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Abstract

While novel view synthesis for dynamic scenes has made significant progress,
capturing skeleton models of objects and re-posing them remains a challenging task.
To tackle this problem, in this paper, we propose a novel approach to automatically
discover the associated skeleton model for dynamic objects from videos without
the need for object-specific templates. Our approach utilizes 3D Gaussian Splatting
and superpoints to reconstruct dynamic objects. Treating superpoints as rigid parts,
we can discover the underlying skeleton model through intuitive cues and optimize
it using the kinematic model. Besides, an adaptive control strategy is applied to
avoid the emergence of redundant superpoints. Extensive experiments demonstrate
the effectiveness and efficiency of our method in obtaining re-posable 3D objects.
Not only can our approach achieve excellent visual fidelity, but it also allows for
the real-time rendering of high-resolution images. Please visit our project page for
more results: https://dnvtmf.github.io/SK_GS/.

1 Introduction

Novel view synthesis for 3D scenes is important for many domains including virtual/augmented/mixed
reality, game or movie productions. In recent years, Neural Radiance Fields (NeRF) [1] have
witnessed significant advances in both static and dynamic scenes. Among them, 3D Gaussian
Splatting (3D-GS) [2] proposed a novel point-based representation, and is capable of real-time
rendering while ensuring the quality of generated images, bringing new insights to more complex
task scenarios.

Although visually compelling results and fast rendering speed have been achieved in reconstructing a
dynamic scene, current methods mainly focus on replaying the motion in the video, which means it
just renders novel view images within the given time range, making it hard to explicitly repose or
control the movement of individual objects in the scene. For some specific categories such as the
human body or human head, one main approach is to leverage the category-specific prior knowledge
such as templates to support the manipulation of reconstructed objects. However, it is hard for these
methods to generalize to large-scale in-the-wild scenes or human-made articulated objects.

Some template-free methods attempt to address these challenges by building reposable models
from videos. Watch-It-Move (WIM) [3] leverages ellipsoids, an explicit representation, to coarsely
model 3D objects, and then estimate the residual by a neural network. The underlying intuition is
that one or more ellipsoids can represent a functional part. By observing the motion of parts from
multi-view videos, WIM can learn both the appearance and structure of articulated objects. However,
the reconstruction results of WIM are of low visual quality and the training and rendering speed is
slow. Apart from WIM, Articulated Point NeRF (AP-NeRF) [4] samples feature point cloud from a
pre-trained dynamic NeRF model (TiNeuVox [5]) and initializes the skeleton tree using the medial
axis transform algorithm. By combining linear blend skinning (LBS) and point-based rendering [6],
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AP-NeRF jointly optimizes dynamic NeRF and skeletal model from videos. Compared to WIM,
AP-NeRF achieves higher visual fidelity while significantly reducing the training time. However,
AP-NeRF cannot achieve real-time rendering, which is still far from practical application.

In this paper, we target class-agnostic novel view synthesis of reposable models without the need for
a template or pose annotations, while achieving real-time rendering. To enable fast rendering speed,
we opt to represent the 3D object as 3D Gaussian Splatting. To be specific, we first reconstruct the
3D dynamic model using 3D Gaussians and superpoints, where each superpoint binds Gaussians with
similar motions together. These superpoints will later be treated as the parts of an object. Afterward, a
skeleton model is discovered leveraging some intuitive cues under the guidance of superpoint motions
from the video. Finally, we jointly optimize the skeleton model and pose parameters to match the
motions of the training videos. During the optimization process of object reconstruction, we will
inevitably generate a lot of redundant superpoints to fit the complex motion. To simplify the skeleton
model and avoid overfitting, we employ an adaptive control strategy and regularization losses to
reduce the number of superpoints. Our contributions can be summarized as follows:

• We propose a novel method based on 3D Gaussians and superpoints for modeling appearance,
skeleton model, and motion of articulated dynamic objects from videos. Our approach can
automatically discover the skeleton model without any category-specific prior knowledge.

• We effectively learn and control superpoints by employing an adaptive control strategy and
regularization losses.

• We demonstrate excellent novel view synthesis quality while achieving real-time rendering
on various datasets.

2 Related Works

2.1 Static and Dynamic Neural Radiance Fields

In recent years, we have witnessed significant progress in the field of novel view synthesis empowered
by Neural Radiance Fields. While vanilla NeRF [1] manages to synthesize photorealistic images
for any viewpoint using MLPs, subsequent works have explored various representations such as 4D
tensors [7], hash encodings [8], or other well-designed data structures [9, 10] to improve rendering
quality and speed. More recently, a novel framework 3D Gaussian Splatting [2] has received
widespread attention for its ability to synthesize high-fidelity images for complex scenes in real-time.

Meanwhile, many research works challenge the hypothesis of a static scene in NeRFs and attempt to
synthesize novel-view images of a dynamic scene at an arbitrary time from a 2D video, which is a
more challenging task since the correspondence between different frames is non-trivial. One line of
research works [11–13] directly represents the dynamic scene with an additional time dimension or a
time-dependent interpolation in a latent space. Another line of work [14–18] represents the dynamic
scene as a static canonical 3D scene along with its deformation fields. While one main bottleneck of
synthesizing a dynamic scene is speed, some works [19–22] propose to extend 3D Gaussian Splatting
into 4D to mitigate the problem. Though being able to recover a high-fidelity scene, this method
cannot directly support editing and reposing objects within it. In this work, we leverage 3D Gaussian
Splatting as the representation for faster rendering speed.

