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Abstract. Accurate and efficient segmentation of tumor locations from
medical images is essential for clinical applications such as disease diagno-
sis and treatment planning. In this paper, we propose a method for whole-
body pan-cancer segmentation based on nnSAM architecture combined
with dynamic convolution. Our approach integrates the powerful feature
extraction capability of SAM model, the powerful auto-configuration de-
sign capability of nnUNet, and the dynamic convolution to improve
the representation capability of the model. In addition, in order to im-
prove the accuracy of segmentation, we introduce attention mechanism
in nnSAM architecture. This mechanism allows the network to focus
on highlighted areas and suppress irrelevant background areas, thereby
improving overall segmentation performance. We evaluate our proposed
approach on the MICCAI FLARE 2024 Testing dataset, achieving a
mean DSC of 16.34 % and a mean NSD of 11.66 %.
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1 Introduction

Medical image segmentation is important for clinical applications, including
disease diagnosis, treatment planning, and image-guided interventions. Accurate
and efficient segmentation of whole-body cancers from medical images is impor-
tant for assessing organ function, detecting abnormalities, and guiding surgical
procedures. However, whole-body pan-cancer segmentation is a challenging task
due to the uncertainty of cancer location, tumor size, noise and artifacts. In addi-
tion, labeled data is difficult to obtain, and unlabeled data is easier to access. In
recent years, deep learning-based methods have been widely used in pan-cancer
segmentation and achieved good results, among which nnUNet [11] is one of
the most commonly used methods. However, nnUNet’s high resource consump-
tion and low inference speed cannot meet Challenge requirement of fast and low
resource. In this work, the main contributions are summarized as follows:

(1)We use the nnSAM [14] segmentation framework, which can effectively
integrate the powerful feature extraction capability of SAM model and the pow-
erful automatic configuration design capability of nnUNet.
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(2)Embedding dynamic convolution in the nnSAM framework improves model
representation without increasing computational complexity.

(3)An attention mechanism is embedded in the nnSAM architecture to better
capture significant areas and suppress irrelevant background areas.

2 Method

2.1 Preprocessing

Integrating nnUNet into the nnSAM allows automated network architecture
and hyperparameter configuration, making it highly adaptable to the unique
and specific features of each medical imaging dataset. This adaptive capability
starts from a self-configuration process that automatically adjusts the nnUNet
encoder’s architecture to suit training dataset characteristics including the di-
mensions of the medical images, the number of channels, and the number of
classes involved in the segmentation task.

2.2 Proposed Method

As shown in Fig.1, Our method follows the standard nnSAM design to achieve
pan-cancers segmentation. Specifically, we introduce attention mechanisms into
segmentation networks to enhance their ability to focus on regions of interest
while suppressing unrelated background regions. The attention module can be
well embedded in skip connections, which can improve the performance of the
model without adding too much computation.

Network Architecture Details. Light-weight convolutional neural net-
works (CNNs) suffer performance degradation as their low computational bud-
gets constrain both the depth (number of convolution layers) and the width
(number of channels) of CNNs, resulting in limited representation capability. As
shown in Fig.2, Dynamic Convolution [3], a new design that increases model
complexity without increasing the network depth or width. Instead of using
a single convolution kernel per layer, dynamic convolution aggregates multiple
parallel convolution kernels dynamically based upon their attentions, which are
input dependent. Assembling multiple kernels is not only computationally effi-
cient due to the small kernel size, but also has more representation power since
these kernels are aggregated in a non-linear way via attention. In addition, We
introduce the CBAM [25] attention mechanism into the segmentation network
to enhance its ability to focus on region of interest while suppressing irrelevant
background region.

Loss function. we use the summation between Dice loss and cross-entropy
loss because compound loss functions have proven robust in various medical
image segmentation tasks [15].

Strategies to Deal with the Partial Labels. The dataset provided by
the FLARE 2024 challenge included whole-body cancer segmentation CT scans
with partial labels, and we did not know which cancer was labeled in each case,
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Fig. 1. Network architecture: Embedding SAM into nnUNet

Fig. 2. Network module
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but due to the amount of the data was sufficient, our method did not make
special treatment for the data with partial labels.

Strategies to use the unlabeled images. Unlabeled images were not
used.

2.3 Post-processing

We use connected component-based post-process to remove noise and isolated
pixels and improve segmentation results.

