
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GRADIENT-FREE TRAINING OF RECURRENT NEURAL
NETWORKS FOR LOW DIMENSIONAL DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Recurrent neural networks are a successful neural architecture for many time-
dependent problems, including time series analysis, forecasting, and modeling of
dynamical systems. Training such networks with backpropagation through time
is a notoriously difficult problem because their loss gradients tend to explode or
vanish. In this contribution, we introduce a computational approach to construct
all weights and biases of a recurrent neural network without using gradient-based
methods. The approach is based on a combination of random feature networks
and Koopman operator theory for dynamical systems. The hidden parameters
of a single recurrent block are sampled at random, while the outer weights are
constructed using extended dynamic mode decomposition. This approach alleviates
all problems with backpropagation commonly related to recurrent networks. The
connection to Koopman operator theory also allows us to start using results in this
area to analyze recurrent neural networks. In computational experiments on time
series, forecasting for chaotic dynamical systems, and control problems, as well as
on weather data, we observe that the training time and forecasting accuracy of the
recurrent neural networks we construct are improved when compared to commonly
used gradient-based methods.

1 INTRODUCTION

Recurrent neural networks (RNNs) are notoriously difficult to train because their loss gradients
backpropagated in time tend to saturate or diverge during training, commonly referred to as the
Exploding and Vanishing Gradient Problem (EVGP) (Pascanu et al., 2013; Schmidt et al., 2019). To
alleviate these problems and improve the computational load of training such networks, we consider
a model that completely avoids iterative gradient-descent optimization. We propose to sample the
hidden layer parameters of the RNN at random, before solving for the outer linear layer by least-
squares methods. Our first major contribution is that we consider data-dependent distributions for the
weights and biases, which improves upon the accuracy and interpretability compared to data-agnostic
distributions. Our second major contribution adds more structure to the outer layer and improve the
models performance even further. We achieve this by connecting RNNs and the Koopman operator
(cf. Korda & Mezić (2018a)) through a linear state-space model in a higher-dimensional space, i.e.,

ht = F (ht−1,xt)
yt = g(ht)︸ ︷︷ ︸

original non-linear system

↔ zt = Kzt−1 +Bxt

yt = V zt︸ ︷︷ ︸
linear (Koopman) state-space model

↔
zt = KF(ht−1) +BG(xt)
ht = Czt
yt = V zt︸ ︷︷ ︸

non-linear RNN

.

(1)
Here the matrix K maps states from zt−1 to zt, with the input xt affecting this dynamic through the
matrix B, and the observations are related to the states through the linear map V .

By using a non-linear neural network to map the low-dimensional state h into a higher dimension,
through F(h) := σ(Wh + b), and, similarly, to map the input x to a high-dimensional input
G(x) = σx(Wxx+ bx), turns the linear SSM into a non-linear recurrent neural network. The final
model is illustrated in Figure 1. This connection gives structure and interpretability to the outer
layer of RNNs, as well as tools to analyze the RNNs stability through the spectral properties of the
Koopman operator.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

V

=C + =() + =B

+ =()
Figure 1: Illustration of the components of one recurrent block we construct in the paper. The state
zt−1 enters on the left, and is processed through matrix C and the neural network F = σ(W ·+b).
We then advance in time to zt, using the Koopman matrix K and the processed control inputs.

The combination of sampling hidden layers and applying Koopman theory alleviates all issues related
to the backpropagation of gradients and connects the idea of recurrent architectures to the
Koopman operator of the underlying dynamical system. The latter allows us to prove convergence
results about the approximation quality w.r.t. the number of neurons in F . We demonstrate the
performance of this approach on several challenging examples with synthetic and real data, and show
comparable results to networks trained with backpropagation. Finally, we touch upon the models
current challenges such as applying it to high dimensional data.

2 RELATED WORK

Exploding and vanishing gradients. For all major types of RNNs, including LSTMs and GRUs,
the dynamics and loss gradients of RNNs are closely linked. If the RNN dynamics converge to
a stable fixed point or cycle, loss gradients will remain bounded, but they may vanish (Mikhaeil
et al., 2022). Yet, established remedies (Hochreiter & Schmidhuber, 1997; Schmidt et al., 2019)
can be used to effectively prevent their gradients from vanishing. However, in chaotic dynamics,
gradients invariably explode, posing a challenge that cannot be mitigated through RNN architectural
adjustments, regularization, or constraints; instead, it necessitates addressing the problem during
the training process (Mikhaeil et al., 2022). Bifurcations may also contribute to sudden jumps in
loss observed during RNN training, potentially hindering the training process severely (Doya et al.,
1992; Eisenmann et al., 2023). In Eisenmann et al. (2023), it has been demonstrated that specific
bifurcations in ReLU-based RNNs are always associated with EVGP during training. Therefore, to
harness the full potential of RNNs, the training algorithm needs careful design to tackle challenges
posed by bifurcations and the possible emergence of EVGP.

Curse of memory. The existence of long-term memory adversely affects the learning process of
RNNs (Bengio et al., 1994; Hochreiter et al., 2001; Li et al., 2021). This negative impact is captured
by the concept of the “curse of memory”, which states that when long-term memory is present in
the data, approximating relationships demands an exponentially large number of neurons, resulting
in a significant slowdown in learning dynamics. Specifically, when the target relationship includes
long-term memory, both the approximation and optimization of the learning process become very
challenging (Li et al., 2021).

Loss function for chaotic and multistable dynamics reconstruction. To effectively train RNNs and
evaluate reconstruction, it is crucial to carefully choose a proper loss function. The Mean Squared
Error (MSE) is a commonly used loss function for reconstruction tasks. MSE is derived under the
assumption of Gaussian noise, and it may not be the most appropriate choice when dealing with
chaotic systems or multistable dynamics, where the underlying noise characteristics may deviate
from Gaussian distribution assumptions. It is not suitable as a test loss for chaotic dynamical systems
due to their unpredictable behavior and abrupt changes (Wood, 2010). In multistable systems, where
there are multiple stable states, MSE may struggle to distinguish between these states. The loss
function may not adequately penalize deviations between different attractors, leading to a less accurate
reconstruction of the system’s multistable behavior. Despite proposed alternatives, challenges persist,
and an optimal loss function for reconstructing chaotic or multistable dynamics is still lacking
(Ciampiconi et al., 2023).

Interpretability deficiency. Deep learning models are commonly regarded as “black boxes”, and
existing methods to comprehend the decision-making processes of RNNs offer restricted explanations
or rely on local theories. The lack of theory behind analyzing the training algorithms of RNNs, as

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

well as the training process itself, are outstanding open questions in the field (Redman et al., 2023)
beyond models for linear systems (Datar et al., 2024).

Randomly choosing the internal network parameters. The general idea of randomly choosing
the internal parameters of neural networks is studied in random feature models (including deep
architectures).Barron (1993); Rahimi & Recht (2008) developed the basic theory, and Gallicchio &
Scardapane (2020) provide a review. Reservoir computing (also called echo-state networks, cf. Jaeger
& Haas (2004)) is potentially the closest idea to what we are proposing here. In a reservoir computer,
the internal weights are also randomly sampled, and a recurrent, time-delayed model is constructed
to approximate a given dynamical system. This type of architecture has been used successfully to
model chaotic systems (cf. Pathak et al. (2018); Gauthier et al. (2021)). While there are similarities to
the recurrent architecture (cf. Lukoševičius & Jaeger (2009)), the concept, as well as the architecture
of a reservoir computer, is often treated separately from classic recurrent neural networks that are
trained with backpropagation-in-time. In our work, we directly compute all parameters of classical
recurrent neural networks without the time-delay component present in reservoir computers.

Koopman operator theory. The Koopman operator is an object associated to every dynamical system.
It evolves observables of the state of the system in time. This evolution is linear, which is the main
reason the operator is employed and studied extensively for modeling dynamical systems (Mezić,
2005; 2013; Korda & Mezić, 2018b). Many numerical approximation algorithms exist (Schmid,
2010; Williams et al., 2015a; Li et al., 2017; Mezic, 2020; Schmid, 2022). The dictionary for the
approximation of the Koopman operator has been constructed with neural networks using gradient
descent (Li et al., 2017) and using random features (Salam et al., 2022). Reservoir computing has
also been related to Koopman operator approximation by Bollt (2021); Gulina & Mauroy (2020).
To our knowledge, the relation of the Koopman operator to the weight matrices of recurrent neural
networks has not been observed before. This is what we discuss in this work. We also provide a
data-dependent probability distribution for the hidden parameters, which is the strongest deviation
from the data-agnostic distributions (e.g., normal, uniform) typically used in reservoir computing.

3 MATHEMATICAL FRAMEWORK

We start by defining a general framework of recurrent neural networks (RNNs) and the underlying
dynamical system before introducing sampling and its connection to the Koopman operator. Let
X ⊆ Rdx be an input space, Y ⊆ Rdy an output space, and H ⊆ Rdh a state space. We assume
that these spaces are associated with the measures µx, µy, and µh, respectively. The underlying
dynamical system is then defined through the evolution operator F , where we may be working in an
uncontrolled system ht = F (ht−1) or a controlled system ht = F (ht−1,xt). We also denote the
input dataset X = [x1,x2, . . . ,xN] and the dataset of observations Y = [y1,y2, . . . ,yN]. In this
paper we are interested in recurrent neural networks modelling dynamical systems where the state is
observable, and we therefore usually assume access to the dataset H = [h1, . . . ,hN] as well as its
copy after one time step H ′ = [h′1, . . . ,h

′
N], where h′n = F (hn), n ∈ {1, . . . , N}.

We denote activation functions as σ : R → R, where we are mainly working with σ = tanh in this
paper, as it is an analytic function and connects to SWIM (Bolager et al., 2023). Other functions such
as ReLU are also a valid choice. The following definition outlines the models we consider.

Definition 1. LetWh ∈ RM×dh ,Wx ∈ RM̂×dx , bh ∈ RM , bx ∈ RM̂ , Ch ∈ Rdh×M , Cx ∈ Rdh×M̂ ,
and V ∈ Rdy×dh . For time step t and h0 ∈ H, we define a recurrent neural network (RNN) by

ht = σhx(Ch σ(Wh ht−1 + bh) + Cx σ(Wx xt + bx) + bhx), (2)
yt = V ht. (3)

Remark 1. For completeness we have added σhx as an arbitrary activation function. We choose to set
σhx as the identity function to let us solve for the last linear layer in the procedure described below.
Other activation functions such as the logit is possible as well.

The classical way to train this type of RNN is through iterative backpropagation, which suffers
the aforementioned issues such as EVGP and high computational complexity. We instead start by
sampling the hidden layer parameters to circumvent backpropagation, as explained next.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 SAMPLING RNN

Sampled neural networks are neural networks where the parameters of the hidden layers are sampled
from some distribution, and the last linear layer is either sampled or, more typically, solved through
a linear solver. Following Bolager et al. (2023), we sample the weights and biases of the hidden
layers of both FH and FX by sampling pairs of points from the domain H and X , and construct
the weights and biases from these pairs of points. One then solves a linear (general) regression
problem at the end for the last linear layer that maps to the next state. Concretely, let PH and PX be
probability distributions over H2 and X 2 respectively. For each neuron in the hidden layer of FH,
sample (h(1),h(2)) ∼ PH and set the weight w and the bias b of said neuron to

w = s1
h(2) − h(1)

∥h(2) − h(1)∥2
, b = −⟨w,h(1)⟩+ s2, (4)

where ∥·∥ and ⟨·, ·⟩ are typically the Euclidean norm and inner product, and s1, s2 ∈ R are constants.
Repeating the same procedure for all neurons in both FH and FX . As we stick to networks with one
hidden layer in this paper, we ignore the multilayer sampling here and direct the reader to Bolager
et al. (2023) for the full sample and construction procedure for an arbitrary number of hidden layers.

This sampling technique adapts the weights and biases to the underlying domain and constructs
weights with direction along the data (see Appendix C for an example how this can be used to interpret
the resulting network). Empirically, this has shown to be an improvement over using data-agnostic
distributions such as the standard Gaussian one. One can choose arbitrary probability distributions as
PH and PX , with uniform distribution being a common choice. For the supervised setting, Bolager
et al. (2023) also proposed a sampling distribution whose density captures the steepest gradients of
the target function. For this paper, we sample with densities pH and pX proportional to

pH ∝ ∥F (h(2))− F (h(1))∥
∥h(2) − h(1)∥

, pX ∝ 1,

respectively. Once the weights and biases are sampled, we must solve a general regression problem

[Ch, Cx] = argmin
Ĉh,Ĉx

N∑
n=1

∥(Ĉh σ(Wh hn + bh) + Ĉx σ(Wx xn + bx) + bhx)− h′n∥2. (5)

To summarize, we define a sampled RNN as a model that is constructed by sampling weights of the
hidden layer of the RNN and subsequently solving the regression problem in Equation (5).