2.2 Object Reposing

It’s impractical to directly repose the deformation fields of dynamic NeRFs due to the complexity
of high-dimension. Therefore, utilizing parametric templates based on object priors to represent
deformation is adopted in many research works. The classes of parametric templates range from
human faces [23, 24], and bodies [25, 26] to non-human objects like animals [27]. With the help of
skeleton-based LBS and 3D or 2D annotations, these parametric templates are capable of representing
articulate human heads [28–33] and bodies [34–41]. Though these template-based reposing methods
can synthesize high-fidelity images, they are restricted to certain object classes and mainly deal with
rigid motions, not to mention the time-consuming process of annotations.

To alleviate the excessive reliance on domain-specific skeletal models, methods based on retrieval
from database [42] or adaptation from a generic graph [43, 44] are adopted. However, these methods
are still of relatively low flexibility and diversity. Another line of work attempts to learn a more
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Figure 1: The pipeline of proposed approach. Our approach follows a two-stage training strategy.
In the first stage (i.e. dynamic stage), we learn the 3D Gaussians and superpoints to reconstruct the
appearance. Each superpoint is associated with a rigid part, and the adaptive control strategy is used
to control the count. After finishing the training of dynamic stage, we can discover the skeleton
model based on superpoints. After we finish the second stage (i.e., kinematic stage), we can obtain an
articulated model based on the kinematic model.

general template-free object representation by 3D shape recovery [3, 4, 45]. WIM [3] proposes to
jointly learn a surface representation and LBS model for articulation without any supervision or prior
knowledge of the structure. However, the reposing images are of low visual quality and the required
training time is considerably long. AP-NeRF [4] achieves a much faster training speed by leveraging
a point-based NeRF representation, but cannot support real-time rendering as well.

3 Methods

Our goal is to reconstruct a reposable articulated object with real-time rendering speed from videos.
The pipeline of proposed method is illustrated in Fig. 1. We represent the appearance of the articulated
object as 3D Gaussians in the canonical space while aggregating 3D Gaussians with similar motion
into superpoints, which can be treated as rigid parts. It is noteworthy that we apply a time-variant
6 DoF transformation matrix to model the motion of the object. Based on these superpoints, we
leverage several intuitive observations to guide the discovery of the skeleton model, which includes
both joints and skeletons. Since the observations hold for most objects, our method does not require a
category-specific template or pose annotations. To reduce the redundant superpoint, we propose an
adaptive control strategy to densify, prune, and merge superpoints during the training process.

3.1 Preliminaries: 3D Gaussian Splatting

3D Gaussian Splatting (3D-GS) [2] use a set of 3D Gaussians to represent a 3D scene. Each
Gaussian Gi: {µi, qi, si, σi,hi} is associated with a position µi, a rotation matrix Ri which is
parameterized by a quaternion qi, a scaling matrix Si which is parameterized by a 3D vector si,
opacity σi and spherical harmonics (SH) coefficients hi. Therefore, the anisotropic 3D covariance
matrix of Gaussian Gi is defined as Σi = RiSiS

⊤
i R

⊤
i , which is positive semi-definite matrix.

To render images, 3D-GS employs EWA Splatting algorithm [46] to project a 3D Gaussian with
center µi and covariance Σi to 2D image space, and the projection can be approximated as a 2D
Gaussian with center µ′

i and covariance Σ′
i. Let Q, K be the viewing transformation and projection

matrix, µ′
i and Σ′

i are computed as

µ′
i = K(Qµi)/(Qµi)z, Σ′

i = JQΣiQ
⊤J⊤, (1)
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where J is the Jacobian of the projective transformation. Therefore, the final opacity of a 3D Gaussian
at pixel coordinate x is

αi = σi exp(−
1

2
(x− µ′

i)
⊤Σ

′−1
i (x− µ′

i)) (2)

After sorting Gaussians by depth, the color at x can be computed by volume rendering:

I =

N∑
i=1

(ciαi

i−1∏
j=1

(1− αj)) (3)

where RGB color ci is evaluated by SH with coefficients hi and view direction.

Given multi-view images with known camera poses, 3D-GS optimizes a static 3D scene by minimizing
the following loss function:

Lrgb = (1− λ)L1(I, Igt) + λLSSIM(I, Igt) (4)
where λ = 0.2, and Igt is the ground truth. Besides, 3D-GS is initialized from from random point
cloud or SfM sparse point cloud, and an adaptive density adjustment strategy is applied to control the
number of Gaussians.

3.2 Dynamic Stage

To reconstruct an articulated object, we build the deformation based on superpoints and the linear
blend skinning (LBS) [47], while the canonical model is represented by 3D-GS.

