
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GRADIENT-FREE TRAINING OF RECURRENT NEURAL
NETWORKS FOR LOW DIMENSIONAL DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Recurrent neural networks are a successful neural architecture for many time-
dependent problems, including time series analysis, forecasting, and modeling of
dynamical systems. Training such networks with backpropagation through time
is a notoriously difficult problem because their loss gradients tend to explode or
vanish. In this contribution, we introduce a computational approach to construct
all weights and biases of a recurrent neural network without using gradient-based
methods. The approach is based on a combination of random feature networks
and Koopman operator theory for dynamical systems. The hidden parameters
of a single recurrent block are sampled at random, while the outer weights are
constructed using extended dynamic mode decomposition. This approach alleviates
all problems with backpropagation commonly related to recurrent networks. The
connection to Koopman operator theory also allows us to start using results in this
area to analyze recurrent neural networks. In computational experiments on time
series, forecasting for chaotic dynamical systems, and control problems, as well as
on weather data, we observe that the training time and forecasting accuracy of the
recurrent neural networks we construct are improved when compared to commonly
used gradient-based methods.

1 INTRODUCTION

Recurrent neural networks (RNNs) are notoriously difficult to train because their loss gradients
backpropagated in time tend to saturate or diverge during training, commonly referred to as the
Exploding and Vanishing Gradient Problem (EVGP) (Pascanu et al., 2013; Schmidt et al., 2019). To
alleviate these problems and improve the computational load of training such networks, we consider
a model that completely avoids iterative gradient-descent optimization. We propose to sample the
hidden layer parameters of the RNN at random, before solving for the outer linear layer by least-
squares methods. Our first major contribution is that we consider data-dependent distributions for the
weights and biases, which improves upon the accuracy and interpretability compared to data-agnostic
distributions. Our second major contribution adds more structure to the outer layer and improve the
models performance even further. We achieve this by connecting RNNs and the Koopman operator
(cf. Korda & Mezić (2018a)) through a linear state-space model in a higher-dimensional space, i.e.,

ht = F (ht−1,xt)
yt = g(ht)︸ ︷︷ ︸

original non-linear system

↔ zt = Kzt−1 +Bxt

yt = V zt︸ ︷︷ ︸
linear (Koopman) state-space model

↔
zt = KF(ht−1) +BG(xt)
ht = Czt
yt = V zt︸ ︷︷ ︸

non-linear RNN

.

(1)
Here the matrix K maps states from zt−1 to zt, with the input xt affecting this dynamic through the
matrix B, and the observations are related to the states through the linear map V .

By using a non-linear neural network to map the low-dimensional state h into a higher dimension,
through F(h) := σ(Wh + b), and, similarly, to map the input x to a high-dimensional input
G(x) = σx(Wxx+ bx), turns the linear SSM into a non-linear recurrent neural network. The final
model is illustrated in Figure 1. This connection gives structure and interpretability to the outer
layer of RNNs, as well as tools to analyze the RNNs stability through the spectral properties of the
Koopman operator.
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V

=C + =( ) + =B

+ =( )
Figure 1: Illustration of the components of one recurrent block we construct in the paper. The state
zt−1 enters on the left, and is processed through matrix C and the neural network F = σ(W ·+b).
We then advance in time to zt, using the Koopman matrix K and the processed control inputs.

The combination of sampling hidden layers and applying Koopman theory alleviates all issues related
to the backpropagation of gradients and connects the idea of recurrent architectures to the
Koopman operator of the underlying dynamical system. The latter allows us to prove convergence
results about the approximation quality w.r.t. the number of neurons in F . We demonstrate the
performance of this approach on several challenging examples with synthetic and real data, and show
comparable results to networks trained with backpropagation. Finally, we touch upon the models
current challenges such as applying it to high dimensional data.

2 RELATED WORK

Exploding and vanishing gradients. For all major types of RNNs, including LSTMs and GRUs,
the dynamics and loss gradients of RNNs are closely linked. If the RNN dynamics converge to
a stable fixed point or cycle, loss gradients will remain bounded, but they may vanish (Mikhaeil
et al., 2022). Yet, established remedies (Hochreiter & Schmidhuber, 1997; Schmidt et al., 2019)
can be used to effectively prevent their gradients from vanishing. However, in chaotic dynamics,
gradients invariably explode, posing a challenge that cannot be mitigated through RNN architectural
adjustments, regularization, or constraints; instead, it necessitates addressing the problem during
the training process (Mikhaeil et al., 2022). Bifurcations may also contribute to sudden jumps in
loss observed during RNN training, potentially hindering the training process severely (Doya et al.,
1992; Eisenmann et al., 2023). In Eisenmann et al. (2023), it has been demonstrated that specific
bifurcations in ReLU-based RNNs are always associated with EVGP during training. Therefore, to
harness the full potential of RNNs, the training algorithm needs careful design to tackle challenges
posed by bifurcations and the possible emergence of EVGP.

Curse of memory. The existence of long-term memory adversely affects the learning process of
RNNs (Bengio et al., 1994; Hochreiter et al., 2001; Li et al., 2021). This negative impact is captured
by the concept of the “curse of memory”, which states that when long-term memory is present in
the data, approximating relationships demands an exponentially large number of neurons, resulting
in a significant slowdown in learning dynamics. Specifically, when the target relationship includes
long-term memory, both the approximation and optimization of the learning process become very
challenging (Li et al., 2021).

Loss function for chaotic and multistable dynamics reconstruction. To effectively train RNNs and
evaluate reconstruction, it is crucial to carefully choose a proper loss function. The Mean Squared
Error (MSE) is a commonly used loss function for reconstruction tasks. MSE is derived under the
assumption of Gaussian noise, and it may not be the most appropriate choice when dealing with
chaotic systems or multistable dynamics, where the underlying noise characteristics may deviate
from Gaussian distribution assumptions. It is not suitable as a test loss for chaotic dynamical systems
due to their unpredictable behavior and abrupt changes (Wood, 2010). In multistable systems, where
there are multiple stable states, MSE may struggle to distinguish between these states. The loss
function may not adequately penalize deviations between different attractors, leading to a less accurate
reconstruction of the system’s multistable behavior. Despite proposed alternatives, challenges persist,
and an optimal loss function for reconstructing chaotic or multistable dynamics is still lacking
(Ciampiconi et al., 2023).

Interpretability deficiency. Deep learning models are commonly regarded as “black boxes”, and
existing methods to comprehend the decision-making processes of RNNs offer restricted explanations
or rely on local theories. The lack of theory behind analyzing the training algorithms of RNNs, as
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well as the training process itself, are outstanding open questions in the field (Redman et al., 2023)
beyond models for linear systems (Datar et al., 2024).

Randomly choosing the internal network parameters. The general idea of randomly choosing
the internal parameters of neural networks is studied in random feature models (including deep
architectures).Barron (1993); Rahimi & Recht (2008) developed the basic theory, and Gallicchio &
Scardapane (2020) provide a review. Reservoir computing (also called echo-state networks, cf. Jaeger
& Haas (2004)) is potentially the closest idea to what we are proposing here. In a reservoir computer,
the internal weights are also randomly sampled, and a recurrent, time-delayed model is constructed
to approximate a given dynamical system. This type of architecture has been used successfully to
model chaotic systems (cf. Pathak et al. (2018); Gauthier et al. (2021)). While there are similarities to
the recurrent architecture (cf. Lukoševičius & Jaeger (2009)), the concept, as well as the architecture
of a reservoir computer, is often treated separately from classic recurrent neural networks that are
trained with backpropagation-in-time. In our work, we directly compute all parameters of classical
recurrent neural networks without the time-delay component present in reservoir computers.

Koopman operator theory. The Koopman operator is an object associated to every dynamical system.
It evolves observables of the state of the system in time. This evolution is linear, which is the main
reason the operator is employed and studied extensively for modeling dynamical systems (Mezić,
2005; 2013; Korda & Mezić, 2018b). Many numerical approximation algorithms exist (Schmid,
2010; Williams et al., 2015a; Li et al., 2017; Mezic, 2020; Schmid, 2022). The dictionary for the
approximation of the Koopman operator has been constructed with neural networks using gradient
descent (Li et al., 2017) and using random features (Salam et al., 2022). Reservoir computing has
also been related to Koopman operator approximation by Bollt (2021); Gulina & Mauroy (2020).
To our knowledge, the relation of the Koopman operator to the weight matrices of recurrent neural
networks has not been observed before. This is what we discuss in this work. We also provide a
data-dependent probability distribution for the hidden parameters, which is the strongest deviation
from the data-agnostic distributions (e.g., normal, uniform) typically used in reservoir computing.

3 MATHEMATICAL FRAMEWORK

We start by defining a general framework of recurrent neural networks (RNNs) and the underlying
dynamical system before introducing sampling and its connection to the Koopman operator. Let
X ⊆ Rdx be an input space, Y ⊆ Rdy an output space, and H ⊆ Rdh a state space. We assume
that these spaces are associated with the measures µx, µy, and µh, respectively. The underlying
dynamical system is then defined through the evolution operator F , where we may be working in an
uncontrolled system ht = F (ht−1) or a controlled system ht = F (ht−1,xt). We also denote the
input dataset X = [x1,x2, . . . ,xN ] and the dataset of observations Y = [y1,y2, . . . ,yN ]. In this
paper we are interested in recurrent neural networks modelling dynamical systems where the state is
observable, and we therefore usually assume access to the dataset H = [h1, . . . ,hN ] as well as its
copy after one time step H ′ = [h′1, . . . ,h

′
N ], where h′n = F (hn), n ∈ {1, . . . , N}.

We denote activation functions as σ : R → R, where we are mainly working with σ = tanh in this
paper, as it is an analytic function and connects to SWIM (Bolager et al., 2023). Other functions such
as ReLU are also a valid choice. The following definition outlines the models we consider.

Definition 1. LetWh ∈ RM×dh ,Wx ∈ RM̂×dx , bh ∈ RM , bx ∈ RM̂ , Ch ∈ Rdh×M , Cx ∈ Rdh×M̂ ,
and V ∈ Rdy×dh . For time step t and h0 ∈ H, we define a recurrent neural network (RNN) by

ht = σhx(Ch σ(Wh ht−1 + bh) + Cx σ(Wx xt + bx) + bhx), (2)
yt = V ht. (3)

Remark 1. For completeness we have added σhx as an arbitrary activation function. We choose to set
σhx as the identity function to let us solve for the last linear layer in the procedure described below.
Other activation functions such as the logit is possible as well.