3.2 INVOLVING THE KOOPMAN OPERATOR

We already introduced the network FM : Rdh → RM = σ(Wh ·+bh), where M is the number of
neurons in its single hidden layer, and likewise with GM̂ : Rdx → RM̂ = σ(Wx · +bx). We then
project down to Rdh by applying Ch and Cx respectively. To add more structure and interpretability
to the matrices Ch and Cx, we will set Ch = CK and Cx = CB, where K ∈ RM×M , B ∈ RM×M̂ ,
and C ∈ Rdh×M . We then end up with the function

ht = Czt = C(Kσ(Wh ht−1 + bh) +Bσ(Wx xt + bx)). (6)

Note that if the output y differs from h, we take advantage of the high dimensionality and rather set
yt = V zt than first projecting down by C. This completes the setting from Equation (1).

The reason for the splitting of matrices Ch and Cx is the following: the hidden layers FM and GM̂
map their respective input to a higher dimensional space. In a higher dimensional space, the possibly
nonlinear evolution described by F becomes more and more linear (Korda & Mezić, 2018b). This
evolution is then captured by K and B before we map down to the state space through C. This also
allows us to connect K and B to the Koopman theory applied to the dynamical system. Given a
suitable functional space F , the Koopman operator K : F → R is defined as

[Kϕ](h) = (ϕ ◦ F)(h), ϕ ∈ F .
The Koopman operator captures the evolution of the dynamical systems in the function space F and
not in the state space itself. In most cases, this makes the operator infinite-dimensional, but in return,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

it is a linear operator. For an introduction to the Koopman operator and surrounding theory, see
Appendix A. The matrices K and B can then be seen as an approximation of the Koopman operator,
and the intuition is that choosing M large enough means we can capture the linear evolution before
we map down to the state space.

The matrices Wh and Wx are found by sampling each row i.i.d. from Ph and Px respectively. To
estimate C,K, and B, we use extended dynamic mode decomposition (EDMD) — a classical method
to find a finite-dimensional approximation of the Koopman operator. We give a very brief description
of EDMD here and give a more thorough introduction in Appendix A.1. In the uncontrolled setting,
this method picks out a dictionary FM = {ψ1, . . . , ψM : ψi : H → R ∈ F} and estimates the
Koopman operator K using the data H,H ′ by minimizing

K = argmin
K̃∈RM×M

N∑
n=1

∥FM (h′n)− K̃FM (hn)∥, h′n ∈ H ′,hn ∈ H,

where FM (h) = [ϕ1(h), . . . , ϕM (h)]T. Letting FM (H) = [FM (h1), . . . ,FM (hN)] ∈ RM×N

and FM (H ′) = [FM (h′1), . . . ,FM (h′N)] ∈ RM×N , the approximation can then be written as

K = FM (H ′)FM (H)+, (7)

where + is the matrix pseudoinverse. Similarly, in the controlled setting, the approximation of K
separated into matrices K and B,

[K,B] = FM (H ′) [FM (H),GM̂ (X)]+,

where GM̂ is the second dictionary mapping from Rdx to RM̂ . For more on the Koopman operator
in the controlled setting, as well as EDMD, see Appendix A.2. Regardless of whether uncontrolled
or controlled, the mapping C projects down to the state space from the high dimensional dictionary
space and is approximated by minimizing ∥H − CFM (H)∥, hence

C = HFM (H)+.

We connect the EDMD algorithm to our recurrent network in Equation (6) by choosing FM (h) =
σ(Wh h+ bh) and GM̂ (x) = σ(Wx x+ bx). With this setting, we see that approximating K and
B in Equation (6) can be seen as a Koopman approximation with the dictionary being a hidden
layer with M and M̂ neurons respectively. This connection highlights the benefit of operating in
a higher dimensional space. It also allows us to make use of Koopman theory in the next section
as the EDMD approximation is known to converge to K. Finally, it is important to notice that the
resulting function in Equation (6) consists of two neural networks applied to the previous state and
input. The hidden layers are sampled, and the outer matrices are constructed using linear solvers.
Hence, Equation (6) is a sampled recurrent neural network. The methods above can be summarized by
sampling weights in Algorithm 1, constructing the RNN in Algorithm 2, prediction for uncontrolled
systems in Algorithm 3, and model predictive control in Algorithm 4.

Algorithm 1 Sampling weights and bias for a
given dataset and probability distribution.

procedure SAMPLE-LAYER(Z, PZ)
Wz ∈ RM×dz , bz ∈ Rdz

for j = 1, 2, . . .M do
Sample (z(1), z(2)) ∼ Pz from sample space Z×Z

W [j,:]
z = z(2)−z(1)

∥z(2)−z(1)∥2

T

b[j]
z = −⟨(W [j,:]

z)T, z(1)⟩
end for
Return Wz, bz

end procedure

Algorithm 2 Sampling RNNS for the con-
trolled setting with output y.

procedure SAMPLE-RNN(X,Y,H,H′)
Wx, bx ← SAMPLE-Layer(X, PX)
Wh, bh ← SAMPLE-Layer(H, PH)
FM (·),GM̂ (·)← σ(Wh ·+bh), σ(Wx ·+bx)

[K,B] = FM (H′)[FM (H),GM̂ (X)]+

C = H FM (H′)FM (H)+

V = Y H+

Return V,CKFM , CBGM̂
end procedure

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 3 Prediction of new trajec-
tory uncontrolled inputs using sampled
RNN.

procedure PREDICT(Y,H,H′,h0,T)
FY , FH ← SAMPLE-RNN(0, Y,H,H′)
for t = 1, 2, . . . ,T do

ht ← FH(ht−1)
yt = FY(ht)

end for
Return {ht,yt}Tt=1

end procedure

Algorithm 4 Model predictive control (MPC) of
system F using LQR and sampled RNN.

procedure MPC(X,Y,H,H′,h0,T,h∗)
FY , FX , FH ← SAMPLE-RNN(X,Y,H,H′)
lqr← LQR.fit(FX , FH)
lqr.set_target(h∗)
for t = 1, 2, . . . ,T do

xt−1 ← lqr.control_sequence(ht−1)
ht ← F (ht−1,xt−1)
yt = FY(ht)

end for
Return {xt,ht,yt}Tt=1

end procedure

3.3 CONVERGENCE OF SAMPLED RNNS

Under some conditions, the convergence of sampled RNNs for uncontrolled systems can be shown for
arbitrary finite horizon predictions. The result shows convergence by estimatingK using Equation (7).
This differs from the usual existence proofs for parameters of RNNs, and is possible due to the
Koopman connection established in the previous section.

With L2 := L2(H, µh) being the usual Lebesgue space, we can state the required assumptions.
Assumption 1. The assumptions on µh, FM , and F are the following.

1. µh is regular and finite for compact subsets.

2. Hidden layer FM must fulfill µh{h ∈ H | cTFM (h) = 0} = 0, for all nonzero c ∈ RM .

3. The Koopman operator K : L2 → L2 is a bounded operator.

The first two points are not very restrictive and hold for many measures and activation functions
(such as tanh activation function and the Lebesgue measure). The third assumption is common when
showing convergence in Koopman approximation theory and holds for a broad set of dynamical
systems (See Appendix B.1 for further discussion of all three points). Finally, we also require H to
follow Definition 2 in Appendix B.1.

We now denote L2
K as the space of vector valued functions functions f = [f1, f2, . . . , fK], where

fi ∈ L2 and ∥f∥ =
∑K

k=1∥fk∥L2 . We let F t(h0) = ht be the true state after time t, and KN be the
solution of Equation (7), where N data points have been used to solve the least square problem.
Theorem 1. Let f ∈ L2

K , H,H ′ be the dataset with N data points used in Equation (7), and
Assumption 1 holds. For any ϵ > 0 and T ∈ N, there exist an M ∈ N and hidden layers FM and
matrices C such that

lim
N→∞

∫
H
∥CKt

NFM − f ◦ F t∥22dµh < ϵ,

for all t ∈ [1, 2, . . . , T].

For prediction of the system output, as the identity function Id(h) 7→ h is in L2
dh

, the result above
implies convergence of

∫
H∥CK

t
NFM − F t∥22dµh. The proof can be found in Appendix B.1, and in

Appendix B.2 we discuss the limitations of the result w.r.t. the controlled setting.

4 COMPUTATIONAL EXPERIMENTS

We now discuss a series of experiments designed to illustrate the benefits and challenges of our
construction approach. We compare our method to the state-of-the-art iterative gradient-based method
called shPLRNN, which we explain in Appendix D. For the real-world weather dataset, we also
compare our approach with a long short-term memory (LSTM) model. Furthermore, due to the
similarities our method bears with reservoir models, we also compare with an established reservoir
model, namely an echo state network (ESN), further explained in Appendix E. Details on the datasets
can be found in Appendix F, hyperparameters for all models are given in Appendix H, the evaluation

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Results from computational experiments. We report the training time and MSE (mean
squared error) or EKL (empirical Kullback–Leibler divergence, see Appendix G) for a sampled RNN
(our approach), a reservoir model ESN (see Appendix E), a state of the art backpropagation-based
RNN called shPLRNN (see Appendix D), and a long short-term memory (LSTM) model.

Example Model Time [s]: avg (min, max) MSE: avg (min, max)

Van der Pol sampled RNN 0.26 (0.18, 0.35) 9.55e-4 (7.08e-4, 1.28e-3)
ESN 3.76 (2.29, 5.40) 1.58e-2 (1.15e-2, 2.07e-2)
shPLRNN 217.93 (203.10, 251.51) 1.39e-2 (5.66e-3, 3.00e-2)

1D Van der Pol sampled RNN 0.29 (0.25, 0.31) 5.06e-3 (1.57e-4, 1.58-2)

Weather (day) sampled RNN 4.87 (4.83, 4.92) 2.239◦C (2.088◦C, 2.392◦C)
LSTM 378.10 (284.00, 421.30) 2.531◦C (2.183◦C, 2.754◦C)
shPLRNN 321.76 (298.98, 384.46) 2.296◦C (1.803◦C, 2.548◦C)

Weather (week) sampled RNN 4.87 (4.81, 4.90) 4.624◦C (4.169◦C, 4.867◦C)
LSTM 628.10 (580.70, 648.50) 4.544◦C (3.964◦C, 4.893◦C)
shPLRNN 830.84 (796.55, 847.32) 2.604◦C (2.500◦C, 2.801◦C)

Example Model Time [s]: avg (min, max) EKL: avg (min, max)

Lorenz-63 sampled RNN 1.67 (1.34, 1.92) 4.36e-3 (3.66e-3, 5.36e-3)
ESN 3.54 (2.87, 4.47) 8.73e-3 (7.20e-3, 1.06e-2)
shPLRNN 607.42 (581.39,650.56) 5.79e-3(4.41e-3,7.56e-3)

Rössler sampled RNN 5.36 (4.39, 6.39) 1.57e-4 (5.86e-5, 3.82e-4)
ESN 8.11 (7.94, 8.31) 8.33e-5 (3.79e-5, 2.25e-4)
shPLRNN 866.17 (848.56, 939.06) 6.53e-4 (4.35e-4,1.09e-3)

metrics are explained in Appendix G and a further comparison discussion as well as the hardware
details are provided in Appendix H.

In Table 1, we list the quantitative results of the experiments without control. Each entry stems from
five different runs, where the random seed is changed in order to ensure a more robust result. We give
the mean over these five runs, as well as the minimum and maximum among them.

4.1 SIMPLE ODES: VAN DER POL OSCILLATOR

We consider the Van der Pol oscillator system for a simple illustration of our method. A sampled
RNN with a tanh activation and a single hidden layer of width 80 is used, and the prediction method
follows Algorithm 3. The model is evaluated on test data; the averaged error and training time are
reported in Table 1. One trajectory from the test set is visualized in Figure 2. It should be noted
that predictions start with an initial condition from the test dataset which is used to make the first
prediction, and afterwards continue using this prediction as an input to predict the next state, without
information from the ground-truth dataset. In the results we observe a very stable trajectory over
a long prediction horizon, and furthermore all eigenvalues of the Koopman operator are inside the
unit disk (see Appendix C), thus we are certain that the model is stable. This experiment is also
significant due to the periodic nature of the system, which is captured with our model, although
neural network architectures in general struggle to capture periodicity (Ziyin et al., 2020). Compared
to the gradient-descent trained shPLRNN our method is much faster and achieves higher forecasting
accuracy, with lower MSE as prediction error. Compared with an ESN, our model has a shorter fit
time and a smaller error. However, the hyperparameter search is simpler for our method since there
are fewer hyperparameters to tune.