The superpoints P = {pj ∈ R3}Mj=1 are associated with a set of 3D Gaussians, and can be used
to represent the object’s rigid parts. For timestamp t, we directly use deformable field Φ to learn
time-variant 6 DoF transformation [Rt

j ,o
t
j ] ∈ SE(3) of superpoint pj as:

Φ : (pj , t) → (Rt
j ,o

t
j), (5)

where Rt
j ∈ SO(3) is the local rotation matrix and ot

j ∈ R3 is the translation vector. Then, LBS
is employed to derive the motion of each Gaussian by interpolating the transformations for their
neighboring superpoints:

µt
i =

∑
j∈Ni

wij(R
t
jµi + ot

j), qt
i = (

∑
j∈Ni

wijr
t
j)⊗ qi, (6)

where rtj ∈ R4 is the quaternion representation for matrix Rt
j , and ⊗ is the production of quaternions.

Ni denotes the K-nearest superpoints of Gaussian Gi. wij is the LBS weights between Gaussian Gi

and superpoint pj , which can be computed as:

wij =
exp(Wij)∑

k∈Ni
exp(Wik)

, (7)

where W ∈ RN×M is a learnable parameter.

While keeping other attributes (i.e., si, σi,hi) of Gaussians the same as canonical space, we can
render the image at timestamp t following Eq. 3.

3.3 Discovery of Skeleton Model

Treating each superpoint as a rigid part of the articulated object, we can discover the skeleton model
(i.e., the 3D joints and the connection between joints) based on the motion of superpoints. Similar to
WIM [3], there are some observations to help us discover the underlying skeleton. First, if there is a
joint between two superpoints pa and pb, the position of pa is more likely close to the position of
pb. Second, when the relative pose between two parts changes, the joint between the two parts is
relatively unchanged. Lastly, two connected parts can be merged if they maintain the same relative
pose throughout the whole sequence.

Let jab ∈ R3 be the position of underlying joint between superpoints pa and pb, and Rt
ab ∈ SO(3)

is the relative rotation matrix between two superpoints at time t. The relative transform between pa

and pb can be either represented by the global transform or the rotation of the joint, that is:[
Rt

r ttr
0 1

]
=

[
Rt

b ot
b

0 1

]−1 [
Rt

a ot
a

0 1

]
=

[
Rt

ab jab −Rt
abjab

0 1

]
(8)

4



where Rt
r = (Rt

b)
−1Rt

a = Rt
ab ∈ SO(3) and ttr ∈ R3 are the relative rotation matrix and translation

vector between two superpoints respectively. Considering two joints jab and jba between pa and pb

should be the same, we compute following distance dab for every superpoint pair (a, b):

dab =
∑
t

∥tr − (jab −Rt
abjab)∥22 + λd∥jab − jba∥22 (9)

where λd = 1 is the hyper-parameter. To prevent the distance from changing too quickly, we smooth
it across training iterations:

d̂ab(τ + 1) = (1− ϵ) · d̂ab(τ) + ϵ · dab(τ), (10)

where ϵ = 0.1 is the momentum, and τ is the training iteration.

Similar to WIM [3], we discover the structure Γ of joints based on the distance d̂ab by the minimum
spanning tree algorithm. We first select all pairs (a, b) if superpoint pb is K ′-nearest neighborhood
for superpoint pa and sort the list of d̂ab for those pairs in ascending order. We initialize Γ as an
empty set. We pick pair (a, b) from the lowest distance to the highest distance, and add this pair to
Γ while there is no path between a and b. After finishing the procedure, we obtain the final object
structure Γ, which is an acyclic graph, i.e., a tree. We choose the node whose length of the longest
path from itself to any other node is the shortest as the root node. If there is more than one candidate
node, we randomly choose one as the root.

3.4 Kinematic Stage

After discovering the skeleton model, we optimize the skeleton model and fine-tune 3D Gaussians by
using the kinematic model. Specifically, we first predict time-variant rotations R̂k ∈ SO(3) for each
joint jk by using an deformable field Ψ:

Ψ : (jk, t) → R̂k (11)

Then we forward-warp the superpoint pj from the canonical space to the observation space of
timestamp t via the kinematic model. The local transformation matrix T̂t

k ∈ SE(3) of each joint k is
defined by a rotation Rt

k around its parent joint jk. Consequently, the final transformation of each
superpoint pj can be computed as a linear combination of bone transformation:

Tt
j =

[
Rt

j ot
j

0 1

]
= Tt

root

∏
k∈Cj

T̂t
k, where T̂t

k =

[
R̂t

k jk − R̂t
kjk

0 1

]
, (12)

where Cj is the list of ancestor of superpoint j in skeleton model. Tt
root is global transformation of

root. Same as Sec. 3.2, we use LBS to derive the motion of each Gaussian and render images.

3.5 Adaptive Control of Superpoints

We use the farthest point sampling algorithm to sample M Gaussians to initialize the superpoints.
Simply making superpoints learnable is not enough to model complex motion patterns. More
importantly, we wish to simplify the skeleton after training to ease pose editing by reducing the
number of superpoints. Following 3D-GS [2] and SC-GS [48], we develop an adaptive control
strategy to prune, densify, and merge superpoints.

Prune: To determine whether a superpoint pj should be pruned, we calculate its overall impact
Wj =

∑
i∈Ñj

wij , where Ñj = {i | j ∈ Ni} is the set of Gaussians whose K nearest neighbors
include superpoints pj . When Wj < δprune, we prune this superpoint as it is of little contribution to
the motion of 3D Gaussians.