The classical way to train this type of RNN is through iterative backpropagation, which suffers
the aforementioned issues such as EVGP and high computational complexity. We instead start by
sampling the hidden layer parameters to circumvent backpropagation, as explained next.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 SAMPLING RNN

Sampled neural networks are neural networks where the parameters of the hidden layers are sampled
from some distribution, and the last linear layer is either sampled or, more typically, solved through
a linear solver. Following Bolager et al. (2023), we sample the weights and biases of the hidden
layers of both FH and FX by sampling pairs of points from the domain H and X , and construct
the weights and biases from these pairs of points. One then solves a linear (general) regression
problem at the end for the last linear layer that maps to the next state. Concretely, let PH and PX be
probability distributions over H2 and X 2 respectively. For each neuron in the hidden layer of FH,
sample (h(1),h(2)) ∼ PH and set the weight w and the bias b of said neuron to

w = s1
h(2) − h(1)

∥h(2) − h(1)∥2
, b = −⟨w,h(1)⟩+ s2, (4)

where ∥·∥ and ⟨·, ·⟩ are typically the Euclidean norm and inner product, and s1, s2 ∈ R are constants.
Repeating the same procedure for all neurons in both FH and FX . As we stick to networks with one
hidden layer in this paper, we ignore the multilayer sampling here and direct the reader to Bolager
et al. (2023) for the full sample and construction procedure for an arbitrary number of hidden layers.

This sampling technique adapts the weights and biases to the underlying domain and constructs
weights with direction along the data (see Appendix C for an example how this can be used to interpret
the resulting network). Empirically, this has shown to be an improvement over using data-agnostic
distributions such as the standard Gaussian one. One can choose arbitrary probability distributions as
PH and PX , with uniform distribution being a common choice. For the supervised setting, Bolager
et al. (2023) also proposed a sampling distribution whose density captures the steepest gradients of
the target function. For this paper, we sample with densities pH and pX proportional to

pH ∝ ∥F (h(2))− F (h(1))∥
∥h(2) − h(1)∥

, pX ∝ 1,

respectively. Once the weights and biases are sampled, we must solve a general regression problem

[Ch, Cx] = argmin
Ĉh,Ĉx

N∑
n=1

∥(Ĉh σ(Wh hn + bh) + Ĉx σ(Wx xn + bx) + bhx)− h′n∥2. (5)

To summarize, we define a sampled RNN as a model that is constructed by sampling weights of the
hidden layer of the RNN and subsequently solving the regression problem in Equation (5).

3.2 INVOLVING THE KOOPMAN OPERATOR

We already introduced the network FM : Rdh → RM = σ(Wh ·+bh), where M is the number of
neurons in its single hidden layer, and likewise with GM̂ : Rdx → RM̂ = σ(Wx · +bx). We then
project down to Rdh by applying Ch and Cx respectively. To add more structure and interpretability
to the matrices Ch and Cx, we will set Ch = CK and Cx = CB, where K ∈ RM×M , B ∈ RM×M̂ ,
and C ∈ Rdh×M . We then end up with the function

ht = Czt = C(Kσ(Wh ht−1 + bh) +Bσ(Wx xt + bx)). (6)

Note that if the output y differs from h, we take advantage of the high dimensionality and rather set
yt = V zt than first projecting down by C. This completes the setting from Equation (1).

The reason for the splitting of matrices Ch and Cx is the following: the hidden layers FM and GM̂
map their respective input to a higher dimensional space. In a higher dimensional space, the possibly
nonlinear evolution described by F becomes more and more linear (Korda & Mezić, 2018b). This
evolution is then captured by K and B before we map down to the state space through C. This also
allows us to connect K and B to the Koopman theory applied to the dynamical system. Given a
suitable functional space F , the Koopman operator K : F → R is defined as

[Kϕ](h) = (ϕ ◦ F )(h), ϕ ∈ F .
The Koopman operator captures the evolution of the dynamical systems in the function space F and
not in the state space itself. In most cases, this makes the operator infinite-dimensional, but in return,
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it is a linear operator. For an introduction to the Koopman operator and surrounding theory, see
Appendix A. The matrices K and B can then be seen as an approximation of the Koopman operator,
and the intuition is that choosing M large enough means we can capture the linear evolution before
we map down to the state space.

The matrices Wh and Wx are found by sampling each row i.i.d. from Ph and Px respectively. To
estimate C,K, and B, we use extended dynamic mode decomposition (EDMD) — a classical method
to find a finite-dimensional approximation of the Koopman operator. We give a very brief description
of EDMD here and give a more thorough introduction in Appendix A.1. In the uncontrolled setting,
this method picks out a dictionary FM = {ψ1, . . . , ψM : ψi : H → R ∈ F} and estimates the
Koopman operator K using the data H,H ′ by minimizing

K = argmin
K̃∈RM×M

N∑
n=1

∥FM (h′n)− K̃FM (hn)∥, h′n ∈ H ′,hn ∈ H,

where FM (h) = [ϕ1(h), . . . , ϕM (h)]T. Letting FM (H) = [FM (h1), . . . ,FM (hN )] ∈ RM×N

and FM (H ′) = [FM (h′1), . . . ,FM (h′N )] ∈ RM×N , the approximation can then be written as

K = FM (H ′)FM (H)+, (7)

where + is the matrix pseudoinverse. Similarly, in the controlled setting, the approximation of K
separated into matrices K and B,

[K,B] = FM (H ′) [FM (H),GM̂ (X)]+,

where GM̂ is the second dictionary mapping from Rdx to RM̂ . For more on the Koopman operator
in the controlled setting, as well as EDMD, see Appendix A.2. Regardless of whether uncontrolled
or controlled, the mapping C projects down to the state space from the high dimensional dictionary
space and is approximated by minimizing ∥H − CFM (H)∥, hence

C = HFM (H)+.

We connect the EDMD algorithm to our recurrent network in Equation (6) by choosing FM (h) =
σ(Wh h+ bh) and GM̂ (x) = σ(Wx x+ bx). With this setting, we see that approximating K and
B in Equation (6) can be seen as a Koopman approximation with the dictionary being a hidden
layer with M and M̂ neurons respectively. This connection highlights the benefit of operating in
a higher dimensional space. It also allows us to make use of Koopman theory in the next section
as the EDMD approximation is known to converge to K. Finally, it is important to notice that the
resulting function in Equation (6) consists of two neural networks applied to the previous state and
input. The hidden layers are sampled, and the outer matrices are constructed using linear solvers.
Hence, Equation (6) is a sampled recurrent neural network. The methods above can be summarized by
sampling weights in Algorithm 1, constructing the RNN in Algorithm 2, prediction for uncontrolled
systems in Algorithm 3, and model predictive control in Algorithm 4.

Algorithm 1 Sampling weights and bias for a
given dataset and probability distribution.

procedure SAMPLE-LAYER(Z, PZ )
Wz ∈ RM×dz , bz ∈ Rdz

for j = 1, 2, . . .M do
Sample (z(1), z(2)) ∼ Pz from sample space Z×Z

W [j,:]
z = z(2)−z(1)

∥z(2)−z(1)∥2

T

b[j]
z = −⟨(W [j,:]

z )T, z(1)⟩
end for
Return Wz, bz

end procedure

Algorithm 2 Sampling RNNS for the con-
trolled setting with output y.

procedure SAMPLE-RNN(X,Y,H,H′)
Wx, bx ← SAMPLE-Layer(X, PX)
Wh, bh ← SAMPLE-Layer(H, PH)
FM (·),GM̂ (·)← σ(Wh ·+bh), σ(Wx ·+bx)

[K,B] = FM (H′)[FM (H),GM̂ (X)]+

C = H FM (H′)FM (H)+

V = Y H+

Return V,CKFM , CBGM̂
end procedure
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Algorithm 3 Prediction of new trajec-
tory uncontrolled inputs using sampled
RNN.

procedure PREDICT(Y,H,H′,h0,T)
FY , FH ← SAMPLE-RNN(0, Y,H,H′)
for t = 1, 2, . . . ,T do

ht ← FH(ht−1)
yt = FY(ht)

end for
Return {ht,yt}Tt=1

end procedure

Algorithm 4 Model predictive control (MPC) of
system F using LQR and sampled RNN.

procedure MPC(X,Y,H,H′,h0,T,h∗)
FY , FX , FH ← SAMPLE-RNN(X,Y,H,H′)
lqr← LQR.fit(FX , FH)
lqr.set_target(h∗)
for t = 1, 2, . . . ,T do

xt−1 ← lqr.control_sequence(ht−1)
ht ← F (ht−1,xt−1)
yt = FY(ht)

end for
Return {xt,ht,yt}Tt=1

end procedure

3.3 CONVERGENCE OF SAMPLED RNNS

Under some conditions, the convergence of sampled RNNs for uncontrolled systems can be shown for
arbitrary finite horizon predictions. The result shows convergence by estimatingK using Equation (7).
This differs from the usual existence proofs for parameters of RNNs, and is possible due to the
Koopman connection established in the previous section.

With L2 := L2(H, µh) being the usual Lebesgue space, we can state the required assumptions.
Assumption 1. The assumptions on µh, FM , and F are the following.

1. µh is regular and finite for compact subsets.

2. Hidden layer FM must fulfill µh{h ∈ H | cTFM (h) = 0} = 0, for all nonzero c ∈ RM .

3. The Koopman operator K : L2 → L2 is a bounded operator.

The first two points are not very restrictive and hold for many measures and activation functions
(such as tanh activation function and the Lebesgue measure). The third assumption is common when
showing convergence in Koopman approximation theory and holds for a broad set of dynamical
systems (See Appendix B.1 for further discussion of all three points). Finally, we also require H to
follow Definition 2 in Appendix B.1.

We now denote L2
K as the space of vector valued functions functions f = [f1, f2, . . . , fK ], where

fi ∈ L2 and ∥f∥ =
∑K

k=1∥fk∥L2 . We let F t(h0) = ht be the true state after time t, and KN be the
solution of Equation (7), where N data points have been used to solve the least square problem.
Theorem 1. Let f ∈ L2

K , H,H ′ be the dataset with N data points used in Equation (7), and
Assumption 1 holds. For any ϵ > 0 and T ∈ N, there exist an M ∈ N and hidden layers FM and
matrices C such that

lim
N→∞

∫
H
∥CKt

NFM − f ◦ F t∥22dµh < ϵ,

for all t ∈ [1, 2, . . . , T ].