4.2 EXAMPLE WITH TIME DELAY EMBEDDING: VAN DER POL OSCILLATOR

For many real-world examples, it is not possible to observe the full state of a system. Here, we use
the same datasets as in the simple Van der Pol experiment (Section 4.1) but only consider the first
coordinate h1. We embed the data using a time-delay embedding of six followed by a principal

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

component analysis (PCA) projection which reduces the dimensionality to two. A sampled RNN
with tanh activation and a single hidden layer of width 80 is trained. Predicted trajectories from the
initial test dataset state are shown in the bottom row of the right column of Figure 2. The fit time and
MSE error are provided in Table 1, they are fairly similar to the fit time and error for the example
where the full state is observed indicating that this model also captures the true dynamics.

2

0

2

h
1

2.5

0.0

2.5

h
2

0 10 20 30 40 50
2

0

2

h
1

with time-delay

2 1 0 1 2
h1

2

1

0

1

2

h
2

true

prediction

t

Figure 2: Comparison of true and predicted trajectories fror the Van der Pol experiments are shown
for a test trajectory. Left: state space representation. Right: the top two rows show the full state
system’s first and second coordinate from Section 4.1, and the bottom most row shows the partially
observed system from Section 4.2.

4.3 EXAMPLES OF CHAOTIC DYNAMICS: LORENZ AND RÖSSLER SYSTEMS

Chaotic systems pose a challenging forecasting problem from the class of dynamical systems. As an
example, we consider the well-known Lorenz system in the chaotic regime. A sampling network with
a tanh activation and a single hidden layer of width 200 is trained. Predictions for a test trajectory
are visualized in Figure 3. To evaluate the model, we do not calculate MSE since it is not suitable for
chaotic trajectories, but instead an empirical KL divergence (EKL), to compare the orbits. For details
on this geometric measure see Appendix G. The averaged EKL and training time are reported in
Table 1. Our sampled RNN achieves a comparable performance with the reservoir model. However,
it should be noted that training a reservoir model on Lorenz data is a well-studied problem, and the
choice of hyperparameters has been tuned carefully to achieve excellent performance. When choosing
hyperparameters for our sampling RNN we found that the necessary effort is low, as there are not as
many degrees of freedom as in a reservoir. On the other hand, compared with the shPLRNN trained
with gradient descent, we observe a much better performance both in terms of error and training time.

1

0

1

h
1

1

0

1

h
2

0 10 20 30 40 50
t

1

2

h
3

1.0
0.5

0.0
0.5

1.0
h1 1.5

1.0
0.5
0.0
0.5
1.0
1.5

h 2

0.5

1.0

1.5

2.0

2.5

h
3

true

prediction

Figure 3: The results from the Lorenz experiment are shown for a test trajectory.
Left: state space representation of true and predicted trajectories. Right: trajectories obtained from
the Lorenz model described in Section 4.3.

Furthermore, we consider the Rössler system in the chaotic regime. We use a sampled RNN with
300 hidden layer nodes and tanh activation. A predicted test trajectory is shown in Figure 4. Since
the system is chaotic, we calculate an EKL for our model and report it along with the training time
in Table 1. Our model requires a slightly shorter fit time than the ESN and achieves comparable
performance in terms of the EKL error. As depicted in Table 1, our method for chaotic systems is

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

significantly faster and more accurate at forecasting, with lower prediction error EKL, compared to the
gradient-based model. Additionally, training with iterative methods requires many hyperparameters
that need careful tuning to achieve optimal performance. Efficiently finding the best hyperparameters
can be very challenging, especially when there is a small amount of training data for chaotic
trajectories, making the training of such data more difficult. However, our training method performs
effectively even with a very small amount of training data.

0.25

0.00

0.25

h
1

0.25

0.00

0.25

h
2

0 25 50 75 100 125 150 175 200
t

0.0

0.5

h
3

0.2
0.0

0.2h1 0.3
0.2
0.1
0.0
0.1
0.2
0.3

h 2

0.0
0.1
0.2
0.3
0.4
0.5
0.6

h
3

true

prediction

Figure 4: Trajectories from the Rössler experiment are shown for a test trajectory. Left: state space
representation of true and predicted trajectories. Right: trajectories obtained from the Rössler model
described in Section 4.3.

4.4 EXAMPLE WITH CONTROL INPUTS: FORCED VAN DER POL OSCILLATOR

We consider again the Van der Pol oscillator, where now the second coordinate, h2, is controlled
with an external input x, and using a sampled RNN model we perform model predictive control
(MPC) as in Algorithm 4. We let GM̂ be the identity function, and let B map from X to RM (adding
nonlinearity for x did not yield different results for this system, and is described in Appendix H.1.1).
The sampled recurrent neural network is then the identity GM̂ and FM is a hidden layer of width 128
and tanh activation. This network is then passed as a surrogate model to a linear-quadratic regulator
(LQR). The network, in combination with the LQR, can successfully steer the state to the target state
(see Figure 5). We consider five different runs, where only the random seed is varied, and obtain the
mean controller cost to be 125.92 and the mean training time of 1.122 seconds. The norm of the state
is also tracked over time, for five different runs we show the norms and the pointwise mean (over
the runs) in Figure 5. This experiment highlights a key advantage of our model, which allows for
modelling a nonlinear system such as the Van der Pol oscillator using a linear controller such as LQR.
This implies that the well-established tools from linear control theory can be applied to non-linear
systems using our method.

0 2 4 6 8 10
t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

||
 h

||

run 1-5

mean(run 1-5)

target

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
h1

2

1

0

1

2

h
2

controlled traj.

control

uncontrolled traj.

initial state

target state

Figure 5: Controlled (i.e. forced) Van der Pol experiment (Section 4.4) for initial condition h0 =
[−1.5,−1]T. Left: state space representation of controlled and uncontrolled trajectories. Right: L2

norm of the controlled trajectory for five different runs and the L2 norm of the target state.

4.5 EXAMPLE WITH REAL-WORLD DATA

Weather data We apply our approach to the climate data presented in TensorFlow (2024). The
dataset contains a time series of 14 weather parameters recorded in Jena (Germany) between January

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

20
13

-02
-01

20
13

-02
-15

20
13

-03
-01

20
13

-03
-15

20
13

-04
-01

20
13

-04
-15

20
13

-05
-01

20
13

-05
-15

Date Time

20

10

0

10

20

30

T
(d

eg
C)

Sampling RNN

Ground truth
Predicted

20
13

-02
-01

20
13

-02
-15

20
13

-03
-01

20
13

-03
-15

20
13

-04
-01

20
13

-04
-15

20
13

-05
-01

20
13

-05
-15

Date Time

T
(d

eg
C)

LSTM

Ground truth
Predicted

20
13

-02
-01

20
13

-02
-15

20
13

-03
-01

20
13

-03
-15

20
13

-04
-01

20
13

-04
-15

20
13

-05
-01

20
13

-05
-15

Date Time

T
(d

eg
C)

shPLRNN

Ground truth
Predicted

Figure 6: The predictions of the best models on the test dataset for the horizon of one week: sampled
RNN (left), LSTM (middle), and shPLRNN (right).

1st, 2009, and December 31st, 2016. The data offers freedom in choosing the sizes of the time delay
and prediction horizons. We decided to fix the time delay to one week and set two separate experiments
with a prediction horizon of one day and one week. In the sampled RNN and LSTM experiments, we
performed a grid search for each model with hyperparameters specified in Appendix H.4.1.

Table 1 shows the averaged training time and error metrics for the two selected horizons (day and
week). We observe that the models perform similarly in the case of a shorter horizon, while sampling
offers much faster training. When considering a one-week horizon, shPLRNN outperforms, while
sampled RNN is still orders of magnitude faster. We also note the prediction horizon does not
influence the training time of the sampled model that agrees with the Algorithm 2. When comparing
predictions for the longer horizon in Figure 6, we notice that the LSTM struggles to predict the
high-frequency fluctuations of the measurement, but the sampled RNN and shPLRNN successfully
capture them. Figure 6 also highlights the deficiency of the MSE metric because a low mean error
does not always correspond to accurate predictions, as illustrated by all three models. Overall, we
conclude that sampled RNNs can successfully capture chaotic real-world dynamics and produce
results comparable to the iterative models while offering a significant speed-up in training.

5 CONCLUSION

We introduce an efficient and interpretable training method for recurrent neural networks by combin-
ing ideas from random feature networks and Koopman operator theory.

Benefits of the approach In many examples, we demonstrate that we can train accurate recurrent
networks orders of magnitude faster compared to networks trained by iterative methods. We also
observe that the training approach works with a very small amount of training data. The direct
connection to Koopman operator theory allows us to draw on existing theoretical results for dynamical
systems, which we use to prove convergence in the limit of infinite width.

Limitations compared to other methods The training method we use involves the solution of a
large, linear system. The complexity of solving this system depends cubically on the minimum
number of neurons and the number of data points (respectively, time steps). This means if both the
network and the number of data points grow together, the computational time and memory demands
for training grow too quickly. With backpropagation-in-time, the memory requirements are mostly
because many gradients must be stored for one update pass.

Remaining challenges and future work Recurrent networks are often used for tasks in computer
vision and natural language processing. These tasks require network architectures beyond feed-
forward networks, like convolutional neural networks or transformers, which means we currently
struggle with high dimensional data. The sampling scheme we use to construct the hidden weights
of the neurons is currently not useful in constructing parameters for such architectures, but it is
an intriguing challenge to work towards sampling them. Remaining challenges in the theoretical
work include extending the theory shown in this paper to controlled systems, as well as bridging the
Koopman theory for continuous dynamical systems and NeuralODEs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 ETHICS STATEMENT

For comparatively small problems, our construction method is orders of magnitude faster to construct
the parameters of a recurrent network. As neural networks are generally dual-use, our work potentially
also allows faster training for misuse of this technology. Still, we connect the construction of
recurrent neural networks to Koopman operator theory and dynamical systems. This connection
allows researchers in these fields to better understand the behavior, failure modes, and robustness
of recurrent architectures. In addition, by sampling weights and bias from the input spaces it adds
interpretability to the models which again lets users understand better the underlying networks used
(see Appendix C for an example of this). We believe that this far outweighs the potential downsides
of misuse because recurrent architectures that are understood much better can also be regulated in a
more straightforward way.

7 REPRODUCIBILITY STATEMENT

In our work we try hard to ensure that our results are robust and reproducible. In terms of theoretical
statements, the assumptions are stated in the main paper and further discussed in the appendix. The
complete detailed proofs can also be found in the Appendix B. In addition, we have added an overview
of Koopman theory before the proofs to aid the understanding in Appendix A. When theoretical
statements rely on other work, this is also clearly cited. For the computational experiments, we
submit an anonymized code folder, and provide all hyperparameters in Appendix H. The code will
also be open sourced upon acceptance. Furthermore, all reported results that are based on five runs
with different random seeds, to ensure robustness.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Bike Traffic Counts in Copenhagen. https://www.kaggle.com/datasets/emilhvitfeldt/bike-traffic-
counts-in-copenhagen.

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available
from tensorflow.org.

A.R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Transactions on Information Theory, 39(3):930–945, May 1993. ISSN 0018-9448, 1557-9654.
doi: 10.1109/18.256500.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Erik L Bolager, Iryna Burak, Chinmay Datar, Qing Sun, and Felix Dietrich. Sampling weights of
deep neural networks. In Advances in Neural Information Processing Systems, volume 36, pp.
63075–63116. Curran Associates, Inc., 2023.

Erik Bollt. On explaining the surprising success of reservoir computing forecaster of chaos? The
universal machine learning dynamical system with contrast to VAR and DMD. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 31(1):013108, 2021. doi: 10.1063/5.0024890.

Manuel Brenner, Florian Hess, Jonas M Mikhaeil, Leonard F Bereska, Zahra Monfared, Po-Chen
Kuo, and Daniel Durstewitz. Tractable dendritic RNNs for reconstructing nonlinear dynamical
systems. In Proceedings of the 39th International Conference on Machine Learning, volume 162,
pp. 2292–2320. PMLR, 2022.

Lorenzo Ciampiconi, Adam Elwood, Marco Leonardi, Ashraf Mohamed, and Alessandro Rozza. A
survey and taxonomy of loss functions in machine learning. arXiv preprint arXiv:2301.05579,
2023.