Densify: Two aspects determining whether a superpoint should be split into two superpoints. On
one hand, we clone a superpoint when its impact Wj is greater than a threshold δclone, indicating
there is a great amount of Gaussians associated with this superpoint, and cloning such superpoints
helps model fine motion. On the other hand, we calculate the weighted Gaussians gradient norm of
superpoint j as:

gj =
∑
i∈Ñj

wij∑
k∈Ñj

wkj
∥∂L
∂µ i

∥22, (13)
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Table 1: Quality comparison of novel view synthesis for the D-NeRF dataset.
Method Skeleton PSNR↑ SSIM↑ LPIPS↓ FPS↑ resolution Opt. Time

D-NeRF [14] No 30.48 0.9683 0.0450 <1 400× 400 20.0 hours
TiNeuVox-B [5] No 32.60 0.9783 0.0383 0.82 400× 400 28.0 mins
Hexplane [49] No 29.81 0.9683 0.0400 1.37 400× 400 11.5 mins

K-Plane hybrid [50] No 31.02 0.9717 0.0495 0.52 400× 400 52.0 mins

4D-GS [20] No 34.39 0.9830 0.0190 141.37 800× 800 20.0 mins
SP-GS [22] No 37.55 0.9884 0.0137 234.83 800× 800 52.3 mins

D-3D-GS [21] No 40.11 0.9918 0.0120 42.10 800× 800 66.0 mins
SC-GS [48] No 42.98 0.9955 0.0028 123.04 400× 400 53.3 mins

WIM [3] Yes 25.21 0.9383 0.0700 0.16 400× 400 11 hours
AP-NeRF [4] Yes 30.91 0.9700 0.0350 1.33 400× 400 150. mins

Ours Yes 38.80 0.9870 0.0095 103.98 800× 800 90.6 mins
Ours Yes 39.23 0.9890 0.0070 110.90 400× 400 92.5 mins

Table 2: Quantitative comparison of novel view synthesis on the Robots dataset.
Method PSNR↑ SSIM↑ LPIPS↓ FPS↑ resolution

WIM [3] 29.11 0.9664 0.0350 0.11 512× 512
AP-NeRF [4] 32.45 0.9784 0.0202 0.89 512× 512

Ours 34.34 0.9809 0.0187 137.76 512× 512

where L is the loss function, which demonstrated in Appendix A. We clone the superpoint pj if gj is
greater than the threshold δgrad.

Merge: We merge the superpoints that should belong to the same rigid part. To determine which
superpoints should be merged, we first calculate the transformations Tt

j ∈ se3 for all superpoints at
all training timestamps. Then, for each pair (a, b) of superpoints, we calculate the average relative
transformations:

Da,b =
1

Nt

∑
t

∥ log(Tt
b
−1

Tt
a)∥, (14)

where Nt is the number of train timestamps, log() denotes the operation of converting a rigid
transformation matrix to a Lie algebra. A small Da,b indicates two superpoints have similar motion
patterns. Therefore, we merge two superpoints pa and pb when Da,b < δmerge and pb is the
K ′-nearest superpoints of pa.

4 Experiments

In this section, we present the evaluation of our approach, which achieves excellent view-synthesis
quality and real-time rendering speed. We also evaluate the contribution of each component through
an ablation study. Additionally, we demonstrate the class-agnostic reposing capability. Please refer to
our project https://dnvtmf.github.io/SK_GS/ for video visualization.

4.1 Datasets and Evaluation Metrics

To ensure fair comparison with previous work, we choose the same datasets and configurations as
AP-NeRF[4]. Specifically, we choose three multi-view video datasets. First, the D-NeRF [14] dataset
is a sparse multi-view synthesis dataset, which includes 5 humanoids, 2 other articulated objects, and
a multi-component scene. Each scene contains 50-200 frames. We choose 6 of 8 scenes 1 The second
dataset, Robots [3],contains 7 topologically varied robots with multi-view synthetic video. We use 18
views for training and 2 views for evaluation. The third dataset, ZJU-MoCap [34], is commonly used

1We exclude the Lego and Bouncing Balls scene due to errors in the Lego test split and the multi-component
nature of Bouncing Balls .
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Figure 2: Qualitative comparison on D-NeRF datasets.

for dynamic human reconstruction. Following WIM [3] and AP-NeRF [4], we evaluate 5 sequences
with 6 training views for each sequence. We use three metrics to evaluate the image quality of the
novel view, i.e., peak signal-to-noise ratio (PSNR), structural similarity (SSIM) [51], and learned
perceptual image patch similarity (LPIPS) [52].

4.2 Implementation Details

We implement our framework using PyTorch. The number of superpoints is initialized as 512. For
both deformable field Φ and Ψ, we adopt the architecture of NeRF[1], i.e., 8-layers MLP where
each layer employs 256-dimensional hidden fully connected layer and ReLU activation function. We
also employ positional encoding for the input coordinates and time. For optimization, we employ
the Adam optimizer and use the different learning rate decay schedules for each component: the
learning rate about 3D Gaussians is the same as 3D-GS, while the learning rate of other components
undergoes exponential decay, ranging from 1e-3 to 1e-5. We conducted all experiments on a single
NVIDIA Tesla V100 (32GB). More implementation details are shown in Appendix A.