For prediction of the system output, as the identity function Id(h) 7→ h is in L2
dh

, the result above
implies convergence of

∫
H∥CK

t
NFM − F t∥22dµh. The proof can be found in Appendix B.1, and in

Appendix B.2 we discuss the limitations of the result w.r.t. the controlled setting.

4 COMPUTATIONAL EXPERIMENTS

We now discuss a series of experiments designed to illustrate the benefits and challenges of our
construction approach. We compare our method to the state-of-the-art iterative gradient-based method
called shPLRNN, which we explain in Appendix D. For the real-world weather dataset, we also
compare our approach with a long short-term memory (LSTM) model. Furthermore, due to the
similarities our method bears with reservoir models, we also compare with an established reservoir
model, namely an echo state network (ESN), further explained in Appendix E. Details on the datasets
can be found in Appendix F, hyperparameters for all models are given in Appendix H, the evaluation
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Table 1: Results from computational experiments. We report the training time and MSE (mean
squared error) or EKL (empirical Kullback–Leibler divergence, see Appendix G) for a sampled RNN
(our approach), a reservoir model ESN (see Appendix E), a state of the art backpropagation-based
RNN called shPLRNN (see Appendix D), and a long short-term memory (LSTM) model.

Example Model Time [s]: avg (min, max) MSE: avg (min, max)

Van der Pol sampled RNN 0.26 (0.18, 0.35) 9.55e-4 (7.08e-4, 1.28e-3)
ESN 3.76 (2.29, 5.40) 1.58e-2 (1.15e-2, 2.07e-2)
shPLRNN 217.93 (203.10, 251.51) 1.39e-2 (5.66e-3, 3.00e-2)

1D Van der Pol sampled RNN 0.29 (0.25, 0.31) 5.06e-3 (1.57e-4, 1.58-2)

Weather (day) sampled RNN 4.87 (4.83, 4.92) 2.239◦C (2.088◦C, 2.392◦C)
LSTM 378.10 (284.00, 421.30) 2.531◦C (2.183◦C, 2.754◦C)
shPLRNN 321.76 (298.98, 384.46) 2.296◦C (1.803◦C, 2.548◦C)

Weather (week) sampled RNN 4.87 (4.81, 4.90) 4.624◦C (4.169◦C, 4.867◦C)
LSTM 628.10 (580.70, 648.50) 4.544◦C (3.964◦C, 4.893◦C)
shPLRNN 830.84 (796.55, 847.32) 2.604◦C (2.500◦C, 2.801◦C)

Example Model Time [s]: avg (min, max) EKL: avg (min, max)

Lorenz-63 sampled RNN 1.67 (1.34, 1.92) 4.36e-3 (3.66e-3, 5.36e-3)
ESN 3.54 (2.87, 4.47) 8.73e-3 (7.20e-3, 1.06e-2)
shPLRNN 607.42 (581.39,650.56) 5.79e-3(4.41e-3,7.56e-3)

Rössler sampled RNN 5.36 (4.39, 6.39) 1.57e-4 (5.86e-5, 3.82e-4)
ESN 8.11 (7.94, 8.31) 8.33e-5 (3.79e-5, 2.25e-4)
shPLRNN 866.17 (848.56, 939.06) 6.53e-4 (4.35e-4,1.09e-3)

metrics are explained in Appendix G and a further comparison discussion as well as the hardware
details are provided in Appendix H.

In Table 1, we list the quantitative results of the experiments without control. Each entry stems from
five different runs, where the random seed is changed in order to ensure a more robust result. We give
the mean over these five runs, as well as the minimum and maximum among them.

4.1 SIMPLE ODES: VAN DER POL OSCILLATOR

We consider the Van der Pol oscillator system for a simple illustration of our method. A sampled
RNN with a tanh activation and a single hidden layer of width 80 is used, and the prediction method
follows Algorithm 3. The model is evaluated on test data; the averaged error and training time are
reported in Table 1. One trajectory from the test set is visualized in Figure 2. It should be noted
that predictions start with an initial condition from the test dataset which is used to make the first
prediction, and afterwards continue using this prediction as an input to predict the next state, without
information from the ground-truth dataset. In the results we observe a very stable trajectory over
a long prediction horizon, and furthermore all eigenvalues of the Koopman operator are inside the
unit disk (see Appendix C), thus we are certain that the model is stable. This experiment is also
significant due to the periodic nature of the system, which is captured with our model, although
neural network architectures in general struggle to capture periodicity (Ziyin et al., 2020). Compared
to the gradient-descent trained shPLRNN our method is much faster and achieves higher forecasting
accuracy, with lower MSE as prediction error. Compared with an ESN, our model has a shorter fit
time and a smaller error. However, the hyperparameter search is simpler for our method since there
are fewer hyperparameters to tune.

4.2 EXAMPLE WITH TIME DELAY EMBEDDING: VAN DER POL OSCILLATOR

For many real-world examples, it is not possible to observe the full state of a system. Here, we use
the same datasets as in the simple Van der Pol experiment (Section 4.1) but only consider the first
coordinate h1. We embed the data using a time-delay embedding of six followed by a principal
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component analysis (PCA) projection which reduces the dimensionality to two. A sampled RNN
with tanh activation and a single hidden layer of width 80 is trained. Predicted trajectories from the
initial test dataset state are shown in the bottom row of the right column of Figure 2. The fit time and
MSE error are provided in Table 1, they are fairly similar to the fit time and error for the example
where the full state is observed indicating that this model also captures the true dynamics.
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Figure 2: Comparison of true and predicted trajectories fror the Van der Pol experiments are shown
for a test trajectory. Left: state space representation. Right: the top two rows show the full state
system’s first and second coordinate from Section 4.1, and the bottom most row shows the partially
observed system from Section 4.2.

4.3 EXAMPLES OF CHAOTIC DYNAMICS: LORENZ AND RÖSSLER SYSTEMS

Chaotic systems pose a challenging forecasting problem from the class of dynamical systems. As an
example, we consider the well-known Lorenz system in the chaotic regime. A sampling network with
a tanh activation and a single hidden layer of width 200 is trained. Predictions for a test trajectory
are visualized in Figure 3. To evaluate the model, we do not calculate MSE since it is not suitable for
chaotic trajectories, but instead an empirical KL divergence (EKL), to compare the orbits. For details
on this geometric measure see Appendix G. The averaged EKL and training time are reported in
Table 1. Our sampled RNN achieves a comparable performance with the reservoir model. However,
it should be noted that training a reservoir model on Lorenz data is a well-studied problem, and the
choice of hyperparameters has been tuned carefully to achieve excellent performance. When choosing
hyperparameters for our sampling RNN we found that the necessary effort is low, as there are not as
many degrees of freedom as in a reservoir. On the other hand, compared with the shPLRNN trained
with gradient descent, we observe a much better performance both in terms of error and training time.
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Figure 3: The results from the Lorenz experiment are shown for a test trajectory.
Left: state space representation of true and predicted trajectories. Right: trajectories obtained from
the Lorenz model described in Section 4.3.

Furthermore, we consider the Rössler system in the chaotic regime. We use a sampled RNN with
300 hidden layer nodes and tanh activation. A predicted test trajectory is shown in Figure 4. Since
the system is chaotic, we calculate an EKL for our model and report it along with the training time
in Table 1. Our model requires a slightly shorter fit time than the ESN and achieves comparable
performance in terms of the EKL error. As depicted in Table 1, our method for chaotic systems is
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significantly faster and more accurate at forecasting, with lower prediction error EKL, compared to the
gradient-based model. Additionally, training with iterative methods requires many hyperparameters
that need careful tuning to achieve optimal performance. Efficiently finding the best hyperparameters
can be very challenging, especially when there is a small amount of training data for chaotic
trajectories, making the training of such data more difficult. However, our training method performs
effectively even with a very small amount of training data.
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Figure 4: Trajectories from the Rössler experiment are shown for a test trajectory. Left: state space
representation of true and predicted trajectories. Right: trajectories obtained from the Rössler model
described in Section 4.3.

4.4 EXAMPLE WITH CONTROL INPUTS: FORCED VAN DER POL OSCILLATOR

We consider again the Van der Pol oscillator, where now the second coordinate, h2, is controlled
with an external input x, and using a sampled RNN model we perform model predictive control
(MPC) as in Algorithm 4. We let GM̂ be the identity function, and let B map from X to RM (adding
nonlinearity for x did not yield different results for this system, and is described in Appendix H.1.1).
The sampled recurrent neural network is then the identity GM̂ and FM is a hidden layer of width 128
and tanh activation. This network is then passed as a surrogate model to a linear-quadratic regulator
(LQR). The network, in combination with the LQR, can successfully steer the state to the target state
(see Figure 5). We consider five different runs, where only the random seed is varied, and obtain the
mean controller cost to be 125.92 and the mean training time of 1.122 seconds. The norm of the state
is also tracked over time, for five different runs we show the norms and the pointwise mean (over
the runs) in Figure 5. This experiment highlights a key advantage of our model, which allows for
modelling a nonlinear system such as the Van der Pol oscillator using a linear controller such as LQR.
This implies that the well-established tools from linear control theory can be applied to non-linear
systems using our method.
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Figure 5: Controlled (i.e. forced) Van der Pol experiment (Section 4.4) for initial condition h0 =
[−1.5,−1]T. Left: state space representation of controlled and uncontrolled trajectories. Right: L2

norm of the controlled trajectory for five different runs and the L2 norm of the target state.

4.5 EXAMPLE WITH REAL-WORLD DATA

Weather data We apply our approach to the climate data presented in TensorFlow (2024). The
dataset contains a time series of 14 weather parameters recorded in Jena (Germany) between January
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Figure 6: The predictions of the best models on the test dataset for the horizon of one week: sampled
RNN (left), LSTM (middle), and shPLRNN (right).

1st, 2009, and December 31st, 2016. The data offers freedom in choosing the sizes of the time delay
and prediction horizons. We decided to fix the time delay to one week and set two separate experiments
with a prediction horizon of one day and one week. In the sampled RNN and LSTM experiments, we
performed a grid search for each model with hyperparameters specified in Appendix H.4.1.