Matthew J. Colbrook. The mpEDMD Algorithm for Data-Driven Computations of Measure-
Preserving Dynamical Systems, September 2022.

Matthew J. Colbrook, Lorna J. Ayton, and Máté Szőke. Residual dynamic mode decomposition:
Robust and verified Koopmanism. Journal of Fluid Mechanics, 955:A21, January 2023. ISSN
0022-1120, 1469-7645. doi: 10.1017/jfm.2022.1052.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2(4):303–314, December 1989. ISSN 1435-568X. doi: 10.1007/BF02551274.

Chinmay Datar, Adwait Datar, Felix Dietrich, and Wil Schilders. Systematic construction of
continuous-time neural networks for linear dynamical systems, March 2024.

Kenji Doya et al. Bifurcations in the learning of recurrent neural networks 3. learning (RTRL), 3:17,
1992.

Lukas Eisenmann, Zahra Monfared, Niclas Alexander Göring, and Daniel Durstewitz. Bifurcations
and loss jumps in rnn training. arXiv preprint arXiv:2310.17561, 2023.

Max Planck Institute for Biogeochemistry. Weather station records, 2024. URL https://www.
bgc-jena.mpg.de/wetter/. Accessed on 21.05.2024.

Claudio Gallicchio and Simone Scardapane. Deep Randomized Neural Networks. In Recent Trends
in Learning From Data, volume 896, pp. 43–68. Springer International Publishing, Cham, 2020.
ISBN 978-3-030-43882-1 978-3-030-43883-8. doi: 10.1007/978-3-030-43883-8_3.

12

https://www.tensorflow.org/
https://www.bgc-jena.mpg.de/wetter/
https://www.bgc-jena.mpg.de/wetter/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Daniel J. Gauthier, Erik Bollt, Aaron Griffith, and Wendson A. S. Barbosa. Next generation reservoir
computing. Nature Communications, 12(1):5564, September 2021. ISSN 2041-1723. doi:
10.1038/s41467-021-25801-2.

Marvyn Gulina and Alexandre Mauroy. Two methods to approximate the Koopman operator with a
reservoir computer. arXiv preprint arXiv:2008.10263v1, August 2020.

Georges Hebrail and Alice Berard. Individual Household Electric Power Consumption. UCI Machine
Learning Repository, 2006. DOI: https://doi.org/10.24432/C58K54.

Florian Hess, Zahra Monfared, Manuel Brenner, and Daniel Durstewitz. Generalized Teacher Forcing
for Learning Chaotic Dynamics. In Proceedings of the 40th International Conference on Machine
Learning. PMLR, July 2023. ISSN: 2640-3498.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies, 2001.

Herbert Jaeger and Harald Haas. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving
Energy in Wireless Communication. Science, 304(5667):78–80, 2004. ISSN 0036-8075, 1095-
9203. doi: 10.1126/science.1091277.

Georgia Koppe, Hazem Toutounji, Peter Kirsch, Stefanie Lis, and Daniel Durstewitz. Identifying
nonlinear dynamical systems via generative recurrent neural networks with applications to fmri.
PLoS computational biology, 15(8):e1007263, 2019.

Milan Korda and Igor Mezić. Linear predictors for nonlinear dynamical systems: Koopman operator
meets model predictive control. Automatica, 93:149–160, July 2018a. doi: 10.1016/j.automatica.
2018.03.046. control.

Milan Korda and Igor Mezić. On convergence of extended dynamic mode decomposition to the
koopman operator. Journal of Nonlinear Science, 28:687–710, 2018b.

Daniel Lehmberg, Felix Dietrich, Gerta Köster, and Hans-Joachim Bungartz. Datafold: Data-driven
models for point clouds and time series on manifolds. Journal of Open Source Software, 5(51):
2283, July 2020. doi: 10.21105/joss.02283.

Qianxiao Li, Felix Dietrich, Erik M. Bollt, and Ioannis G. Kevrekidis. Extended dynamic mode
decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the
Koopman operator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(10):103111,
October 2017. doi: 10.1063/1.4993854.

Zhong Li, Jiequn Han, Weinan E, and Qianxiao Li. On the curse of memory in recurrent neural
networks: Approximation and optimization analysis. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=8Sqhl-nF50.

Edward N. Lorenz. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20(2):
130–141, March 1963. ISSN 1520-0469. doi: 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2.

Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to recurrent neural
network training. Computer Science Review, 3(3):127–149, August 2009. ISSN 15740137. doi:
10.1016/j.cosrev.2009.03.005.

Igor Mezić. Spectral Properties of Dynamical Systems, Model Reduction and Decomposi-
tions. Nonlinear Dynamics, 41(1):309–325, August 2005. ISSN 1573-269X. doi: 10.1007/
s11071-005-2824-x.

Igor Mezić. Analysis of Fluid Flows via Spectral Properties of the Koopman Operator. Annual Review
of Fluid Mechanics, 45(1):357–378, January 2013. doi: 10.1146/annurev-fluid-011212-140652.

13

https://openreview.net/forum?id=8Sqhl-nF50

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Igor Mezic. On Numerical Approximations of the Koopman Operator. arxiv preprint
arXiv:2009.05883, September 2020.

Jonas Mikhaeil, Zahra Monfared, and Daniel Durstewitz. On the difficulty of learning chaotic
dynamics with rnns. Advances in Neural Information Processing Systems, 35:11297–11312, 2022.

B. S. Mityagin. The Zero Set of a Real Analytic Function. Mathematical Notes, 107(3-4):529–
530, 2020. ISSN 0001-4346, 1573-8876. doi: 10.1134/S0001434620030189. URL https:
//link.springer.com/10.1134/S0001434620030189.

Feliks Nüske, Sebastian Peitz, Friedrich Philipp, Manuel Schaller, and Karl Worthmann. Finite-Data
Error Bounds for Koopman-Based Prediction and Control. Journal of Nonlinear Science, 33(1):14,
February 2023. ISSN 0938-8974, 1432-1467. doi: 10.1007/s00332-022-09862-1.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pp. 1310–1318. Pmlr, 2013.

Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott. Model-Free Prediction of
Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach. Physical
Review Letters, 120(2):024102, January 2018. ISSN 0031-9007, 1079-7114. doi: 10.1103/
PhysRevLett.120.024102.

Allan Pinkus. Approximation theory of the MLP model in neural networks. Acta Numerica, 8:
143–195, January 1999. ISSN 0962-4929, 1474-0508. doi: 10.1017/S0962492900002919.

Ali Rahimi and Benjamin Recht. Uniform approximation of functions with random bases. In
2008 46th Annual Allerton Conference on Communication, Control, and Computing, pp. 555–
561, Monticello, IL, USA, September 2008. IEEE. ISBN 978-1-4244-2925-7. doi: 10.1109/
ALLERTON.2008.4797607.

William T Redman, Juan M Bello-Rivas, Maria Fonoberova, Ryan Mohr, Ioannis G Kevrekidis,
and Igor Mezić. On equivalent optimization of machine learning methods. arXiv preprint
arXiv:2302.09160, 2023.

O.E. Rössler. An equation for continuous chaos. Physics Letters A, 57(5):397–398, July 1976. ISSN
03759601. doi: 10.1016/0375-9601(76)90101-8.

Tahiya Salam, Alice Kate Li, and M. Ani Hsieh. Online Estimation of the Koopman Operator Using
Fourier Features, December 2022.

Peter J. Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of Fluid
Mechanics, 656:5–28, 2010. doi: 10.1017/s0022112010001217.

Peter J. Schmid. Dynamic Mode Decomposition and Its Variants. Annual Review of Fluid
Mechanics, 54(1):225–254, January 2022. ISSN 0066-4189, 1545-4479. doi: 10.1146/
annurev-fluid-030121-015835.

Dominik Schmidt, Georgia Koppe, Zahra Monfared, Max Beutelspacher, and Daniel Durstewitz.
Identifying nonlinear dynamical systems with multiple time scales and long-range dependencies.
arXiv preprint arXiv:1910.03471, 2019.

TensorFlow. Tutorial on time series forecasting, 2024. URL https://www.tensorflow.org/
tutorials/structured_data/time_series. Accessed on 18.05.2024.

Nathan Trouvain, Luca Pedrelli, Thanh Trung Dinh, and Xavier Hinaut. ReservoirPy: An Efficient
and User-Friendly Library to Design Echo State Networks. In ICANN 2020 - 29th International
Conference on Artificial Neural Networks, September 2020.

Johannes Viehweg, Karl Worthmann, and Patrick Mäder. Parameterizing echo state networks for
multi-step time series prediction. Neurocomputing, 522:214–228, February 2023. ISSN 09252312.
doi: 10.1016/j.neucom.2022.11.044.

14

https://link.springer.com/10.1134/S0001434620030189
https://link.springer.com/10.1134/S0001434620030189
https://www.tensorflow.org/tutorials/structured_data/time_series
https://www.tensorflow.org/tutorials/structured_data/time_series

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Matthew O. Williams, Ioannis G. Kevrekidis, and Clarence W. Rowley. A Data-Driven Approx-
imation of the Koopman Operator: Extending Dynamic Mode Decomposition. Journal of
Nonlinear Science, 25(6):1307–1346, December 2015a. ISSN 0938-8974, 1432-1467. doi:
10.1007/s00332-015-9258-5.

Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–driven approximation
of the koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science,
25:1307–1346, 2015b.

Simon N. Wood. Statistical inference for noisy nonlinear ecological dynamic systems. Nature, 466,
2010.

Liu Ziyin, Tilman Hartwig, and Masahito Ueda. Neural Networks Fail to Learn Periodic Functions
and How to Fix It. In Advances in Neural Information Processing Systems, volume 33, pp.
1583–1594. Curran Associates, Inc., 2020.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDIX

A KOOPMAN OPERATOR AND EXTENDED DYNAMIC MODE DECOMPOSITION

In this section we give a more thorough introduction to the Koopman operator and its use in dynamical
system theory. In addition, we also walk the reader through extended dynamic mode decomposition
(EDMD), which is the finite approximation of the Koopman operator we use in the main paper.

Consider a dynamical system (H, F), where the state space H is a topological space and F : H → H
is an evolution operator/map. We impose more structure on our system by requiring our state space
H to be a measure space (H,F , µ), and F to be F-measurable. We start by considering (H, F) to
be a discrete-time system, which are the systems we mainly work with in this paper. We can then
write the evolution as

ht+1 = f(ht), ht ∈ H ⊆ Rdh , t ≥ 0. (8)

The analysis of the evolution in the original state space can be hard, especially when F is non-linear.
The Koopman theory takes a different approach, and looks at the evolution of observables (e.g.
measurements of the states) instead of the states themselves. The observables one is working with are
typically ϕ : H → C in a suitable Hilbert space H. The evolution of the observables is then captured
by the Koopman operator K,

[K ϕ](h) := (ϕ ◦ F)(h).

As long as the space of observables is a vector space, the Koopman operator is linear and we may
analyse the dynamical system with non-linear F using spectral analysis, with the caveat that in the
majority of cases K is infinite dimensional. The choice of the function space F is crucial, as ϕ ◦ F
must belong to F for all ϕ ∈ F . Assuming F is measure-preserving — which is common in ergodic
theory — one can address the issue by setting

F = L2(H, µh) :=

{
ϕ : H → F

∣∣∣∣∣ ∥ϕ∥L2(H,µh)
=

(∫
H
|ϕ(h)|2 µh(dh)

) 1
2

<∞

}
. (9)

where F = R or C. As we consider spectral analysis in this section, we let F = C. Since F is
measure-preserving means K is an isometry and the issue is resolved. The map K might still not be
well-defined, as ϕ1, ϕ2 ∈ L2(H, µh) may differ only on a null set, yet their images under K, could
differ over a set of positive measure. To exclude this possibility, F must be µh-nonsingular, meaning
that for each H ⊆ H, µh(F

−1(H)) = 0 if µh(H) = 0.

Once the function space H is chosen, making sure that K is well-defined, we may apply spectral
analysis. A Koopman eigenfunction φk ∈ L2(H, µh) corresponding to a Koopman eigenvalue
λk ∈ σ(K) satisfies

φk(ht+1) = Kφλ(ht) = λk φλ(ht).

