Here, L = 3 for all three datasets. The number of nodes in the first layer (n(1)) is set according to Table 2 for
each dataset
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Table 2 Test classification accuracy of the proposed HNF for different datasets using DCT

Dataset Proposed HNF ELM Proposed HNF

Accuracy n(1) L Accuracy Accuracy n(1) L

Letter 93.2 250 5 88.3 94.7 1000 3

Shuttle 99.8 250 5 99.0 99.3 1000 3

MNIST 97.7 1000 5 96.9 97.8 4000 3

layer of the network, leading to a much faster training. Note that training time reported
for backpropapation in Table 3 does not include cross-validation for the learning rate so
that we can have a fair comparison with HNF.
At this point, we also provide the reported classification performance of scattering net-

work on MNIST dataset for the sake of completeness. Scattering network with principal
component analysis (PCA) [14] over a modulus of windowed Fourier transforms yields
98.2% test classification accuracy for a spatial support equal to 8. This result shows that
scattering network can outperformHNF at the cost of a higher complexity of using several
scattering integrals in each layer. Note that HNF only uses a random choice of a Gaus-
sian distribution as the weight matrix in each layer. Besides, scattering network requires
accurate choice of several hyperparameters such as the spatial support, number of filter
banks, and type of the transforms, which can be crucial for the performance. For example,
in our experiments, a scattering network with PCA over a modulus of 2DMorlet wavelets
provides 94% accuracy, at best, for a spatial support of 28. The training on the our server
lasted 1158 s to yield such an accuracy, which highlights the learning speed of HNF in
Table 3. The same network with a spatial support of 14 gives a performance of 56.03%,
showing the importance of a precise cross-validation.

6 Conclusion
We show that by using a combination of orthonormal matrices and ReLU activation func-
tions, it is possible to guarantee amonotonically decreasing training cost as the number of
layers increases. The proposed method can be used by employing any other loss function,
such as cross-entropy loss, as long as a linear projection is used after the ReLU activa-
tion function. Note that the same principle applies if instead of random matrices, we use
any other real orthonormal matrices. Discrete cosine transform (DCT), Haar transform,
and Walsh-Hadamard transform are examples of this kind. The proposed HNF is a uni-
versal architecture in the sense that it can be applied to improve the performance of any
other learning method which employs linear projection to predict the target. The norm-
preserving and invertibility of the architecture make the proposed HNF suitable for other
applications such as auto-encoder design.

Table 3 Training time and test classification accuracy of the proposed HNF versus backpropagation

Dataset Proposed HNF Backpropagation

Accuracy Training time Accuracy Training time

Letter 93.42 47 s 95.03 4566 s

Shuttle 99.21 24 s 99.21 15,283 s

MNIST 97.14 108 s 98.30 20,433 s
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Appendix 1. Proof of Property 3
Proof For scalars x1 and x2, we have y1 = g(x1) and y2 = g(x2). We have following

relation

(y1 − y2)2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x1 − x2)2 if x1 > 0, x2 > 0
x21 if x1 > 0, x2 < 0
x22 if x1 < 0, x2 > 0
0 if x1 < 0, x2 < 0.

(26)

Therefore, we find that ReLU function holds 0 ≤ (y1 − y2)2 ≤ (x1 − x2)2. Considering
the vectors y1 = g(z1) = g(Wq1) and y2 = g(z2) = g(Wq2), we have

0 ≤ ‖y1 − y2‖2 =
∑
i

(y1(i) − y2(i))2

≤
∑
i

(z1(i) − z2(i))2 = ‖z1 − z2‖2, (27)

where y1(i) is the i-th scalar element of y1 and z1(i) is the i-th scalar element of z1.

Appendix 2. Proof of Proposition 1

Proof We have z = Wq ∈ R
n and ȳ = g(Vnz) ∈ R

2n where Vn =
[

In
−In

]
. For

two vectors q1 and q2, we have corresponding vectors z1 = Wq1 and z2 = Wq2, and

output vectors ȳ1 = g(Vnz1) and ȳ2 = g(Vnz2). Note that ȳ1 =
[

z+
1

−z−
1

]
, and therefore,

‖ȳ1‖2 = ‖z+
1 ‖2+‖z−

1 ‖2 = ‖z1‖2, by definition. Similarly, ‖ȳ2‖2 = ‖z2‖2. Let us define a set

M(z1, z2)={i|s(z1(i)) = s(z2(i)) �= 0} ⊆ {1, 2, . . . , n}.