Table 1 shows the averaged training time and error metrics for the two selected horizons (day and
week). We observe that the models perform similarly in the case of a shorter horizon, while sampling
offers much faster training. When considering a one-week horizon, shPLRNN outperforms, while
sampled RNN is still orders of magnitude faster. We also note the prediction horizon does not
influence the training time of the sampled model that agrees with the Algorithm 2. When comparing
predictions for the longer horizon in Figure 6, we notice that the LSTM struggles to predict the
high-frequency fluctuations of the measurement, but the sampled RNN and shPLRNN successfully
capture them. Figure 6 also highlights the deficiency of the MSE metric because a low mean error
does not always correspond to accurate predictions, as illustrated by all three models. Overall, we
conclude that sampled RNNs can successfully capture chaotic real-world dynamics and produce
results comparable to the iterative models while offering a significant speed-up in training.

5 CONCLUSION

We introduce an efficient and interpretable training method for recurrent neural networks by combin-
ing ideas from random feature networks and Koopman operator theory.

Benefits of the approach In many examples, we demonstrate that we can train accurate recurrent
networks orders of magnitude faster compared to networks trained by iterative methods. We also
observe that the training approach works with a very small amount of training data. The direct
connection to Koopman operator theory allows us to draw on existing theoretical results for dynamical
systems, which we use to prove convergence in the limit of infinite width.

Limitations compared to other methods The training method we use involves the solution of a
large, linear system. The complexity of solving this system depends cubically on the minimum
number of neurons and the number of data points (respectively, time steps). This means if both the
network and the number of data points grow together, the computational time and memory demands
for training grow too quickly. With backpropagation-in-time, the memory requirements are mostly
because many gradients must be stored for one update pass.

Remaining challenges and future work Recurrent networks are often used for tasks in computer
vision and natural language processing. These tasks require network architectures beyond feed-
forward networks, like convolutional neural networks or transformers, which means we currently
struggle with high dimensional data. The sampling scheme we use to construct the hidden weights
of the neurons is currently not useful in constructing parameters for such architectures, but it is
an intriguing challenge to work towards sampling them. Remaining challenges in the theoretical
work include extending the theory shown in this paper to controlled systems, as well as bridging the
Koopman theory for continuous dynamical systems and NeuralODEs.
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6 ETHICS STATEMENT

For comparatively small problems, our construction method is orders of magnitude faster to construct
the parameters of a recurrent network. As neural networks are generally dual-use, our work potentially
also allows faster training for misuse of this technology. Still, we connect the construction of
recurrent neural networks to Koopman operator theory and dynamical systems. This connection
allows researchers in these fields to better understand the behavior, failure modes, and robustness
of recurrent architectures. In addition, by sampling weights and bias from the input spaces it adds
interpretability to the models which again lets users understand better the underlying networks used
(see Appendix C for an example of this). We believe that this far outweighs the potential downsides
of misuse because recurrent architectures that are understood much better can also be regulated in a
more straightforward way.

7 REPRODUCIBILITY STATEMENT

In our work we try hard to ensure that our results are robust and reproducible. In terms of theoretical
statements, the assumptions are stated in the main paper and further discussed in the appendix. The
complete detailed proofs can also be found in the Appendix B. In addition, we have added an overview
of Koopman theory before the proofs to aid the understanding in Appendix A. When theoretical
statements rely on other work, this is also clearly cited. For the computational experiments, we
submit an anonymized code folder, and provide all hyperparameters in Appendix H. The code will
also be open sourced upon acceptance. Furthermore, all reported results that are based on five runs
with different random seeds, to ensure robustness.
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APPENDIX

A KOOPMAN OPERATOR AND EXTENDED DYNAMIC MODE DECOMPOSITION

In this section we give a more thorough introduction to the Koopman operator and its use in dynamical
system theory. In addition, we also walk the reader through extended dynamic mode decomposition
(EDMD), which is the finite approximation of the Koopman operator we use in the main paper.

Consider a dynamical system (H, F ), where the state space H is a topological space and F : H → H
is an evolution operator/map. We impose more structure on our system by requiring our state space
H to be a measure space (H,F , µ), and F to be F-measurable. We start by considering (H, F ) to
be a discrete-time system, which are the systems we mainly work with in this paper. We can then
write the evolution as

ht+1 = f(ht), ht ∈ H ⊆ Rdh , t ≥ 0. (8)

The analysis of the evolution in the original state space can be hard, especially when F is non-linear.
The Koopman theory takes a different approach, and looks at the evolution of observables (e.g.
measurements of the states) instead of the states themselves. The observables one is working with are
typically ϕ : H → C in a suitable Hilbert space H. The evolution of the observables is then captured
by the Koopman operator K,

[K ϕ](h) := (ϕ ◦ F )(h).

As long as the space of observables is a vector space, the Koopman operator is linear and we may
analyse the dynamical system with non-linear F using spectral analysis, with the caveat that in the
majority of cases K is infinite dimensional. The choice of the function space F is crucial, as ϕ ◦ F
must belong to F for all ϕ ∈ F . Assuming F is measure-preserving — which is common in ergodic
theory — one can address the issue by setting

F = L2(H, µh) :=

{
ϕ : H → F

∣∣∣∣∣ ∥ϕ∥L2(H,µh)
=

(∫
H
|ϕ(h)|2 µh(dh)

) 1
2

<∞

}
. (9)

where F = R or C. As we consider spectral analysis in this section, we let F = C. Since F is
measure-preserving means K is an isometry and the issue is resolved. The map K might still not be
well-defined, as ϕ1, ϕ2 ∈ L2(H, µh) may differ only on a null set, yet their images under K, could
differ over a set of positive measure. To exclude this possibility, F must be µh-nonsingular, meaning
that for each H ⊆ H, µh(F

−1(H)) = 0 if µh(H) = 0.

Once the function space H is chosen, making sure that K is well-defined, we may apply spectral
analysis. A Koopman eigenfunction φk ∈ L2(H, µh) corresponding to a Koopman eigenvalue
λk ∈ σ(K) satisfies

φk(ht+1) = Kφλ(ht) = λk φλ(ht).

When the state space H ⊆ Rd, under certain assumptions of the space of eigenfunctions, we
can evolve h using the spectrum of K. More concretely, let Φ: H → Cd be a vector of ob-
servables, where each observable ϕi(h) = hi, where hi is the ith component of h. Assuming
ϕi ∈ Span{φk} ⊂ L2(H, µh) , we have

K ϕi = K
∑
k

ck φk =
∑
k

ck Kφk =
∑
k

ck λk φk,

due to the linearity of K. Iterative mapping of K yields

ht = Φ(ht) = ([Kϕ] ◦ · · · ◦ [Kϕ]︸ ︷︷ ︸
t

)(h0) =
∑
k

λtk ϕλk
(h0) c

Φ
k . (10)

This process is known as Koopman mode decomposition (KMD), and the vectors cΦk ∈ Cd are referred
to as Koopman modes associated with the observable Φ. This reveals one of the true strengths of the
Koopman theory.
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Up until now we have considered a discrete dynamical system, but the Koopman theory can also be
extended to continuous systems where h is a function of time t and its evolution is given by

ḣ(t) = F (h(t)), h(t) ∈ H, t ∈ R≥0,

by using the flow map. For any t, the flow map operator denoted by F t : H → H is defined as

h(t) = F t(h) = h(0) +

∫ t

0

F (h(τ))dτ,

which maps from an initial condition h(0) to point on the trajectory t time units away. We can then
define the Koopman operator for each t ∈ R≥0 ,

[Kt ϕ](h) = (ϕ ◦ F t)(h),

where ϕ ∈ L2(H, µh). The set of all these operators {Kt}t∈R≥0
forms a semigroup with an

infinitesimal generator L. With some assumption on the continuity of the semigroup, the generator is
the Lie derivative of ϕ along the vector field F (h) and can be written as

[Lϕ](h) = lim
t↓0

[Kt ϕ](h)− ϕ(h)

t
=

d

dt
ϕ(h(t))

∣∣∣
t=0

= ∇ϕ · ḣ(0) = ∇ϕ · F (h(0)).

The eigenfunction and eigenvalue is in the continuous time case scalars and functions fulfilling

[Ktφk](h) = eλkt φk(h),

where {eλk} are the eigenvalues of the semigroup. This allows us to use the Koopman theory for
continuous dynamical systems as well, and possibly make the connection for NeuralODEs and
Koopman theory in similar fashion we have done with discrete system Koopman operator and RNN.

As the Koopman operator is infinite dimensional makes it impossible to apply it directly, and raises
the need for a method to create a finite approximation of K and its spectrum, namely the extended
dynamic mode decomposition.

A.1 EXTENDED DYNAMIC MODE DECOMPOSITION

As we are mostly working with discrete systems in this paper, we focus on approximating the
Koopman operator K for discrete dynamical systems. The way to approximate K is by extended
dynamic mode decomposition (EDMD), which is an algorithm that provides a data driven finite
dimensional approximation of the Koopman operator K through a linear map K. The spectral
properties of K subsequently serve to approximate those of K. Utilizing this approach enables us to
derive the Koopman eigenvalues, eigenfunctions, and modes. Here, we provide a brief overview of
EDMD. For further details, refer to Williams et al. (2015b).

The core concept of EDMD involves approximating the operator’s action on F = L2(H, µh) by
selecting a finite dimensional subspace F̃M ⊂ F . To define this subspace, we start by choosing a
dictionary FM = {ψi : H → R ∈ H | i = 1, · · · ,M}. We the have

FM (h) = [ψ1(h) ψ2(h) · · · ψM (h)]
T
,

and we let the finite dimensional subspace F̃M be

F̃M = Span{ψ1, ψ2, · · · , ψM} = {aTFM : a ∈ CM} ⊂ F .

The action of the Koopman operator on ϕ ∈ F̃M due to linearity is

Kϕ = aTKFM = aTFM ◦ F.

Assuming that the subspace F̃M is invariant under K, i.e., K(F̃M ) ⊆ F̃ , we can write Kϕ = bTFM

for any ϕ ∈ F̃M . It follows that K|F̃M
is finite dimensional and can be written as a matrix K ∈

RM×M such that bT = aTK. The equality can be seen, where ϕ ∈ F̃M , through

Kϕ = aTKFM = bTFM = Kϕ

17
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where one first applies linearity of K, then the invariant assumption. When F̃M is not an invariant
subspace of the Koopman operator K,K becomes an approximation. Decomposing Kϕ = bTFM+ρ,
where ρ ∈ L2(H, µh), EDMD approximates K by using data

H = [h1 h2 · · · hN ] , H ′ = [h′1 h′2 · · · h′N ] ,

where h′n = F (hn). Then, to find K, the EDMD minimizes the following cost function

J =
1

2

N∑
n=1

∥ρ(hn)∥2 =
1

2

N∑
n=1

∥∥aT (FM (h′n)−KFM (hn))
∥∥2 (11)

Letting

FM (H) = [FM (h1),FM (h2) . . . ,FM (hN )] ∈ CK×N

and equivalently for FM (H ′), a solution to Equation (11) is given by

K = FM (H ′)FM (H)+ (12)

where FM (H)+ denotes the pseudo-inverse.