When the state space H ⊆ Rd, under certain assumptions of the space of eigenfunctions, we
can evolve h using the spectrum of K. More concretely, let Φ: H → Cd be a vector of ob-
servables, where each observable ϕi(h) = hi, where hi is the ith component of h. Assuming
ϕi ∈ Span{φk} ⊂ L2(H, µh) , we have

K ϕi = K
∑
k

ck φk =
∑
k

ck Kφk =
∑
k

ck λk φk,

due to the linearity of K. Iterative mapping of K yields

ht = Φ(ht) = ([Kϕ] ◦ · · · ◦ [Kϕ]︸ ︷︷ ︸
t

)(h0) =
∑
k

λtk ϕλk
(h0) c

Φ
k . (10)

This process is known as Koopman mode decomposition (KMD), and the vectors cΦk ∈ Cd are referred
to as Koopman modes associated with the observable Φ. This reveals one of the true strengths of the
Koopman theory.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Up until now we have considered a discrete dynamical system, but the Koopman theory can also be
extended to continuous systems where h is a function of time t and its evolution is given by

ḣ(t) = F (h(t)), h(t) ∈ H, t ∈ R≥0,

by using the flow map. For any t, the flow map operator denoted by F t : H → H is defined as

h(t) = F t(h) = h(0) +

∫ t

0

F (h(τ))dτ,

which maps from an initial condition h(0) to point on the trajectory t time units away. We can then
define the Koopman operator for each t ∈ R≥0 ,

[Kt ϕ](h) = (ϕ ◦ F t)(h),

where ϕ ∈ L2(H, µh). The set of all these operators {Kt}t∈R≥0
forms a semigroup with an

infinitesimal generator L. With some assumption on the continuity of the semigroup, the generator is
the Lie derivative of ϕ along the vector field F (h) and can be written as

[Lϕ](h) = lim
t↓0

[Kt ϕ](h)− ϕ(h)

t
=

d

dt
ϕ(h(t))

∣∣∣
t=0

= ∇ϕ · ḣ(0) = ∇ϕ · F (h(0)).

The eigenfunction and eigenvalue is in the continuous time case scalars and functions fulfilling

[Ktφk](h) = eλkt φk(h),

where {eλk} are the eigenvalues of the semigroup. This allows us to use the Koopman theory for
continuous dynamical systems as well, and possibly make the connection for NeuralODEs and
Koopman theory in similar fashion we have done with discrete system Koopman operator and RNN.

As the Koopman operator is infinite dimensional makes it impossible to apply it directly, and raises
the need for a method to create a finite approximation of K and its spectrum, namely the extended
dynamic mode decomposition.

A.1 EXTENDED DYNAMIC MODE DECOMPOSITION

As we are mostly working with discrete systems in this paper, we focus on approximating the
Koopman operator K for discrete dynamical systems. The way to approximate K is by extended
dynamic mode decomposition (EDMD), which is an algorithm that provides a data driven finite
dimensional approximation of the Koopman operator K through a linear map K. The spectral
properties of K subsequently serve to approximate those of K. Utilizing this approach enables us to
derive the Koopman eigenvalues, eigenfunctions, and modes. Here, we provide a brief overview of
EDMD. For further details, refer to Williams et al. (2015b).

The core concept of EDMD involves approximating the operator’s action on F = L2(H, µh) by
selecting a finite dimensional subspace F̃M ⊂ F . To define this subspace, we start by choosing a
dictionary FM = {ψi : H → R ∈ H | i = 1, · · · ,M}. We the have

FM (h) = [ψ1(h) ψ2(h) · · · ψM (h)]
T
,

and we let the finite dimensional subspace F̃M be

F̃M = Span{ψ1, ψ2, · · · , ψM} = {aTFM : a ∈ CM} ⊂ F .

The action of the Koopman operator on ϕ ∈ F̃M due to linearity is

Kϕ = aTKFM = aTFM ◦ F.

Assuming that the subspace F̃M is invariant under K, i.e., K(F̃M) ⊆ F̃ , we can write Kϕ = bTFM

for any ϕ ∈ F̃M . It follows that K|F̃M
is finite dimensional and can be written as a matrix K ∈

RM×M such that bT = aTK. The equality can be seen, where ϕ ∈ F̃M , through

Kϕ = aTKFM = bTFM = Kϕ

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where one first applies linearity of K, then the invariant assumption. When F̃M is not an invariant
subspace of the Koopman operator K,K becomes an approximation. Decomposing Kϕ = bTFM+ρ,
where ρ ∈ L2(H, µh), EDMD approximates K by using data

H = [h1 h2 · · · hN] , H ′ = [h′1 h′2 · · · h′N] ,

where h′n = F (hn). Then, to find K, the EDMD minimizes the following cost function

J =
1

2

N∑
n=1

∥ρ(hn)∥2 =
1

2

N∑
n=1

∥∥aT (FM (h′n)−KFM (hn))
∥∥2 (11)

Letting

FM (H) = [FM (h1),FM (h2) . . . ,FM (hN)] ∈ CK×N

and equivalently for FM (H ′), a solution to Equation (11) is given by

K = FM (H ′)FM (H)+ (12)

where FM (H)+ denotes the pseudo-inverse.

Upon obtaining K, we find approximations of eigenfunctions

φk = ξkFM ,

where λk and ξk are eigenvalue and left eigenvector ofK respectively. Finally, denoting φ : H → CK

as the function h 7→ [φ1(h), φ2(h), . . . , φK(h)], we approximate the Koopman modes by

C = argmin
C̃∈Cd×K

∥Φ(H)− C̃φ(H)∥2Fr = argmin
C̃∈Cd×K

∥H − C̃φ(H)∥2Fr,

where ∥·∥Fr is the Frobenius norm and Φ(h) = h, as defined in previous section. We may now
approximate Equation (10) as

ht = Φ(ht) = C Λtφ(h0),

where Λ is a diagonal matrix with the eigenvalues. Due to numerical issues, one typically predict one
time step at the time, and project down to state space each time.

In many applications, one is not necessarily interested in the spectral analysis, but only prediction.
One then typically set F = R, solve for K in exact way, but solve for C as

C = argmin
C̃∈Rd×K

∥Φ(H)− C̃FM (H)∥2Fr = argmin
C̃

∥H − C̃FM (H)∥2Fr.

For prediction one simply apply K several times,

ht = CKtFM (h0).

In practice, one usually predict step by step ht, that is, maps it down to the state space and maps back
to the observable image space, before applying K again. It is also worth noting that one may be more
interested in mapping to an output of a function f ∈ F instead, and then one simply swap Φ with f
when approximating C.

To conclude this introduction to EDMD, we do want to mention that the set of eigenfunctions we find
through the EDMD algorithm comes with its own set of issues, such as spectral pollution, and efforts
to mitigate certain issues has spawned extensions to EDMD, e.g., measure-preserving EDMD and
residual DMD (Colbrook, 2022; Colbrook et al., 2023).

A.2 CONTROLLED DYNAMICAL SYSTEMS AND THE KOOPMAN OPERATOR

Extending Koopman theory to controlled systems can be done in several ways, and we opt to follow
Korda & Mezić (2018a) and limit ourselves to linear controlled systems,

ht = F (ht−1,xt) = Ahht−1 +Axxt, yt = Ayht. (13)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Rewriting the input and the evolution operator slightly allows us to apply the Koopman operator and
its theory as described in previous sections. Let

h̃ =

[
h
x̃

]
,

where h ∈ H and x̃ ∈ ℓ(X), with ℓ(X) is the space of all countable sequences {xi}∞i=1 such that
xi ∈ X . Then we can rewrite the evolution operator F : H×X → H to F̃ : H× ℓ(X) → H, where

h̃t = F̃ (h̃t−1) =

[
F (ht−1, x̃(0))

S x̃

]
,

where x̃(i) = xi ∈ x̃ and S is the left-shift operator, i.e., S(x̃(i)) = x̃(i + 1). The Koopman
operator K can be applied to F̃ with observables ϕ : H× ℓ(X) → C, and the rest of the Koopman
theory follows.

When approximating the Koopman operator for controlled systems with EDMD, the dictionary we
choose needs alteration due to the domain H× ℓ(X) is infinite dimensional. Korda & Mezić (2018a)
proposes dictionaries that are both computable and enforces the linearity relationship assumed in
Equation (13). The dictionaries to be considered are on the form

ψi(h, x̃) = ψ
(h)
i (h) + ψ

(x)
i (x̃),

where ψ(x)
i : ℓ(X) → R is a linear functional and ψ(h)

i ∈ F . The new dictionary can be written as

FM = {ψ(h)
1 , . . . , ψ

(h)
M }, GM̃ = {ψ(x)

1 , . . . , ψ
(x)

M̃
}.

Note the number of observables M and M̃ can differ, even though in the main paper we typically set
M̃ = M . If they differ, the matrix B will map from FM̃ to FM . Once the dictionaries are set, we
simply solve the optimization problem

argmin
K∈FM×M ,B∈FM×M̃

1

2

N∑
n=1

∥FM (h′n)− (KFM (hn) +BGM̃ (hn))∥2

with the analytical solution being
[K,B] = FM (H ′)[FM (H),GM̃ (H)]+.

Approximating C is done in the same manner as for uncontrolled systems, as it only needs to learn
how to map from FM (H) to H. For further details, see Korda & Mezić (2018a).

B THEORY

In this section we give the necessary assumptions and proofs for the theoretical results in the main
paper. We start by defining the state space H and input space X , following the setup from Bolager
et al. (2023). Letting

dRdz (z, A) = inf{d(z,a) : a ∈ A}.
where d is the canonical Euclidean distance in the space Rdz . The medial axis is defined as

Med(A) = {h ∈ Rdz : ∃p ̸= q ∈ A, ∥p− z∥ = ∥q − z∥ = dRdz (z, A)}
and the reach is the scalar

τA = inf
a∈A

dRdz (a,Med(A)),

i.e., the point in A that is closest to the projection of points in Ac.

Definition 2. Let H̃ be a nonempty compact subset of Rdh with reach τH̃ > 0 and equivalently for
X̃ ∈ Rdx . The input space H is defined as

H = {h ∈ Rdh : dRdh (h, H̃) ≤ ϵH},
where 0 < ϵH < min{τH̃, 1}. Equivalently for X ,

X = {x ∈ Rdx : dRdx (x, X̃) ≤ ϵX },
where 0 < ϵX < min{τX̃ , 1}.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Remark 2. This restriction to the type of state and input spaces we consider is sufficient to construct
all neural networks of interest by choosing pair of points from the space in question, and construct
the weight and bias as in Equation (4). It is also argued in Bolager et al. (2023) that most interesting
real-world application will contain some noise and make sure that the state and input spaces is
approximately on the form given in the definition.

As we are not considering the eigenfunctions of the system, only prediction, and we are working with
real valued neural networks, we are in the setting with F = R in Equation (9).

B.1 UNCONTROLLED SYSTEMS

For uncontrolled systems we have that the evolution is described as ht = F (ht−1). For the following
theory, we have the following assumptions.
Assumption 2. The measure defining the space F = L2(H, µh), we assume µh is regular and finite
for compact subsets.
Assumption 3. The following assumptions is made for the dictionary and the underlying system F :

1. Any dictionary FM must fulfill µh{h ∈ H | cTFM (h) = 0} = 0, for all nonzero c ∈ RM .

2. K : F → F is a bounded operator.

Assumption 2 is not very limited, as it holds for most measures we are interested in, such as measures
absolutely continuous to the Lebesgue measure. For Assumption 3.1 we have the following result.
Lemma 1. Let (Rdh ,B(Rdh), µh) be a measurable space with supp(µh) = H, and λ be the
Lebesgue measure for Rdh . If for all non-zero c ∈ Rdh , the following holds:

• The set of functions {ψ1, . . . , ψM} is linear independent.

• cTFM =
∑M

m=1 cmψm is analytic on Rdh ,

• µh ≪ λ,

then Assumption 3.1 holds. In particular, it holds when {ψi}Mm=1 are independent tanh functions.

Proof. Let c ∈ Rdh be any non-zero vector. As {ψ1, . . . , ψM} are linear independent, we have
cTFM ̸≡ 0. As cTFM is analytic, we have the set

A = {h ∈ Rdh | cTFM (h) = 0},
to have measure zero, λ(A) = 0, due to Proposition 1 in Mityagin (2020). We have λ(A ∩ H) ≤
λ(A) = 0. Finally due to absolutely continuous measure µh, we have

µh({h ∈ H : cTFM (h) = 0}) = λ(A ∩H) = 0,

and hence Assumption 3.1 holds. As the linear projection and shift of bias is analytic on Rdh , tanh is
analytic on R, and analytic functions are closed under compositions, means Assumption 3.1 holds
when FM is a set of linearly independent neurons with tanh activation function.