4.3 Baselines

We mainly compare our method to state-of-the-art template-free articulated methods for view synthe-
sis, i.e. WIM [3] and AP-NeRF [4]. Besides, we also compare our method with NeRF-based and
3D-GS-based non-articulated methods. D-NeRF [14] extends NeRF to dynamic scenes by warping
a static NeRF. TiNeuVox [5] improves the visual quality and training speed by using voxel grids.
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Figure 3: Qualitative comparison for the Robots[3] dataset.
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Figure 4: Qualitative comparison for the ZJU-MoCap [34] dataset.

HexPlane [49] and K-Planes [50] accelerate NeRF by decomposing the space-time volume into
several planes. Similar to D-NeRF, Deformable-3D-GS [21] extends static 3D-GS to the temporal
domain. 4D-GS [20] accelerate Deformable-3D-GS by decomposing neural voxel encoding algorithm
inspired by HexPlane. Similar to ours, SP-GS [22] and SC-GS [48] employ the superpoints/control
points to reconstruct dynamic scenes. However, SP-GS and SC-GS can not extract skeleton from
reconstructed model.

4.4 Comparisons on Synthetic Dataset

In our experiments, we benchmarked our method against several baselines using the D-NeRF dataset
and Robots datasets. The quantitative comparison results, presented in Tab. 1, demonstrate the superior
performance of our approach in terms of both rendering speed and visual quality. Specifically, our
method significantly outperforms WIM and AP-NeRF not only in visual quality but also in rendering
speed. Compared to 3D-GS based dynamic scenes reconstruction models, our method not only have
similar performance, but also discover the skeleton and can repose the object to generate a novel pose.
Specifically, the rendering quality of ours is higher than 4D-GS [20] and SP-GS [22], and lower than
D-3D-GS [21] and SC-GS [48]. Our method also can achieve real-time rendering (>100 FPS), which
is near to the rendering speed of SC-GS [48]. Fig. 2 provides the qualitative comparisons of D-NeRF
dataset, which demonstrates the advantages of our method over related methods. We also provide
results for Robots datasets, quantitatively in Tab. 2 and qualitatively in Fig. 3. It is also clear that our
approach is capable of producing high-fidelity novel views with real-time rendering speed. Per-scene
results are shown in Appendix B.

4.5 Comparison on Real-world Dataset

In Tab. 3 and Fig. 4, we compare our method to WIM and AP-NeRF in the ZJU-MoCap dataset. We
observe that both methods can recover the 3D shape and skeleton models. However, imperfections
in the camera calibrations (see Supplement F of [53]), lead to lower visual quality in our results
compared to WIM and AP-NeRF. With respect to rendering speed, our approach achieves up to
198.23 FPS. In stark contrast, the rendering speed of WIM and AP-NeRF is extremely slow.
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Table 3: Quantitative comparison for the ZJU-MoCap [34] dataset.
Method PSNR↑ SSIM↑ LPIPS↓ FPS↑ resolution

WIM[3] 31.08 0.963 0.053 0.12 512× 512
AP-NeRF[4] 29.60 0.958 0.063 1.31 512× 512

ours 29.11 0.961 0.063 198.23 512× 512

Figure 5: Reposing using skeleton. Interpolation from canonical to novel pose.

(a) Full (#sp: 97) (b) wo Control (#sp: 512) (c) wo Merge (#sp: 608) (d) wo Larap (#sp: 453)

Figure 6: We visualize the rendering results of (a) our full method, (b) our method without adaptive
control, (c) our method without merge superpoints, (d) our method without Larap (see Appendix A).
#sp denotes the number of superpoints. The blue points denotes superpoints.

4.6 Reposing

In Fig. 5, we show our model allows free changes poses and generates animating video by smoothly
interpolating the skeletons posing between user-defined poses. Video examples can be found on our
project webpage.

4.7 Ablation Study

We use superpoints to model the parts and motion of the object. The adaptive control of superpoints is
the key to reducing the number of superpoints. Fig. 6 (a), (b) and (c) intuitively illustrate the impact
of this control strategy. Without the control strategy, the distribution of superpoints becomes uneven,
with sparse representation in the arm region, which negatively impacts motion modeling. The merge
process in the control strategy significantly reduces the number of superpoints (97 vs 608), while the
superpoints are more distributed in the motion area. Besides, as illustrated in Fig. 6 (d), Larap (in
Appendix A) also plays an important role in controlling the density of superpoints. See Appendix C
for more ablation studies.
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5 Discuss

5.1 Limitations

We have demonstrated that our approach can achieve real-time rendering, state-of-the-art visual
quality, and straightforward reposing capability by skeleton and kinematic models. However, there
are some limitations to our approach. Firstly, similar to WIM and AP-NeRF, the learned skeleton
model of our approach is restricted to the kinematic motion space exhibited in the input video.
Therefore, the skeleton model may have significant differences from the actual one, and extrapolation
to generate arbitrary unseen poses may cause errors. Secondly, our approach has similar limitations
as other 3D-GS based methods for dynamic scenes. Specifically, the datasets with inaccurate camera
poses will lead to reconstruction failures, and large motion or long-term sequences can also result
in failures. Lastly, the paper focuses on building the kinematic model for one articulated object.
Exporting build kinematic models for multi-component objects or complex scenes that contain
multiple objects remains an opportunity for future research. Additionally, extending this approach to
motion capture is an interesting research direction.