Upon obtaining K, we find approximations of eigenfunctions

φk = ξkFM ,

where λk and ξk are eigenvalue and left eigenvector ofK respectively. Finally, denoting φ : H → CK

as the function h 7→ [φ1(h), φ2(h), . . . , φK(h)], we approximate the Koopman modes by

C = argmin
C̃∈Cd×K

∥Φ(H)− C̃φ(H)∥2Fr = argmin
C̃∈Cd×K

∥H − C̃φ(H)∥2Fr,

where ∥·∥Fr is the Frobenius norm and Φ(h) = h, as defined in previous section. We may now
approximate Equation (10) as

ht = Φ(ht) = C Λtφ(h0),

where Λ is a diagonal matrix with the eigenvalues. Due to numerical issues, one typically predict one
time step at the time, and project down to state space each time.

In many applications, one is not necessarily interested in the spectral analysis, but only prediction.
One then typically set F = R, solve for K in exact way, but solve for C as

C = argmin
C̃∈Rd×K

∥Φ(H)− C̃FM (H)∥2Fr = argmin
C̃

∥H − C̃FM (H)∥2Fr.

For prediction one simply apply K several times,

ht = CKtFM (h0).

In practice, one usually predict step by step ht, that is, maps it down to the state space and maps back
to the observable image space, before applying K again. It is also worth noting that one may be more
interested in mapping to an output of a function f ∈ F instead, and then one simply swap Φ with f
when approximating C.

To conclude this introduction to EDMD, we do want to mention that the set of eigenfunctions we find
through the EDMD algorithm comes with its own set of issues, such as spectral pollution, and efforts
to mitigate certain issues has spawned extensions to EDMD, e.g., measure-preserving EDMD and
residual DMD (Colbrook, 2022; Colbrook et al., 2023).

A.2 CONTROLLED DYNAMICAL SYSTEMS AND THE KOOPMAN OPERATOR

Extending Koopman theory to controlled systems can be done in several ways, and we opt to follow
Korda & Mezić (2018a) and limit ourselves to linear controlled systems,

ht = F (ht−1,xt) = Ahht−1 +Axxt, yt = Ayht. (13)
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Rewriting the input and the evolution operator slightly allows us to apply the Koopman operator and
its theory as described in previous sections. Let

h̃ =

[
h
x̃

]
,

where h ∈ H and x̃ ∈ ℓ(X ), with ℓ(X ) is the space of all countable sequences {xi}∞i=1 such that
xi ∈ X . Then we can rewrite the evolution operator F : H×X → H to F̃ : H× ℓ(X ) → H, where

h̃t = F̃ (h̃t−1) =

[
F (ht−1, x̃(0))

S x̃

]
,

where x̃(i) = xi ∈ x̃ and S is the left-shift operator, i.e., S(x̃(i)) = x̃(i + 1). The Koopman
operator K can be applied to F̃ with observables ϕ : H× ℓ(X ) → C, and the rest of the Koopman
theory follows.

When approximating the Koopman operator for controlled systems with EDMD, the dictionary we
choose needs alteration due to the domain H× ℓ(X ) is infinite dimensional. Korda & Mezić (2018a)
proposes dictionaries that are both computable and enforces the linearity relationship assumed in
Equation (13). The dictionaries to be considered are on the form

ψi(h, x̃) = ψ
(h)
i (h) + ψ

(x)
i (x̃),

where ψ(x)
i : ℓ(X ) → R is a linear functional and ψ(h)

i ∈ F . The new dictionary can be written as

FM = {ψ(h)
1 , . . . , ψ

(h)
M }, GM̃ = {ψ(x)

1 , . . . , ψ
(x)

M̃
}.

Note the number of observables M and M̃ can differ, even though in the main paper we typically set
M̃ = M . If they differ, the matrix B will map from FM̃ to FM . Once the dictionaries are set, we
simply solve the optimization problem

argmin
K∈FM×M ,B∈FM×M̃

1

2

N∑
n=1

∥FM (h′n)− (KFM (hn) +BGM̃ (hn))∥2

with the analytical solution being
[K,B] = FM (H ′)[FM (H),GM̃ (H)]+.

Approximating C is done in the same manner as for uncontrolled systems, as it only needs to learn
how to map from FM (H) to H. For further details, see Korda & Mezić (2018a).

B THEORY

In this section we give the necessary assumptions and proofs for the theoretical results in the main
paper. We start by defining the state space H and input space X , following the setup from Bolager
et al. (2023). Letting

dRdz (z, A) = inf{d(z,a) : a ∈ A}.
where d is the canonical Euclidean distance in the space Rdz . The medial axis is defined as

Med(A) = {h ∈ Rdz : ∃p ̸= q ∈ A, ∥p− z∥ = ∥q − z∥ = dRdz (z, A)}
and the reach is the scalar

τA = inf
a∈A

dRdz (a,Med(A)),

i.e., the point in A that is closest to the projection of points in Ac.

Definition 2. Let H̃ be a nonempty compact subset of Rdh with reach τH̃ > 0 and equivalently for
X̃ ∈ Rdx . The input space H is defined as

H = {h ∈ Rdh : dRdh (h, H̃) ≤ ϵH},
where 0 < ϵH < min{τH̃, 1}. Equivalently for X ,

X = {x ∈ Rdx : dRdx (x, X̃ ) ≤ ϵX },
where 0 < ϵX < min{τX̃ , 1}.
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Remark 2. This restriction to the type of state and input spaces we consider is sufficient to construct
all neural networks of interest by choosing pair of points from the space in question, and construct
the weight and bias as in Equation (4). It is also argued in Bolager et al. (2023) that most interesting
real-world application will contain some noise and make sure that the state and input spaces is
approximately on the form given in the definition.

As we are not considering the eigenfunctions of the system, only prediction, and we are working with
real valued neural networks, we are in the setting with F = R in Equation (9).

B.1 UNCONTROLLED SYSTEMS

For uncontrolled systems we have that the evolution is described as ht = F (ht−1). For the following
theory, we have the following assumptions.
Assumption 2. The measure defining the space F = L2(H, µh), we assume µh is regular and finite
for compact subsets.
Assumption 3. The following assumptions is made for the dictionary and the underlying system F :

1. Any dictionary FM must fulfill µh{h ∈ H | cTFM (h) = 0} = 0, for all nonzero c ∈ RM .

2. K : F → F is a bounded operator.

Assumption 2 is not very limited, as it holds for most measures we are interested in, such as measures
absolutely continuous to the Lebesgue measure. For Assumption 3.1 we have the following result.
Lemma 1. Let (Rdh ,B(Rdh), µh) be a measurable space with supp(µh) = H, and λ be the
Lebesgue measure for Rdh . If for all non-zero c ∈ Rdh , the following holds:

• The set of functions {ψ1, . . . , ψM} is linear independent.

• cTFM =
∑M

m=1 cmψm is analytic on Rdh ,

• µh ≪ λ,

then Assumption 3.1 holds. In particular, it holds when {ψi}Mm=1 are independent tanh functions.

Proof. Let c ∈ Rdh be any non-zero vector. As {ψ1, . . . , ψM} are linear independent, we have
cTFM ̸≡ 0. As cTFM is analytic, we have the set

A = {h ∈ Rdh | cTFM (h) = 0},
to have measure zero, λ(A) = 0, due to Proposition 1 in Mityagin (2020). We have λ(A ∩ H) ≤
λ(A) = 0. Finally due to absolutely continuous measure µh, we have

µh({h ∈ H : cTFM (h) = 0}) = λ(A ∩H) = 0,

and hence Assumption 3.1 holds. As the linear projection and shift of bias is analytic on Rdh , tanh is
analytic on R, and analytic functions are closed under compositions, means Assumption 3.1 holds
when FM is a set of linearly independent neurons with tanh activation function.

Remark 3. The requirement of the functions being analytic for the whole Rdh can certainly be relaxed
if necessary to an open and connected set U , s.t. H ⊆ U). Further relaxation can be made with some
additional work. The result above also agrees with the claim made in Korda & Mezić (2018b) about
Assumption 3.1 holds for many measures and most basis functions such as polynomials and radial
basis functions. Finally, we note that the independence requirement is easily true when we sample
the neurons.

Assumption 3.2 is commonly enforced in Koopman theory when considering convergence of EDMD
and for example holds when F is Lipschitz, has Lipschitz invertible, and µh is the Lebesgue measure
(Korda & Mezić, 2018b).

We note

NN [1,1:∞] =

∞⋃
M=1

NN 1(H,RM )
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is the space of all hidden layers with tanh activation function from H. We continue with a result
relating this space with F .
Lemma 2. For tanh activation function and when Assumption 2 holds, then NN [1,1:∞] is dense
in F and has a countable basis {ψi ∈ NN [1,1:∞]}∞i=1, both when the parameter space is the full
Euclidean space and when constructed as in Equation (4).

Proof. It is well known that such space is dense in C(H,RK) for any K ∈ N. This holds both
when the weight space is the full Euclidean space (Cybenko, 1989; Pinkus, 1999) and when limited
to the weight construction in Equation (4) (Bolager et al., 2023). As H is compact, we have that
NN [1,1:∞] is dense in F . Furthermore, as F is a separable Hilbert space and metric space, there
exists a countable subset {ψi ∈ NN [1,1:∞]}∞i=1 that is a basis for F .

Following lemma makes sure we can circumvent assumptions made in Korda & Mezić (2018b),
which requires on the dictionary in the EDMD algorithm to be an orthonormal basis (o.n.b.) of F .
Lemma 3. Let H,H ′ be the dataset used in Equation (12). For every set of M ∈ N linearly
independent functions FM = {ϕi}Mi=1 from a dense subset of F and any function f = cTFM , there
exists a c̃ and matrix V such that

c̃TK̃F̃M = cTKFM

and

c̃TF̃M = f = cTFM ,

where F̃M = [ψ̃1, ψ̃2, . . . , ψ̃M ] are functions from an orthornormal basis {ψ̃i}∞i=1 of F , and K, K̃
are the Koopman approximations for the dictionaries FM and F̃M respectively.