Remark 3. The requirement of the functions being analytic for the whole Rdh can certainly be relaxed
if necessary to an open and connected set U , s.t. H ⊆ U). Further relaxation can be made with some
additional work. The result above also agrees with the claim made in Korda & Mezić (2018b) about
Assumption 3.1 holds for many measures and most basis functions such as polynomials and radial
basis functions. Finally, we note that the independence requirement is easily true when we sample
the neurons.

Assumption 3.2 is commonly enforced in Koopman theory when considering convergence of EDMD
and for example holds when F is Lipschitz, has Lipschitz invertible, and µh is the Lebesgue measure
(Korda & Mezić, 2018b).

We note

NN [1,1:∞] =

∞⋃
M=1

NN 1(H,RM)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

is the space of all hidden layers with tanh activation function from H. We continue with a result
relating this space with F .
Lemma 2. For tanh activation function and when Assumption 2 holds, then NN [1,1:∞] is dense
in F and has a countable basis {ψi ∈ NN [1,1:∞]}∞i=1, both when the parameter space is the full
Euclidean space and when constructed as in Equation (4).

Proof. It is well known that such space is dense in C(H,RK) for any K ∈ N. This holds both
when the weight space is the full Euclidean space (Cybenko, 1989; Pinkus, 1999) and when limited
to the weight construction in Equation (4) (Bolager et al., 2023). As H is compact, we have that
NN [1,1:∞] is dense in F . Furthermore, as F is a separable Hilbert space and metric space, there
exists a countable subset {ψi ∈ NN [1,1:∞]}∞i=1 that is a basis for F .

Following lemma makes sure we can circumvent assumptions made in Korda & Mezić (2018b),
which requires on the dictionary in the EDMD algorithm to be an orthonormal basis (o.n.b.) of F .
Lemma 3. Let H,H ′ be the dataset used in Equation (12). For every set of M ∈ N linearly
independent functions FM = {ϕi}Mi=1 from a dense subset of F and any function f = cTFM , there
exists a c̃ and matrix V such that

c̃TK̃F̃M = cTKFM

and

c̃TF̃M = f = cTFM ,

where F̃M = [ψ̃1, ψ̃2, . . . , ψ̃M] are functions from an orthornormal basis {ψ̃i}∞i=1 of F , and K, K̃
are the Koopman approximations for the dictionaries FM and F̃M respectively.

Proof. As F is a separable Hilbert space and a metric space, there exists a countable basis {ϕi}Mi=1 ∪
{ϕi}∞i=M+1, and by applying the Gram-Schmidt process to the basis, we have an o.n.b. {ψ̃i}∞i=1. Any
M step Gram-Schmidt process applied to a finite set of linearly independent vectors, can be written
as a sequence of invertible matrices V =

∏M+1
j=1 Vj . Each matrix Vj for j < M + 1 transforms the

jth vector and the last matrix simply scales. Constructing such matrix V applied to FM yields F̃M .
Setting c̃T = cTV −1, which means

c̃TF̃M = cTV −1F̃M = cTFM = f.

Furthermore, we have

c̃TK̃F̃M = cTV −1[F̃M (H ′)F̃M (H)+]V FM

= cTV −1[V FM (H ′)FM (H)+V −1]V FM

= cT[FM (H ′)FM (H)+]FM = cTKFM .

We are now ready to prove the Theorem 1 from the paper, namely the existence of networks
for finite horizon predictions. We denote FK as the space of vector valued functions functions
f = [f1, f2, . . . , fK], where fi ∈ F and ∥f∥ =

∑K
k=1∥fk∥L2 . In addition, we let KN be the

Koopman approximation for FM where N data points have been used to solve the least square
problem.
Theorem 2. Let f ∈ FK , H,H ′ be the dataset with N data points used in Equation (12), and
Assumption 2 and Assumption 3 hold. For any ϵ > 0 and T ∈ N, there exist an M ∈ N and hidden
layers FM with M neurons and matrices C such that

lim
N→∞

∫
H
∥CKt

NFM − f ◦ F t∥22dµh < ϵ, (14)

for all t ∈ [1, 2, . . . , T]. In particular, there exist hidden layers and matrices C such that

lim
N→∞

∫
H
∥CKt

NFM − F t∥22dµh < ϵ. (15)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Proof. W.l.o.g., we let K = 1. Due to Lemma 2, we know there exist hidden layers FM and vectors
c such that ∥fm − f∥2L2 < ϵ2, where cTFM = fm and

ϵ2 <
ϵ

2 ·max{∥K∥2Top , ∥K∥2op}
,

with ∥·∥op being the operator norm. This is possible due to Assumption 3 and Definition 2. We then
have for any t ∈ [1, 2, . . . , T]

lim
N→∞

∫
H
∥cTKt

NFM −Kt f∥22dµh

≤ lim
N→∞

∫
H
∥cTKt

NFM −Kt fm∥22dµh + ∥Kt fm −Kt f∥L2

≤ lim
N→∞

∫
H
∥cTKt

NFM −Kt fm∥22dµh + ∥fm − f∥2L2 max{∥K∥2Top , ∥K∥2op}

<
ϵ

2
+
ϵ

2
= ϵ,

where we use Theorem 5 in Korda & Mezić (2018b) to bound ∥cTKt
NFM −Kt fm∥22dµh (in theory

we might need a larger M , which we simply set and the bound of fm − f still holds). From the
convergence above, Equation (14) follows by definition of the Koopman operator. For Equation (15),
simply note that f(h) = h is in Fdh due to Definition 2, and the result holds.

B.2 CONTROLLED SYSTEMS

Proving convergence for controlled systems gives different challenges. The results above cannot
easily be shown for controlled systems. The reason being that the dictionary space one use is not
a basis for the observables in the controlled setting, with the dynamical system extended by the
left-shift operator, and the simplification made for EDMD in controlled systems. The results above
may be extended, but the EDMD will not converge to the Koopman operator, but rather to Pµ

∞KF∞ ,
where Pµ

∞ is the L2(µ) projection onto the closure of the dictionary space (Korda & Mezić, 2018a).
However, results exists for the continuous controlled systems, with certain convergences for the
generator. This is sadly not as strong as above, but an interesting path to connect RNNs/NeuralODEs
to such theory (Nüske et al., 2023).

C INTERPRETABILITY USING KOOPMAN AND SAMPLING

Figure 7 shows two possible ways we can interpret our constructed RNN models, beyond what is
usually possible for classical RNNs trained with gradient descent. On the left, we indicate which
data pairs were chosen from the training set to construct neurons of the non-linear network F . This
can help to see if the “coverage” of the training set by neurons (resp. their associated data pairs) is
reasonable, or if more neurons or data points are needed to cover highly non-linear regions.

On the right in Figure 7, we plot the locations of the eigenvalues of the Koopman matrix K in our
sampled RNN from Section 4.1. We can see that all eigenvalues are located on and inside the unit
circle, indicating stable and oscillatory behavior.

D RELU-BASED RNNS FOR DYNAMICAL SYSTEMS MODELING (DSM)

Most RNNs are parameterized discrete-time recursive maps of the given in Definition 1,

ht = Fhx(FH(ht−1), FX (xt)), (16)

with latent states ht−1, optional external inputs xt. A piecewise linear RNN (PLRNN), introduced
by Koppe et al. (2019), has the generic form

ht =W
(1)
h ht−1 +W

(2)
h σ(ht−1) + b0 +Wxxt, (17)

where σ(ht−1) = max(0,ht−1) is the element-wise rectified linear unit (ReLU) function, W (1)
h ∈

Rdh×dh is a diagonal matrix of auto-regression weights, W (2)
h ∈ Rdh×dh is a matrix of connection

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

1 0 1
()

1.0

0.5

0.0

0.5

1.0

(
)

Figure 7: Left: Interpretability of the hidden state network weights over the data domain in the
Van der Pol example. The arrows (with initial x1 and final points x2) depict the pairs that were
chosen during sampling. This means that they directly visualize where neurons are placed on the
domain. Right: Eigenvalues of the Koopman matrix approximated with 80 neurons for the Van der
Pol example.

weights, the vector b0 ∈ Rdh represents the bias, and the external input is weighted byWx ∈ Rdh×dx .
Afterwards, Brenner et al. (2022) extended this basic structure by incorporating a linear spline basis
expansion, referred to as the dendritic PLRNN (dendPLRNN)

ht =W
(1)
h ht−1 +W

(2)
h

J∑
j=1

αj σ(ht−1 − bj) + b0 +Wxxt, (18)

where {αj , bj}Jj=1 represents slope-threshold pairs, with J denoting the number of bases. This
expansion was introduced to increase the expressivity of each unit’s nonlinearity, thereby facilitating
DSM in reduced dimensions. Moreover, Hess et al. (2023) proposed the following “1-hidden-layer”
ReLU-based RNN, which they referred to as the shallow PLRNN (shPLRNN)

ht =W
(1)
h ht−1 +W

(2)
h σ(W

(3)
h ht−1 + b1) + b0 +Wxxt, (19)

where W (1)
h ∈ Rdh×dh is a diagonal matrix, W (2)

h ∈ Rdh×M and W (3)
h ∈ RM×dh are rectangular

connectivity matrices, and b1 ∈ RM , b0 ∈ Rdh denote thresholds. The combination of Generalized
Teacher Forcing (GTF) and shPLRNN results in a powerful DSM algorithm on challenging real-
world data; for more information see Hess et al. (2023). When M > dh, it is possible to rewrite any
shPLRNN as a dendPLRNN by expanding the activation of each unit into a weighted sum of ReLU
nonlinearities (Hess et al., 2023).

A clipping mechanism can be added to the shPLRNN to prevent states from diverging to infinity as a
result of the unbounded ReLU nonlinearity

ht =W
(1)
h ht−1 +W

(2)
h

[
σ(W

(3)
h ht−1 + b1)− σ(W

(3)
h ht−1)

]
+ b0 +Wxxt. (20)

This guarantees bounded orbits under certain conditions on the matrix W (1)
h (Hess et al., 2023).

In our experiments with RNNs, the clipped shPLRNN is trained by GTF for DSM on the benchmark
systems (see below Appendix F).

E RESERVOIR MODELS: ECHO STATE NETWORKS

As our newly proposed method bears similarities to a reservoir computing architecture, we have
trained reservoir models as part of our computational experiments. We used the simplest recurrent

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

reservoir architecture, which is an echo state network (ESN) introduced by Jaeger & Haas (2004).
Here we will briefly introduce the main ideas behind ESNs, and we refer the interested reader to the
review by Lukoševičius & Jaeger (2009) for more details.

An ESN consists of a reservoir and a readout. The reservoir contains neurons which are randomly
connected to inputs and are these are not trained. Denoting the inputs as ht ∈ RNh and output as
yt ∈ RNy , and the internal reservoir states as kt ∈ RNk , the reservoir provides an update rule for the
internal units as

kt+1 = f
(
W inht+1 +Wkt +W backyt

)
, (21)

for an activation function f and weight matrices W in ∈ RNk×Nh , W ∈ RNk×Nk and W back ∈
RNk×Ny . After the reservoir comes the readout, which maps the inputs, reservoir states and outputs
to a new output state

yt+1 = fout
(
W out(ht+1,kt+1,yt)

)
, (22)

where fout is the output activation, W out ∈ RNy×Ny are output weights and (ht+1,kt+1,yt)
denotes the concatenation of ht+1, kt+1 and yt. In the readout the model learns the connections
from the reservoir to the readout, for example via (regularized) regression. A so-called feedback
connection allows for the readout values to be fed back into the reservoir, as shown in Equation (21),
establishing a recurrent relation.

F BENCHMARK SYSTEMS AND REAL-WORLD DATA

Van der Pol In 1927, Balthasar Van der Pol introduced a non-conservative oscillatory system with
a nonlinear damping term to describe oscillations in a vacuum tube electrical circuit. The system is
described as a two dimensional ODE{

ḣ1 = h2
ḣ2 = µ(1− h21)− h1 + h2,

where µ is a scalar parameter indicating the nonlinearity and the strength of the damping. In our
experiment we set µ = 1, that is, in the limit cycle regime. For the experiments in Section 4.1 and
Section 4.2, training data are generated by solving an initial value problem for t ∈ [0, 20] with ∆t =
0.1 for 50 initial conditions, where each initial condition is random vector h0 ∼ Uniform([−3, 3]2).
We used an explicit Runge-Kutta method of order 8 to solve the initial value problem. Validation and
test data are generated similarly but for t ∈ [0, 50].