5.2 Broader Impacts

Although our approach is universal, it is also suitable for rending novel views and poses for humans.
Therefore, we acknowledge that our approach can potentially be used to generate fake images or
videos. We firmly oppose the use of our research for disseminating false information or damaging
reputations.

5.3 Conclusion

We have developed a new method for real-time rendering of articulated models for high-quality novel
view synthesis. Without any template or annotations, our approach can reconstruct a kinematic model
from multi-view videos. With state-of-the-art visual quality and real-time rendering speed, our work
represents a significant step towards the development of low-cost animatable 3D objects for use in
movies, games, and education.
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A More Implementation Details

The whole optimization progress can be divided into three stages: dynamic stage, joints discovery
stage and kinematic stage.

A.1 Dynamic Stage

In this stage, we aim to reconstruct the appearance of the object, and find the position of underlying
joints. Therefore, we employ the Ljoint, whose formula is:

Ljoint =
1

M2

M∑
i=1

M∑
j=1

dij +
1

M − 1

∑
(i,j)∈Γ

dij (15)

Besides, to obtain a good segmentation of object parts by using superpoints, we employ some
regularization losses. To reduce the total number of superpoints, we encourage nearby superpoints to
possess same motion patterns via as-rigid-as-possible regularization Larap:

Larap =

M∑
j=1

∑
k∈N sp

j

∥ log(Rt
j
−1

Rt
k)∥22 + ∥ot

j − ot
k∥22. (16)

where N sp
j is the set of K ′-nearest neighbor superpoints of superpoint j. For the blend skinning

weight, we employ Lsmooth to encourage smoothness by penalizing divergence of skinning weight:

Lsmooth =

N∑
i=1

∑
j∈Ni

|wi − wj |. (17)

Besides, we apply Lsparse to encourage sparsity so that one Gaussian is more likely associated with
only one superpoint:

Lsparse = −
N∑
i

B∑
j

wij log(wij) + (1− wij) log(1− wij) (18)

In total, our training loss of dynamic stage is:

L = λ0Lrgb + λ1Ljoint + λ2Larap + λ3Lsmooth + λ4Lsparse (19)

where λ = {1, 1., 10−3, 0.1, 0.1} in our experiments.

In this stage, we conducted training for a total of 40k iterations. Similar to SC-GS [48], our training
scheme is as follows:

1. In 0∼2k iterations, we fix deformable field Φ.
2. In 2k∼10k iterations, we train deformable field Φ which using the position of Gaussians

rather than superpoints as inputs. At 7500 iteration, we sample M Gaussians by using
futherest sampling algorithm. At 10k iteration, we initialize superpoints by traind M
Gaussians, and re-initialize the Gaussians in canonical space.

3. In 10 ∼ 13k iterations, we fix deformable field Φ.
4. In 13k ∼ 40k iterations, all parameters are optimized.

During the first 20k iterations, We do not discover joints and skeleton, i.e., λ1 = 0. During 20k ∼
40k iterations, we update the structure of skeleton every 100 iterations. Note that we stopped the
gradient between joints and other parts so that the learning of joints has no effect on the learning of
Gaussians, superpoints and deformation field.

During training, we adopt the same adaptive control strategy for Gaussians as 3D-GS[2] In details, in
iterations 1∼7500 and 10k∼ 35k, we densify and prune Gaussians every 100 iterations, while the
densify grad threshold is set to 0.0002 and the opacity threshold for prune is set to 0.005. We reset
the opacity of Gaussians every 3k steps.

We densify and prune superpoints every 1000 steps between iterations 20k and 30k, and the hyper-
parameter δgrad = 0.0002 and δprune = 0.001. We merge superpoints every 1000 steps between
iterations 30k and 40k, while threshold δmerge = 0.0005.
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A.2 Skeleton Discovery Stage

In this stage, we aim to initialize deformable field Ψ the using the learned deformable field Φ in
dynamic stage. Firstly, we fix skeleton structure Γ, and initialize the joints jk, k = 1, . . . ,M − 1
by underlying joints jab according to Γ. We then cache the outputs of deformable field Φ for all
timestamps in the training dataset. Next, we use cached motions of superpoints to optimize the
parameters of deformable field Ψ, the positon of the joints jk by employing Adam optimizer and
following loss functions:

Ldiscovery =
1

M

M∑
i=1

λ5(∥µt
i − µ̂t

i∥22 + ∥ log(Rt
i
−1

R̂t
i)) + λ6∥(Rt

ip+ µt)− (R̂t
ip+ µ̂t)∥ (20)

where µ̂t
i and R̂t

i is translations and rotations calculated by deformable field Φ, while µt
i and Rt

i is
translations and rotations calculated by deformable field Ψ and kinematic model. λ5 = 1 controls the
weights of the transform matrix difference, and λ6 = 0.1 adjusts the weights of relative offset of the
superpoints position at timestamp t.