Proof. As F is a separable Hilbert space and a metric space, there exists a countable basis {ϕi}Mi=1 ∪
{ϕi}∞i=M+1, and by applying the Gram-Schmidt process to the basis, we have an o.n.b. {ψ̃i}∞i=1. Any
M step Gram-Schmidt process applied to a finite set of linearly independent vectors, can be written
as a sequence of invertible matrices V =

∏M+1
j=1 Vj . Each matrix Vj for j < M + 1 transforms the

jth vector and the last matrix simply scales. Constructing such matrix V applied to FM yields F̃M .
Setting c̃T = cTV −1, which means

c̃TF̃M = cTV −1F̃M = cTFM = f.

Furthermore, we have

c̃TK̃F̃M = cTV −1[F̃M (H ′)F̃M (H)+]V FM

= cTV −1[V FM (H ′)FM (H)+V −1]V FM

= cT[FM (H ′)FM (H)+]FM = cTKFM .

We are now ready to prove the Theorem 1 from the paper, namely the existence of networks
for finite horizon predictions. We denote FK as the space of vector valued functions functions
f = [f1, f2, . . . , fK ], where fi ∈ F and ∥f∥ =

∑K
k=1∥fk∥L2 . In addition, we let KN be the

Koopman approximation for FM where N data points have been used to solve the least square
problem.
Theorem 2. Let f ∈ FK , H,H ′ be the dataset with N data points used in Equation (12), and
Assumption 2 and Assumption 3 hold. For any ϵ > 0 and T ∈ N, there exist an M ∈ N and hidden
layers FM with M neurons and matrices C such that

lim
N→∞

∫
H
∥CKt

NFM − f ◦ F t∥22dµh < ϵ, (14)

for all t ∈ [1, 2, . . . , T ]. In particular, there exist hidden layers and matrices C such that

lim
N→∞

∫
H
∥CKt

NFM − F t∥22dµh < ϵ. (15)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Proof. W.l.o.g., we let K = 1. Due to Lemma 2, we know there exist hidden layers FM and vectors
c such that ∥fm − f∥2L2 < ϵ2, where cTFM = fm and

ϵ2 <
ϵ

2 ·max{∥K∥2Top , ∥K∥2op}
,

with ∥·∥op being the operator norm. This is possible due to Assumption 3 and Definition 2. We then
have for any t ∈ [1, 2, . . . , T ]

lim
N→∞

∫
H
∥cTKt

NFM −Kt f∥22dµh

≤ lim
N→∞

∫
H
∥cTKt

NFM −Kt fm∥22dµh + ∥Kt fm −Kt f∥L2

≤ lim
N→∞

∫
H
∥cTKt

NFM −Kt fm∥22dµh + ∥fm − f∥2L2 max{∥K∥2Top , ∥K∥2op}

<
ϵ

2
+
ϵ

2
= ϵ,

where we use Theorem 5 in Korda & Mezić (2018b) to bound ∥cTKt
NFM −Kt fm∥22dµh (in theory

we might need a larger M , which we simply set and the bound of fm − f still holds). From the
convergence above, Equation (14) follows by definition of the Koopman operator. For Equation (15),
simply note that f(h) = h is in Fdh due to Definition 2, and the result holds.

B.2 CONTROLLED SYSTEMS

Proving convergence for controlled systems gives different challenges. The results above cannot
easily be shown for controlled systems. The reason being that the dictionary space one use is not
a basis for the observables in the controlled setting, with the dynamical system extended by the
left-shift operator, and the simplification made for EDMD in controlled systems. The results above
may be extended, but the EDMD will not converge to the Koopman operator, but rather to Pµ

∞KF∞ ,
where Pµ

∞ is the L2(µ) projection onto the closure of the dictionary space (Korda & Mezić, 2018a).
However, results exists for the continuous controlled systems, with certain convergences for the
generator. This is sadly not as strong as above, but an interesting path to connect RNNs/NeuralODEs
to such theory (Nüske et al., 2023).

C INTERPRETABILITY USING KOOPMAN AND SAMPLING

Figure 7 shows two possible ways we can interpret our constructed RNN models, beyond what is
usually possible for classical RNNs trained with gradient descent. On the left, we indicate which
data pairs were chosen from the training set to construct neurons of the non-linear network F . This
can help to see if the “coverage” of the training set by neurons (resp. their associated data pairs) is
reasonable, or if more neurons or data points are needed to cover highly non-linear regions.

On the right in Figure 7, we plot the locations of the eigenvalues of the Koopman matrix K in our
sampled RNN from Section 4.1. We can see that all eigenvalues are located on and inside the unit
circle, indicating stable and oscillatory behavior.

D RELU-BASED RNNS FOR DYNAMICAL SYSTEMS MODELING (DSM)

Most RNNs are parameterized discrete-time recursive maps of the given in Definition 1,

ht = Fhx(FH(ht−1), FX (xt)), (16)

with latent states ht−1, optional external inputs xt. A piecewise linear RNN (PLRNN), introduced
by Koppe et al. (2019), has the generic form

ht =W
(1)
h ht−1 +W

(2)
h σ(ht−1) + b0 +Wxxt, (17)

where σ(ht−1) = max(0,ht−1) is the element-wise rectified linear unit (ReLU) function, W (1)
h ∈

Rdh×dh is a diagonal matrix of auto-regression weights, W (2)
h ∈ Rdh×dh is a matrix of connection
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Figure 7: Left: Interpretability of the hidden state network weights over the data domain in the
Van der Pol example. The arrows (with initial x1 and final points x2) depict the pairs that were
chosen during sampling. This means that they directly visualize where neurons are placed on the
domain. Right: Eigenvalues of the Koopman matrix approximated with 80 neurons for the Van der
Pol example.

weights, the vector b0 ∈ Rdh represents the bias, and the external input is weighted byWx ∈ Rdh×dx .
Afterwards, Brenner et al. (2022) extended this basic structure by incorporating a linear spline basis
expansion, referred to as the dendritic PLRNN (dendPLRNN)

ht =W
(1)
h ht−1 +W

(2)
h

J∑
j=1

αj σ(ht−1 − bj) + b0 +Wxxt, (18)

where {αj , bj}Jj=1 represents slope-threshold pairs, with J denoting the number of bases. This
expansion was introduced to increase the expressivity of each unit’s nonlinearity, thereby facilitating
DSM in reduced dimensions. Moreover, Hess et al. (2023) proposed the following “1-hidden-layer”
ReLU-based RNN, which they referred to as the shallow PLRNN (shPLRNN)

ht =W
(1)
h ht−1 +W

(2)
h σ(W

(3)
h ht−1 + b1) + b0 +Wxxt, (19)

where W (1)
h ∈ Rdh×dh is a diagonal matrix, W (2)

h ∈ Rdh×M and W (3)
h ∈ RM×dh are rectangular

connectivity matrices, and b1 ∈ RM , b0 ∈ Rdh denote thresholds. The combination of Generalized
Teacher Forcing (GTF) and shPLRNN results in a powerful DSM algorithm on challenging real-
world data; for more information see Hess et al. (2023). When M > dh, it is possible to rewrite any
shPLRNN as a dendPLRNN by expanding the activation of each unit into a weighted sum of ReLU
nonlinearities (Hess et al., 2023).

A clipping mechanism can be added to the shPLRNN to prevent states from diverging to infinity as a
result of the unbounded ReLU nonlinearity

ht =W
(1)
h ht−1 +W

(2)
h

[
σ(W

(3)
h ht−1 + b1)− σ(W

(3)
h ht−1)

]
+ b0 +Wxxt. (20)

This guarantees bounded orbits under certain conditions on the matrix W (1)
h (Hess et al., 2023).

In our experiments with RNNs, the clipped shPLRNN is trained by GTF for DSM on the benchmark
systems (see below Appendix F).

E RESERVOIR MODELS: ECHO STATE NETWORKS

As our newly proposed method bears similarities to a reservoir computing architecture, we have
trained reservoir models as part of our computational experiments. We used the simplest recurrent
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reservoir architecture, which is an echo state network (ESN) introduced by Jaeger & Haas (2004).
Here we will briefly introduce the main ideas behind ESNs, and we refer the interested reader to the
review by Lukoševičius & Jaeger (2009) for more details.

An ESN consists of a reservoir and a readout. The reservoir contains neurons which are randomly
connected to inputs and are these are not trained. Denoting the inputs as ht ∈ RNh and output as
yt ∈ RNy , and the internal reservoir states as kt ∈ RNk , the reservoir provides an update rule for the
internal units as

kt+1 = f
(
W inht+1 +Wkt +W backyt

)
, (21)

for an activation function f and weight matrices W in ∈ RNk×Nh , W ∈ RNk×Nk and W back ∈
RNk×Ny . After the reservoir comes the readout, which maps the inputs, reservoir states and outputs
to a new output state

yt+1 = fout
(
W out(ht+1,kt+1,yt)

)
, (22)

where fout is the output activation, W out ∈ RNy×Ny are output weights and (ht+1,kt+1,yt)
denotes the concatenation of ht+1, kt+1 and yt. In the readout the model learns the connections
from the reservoir to the readout, for example via (regularized) regression. A so-called feedback
connection allows for the readout values to be fed back into the reservoir, as shown in Equation (21),
establishing a recurrent relation.

F BENCHMARK SYSTEMS AND REAL-WORLD DATA

Van der Pol In 1927, Balthasar Van der Pol introduced a non-conservative oscillatory system with
a nonlinear damping term to describe oscillations in a vacuum tube electrical circuit. The system is
described as a two dimensional ODE{

ḣ1 = h2
ḣ2 = µ(1− h21)− h1 + h2,

where µ is a scalar parameter indicating the nonlinearity and the strength of the damping. In our
experiment we set µ = 1, that is, in the limit cycle regime. For the experiments in Section 4.1 and
Section 4.2, training data are generated by solving an initial value problem for t ∈ [0, 20] with ∆t =
0.1 for 50 initial conditions, where each initial condition is random vector h0 ∼ Uniform([−3, 3]2).
We used an explicit Runge-Kutta method of order 8 to solve the initial value problem. Validation and
test data are generated similarly but for t ∈ [0, 50].