Lorenz-63 Devised by Edward Lorenz in 1963 (Lorenz, 1963) to model atmospheric convection,
the Lorenz-63 system is defined as 

ḣ1 = σ(h2 − h1)

ḣ2 = h1(ρ− h3)− h2
ḣ3 = h1 h2 − βh3,

,

where σ, ρ, β, are parameters that control the dynamics of the system. In our experiment, we set σ =
10, β = 8

3 , and ρ = 28, which means we are in the chaotic regime. For the experiments in Section 4.3,
training data are generated by solving an initial value problem for t ∈ [0, 5] with ∆t = 0.01 for
50 initial conditions, where each initial condition is random vector h0 ∼ Uniform([−20, 20] ×
[−20, 20]× [0, 50]). The solver used explicit Runge-Kutta of order 8, likewise as the previous dataset.
Validation and test data are generated similarly but for t ∈ [0, 50]. We normalize datasets to scale the
values to the range [−3, 3] to improve the training.

Rössler Otto Rössler introduced the Rössler system in 1976 (Rössler, 1976) as a model that
generates chaotic dynamics 

ḣ1 = −h2 − h3
ḣ2 = h1 + αh2
ḣ3 = β + h3(h1 − κ),

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

where α, β, κ, are parameters controlling the dynamics of the system. Here, we set α = 0.15,
β = 0.2, and κ = 10, which puts the system in the chaotic regime. The setup for data generation
is similar to the Lorenz example. For the experiments in Table 1, training data are generated by
solving an initial value problem for t ∈ [0, 10] with ∆t = 0.01 for 50 initial conditions, where each
initial condition is random vector h0 ∼ Uniform([−20, 20]× [−20, 20]× [0, 40]). Again, an explicit
Runge-Kutta method of order 8 was used. Validation and test data are generated similarly but for
t ∈ [0, 200]. We normalize datasets to scale the values to the range [−3, 3] to improve the training.

Forced Van der Pol Oscillator As an example for a controlled system, we use the Van Der Pol
oscillator with external input forcing x, and{

ḣ1 = h2
ḣ2 = µ(1− h21)h2 − h1 + x

The data is obtained for t ∈ [0, 50∆t] with ∆t = 0.05, with 150 initial conditions, where h0 ∼
Uniform([−3, 3]2) and x0 ∼ Uniform([−3, 3]). The solver used here was using an explicit Runge-
Kutta method of order 5(4). It is important to highlight that the control input data x0 does not come
from any controller with a particular target state, i.e. random control is applied to the trajectories in
the training dataset.

Weather data In this experiment, we follow TensorFlow (2024) and use the Jena Climate dataset
(for Biogeochemistry, 2024). The original data contains inconsistent date and time values, leading to
gaps and overlaps between measurements. We extracted the longest consecutive time period and thus
worked with the data between July 1st, 2010, and May 16th, 2013. We additionally downsampled the
time series from the original 10-minute to 1-hour measurements. Then, the first 70% of records were
used as the train set, the next 20% as the validation, and the remaining 10% as the test set. Identically
to TensorFlow (2024), we pre-processed the features and added sin and cos time-embeddings of
hour, day, and month. We plot the dataset, indicating the train-validation-test split with colors in
Figure 8.

20
10

-09
-01

20
11

-01
-01

20
11

-05
-01

20
11

-09
-01

20
12

-01
-01

20
12

-05
-01

20
12

-09
-01

20
13

-01
-01

20
13

-05
-01

Date Time

20

0

20

T
(d

eg
C)

Dataset

Figure 8: The weather dataset and its splits: train (blue), validation (orange), and test (green).

G EVALUATION MEASURES

G.1 GEOMETRICAL MEASURE

The Kullback–Leibler divergence of two probabiliti densities p(x) and q(x) is defined as

DKL(p(x)∥q(x)) =
∫
x∈R

p(x) log
p(x)

q(x)
dx. (23)

In order to be able to accurately evaluate also high-dimensional systems, we follow the approach used
in Hess et al. (2023) and place Gaussian Mixture Models (GMM) on the along the true trajectory x and
predicted x̂ trajectories, obtaining p̂(x) = 1

T

∑T
t=1 N (x,xt,Σ) and q̂(x) = 1

T

∑T
t=1 N (x, x̂t,Σ)

for T snapshots. Using the estimated densities, we consider a Monte Carlo approximation of
Equation (23) by drawing n random samples from the GMMs and obtain the density measure

DKL(p̂(x)∥q̂(x)) ≈
1

n

n∑
i=1

log
p̂(x)

q̂(x)
. (24)

We call this metric empirical KL divergence (EKL) in the manuscript. To make our results comparable
with Hess et al. (2023), we use σ2 = 1.0 and n = 1000.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

H MODEL DETAILS AND COMPARISON

H.1 SAMPLED RNN

The implementation of our gradient-free training module for sampled RNNs was done in Python
since the key tools for the algorithm already exist as Python libraries. The algorithm requires the
ability to sample weights and biases, thus we used the Python library swimnetworks by Bolager
et al. (2023). Furthermore, we were able to alleviate the approximation of the Koopman operator,
in the uncontrolled as well as controlled setting using some functionalities from the Python library
datafold by Lehmberg et al. (2020).

Sampled RNNs have only a few hyperparameters: the number of nodes in the hidden layer, the
activation function of the hidden layer, and a cutoff for small singular values in the least-squares
solver. We often refer to the singular value cutoff hyperparameter as the regularization rate. In the
case of a sampled RNN with time delay, additional hyperparameters are the number of time delays
and the number of PCA components, if used.

Sampled RNNs do not only have a low fit time but also a short hyperparameter tuning since there are
only a few degrees of freedom. Thus, our newly proposed method offers efficiency beyond the short
training time.

We empirically investigated the scaling of sampled RNNs as a function of the number of neurons.
Similarly, as for the other results, we perform five runs and report the average as well as the minimum
and maximum; the results can be seen in Figure 9. These are results for a dataset of fixed size,
where we would expect that the only change in computation is the least-squares solver and additional
samples of weights and biases.

0 100 200 300 400 500
number of neurons

10 3

10 2

10 1

100

Fit
 ti

m
e

[s
] :

 a
vg

 (m
in

, m
ax

)

Figure 9: Fit time over number of neurons for the Van der Pol experiment from Section 4.1.

In addition, we investigated the effect of increasing the number of neurons on training and validation
performance. Results from five runs are shown in Figure 10. We notice that the errors decrease up to
a certain number of neurons and stagnate afterwards.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500
number of neurons

10 6

10 5

10 4

10 3

10 2

10 1

100

101

M
SE

 e
rro

r :
 a

vg
 (m

in
, m

ax
)

training dataset
validation dataset

Figure 10: Training and validation MSE error over number of neurons for the Van der Pol experiment
from Section 4.1.

The Van der Pol experiment from Section 4.1 was used as one of the first prototypes of our method.
Our initial experiments used a smaller dataset than the one described in Appendix F, namely with
very short trajectories consisting of only three time steps. The sampled RNN was able to learn the
full dynamics from this data. However, it was not possible to train the gradient-based shPLRNN with
such a dataset; thus, we used longer trajectories to be able to compare our method with others. The
final choice of hyperparameters for the hyperparameters is given in Table 2.

Training the 1D Van der Pol from Section 4.2 was done similarly, the number of hidden nodes and
activation function remained unchanged. The hyperparameters are listed in Table 2. A time delay
of six was chosen, however it was also possible to use only two time delays and get an excellent
performance, but we opted against this choice because this was based on our knowledge that the
true system is two dimensional. Thus, we opted for a higher number of time delays which then
get reduced with the additional PCA transformation to mimic a real-world scenario where the true
dimension of the problem is unknown.

The chaotic systems from Section 4.3 required more hidden nodes in order to obtain good prediction,
as compared to the Van der Pol but nonetheless the process of hyperparameter tuning was simple.
The final choice of hyperparameters for the Lorenz and Rössler problems is given in Table 2. We
show a visual comparison of the predicted trajectories from the sampled RNNs, ESN and shPLRNNs
for the Lorenz system in Figure 12.

We also considered how the number of hidden units effects the model’s performance. For the number
of nodes considered powers of two, specifically 22 until 29 for both chaotic models. Each run was
repeated five times to provide errorbars from min to max in addition to the average value, show in
Figure 11. We notice the typical trend of a decreasing error, with possible overfitting in the case of
Rossler.

(a) Lorenz (b) Rossler

Figure 11: Ablation of hidden units for chaotic systems.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

1

0

1

h
1

1

0

1

h
2

0 10 20 30 40 50
t

1

2

h
3

1.0
0.5

0.0
0.5

1.0
h1 1.5

1.0
0.5
0.0
0.5
1.0
1.5

h 2

0.5

1.0

1.5

2.0

2.5

h
3

true

prediction

(a) sampled RNN

1

0

1

h
1

1

0

1

h
2

0 10 20 30 40 50
t

1

2

h
3

1.0
0.5

0.0
0.5

1.0
h1 1.5

1.0
0.5
0.0
0.5
1.0
1.5

h 2

0.5

1.0

1.5

2.0

2.5

h
3

true

prediction

(b) ESN

1

0

1

h
1

1

0

1

h
2

0 10 20 30 40 50
t

1

2

h
3

1.0
0.5

0.0
0.5

1.0
h1 1.5

1.0
0.5
0.0
0.5
1.0
1.5

h 2

0.5

1.0

1.5

2.0

2.5

h
3

true

prediction

(c) shPLRNN

Figure 12: Visual comparison of different models on the same test trajectory.

With the forced Van der Pol example, presented in Section 4.4, we use the sampled RNN as a
surrogate model to a controller, essentially making this a model-based control example. In order to
be able to accurately control the state, the surrogate needs to capture the dynamics of the system with
sufficient accuracy. The hyperparameters are listed in Table 2. We opted for an LQR controller as our
optimal controller, as a simple choice for linear systems. Although the Van der Pol oscillator is not a
linear system, the surrogate sampled RNN captures the dynamics via a linear map with the Koopman
operator, allowing minimizing the cost. For our LQR, R = 1, and Q = diag(10). The dataset we use
contains randomly initialized trajectories evolved in time, as well as randomly chosen control inputs.
We observed that a dataset with many shorter trajectories is more useful than a dataset with a few
longer trajectories since for this problem diverse initial conditions are more informative of the vector
field of the system, as opposed to long trajectories which become periodic. The necessary effort for
tuning the sampled RNN hyperparameters and LQR controller parameters was low.

Although not reported in the manuscript as part of the experiments, in Appendix H.1.1 we discuss the
forced Van der Pol model using a nonlinearity for the inputs.

The training of a sampling RNN on weather data was performed using time-delay embeddings to
account for a possibly partial observation of the state. The objective is to train a model which
can predict the temperature. To find the hyperparameters a grid search was performed, and this is

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

documented in Table 7. The final choice of hyperparameters is given in Table 2. After training,
predictions are done for fixed chunks of time, which are concatenated together afterwards. The
number of time-delays dictates how many ground-truth datapoints are necessary to predict the next
state, which gets concatenated with the previous predictions. We see this as a reasonable approach
for weather prediction, as typically one would use the available information for a fairly long period
of time, and predict for a fixed, likely shorter time horizon.

H.1.1 LQR WITH NONLINEAR LIFTING

In this section we describe shortly how we perform model predictive control described in Algorithm 4
with nonlinear lifting GM̂ , i.e. applying a sampling hidden layer on the input x. The experiment in
the main paper was mainly done by setting GM̂ to the identity, but adding nonlinearity with M̂ > dx
is possible and may beneficial for future testing, even though for the particular system in the main
paper, it yielded equivalent results as with GM̂ ≡ Id.

Following Algorithm 4, we lift xt to RM̂ through the hidden layer GM̂ . Then we solve for B exactly
as described in Algorithm 2 and fit the LQR. The LQR computes the control input, but now in the
RM̂ space. Before we can pass it to F , we approximate a linear map P , such that PGM̂ (xt) ≈ xt.
Once projected down, we can pass the projected value x̂t to F and continue as usual.

H.1.2 HYPERPARAMETERS

Table 2: Hyperparameters of sampled RNN models

Van der Pol 1D Van der Pol Lorenz Rössler force Van der Pol Weather

Hidden layer width 80 80 200 300 128 256
Activation function tanh tanh tanh tanh tanh tanh
Regularization rate 1e-8 0 1e-7 1e-4 1e-10 1e-6
Time delays - 6 - - - 168
PCA components - 2 - - - -

H.1.3 HARDWARE

The machine used for training the sampled RNNs was 13th Gen Intel(R) Core(TM) i5-1335U @ 4.6
GHz (16GB RAM, 12 cores), no GPU hardware was used.