For this stage, we train for 10k iterations with a fixed learning rate of 10−3.

A.3 Kinematic Stage

In the kinematic stage, we optimize the kinematic model, joints and Gaussians, while keeping the
number of Gaussians, the number of superpoints and the structure of skeleton fixed. We also conduct
training for a total of 40k iterations by only using Lrgb.

A.4 Others

For the deformable field Φ and Ψ, we adopt the following positional encoding for the input coordinates
x ∈ RN×3 and time t ∈ [0, 1]:

γ(p) = (sin(2kp), cos(2kp))Lk=0, (21)

where L = 10 for x and L = 6 for t.

The initial number of superpoints is set to 512, while K = K ′ = 5.

B Per Scene Results

B.1 Per-Scene Results for D-NeRF dataset

Tab. 4 shows the per-scene quantitative results for the D-NeRF dataset.

B.2 Per-scene Results for Robots dataset

Tab. 5 shows the per-scene quantitative results for Robots dataset.

C More Results

C.1 Required Resources

As shown in Tab. 6, we present detailed information on the optimization time and the required
resources.

C.2 Ablation study for the number of initial superpoint

The ablation study on the number of initial superpoint M is shown in Tab. 7.

As shown in the Fig. 7, our method struggles to accurately reconstruct the endpoints of objects.
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PSNR↑ JumpingJacks Mutant Hook T-Rex StandUp HellWarrior Average

D-NeRF [14] 32.80 31.29 29.25 31.75 32.79 25.02 30.48
TiNeuVox-B [5] 34.23 33.61 31.45 32.7 35.43 28.17 32.60
Hexplane [49] 31.65 33.79 28.71 30.67 34..6 24.24 29.81

K-Plane hybrid [50] 32.64 33.79 28.5 31.79 33.72 25.7 31.02

D-3D-GS [21] 37.59 42.61 37.09 37.67 44.30 41.41 40.11
4D-GS [20] 35.44 37.43 33.01 33.61 38.11 28.77 34.39
SP-GS [22] 35.56 39.43 35.36 32.69 42.07 40.19 37.55
SC-GS [48] 41.62 45.08 39.81 40.70 47.81 42.88 42.98

WIM [3] 29.77 25.80 25.33 26.19 27.46 16.71 25.21
AP-NeRF [4] 34.50 28.56 30.24 32.85 31.93 27.53 30.94

Ours (800× 800) 36.95 40.95 36.64 35.10 43.52 39.65 38.80
Ours (400× 400) 36.70 41.96 36.77 36.14 43.84 39.95 39.23

SSIM↑ JumpingJacks Mutant Hook T-Rex StandUp HellWarrior Average

D-NeRF [14] 0.98 0.97 0.96 0.97 0.98 0.95 0.9683
TiNeuVox-B [5] 0.98 0.98 0.97 0.98 0.99 0.97 0.9783
Hexplane [49] 0.97 0.98 0.96 0.98 0.98 0.94 0.9683

K-Plane hybrid [50] 0.977 0.983 0.954 0.981 0.983 0.952 0.9717

D-3D-GS [21] 0.9929 0.987 0.9858 0.995 0.9947 0.9953 0.9918
4D-GS [20] 0.9857 0.988 0.9760 0.985 0.9898 0.9733 0.9830
SP-GS [22] 0.9950 0.9868 0.9804 0.9861 0.9926 0.9894 0.9884
SC-GS [48] 0.9957 0.9977 0.9934 0.9972 0.9981 0.9908 0.9955

WIM[3] 0.97 0.95 0.94 0.94 0.96 0.87 0.9383
AP-NeRF[4] 0.98 0.96 0.97 0.98 0.97 0.96 0.9700

Ours (800× 800) 0.9883 0.9921 0.9847 0.9877 0.9933 0.9761 0.9870
Ours (400× 400) 0.9889 0.9951 0.9869 0.9934 0.9950 0.9749 0.9890

LPIPS ↓ JumpingJacks Mutant Hook T-Rex StandUp HellWarrior Average

D-NeRF[14] 0.03 0.02 0.11 0.03 0.02 0.06 0.0450
TiNeuVox-B[5] 0.03 0.03 0.05 0.03 0.02 0.07 0.0383
Hexplane[49] 0.04 0.03 0.05 0.03 0.02 0.07 0.0400

K-Plane hybrid[50] 0.0468 0.0362 0.0662 0.0343 0.031 0.0824 0.0495

D-3D-GS[21] 0.0126 0.0052 0.0144 0.0098 0.0063 0.0234 0.0120
4D-GS[20] 0.0128 0.0167 0.0272 0.0131 0.0074 0.0369 0.0190
SP-GS [22] 0.0069 0.0164 0.0187 0.0243 0.0096 0.0066 0.0137
SC-GS [48] 0.0030 0.0011 0.0037 0.0014 0.0008 0.0068 0.0028