Lorenz-63 Devised by Edward Lorenz in 1963 (Lorenz, 1963) to model atmospheric convection,
the Lorenz-63 system is defined as 

ḣ1 = σ(h2 − h1)

ḣ2 = h1(ρ− h3)− h2
ḣ3 = h1 h2 − βh3,

,

where σ, ρ, β, are parameters that control the dynamics of the system. In our experiment, we set σ =
10, β = 8

3 , and ρ = 28, which means we are in the chaotic regime. For the experiments in Section 4.3,
training data are generated by solving an initial value problem for t ∈ [0, 5] with ∆t = 0.01 for
50 initial conditions, where each initial condition is random vector h0 ∼ Uniform([−20, 20] ×
[−20, 20]× [0, 50]). The solver used explicit Runge-Kutta of order 8, likewise as the previous dataset.
Validation and test data are generated similarly but for t ∈ [0, 50]. We normalize datasets to scale the
values to the range [−3, 3] to improve the training.

Rössler Otto Rössler introduced the Rössler system in 1976 (Rössler, 1976) as a model that
generates chaotic dynamics 

ḣ1 = −h2 − h3
ḣ2 = h1 + αh2
ḣ3 = β + h3(h1 − κ),
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where α, β, κ, are parameters controlling the dynamics of the system. Here, we set α = 0.15,
β = 0.2, and κ = 10, which puts the system in the chaotic regime. The setup for data generation
is similar to the Lorenz example. For the experiments in Table 1, training data are generated by
solving an initial value problem for t ∈ [0, 10] with ∆t = 0.01 for 50 initial conditions, where each
initial condition is random vector h0 ∼ Uniform([−20, 20]× [−20, 20]× [0, 40]). Again, an explicit
Runge-Kutta method of order 8 was used. Validation and test data are generated similarly but for
t ∈ [0, 200]. We normalize datasets to scale the values to the range [−3, 3] to improve the training.

Forced Van der Pol Oscillator As an example for a controlled system, we use the Van Der Pol
oscillator with external input forcing x, and{

ḣ1 = h2
ḣ2 = µ(1− h21)h2 − h1 + x

The data is obtained for t ∈ [0, 50∆t] with ∆t = 0.05, with 150 initial conditions, where h0 ∼
Uniform([−3, 3]2) and x0 ∼ Uniform([−3, 3]). The solver used here was using an explicit Runge-
Kutta method of order 5(4). It is important to highlight that the control input data x0 does not come
from any controller with a particular target state, i.e. random control is applied to the trajectories in
the training dataset.

Weather data In this experiment, we follow TensorFlow (2024) and use the Jena Climate dataset
(for Biogeochemistry, 2024). The original data contains inconsistent date and time values, leading to
gaps and overlaps between measurements. We extracted the longest consecutive time period and thus
worked with the data between July 1st, 2010, and May 16th, 2013. We additionally downsampled the
time series from the original 10-minute to 1-hour measurements. Then, the first 70% of records were
used as the train set, the next 20% as the validation, and the remaining 10% as the test set. Identically
to TensorFlow (2024), we pre-processed the features and added sin and cos time-embeddings of
hour, day, and month. We plot the dataset, indicating the train-validation-test split with colors in
Figure 8.
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Figure 8: The weather dataset and its splits: train (blue), validation (orange), and test (green).

G EVALUATION MEASURES

G.1 GEOMETRICAL MEASURE

The Kullback–Leibler divergence of two probabiliti densities p(x) and q(x) is defined as

DKL(p(x)∥q(x)) =
∫
x∈R

p(x) log
p(x)

q(x)
dx. (23)

In order to be able to accurately evaluate also high-dimensional systems, we follow the approach used
in Hess et al. (2023) and place Gaussian Mixture Models (GMM) on the along the true trajectory x and
predicted x̂ trajectories, obtaining p̂(x) = 1

T

∑T
t=1 N (x,xt,Σ) and q̂(x) = 1

T

∑T
t=1 N (x, x̂t,Σ)

for T snapshots. Using the estimated densities, we consider a Monte Carlo approximation of
Equation (23) by drawing n random samples from the GMMs and obtain the density measure

DKL(p̂(x)∥q̂(x)) ≈
1

n

n∑
i=1

log
p̂(x)

q̂(x)
. (24)

We call this metric empirical KL divergence (EKL) in the manuscript. To make our results comparable
with Hess et al. (2023), we use σ2 = 1.0 and n = 1000.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

H MODEL DETAILS AND COMPARISON

H.1 SAMPLED RNN

The implementation of our gradient-free training module for sampled RNNs was done in Python
since the key tools for the algorithm already exist as Python libraries. The algorithm requires the
ability to sample weights and biases, thus we used the Python library swimnetworks by Bolager
et al. (2023). Furthermore, we were able to alleviate the approximation of the Koopman operator,
in the uncontrolled as well as controlled setting using some functionalities from the Python library
datafold by Lehmberg et al. (2020).

Sampled RNNs have only a few hyperparameters: the number of nodes in the hidden layer, the
activation function of the hidden layer, and a cutoff for small singular values in the least-squares
solver. We often refer to the singular value cutoff hyperparameter as the regularization rate. In the
case of a sampled RNN with time delay, additional hyperparameters are the number of time delays
and the number of PCA components, if used.

Sampled RNNs do not only have a low fit time but also a short hyperparameter tuning since there are
only a few degrees of freedom. Thus, our newly proposed method offers efficiency beyond the short
training time.

We empirically investigated the scaling of sampled RNNs as a function of the number of neurons.
Similarly, as for the other results, we perform five runs and report the average as well as the minimum
and maximum; the results can be seen in Figure 9. These are results for a dataset of fixed size,
where we would expect that the only change in computation is the least-squares solver and additional
samples of weights and biases.

0 100 200 300 400 500
number of neurons

10 3

10 2

10 1

100

Fit
 ti

m
e 

[s
] :

 a
vg

 (m
in

, m
ax

)

Figure 9: Fit time over number of neurons for the Van der Pol experiment from Section 4.1.

In addition, we investigated the effect of increasing the number of neurons on training and validation
performance. Results from five runs are shown in Figure 10. We notice that the errors decrease up to
a certain number of neurons and stagnate afterwards.
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Figure 10: Training and validation MSE error over number of neurons for the Van der Pol experiment
from Section 4.1.

The Van der Pol experiment from Section 4.1 was used as one of the first prototypes of our method.
Our initial experiments used a smaller dataset than the one described in Appendix F, namely with
very short trajectories consisting of only three time steps. The sampled RNN was able to learn the
full dynamics from this data. However, it was not possible to train the gradient-based shPLRNN with
such a dataset; thus, we used longer trajectories to be able to compare our method with others. The
final choice of hyperparameters for the hyperparameters is given in Table 2.

Training the 1D Van der Pol from Section 4.2 was done similarly, the number of hidden nodes and
activation function remained unchanged. The hyperparameters are listed in Table 2. A time delay
of six was chosen, however it was also possible to use only two time delays and get an excellent
performance, but we opted against this choice because this was based on our knowledge that the
true system is two dimensional. Thus, we opted for a higher number of time delays which then
get reduced with the additional PCA transformation to mimic a real-world scenario where the true
dimension of the problem is unknown.

The chaotic systems from Section 4.3 required more hidden nodes in order to obtain good prediction,
as compared to the Van der Pol but nonetheless the process of hyperparameter tuning was simple.
The final choice of hyperparameters for the Lorenz and Rössler problems is given in Table 2. We
show a visual comparison of the predicted trajectories from the sampled RNNs, ESN and shPLRNNs
for the Lorenz system in Figure 12.

We also considered how the number of hidden units effects the model’s performance. For the number
of nodes considered powers of two, specifically 22 until 29 for both chaotic models. Each run was
repeated five times to provide errorbars from min to max in addition to the average value, show in
Figure 11. We notice the typical trend of a decreasing error, with possible overfitting in the case of
Rossler.

(a) Lorenz (b) Rossler

Figure 11: Ablation of hidden units for chaotic systems.
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Figure 12: Visual comparison of different models on the same test trajectory.

With the forced Van der Pol example, presented in Section 4.4, we use the sampled RNN as a
surrogate model to a controller, essentially making this a model-based control example. In order to
be able to accurately control the state, the surrogate needs to capture the dynamics of the system with
sufficient accuracy. The hyperparameters are listed in Table 2. We opted for an LQR controller as our
optimal controller, as a simple choice for linear systems. Although the Van der Pol oscillator is not a
linear system, the surrogate sampled RNN captures the dynamics via a linear map with the Koopman
operator, allowing minimizing the cost. For our LQR, R = 1, and Q = diag(10). The dataset we use
contains randomly initialized trajectories evolved in time, as well as randomly chosen control inputs.
We observed that a dataset with many shorter trajectories is more useful than a dataset with a few
longer trajectories since for this problem diverse initial conditions are more informative of the vector
field of the system, as opposed to long trajectories which become periodic. The necessary effort for
tuning the sampled RNN hyperparameters and LQR controller parameters was low.

Although not reported in the manuscript as part of the experiments, in Appendix H.1.1 we discuss the
forced Van der Pol model using a nonlinearity for the inputs.

The training of a sampling RNN on weather data was performed using time-delay embeddings to
account for a possibly partial observation of the state. The objective is to train a model which
can predict the temperature. To find the hyperparameters a grid search was performed, and this is
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documented in Table 7. The final choice of hyperparameters is given in Table 2. After training,
predictions are done for fixed chunks of time, which are concatenated together afterwards. The
number of time-delays dictates how many ground-truth datapoints are necessary to predict the next
state, which gets concatenated with the previous predictions. We see this as a reasonable approach
for weather prediction, as typically one would use the available information for a fairly long period
of time, and predict for a fixed, likely shorter time horizon.

H.1.1 LQR WITH NONLINEAR LIFTING

In this section we describe shortly how we perform model predictive control described in Algorithm 4
with nonlinear lifting GM̂ , i.e. applying a sampling hidden layer on the input x. The experiment in
the main paper was mainly done by setting GM̂ to the identity, but adding nonlinearity with M̂ > dx
is possible and may beneficial for future testing, even though for the particular system in the main
paper, it yielded equivalent results as with GM̂ ≡ Id.

Following Algorithm 4, we lift xt to RM̂ through the hidden layer GM̂ . Then we solve for B exactly
as described in Algorithm 2 and fit the LQR. The LQR computes the control input, but now in the
RM̂ space. Before we can pass it to F , we approximate a linear map P , such that PGM̂ (xt) ≈ xt.
Once projected down, we can pass the projected value x̂t to F and continue as usual.