Then, we have

‖z1 − z2‖2 =
∑
i=1

(z1(i) − z2(i))2

=
∑
i

(s(z1(i))|z1(i)| − s(z2(i))|z2(i)|)2

=
∑

i∈M(z1,z2)
(|z1(i)| − |z2(i)|)2

+
∑

i∈Mc(z1,z2)
(|z1(i)| + |z2(i)|)2. (28)
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Wewrite z1 = z+
1 +z−

1 = s
(
z+
1
) |z+

1 |+s
(
z−
1
) |z−

1 |. Then, after ReLU operation, we have

ȳ1 = g(Vnz1) =
[

|z+
1 |

|z−
1 |

]
and ȳ2 = g(Vnz2) =

[
|z+
2 |

|z−
2 |

]
.

‖ȳ1 − ȳ2‖2 = ‖|z+
1 | − |z+

2 |‖2 + ‖|z−
1 | − |z−

2 |)‖2

=
∑

i∈M(|z+
1 |,|z+

2 |)
(|z+1 (i)| − |z+2 (i)|)2 +

∑
i∈Mc(|z+

1 |,|z+
2 |)

(|z+1 (i)| + |z+2 (i)|)2

+
∑

i∈M(|z−
1 |,|z−

2 |)
(|z−1 (i)| − |z−2 (i)|)2 +

∑
i∈Mc(|z−

1 |,|z−
2 |)

(|z−1 (i)| + |z−2 (i)|)2

=
∑

i∈M(|z+
1 |,|z+

2 |)

(|z+1 (i)| − |z+2 (i)|)2 +
∑

i∈M(|z−
1 |,|z−

2 |)

(|z−1 (i)| − |z−2 (i)|)2

+
∑

i∈Mc(|z+
1 |,|z+

2 |)

(|z+1 (i)| + |z+2 (i)|)2 +
∑

i∈Mc(|z−
1 |,|z−

2 |)

(|z−1 (i)| + |z−2 (i)|)2

=
∑

i∈M(z1,z2)
(|z1(i)| − |z2(i)|)2 +

∑
i∈Mc(z1,z2)

|z1(i)|2 + |z2(i)|2.

= ‖z1‖2 + ‖z2‖2 − 2
∑

i∈M(z1,z2)
z1(i)z2(i)

= ‖z1‖2 + ‖z2‖2 − 2
n∑

i=1
z1(i)z2(i) + 2

∑
i∈Mc(z1,z2)

z1(i)z2(i)

= ‖z1 − z2‖2 + 2
∑

i∈Mc(z1,z2)
z1(i)z2(i) (29a)

= 1
2
‖z1 − z2‖2 + 1

2
(‖z1‖2 + ‖z2‖2 − 2

∑
i∈M(z1,z2)

z1(i)z2(i)

+ 2
∑

i∈Mc(z1,z2)
z1(i)z2(i))

= 1
2
‖z1 − z2‖2 + 1

2

⎛
⎝‖z1‖2 + ‖z2‖2 − 2

∑
i∈M(z1,z2)

|z1(i)||z2(i)|

− 2
∑

i∈Mc(z1,z2)
|z1(i)||z2(i)|

⎞
⎠

= 1
2
‖z1 − z2‖2 + 1

2

(
‖z1‖2 + ‖z2‖2 − 2

n∑
i=1

|z1(i)||z2(i)|
)

= 1
2
‖z1 − z2‖2 + 1

2
‖|z1| − |z2|‖2 (29b)

With similar calculations as in (28), we can derive the relationships in Eqs. (29a) and (29b).
Since the summation

∑
i∈Mc(z1,z2) z1(i)z2(i) is always non-positive, from (29a), we can

see that

‖ȳ1 − ȳ2‖2 ≤ ‖z1 − z2‖2, (30)

where equality holds when Mc = ∅, that means when sign patterns of z1 and z2 match
exactly. From (29b), it can also be seen that

1
2
‖z1 − z2‖2 ≤ ‖ȳ1 − ȳ2‖2, (31)

where equality holds when |z1| = |z2|.
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Appendix 3. Proof of Remark 3
Proof Consider z = Wq and z� �[W + �W]q = Wq+[�W]q = z + �z. Based on

Proposition 1, we can simply write

‖ȳ − ȳ�‖2 ≤ ‖�z‖2 = ‖[�W] q‖2
≤ ‖�W‖2F‖q‖2, (32)

where we have used Eq. (4).
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