WIM[3] 0.04 0.06 0.06 0.08 0.04 0.14 0.0700
AP-NeRF[4] 0.03 0.03 0.05 0.02 0.02 0.06 0.0350

Ours (800× 800) 0.0086 0.0038 0.0089 0.0105 0.0045 0.0203 0.0095
Ours (400× 400) 0.0090 0.0022 0.0073 0.0054 0.0026 0.0155 0.0070

FPS↑ JumpingJacks Mutant Hook T-Rex StandUp Hellwarrior Average

D-3D-GS [21] 16.35 102.51 32.3 20.59 49.14 31.68 42.10
4D-GS [20] 112.89 129.59 147.38 144.46 152.46 161.41 141.37
SP-GS [22] 271.27 210.42 230.35 186.65 260.34 249.93 234.83
SC-GS [48] 128.05 122.01 129.81 105.24 132.91 120.24 123.04

WIM [3] 0.19 0.17 0.13 0.16 0.18 0.13 0.16
AP-NeRF [4] 1.57 1.42 1.11 1.34 1.48 1.06 1.33

Ours (800× 800) 106.81 101.04 103.60 98.38 102.02 112.03 103.98
Ours (400× 400) 109.61 104.22 109.11 109.15 110.03 123.28 110.90

Table 4: Quantitative Results Per-Scene in D-NeRF dataset.
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PSNR↑ Atlas Baxter Cassie Iiwa Nao Pandas Spot Average

WIM[3] 25.01 23.36 30.08 32.77 28.68 35.93 27.92 29.11
AP-NeRF[4] 32.56 30.74 31.44 35.78 30.64 32.44 33.57 32.45

ours 34.89 31.96 32.08 39.34 33.24 32.02 36.85 34.34

SSIM↑ Atlas Baxter Cassie Iiwa Nao Pandas Spot Average

WIM[3] 0.9405 0.9538 0.9712 0.9866 0.9546 0.9878 0.9704 0.9664
AP-NeRF[4] 0.9833 0.9759 0.9775 0.9884 0.9615 0.9785 0.9837 0.9784

ours 0.9891 0.9561 0.9792 0.9928 0.9741 0.9896 0.9856 0.9809

LPIPS↓ Atlas Baxter Cassie Iiwa Nao Pandas Spot Average

WIM[3] 0.0648 0.0455 0.0359 0.0160 0.0368 0.0177 0.0283 0.0350
AP-NeRF[4] 0.0170 0.0196 0.0281 0.0129 0.0323 0.0203 0.0110 0.0202

ours 0.0092 0.0430 0.0249 0.0062 0.0187 0.0172 0.0114 0.0187

FPS↑ Atlas Baxter Cassie Iiwa Nao Pandas Spot Average

WIM[3] 0.08 0.08 0.10 0.17 0.07 0.10 0.08 0.10
AP-NeRF[4] 0.66 1.26 0.33 0.35 1.02 0.39 1.73 0.82

ours 123.32 149.43 139.08 122.59 141.58 146.73 141.62 137.76
Table 5: Quantitative Results Per-Scene in Robots dataset.

Table 6: Optimization time and required resources for each scene in the D-NeRF dataset.
scene hellwarrior hook jumpingjacks mutant standup trex average

Training Time (h) 1.17 1.52 1.50 1.55 1.40 1.92 1.51
GPU VRAM(GB) 1.23 3.63 2.31 3.33 2.19 4.32 2.83

num. of Gaussians (×105) 0.60 1.54 1.11 1.44 0.97 1.92 1.28
num. of superpoints 188 184 112 51 134 42 118.5

(a) (b) (c) (d) (e) (f)

Figure 8: Compare rendered images between canonical space and the warp space of timestamp 0. (a)
canonical space in Dynamic stage, (b) at time 0 in Dynamic stage, (c) canonical space in Kinematic
stage, (d) at time 0 in Kinematic stage, (e)LBS at time 0 in Kinematic stage (f)ground truth at time 0.

(a) AP-NeRF (b) ours (c) ground truth (d) AP-NeRF (e) ours (f) ground truth

Figure 7: Compare to AP-NeRF, ours method are more robust for complex motion.
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Table 7: Ablation study for the number of initial superpoint M on the ‘hellwarrior’ scene of D-NeRF
dataset.

M 128 256 384 512 640 768 896 1024

PSNR↑ 39.61 39.70 39.83 39.69 39.89 39.56 39.72 40.43
SSIM↑ 0.9765 0.9766 0.9779 0.9773 0.9781 0.9766 0.9767 0.9800
LPIPS↓ 0.0191 0.0179 0.0173 0.0183 0.0169 0.0183 0.0186 0.0155
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main contributions, which match
experimental results.
Guidelines:
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made in the paper.
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide disclose all information in Sec. 3 and Appendix A needed to
reproduce the experimental results of paper. Besides, we will release the source code once
the paper is accepted.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We released the source code on GitHub, i.e., https://github.com/dnvtmf/
SK_GS.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details in Sec. 4,Sec. 3 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report error bars or other information about statistical significance
as this is not a common procedure in the field and does not contribute to understanding our
evaluation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information on the computer resources in the paper and
code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conducted this research in every respect, with the NeurIPS Code of Ethics .
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss both potential positive societal impacts and negative societal
impacts of this paper in Sec. 5.2.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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