H.1.2 HYPERPARAMETERS

Table 2: Hyperparameters of sampled RNN models

Van der Pol 1D Van der Pol Lorenz Rössler force Van der Pol Weather

Hidden layer width 80 80 200 300 128 256
Activation function tanh tanh tanh tanh tanh tanh
Regularization rate 1e-8 0 1e-7 1e-4 1e-10 1e-6
Time delays - 6 - - - 168
PCA components - 2 - - - -

H.1.3 HARDWARE

The machine used for training the sampled RNNs was 13th Gen Intel(R) Core(TM) i5-1335U @ 4.6
GHz (16GB RAM, 12 cores), no GPU hardware was used.

H.2 ESN

For the implementation of ESNs we used the Python library reservoirpy by Trouvain et al.
(2020). All models were trained using a single reservoir and a ridge regression readout. We consider
only reservoir models without any warm-up phase in order to keep them comparable to our sampling
RNN which does not have a warm-up.

For the chaotic systems, we were able to find guidelines in the literature for a suitable choice of
hyperparameters specifically tailored to the Lorenz system (see (Viehweg et al., 2023)). With minor
modifications and following the proposed guidelines, we found hyperparameters also for the Rössler
system. The choice of hyperparameters is specified in Table 3, any hyperparameters not mentioned
are set to the default value of reservoirpy.

For the Van der Pol problem many hyperparameter combinations were tried out until we were able
to find a model with good performance and sufficient robustness to a change in the random seed.
The hyperparameter combinations we considered are shown in Table 4. Due to the high expenses
of a grid-search approach, a random search was employed and 1000 hyperparameter combinations
were considered. The hyperparameter choice with the best performance on the validation dataset was
selected and then evaluated on the test dataset. The final choice of hyperparameters is documented in
Table 3, and any unmentioned hyperparameters are assumed to be set to the default value from the
reservoirpy library.
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H.2.1 HYPERPARAMETERS

Table 3: Hyperparameters of reservoir models

Van der Pol 4.1 Lorenz 4.3 Rössler 4.3

Width/units 500 300 500
Leak rate 0.9 0.3 0.3
Spectral radius 0.5 1.25 0.5
Input scaling 0.05 0.1 0.1
Connectivity 0.8 0.1 0.1
Inter connectivity 0.2 0.2 0.2
Ridge regularization coeff. 1e-10 1e-4 1e-8
Warmup steps 0 0 0

Table 4: Hyperparameters used in random search on a grid for a Van der Pol reservoir model

Van der Pol 4.1

Width/units 100, 200, 500
Leak rate 0.1, 0.3, 0.5, 0.7, 0.9
Spectral radius 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 3, 5
Input scaling 0.05, 0.1, 0.5, 1, 1.5, 2
Connectivity 0.2, 0.4, 0.6, 0.8, 1
Inter connectivity 0.2, 0.4, 0.6, 0.8, 1
Ridge regularization coeff. 1e-4, 1e-6, 1e-8, 1e-10
Warmup steps 0

H.2.2 HARDWARE

The machine used for fitting the ESN models was 13th Gen Intel(R) Core(TM) i5-1335U @ 4.6 GHz
(16GB RAM, 12 cores).

H.3 SHPLRNN

For an explanation of shPLRNN, see Appendix D.

H.3.1 HYPERPARAMETERS

We used the clipped shPLRNN trained by GTF. For the Van der Pol, Lorenz and the weather datasets
we considered a fixed GTF parameter α, while for the Rössler we considered an adaptive α (starting
from an upper bound) as proposed by (Hess et al., 2023). The code repository by (Hess et al., 2023)
was used to perform the computations. The hyperparameters selected for all datasets are detailed
in Table 5. Any hyperparameters not specified are set to their default values in the corresponding
repository of (Hess et al., 2023). For Rössler dataset, finding optimal hyperparameters was more
challenging, and for training, we also utilized regularizations for the latent and observation models.

Table 5: Hyperparameters of shPLRNN trained by GTF

Van der Pol 4.1 Lorenz 4.3 Rössler4.3 Weather

Hidden dimension 35 100 50 200
Batch Size 32 30 50 32
Sequence length 37 100 150 40
Teacher forcing interval 25 13 25 20
Epochs 1300 2000 2000 2500
GTF parameter α 0.98 0.3 0.9 (Upper bound) 0.75
Latent model regularization rate - - 1e-6 -
Observation model regularization rate - - 1e-4 -

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

H.3.2 HARDWARE

The hardware we used to iteratively train the clipped shPLRNN models includes an 11th Gen Intel(R)
Core(TM) i7-11800H CPU @ 2.30GHz and 64.0 GB of RAM (63.7 GB usable).

H.4 LSTM

We use Tensorflow (Abadi et al., 2015) to train a baseline LSTM for the weather data problem of
predicting the temperature. An LSTM is trained similarly to the process by TensorFlow (2024).

After training the weather models, we compute the predictions with the specified horizon and
concatenate them into a single time series. More specifically, if the horizon is set to one day with a
time delay of one week, the prediction on a dataset split goes as follows. First, we use ground-truth
values of days one to seven to predict the value for day eight. Then, we use the ground-truth values
of days two to eight to predict the value for day nine. This process is repeated until we reach the
end of the split. Then, the resulting predictions are concatenated and compared to the ground-truth
measurements. This prediction process alligns with the one used for sampled RNNs to ensure a
consistent comparison.

H.4.1 HYPERPARAMETERS

Table 6: Hyperparameters used for LSTM for Section 4.5.

LSTM

Width/units 64
Learning rate 5e-5
Max epochs 30
Patience 5

See Table 7 for details on the hyperparameter grid search for Section 4.5 performed for the sampled
RNN and LSTM models.

Table 7: Hyperparameters used in the grid search for training sampled RNN and LSTM for the
temperature prediction in Section 4.5.

sampled RNN LSTM

Width/units 32, 64, 128 32, 64, 128, 256, 512
Regularization rate 1e-10, 1e-8, 1e-6, 1e-4, 1e-2 —
Learning rate — 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3

H.4.2 HARDWARE

For the experiments with the weather data in Section 4.5, we used a machine with AMD EPYC 7402
@ 2.80GHz (256GB RAM, 24 cores) and RTX 3080 Turbo (10GB VRAM, CUDA 12.0).

I ADDITIONAL EXPERIMENT WITH REAL-WORLD DATA

We provide a additional experiments to showcase our model’s performance on real world data. From
our experience it was not necessary to perform exhaustive hyperparamter tuning in order to obtain
decent performance from a sampled RNN model. The same hardware was used as for the weather
data experiment mentioned in Appendix H.4.2.

Electricity consumption We use the individual power consumption dataset by Hebrail & Berard
(2006) and predict the voltage feature. This dataset contains measurements made in a one-minute
interval, and we consider a period of four weeks as our dataset. Two weeks are used as training
data, one week as validation and one as test data, as shown in Figure 13. We added sin and cos

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

time-embeddings of hour and day. We use 240 time-delay embeddings (amounting to 4 hours) and
always predict a horizon of 120 steps (2 hours). The sampled RNN has 128 hidden nodes and a tanh
activation. The results are plotted in Figure 14. Training time was 6.5 seconds. The MSE error on
training, validation and test data is 1.565, 1.427 and 1.428 V respectively.
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Figure 13: Individual household electrical power consumption data split into training, validation and
testing portions.
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Figure 14: Test set predictions of individual household electricity consumption.

Bike traffic We use a dataset containing bike traffic counts in Copenhagen bik. This dataset
contains only the bike count and the date and time information. We use the bike count as a target
variable. We added sin and cos time-embeddings of hour, day, and month. The largest portion of
data without missing values is used as the dataset, and split into training, validation and test as shown
in Figure 15. We use a sampled RNN with 256 hidden nodes and tanh activation. A time delay of 14
hours is used, and the prediction horizon is 7 hours. Training time was 0.65 seconds. The MSE error
on the training, validation and test set is 90, 160, 140, respectively.
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Figure 15: Bike count data split into training, validation and testing portions.
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Figure 16: Test set predictions of bike counts.

J COMPARISON WITHOUT SWIM AND WITHOUT KOOPMAN

In this section, we report on some results performed to separate each contribution of the parts we use
in this paper, namely the SWIM sampling strategy and the Koopman operator. We ran two settings
(excluding our method already reported). One is with the addition of the Koopman operator and
EDMD, but where we sample the weights of the hidden layer with a standard Gaussian distribution
and the biases with a uniform distribution. This sampling strategy is commonly used for random
neural networks, which is why we chose these distributions in particular. In the second setting, we
exclude the EDMD step and simply project down the original state space after applying the hidden
layer. The results can be found in Table 8. We observe that the model that incorporates both Koopman
and SWIM performs best over all the experiments we tested, and with typically smaller error bars.

Table 8: Test setting (A): without SWIM and with Koopman, (B): with SWIM and without Koopman,
(C) with SWIM and with Koopman (our). Results for Van der Pol are reported with MSE and
the chaotic systems Lorenz and Rössler are reported with EKL, and all experiments report mean,
minimum, and maximum respectively.

Example (A) (B) (C)

Van der Pol 2.90e-3 (6e-4,8.1e-3) 3.12e-2 (3.05e-2, 3.16e-2) 9.55e-4 (7.08e-4, 1.28e-3)
Lorenz 7.79e-3 (5.79e-3, 9.87e-3) 8.41e-3 (6.45e-3, 1.02e-2) 4.36e-3 (3.66e-3, 5.36e-3)
Rössler 4.47e-1 (1.7e-4, 2.21e-0) 7.51e-3 (1.00e-4,3.63e-2) 1.57e-4 (5.86e-5, 3.82e-4)

Finally, to see how our method compares to one without Koopman when one extends the size
of the time step to predict the Van der Pol system, we ran an experiment for time steps ∆t =
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[0.1, 0.2, 0.3, 0.4, 0.5], and the results can be found in Figure 17. Here, we observe that the method,
including Koopman, consistently performs better and has a much more stable error bar as we increase
∆t.
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(a) without SWIM
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Figure 17: Running our model and a model without Koopman while increasing the size of the time
step the models predict, ∆t = [0.1, 0.2, 0.3, 0.4, 0.5], results reported on test set with MSE and
min/max error bars.
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