H.2 ESN

For the implementation of ESNs we used the Python library reservoirpy by Trouvain et al.
(2020). All models were trained using a single reservoir and a ridge regression readout. We consider
only reservoir models without any warm-up phase in order to keep them comparable to our sampling
RNN which does not have a warm-up.

For the chaotic systems, we were able to find guidelines in the literature for a suitable choice of
hyperparameters specifically tailored to the Lorenz system (see (Viehweg et al., 2023)). With minor
modifications and following the proposed guidelines, we found hyperparameters also for the Rössler
system. The choice of hyperparameters is specified in Table 3, any hyperparameters not mentioned
are set to the default value of reservoirpy.

For the Van der Pol problem many hyperparameter combinations were tried out until we were able
to find a model with good performance and sufficient robustness to a change in the random seed.
The hyperparameter combinations we considered are shown in Table 4. Due to the high expenses
of a grid-search approach, a random search was employed and 1000 hyperparameter combinations
were considered. The hyperparameter choice with the best performance on the validation dataset was
selected and then evaluated on the test dataset. The final choice of hyperparameters is documented in
Table 3, and any unmentioned hyperparameters are assumed to be set to the default value from the
reservoirpy library.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

H.2.1 HYPERPARAMETERS

Table 3: Hyperparameters of reservoir models

Van der Pol 4.1 Lorenz 4.3 Rössler 4.3

Width/units 500 300 500
Leak rate 0.9 0.3 0.3
Spectral radius 0.5 1.25 0.5
Input scaling 0.05 0.1 0.1
Connectivity 0.8 0.1 0.1
Inter connectivity 0.2 0.2 0.2
Ridge regularization coeff. 1e-10 1e-4 1e-8
Warmup steps 0 0 0

Table 4: Hyperparameters used in random search on a grid for a Van der Pol reservoir model

Van der Pol 4.1

Width/units 100, 200, 500
Leak rate 0.1, 0.3, 0.5, 0.7, 0.9
Spectral radius 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 3, 5
Input scaling 0.05, 0.1, 0.5, 1, 1.5, 2
Connectivity 0.2, 0.4, 0.6, 0.8, 1
Inter connectivity 0.2, 0.4, 0.6, 0.8, 1
Ridge regularization coeff. 1e-4, 1e-6, 1e-8, 1e-10
Warmup steps 0

H.2.2 HARDWARE

The machine used for fitting the ESN models was 13th Gen Intel(R) Core(TM) i5-1335U @ 4.6 GHz
(16GB RAM, 12 cores).

H.3 SHPLRNN

For an explanation of shPLRNN, see Appendix D.

H.3.1 HYPERPARAMETERS

We used the clipped shPLRNN trained by GTF. For the Van der Pol, Lorenz and the weather datasets
we considered a fixed GTF parameter α, while for the Rössler we considered an adaptive α (starting
from an upper bound) as proposed by (Hess et al., 2023). The code repository by (Hess et al., 2023)
was used to perform the computations. The hyperparameters selected for all datasets are detailed
in Table 5. Any hyperparameters not specified are set to their default values in the corresponding
repository of (Hess et al., 2023). For Rössler dataset, finding optimal hyperparameters was more
challenging, and for training, we also utilized regularizations for the latent and observation models.

Table 5: Hyperparameters of shPLRNN trained by GTF

Van der Pol 4.1 Lorenz 4.3 Rössler4.3 Weather

Hidden dimension 35 100 50 200
Batch Size 32 30 50 32
Sequence length 37 100 150 40
Teacher forcing interval 25 13 25 20
Epochs 1300 2000 2000 2500
GTF parameter α 0.98 0.3 0.9 (Upper bound) 0.75
Latent model regularization rate - - 1e-6 -
Observation model regularization rate - - 1e-4 -

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

H.3.2 HARDWARE

The hardware we used to iteratively train the clipped shPLRNN models includes an 11th Gen Intel(R)
Core(TM) i7-11800H CPU @ 2.30GHz and 64.0 GB of RAM (63.7 GB usable).

H.4 LSTM

We use Tensorflow (Abadi et al., 2015) to train a baseline LSTM for the weather data problem of
predicting the temperature. An LSTM is trained similarly to the process by TensorFlow (2024).

After training the weather models, we compute the predictions with the specified horizon and
concatenate them into a single time series. More specifically, if the horizon is set to one day with a
time delay of one week, the prediction on a dataset split goes as follows. First, we use ground-truth
values of days one to seven to predict the value for day eight. Then, we use the ground-truth values
of days two to eight to predict the value for day nine. This process is repeated until we reach the
end of the split. Then, the resulting predictions are concatenated and compared to the ground-truth
measurements. This prediction process alligns with the one used for sampled RNNs to ensure a
consistent comparison.

H.4.1 HYPERPARAMETERS

Table 6: Hyperparameters used for LSTM for Section 4.5.

LSTM

Width/units 64
Learning rate 5e-5
Max epochs 30
Patience 5

See Table 7 for details on the hyperparameter grid search for Section 4.5 performed for the sampled
RNN and LSTM models.

Table 7: Hyperparameters used in the grid search for training sampled RNN and LSTM for the
temperature prediction in Section 4.5.

sampled RNN LSTM

Width/units 32, 64, 128 32, 64, 128, 256, 512
Regularization rate 1e-10, 1e-8, 1e-6, 1e-4, 1e-2 —
Learning rate — 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3

H.4.2 HARDWARE

For the experiments with the weather data in Section 4.5, we used a machine with AMD EPYC 7402
@ 2.80GHz (256GB RAM, 24 cores) and RTX 3080 Turbo (10GB VRAM, CUDA 12.0).

I ADDITIONAL EXPERIMENT WITH REAL-WORLD DATA

We provide a additional experiments to showcase our model’s performance on real world data. From
our experience it was not necessary to perform exhaustive hyperparamter tuning in order to obtain
decent performance from a sampled RNN model. The same hardware was used as for the weather
data experiment mentioned in Appendix H.4.2.

Electricity consumption We use the individual power consumption dataset by Hebrail & Berard
(2006) and predict the voltage feature. This dataset contains measurements made in a one-minute
interval, and we consider a period of four weeks as our dataset. Two weeks are used as training
data, one week as validation and one as test data, as shown in Figure 13. We added sin and cos

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

time-embeddings of hour and day. We use 240 time-delay embeddings (amounting to 4 hours) and
always predict a horizon of 120 steps (2 hours). The sampled RNN has 128 hidden nodes and a tanh
activation. The results are plotted in Figure 14. Training time was 6.5 seconds. The MSE error on
training, validation and test data is 1.565, 1.427 and 1.428 V respectively.

20
07

-0
2-

13

20
07

-0
2-

17

20
07

-0
2-

21

20
07

-0
2-

25

20
07

-0
3-

01

20
07

-0
3-

05

20
07

-0
3-

09

Date

225

230

235

240

245

250

V
o
lt

a
g

e

train

val

test

Figure 13: Individual household electrical power consumption data split into training, validation and
testing portions.

20
07

-0
3-

04

20
07

-0
3-

05

20
07

-0
3-

06

20
07

-0
3-

07

20
07

-0
3-

08

20
07

-0
3-

09

20
07

-0
3-

10

20
07

-0
3-

11

225

230

235

240

245

250
Test Predictions

Ground Truth

Predicted

Figure 14: Test set predictions of individual household electricity consumption.

Bike traffic We use a dataset containing bike traffic counts in Copenhagen bik. This dataset
contains only the bike count and the date and time information. We use the bike count as a target
variable. We added sin and cos time-embeddings of hour, day, and month. The largest portion of
data without missing values is used as the dataset, and split into training, validation and test as shown
in Figure 15. We use a sampled RNN with 256 hidden nodes and tanh activation. A time delay of 14
hours is used, and the prediction horizon is 7 hours. Training time was 0.65 seconds. The MSE error
on the training, validation and test set is 90, 160, 140, respectively.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

20
07

-0
1-

01

20
07

-0
7-

01

20
08

-0
1-

01

20
08

-0
7-

01

20
09

-0
1-

01

20
09

-0
7-

01

20
10

-0
1-

01

Date

200

400

600

800

1000

1200

1400

co
u
n
t

train

val

test

Figure 15: Bike count data split into training, validation and testing portions.

20
09

-1
2-

15

20
10

-0
1-

01

20
10

-0
1-

15

20
10

-0
2-

01

20
10

-0
2-

15

20
10

-0
3-

01

20
10

-0
3-

15

20
10

-0
4-

01

20
10

-0
4-

15
250

0

250

500

750

1000

1250

1500

Test Predictions

Ground Truth

Predicted

Figure 16: Test set predictions of bike counts.

J COMPARISON WITHOUT SWIM AND WITHOUT KOOPMAN

In this section, we report on some results performed to separate each contribution of the parts we use
in this paper, namely the SWIM sampling strategy and the Koopman operator. We ran two settings
(excluding our method already reported). One is with the addition of the Koopman operator and
EDMD, but where we sample the weights of the hidden layer with a standard Gaussian distribution
and the biases with a uniform distribution. This sampling strategy is commonly used for random
neural networks, which is why we chose these distributions in particular. In the second setting, we
exclude the EDMD step and simply project down the original state space after applying the hidden
layer. The results can be found in Table 8. We observe that the model that incorporates both Koopman
and SWIM performs best over all the experiments we tested, and with typically smaller error bars.

Table 8: Test setting (A): without SWIM and with Koopman, (B): with SWIM and without Koopman,
(C) with SWIM and with Koopman (our). Results for Van der Pol are reported with MSE and
the chaotic systems Lorenz and Rössler are reported with EKL, and all experiments report mean,
minimum, and maximum respectively.

Example (A) (B) (C)

Van der Pol 2.90e-3 (6e-4,8.1e-3) 3.12e-2 (3.05e-2, 3.16e-2) 9.55e-4 (7.08e-4, 1.28e-3)
Lorenz 7.79e-3 (5.79e-3, 9.87e-3) 8.41e-3 (6.45e-3, 1.02e-2) 4.36e-3 (3.66e-3, 5.36e-3)
Rössler 4.47e-1 (1.7e-4, 2.21e-0) 7.51e-3 (1.00e-4,3.63e-2) 1.57e-4 (5.86e-5, 3.82e-4)

Finally, to see how our method compares to one without Koopman when one extends the size
of the time step to predict the Van der Pol system, we ran an experiment for time steps ∆t =

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

[0.1, 0.2, 0.3, 0.4, 0.5], and the results can be found in Figure 17. Here, we observe that the method,
including Koopman, consistently performs better and has a much more stable error bar as we increase
∆t.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
t

10 5

10 4

10 3

10 2

10 1

100

101

te
st

 M
SE

: a
vg

 (m
in

, m
ax

)

Koopman (no SWIM)
direct map (no SWIM)

(a) without SWIM

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
t

10 5

10 4

10 3

10 2

10 1

100

101

te
st

 M
SE

: a
vg

 (m
in

, m
ax

)

Koopman (SWIM)
direct map (SWIM)

(b) using SWIM

Figure 17: Running our model and a model without Koopman while increasing the size of the time
step the models predict, ∆t = [0.1, 0.2, 0.3, 0.4, 0.5], results reported on test set with MSE and
min/max error bars.

34

	Introduction
	Related work
	Mathematical framework
	Sampling RNN
	Involving the Koopman operator
	Convergence of sampled RNNs

	Computational experiments
	Simple ODEs: Van der Pol Oscillator
	Example with time delay embedding: Van der Pol Oscillator
	Examples of chaotic dynamics: Lorenz and Rössler systems
	Example with control inputs: Forced Van der Pol Oscillator
	Example with real-world data

	Conclusion
	Ethics statement
	Reproducibility statement
	Koopman operator and extended dynamic mode decomposition
	Extended dynamic mode decomposition
	Controlled dynamical systems and the Koopman operator

	Theory
	Uncontrolled systems
	Controlled systems

	Interpretability using Koopman and sampling
	ReLU-based RNNs for Dynamical Systems Modeling (DSM)
	Reservoir Models: Echo State Networks
	Benchmark systems and real-world data
	Evaluation measures
	Geometrical measure

	Model details and comparison
	Sampled RNN
	LQR with nonlinear lifting
	Hyperparameters
	Hardware

	ESN
	Hyperparameters
	Hardware

	shPLRNN
	Hyperparameters
	Hardware

	LSTM
	Hyperparameters
	Hardware

	Additional experiment with real-world data
	Comparison without SWIM and without Koopman