3 Experiments

3.1 Dataset and evaluation measures

The segmentation targets cover various lesions. The training dataset is cu-
rated from more than 50 medical centers under the license permission, including
TCIA [4], LiTS [2], MSD [23], KiTS [8,10,9], autoPET [7,6], TotalSegmenta-
tor [24], and AbdomenCT-1K [20], FLARE 2023 [19], DeepLesion [27], COVID-
19-CT-Seg-Benchmark [18], COVID-19-20 [22], CHOS [13], LNDB [21], and
LIDC [1]. The training set includes 4000 abdomen CT scans where 2200 CT
scans with partial labels and 1800 CT scans without labels. The validation and
testing sets include 100 and 400 CT scans, respectively, which cover various
abdominal cancer types, such as liver cancer, kidney cancer, pancreas cancer,
colon cancer, gastric cancer, and so on. The lesion annotation process used ITK-
SNAP [28], nnU-Net [12], MedSAM [16], and Slicer Plugins [5,17].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 45 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Training protocols. The Training protocols and details (e.g., batch size, epoch,
optimizer) are presented in Table 2. In the training process, the batch size is 4
and the patch size is fixed as 3×192×192 for optimization, we train it for 1000
epochs using Adam with a learning rate of 0.001 and the learning rate reduction
strategy using CosineAnnealingLR.
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Table 1. Development environments and requirements.

System Windows10/Ubuntu 20.04.4 LTS
CPU Intel(R) Core(TM) i9-12900K CPU@3.20 GHz
RAM 4×4GB; 2.4MT/s
GPU (number and type) One RTX 2080Ti 8G
CUDA version 11.4
Programming language Python 3.9.18
Deep learning framework torch 2.1.1, torchvision 0.16.1
Specific dependencies pandas, scipy, collections

Table 2. Training protocols.

Network initialization
Batch size 4
Patch size 3×192×192
Total epochs 1000
Optimizer Adam
Initial learning rate (lr) 0.001
Lr decay schedule CosineAnnealingLR
Training time 72 hours
Loss function Dice plus CE
Number of model parameters 74.2M1

Number of flops 15.6G2

CO2eq 1 Kg3

Table 3. Quantitative evaluation results.

Methods Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Algorithm1 19.87 ±31.54 , 13.64 ± 23.78 18.76 ±27.64 , 13.44 ± 22.78 16.34± 29.45 , 11.66± 22.66
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4 Results and discussion

As shown in Table 3., Pan-cancer segmentation is a very challenging task
because of the uncertainty due to the large number of tumor types, wide distri-
bution and inconsistent lesion size.

4.1 Quantitative results on validation set

Table 4. shows the runtime and resource consumption of our method. It
clearly shows that our approach can basically meet the requirements in terms of
run time, and as the number of layers increases, the cost of resources and run
time increases.

Table 4. Quantitative evaluation of segmentation efficiency in terms of the run-
ning them and GPU memory consumption. Total GPU denotes the area under GPU
Memory-Time curve. Evaluation GPU platform: NVIDIA RTX 2080Ti (8G) .

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 15.64 1570 14158
0051 (512, 512, 100) 20.45 1570 21651
0017 (512, 512, 150) 28.79 1570 33231
0019 (512, 512, 215) 38.45 1570 46742
0099 (512, 512, 334) 51.84 1570 55541
0063 (512, 512, 448) 57.79 1570 62594
0048 (512, 512, 499) 61.51 1570 84912
0029 (512, 512, 554) 72.54 1570 95581

4.2 Qualitative results on validation set

Fig. 3 The segmentation results of our method are shown. This clearly shows
that our method can obtain better segmentation results in large lesion segmen-
tation compared to small lesion segmentation. However, there are still some
considerations for the generalization and stability of the lesion types and cancer
types with great differences.

4.3 Segmentation efficiency results on validation set

We evaluated the segmentation efficiency on validation set, some of the results
are shows in Table 4.

4.4 Results on final testing set

As shown in Table 3., our method achieves a mean DSC of 16.34% and a
mean NSD of 11.66% on the FLARE 2024 final testing set.
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Fig. 3. Example cases from the MICCAI FLARE 2024 validation set. Our method
does not achieve good segmentation results on the validation set, and here are just one
examples that seem to have slightly better segmentation results (No. 0061) and two
examples that have poor segmentation results (No. 0034 and No. 0072).
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4.5 Limitation and future work

Our proposed pan-cancer segmentation method does not achieve good seg-
mentation results, the limitations of our method are that we do not make full
use of unlabeled data, and training on partially labeled data may introduce noise
and inconsistencies during the training process, resulting in degraded model per-
formance. In addition, pan-cancer segmentation covers a wide range of lesions,
with significant differences between lesion types.

Therefore, in the future, we will focus on introducing techniques such as active
learning or semi-supervised learning to iteratively select and annotate the most
informative instances, thereby improving the performance of the model when
partially labeling the data. It is more likely to train a good segmentation model
based on a large medical image model, and use transfer learning technology to
adjust our model, so as to achieve a time-saving effect.

5 Conclusion

In this work, based on the nnSAM framework, we integrate SAM’s powerful
feature extraction capability with nnunet’s automatic configuration capability
and combine dynamic convolution and attention mechanism to improve the ex-
pression ability of the model in pan-cancer segmentation. The challenge of in-
complete data annotation is overcome by using partial labeled data in training.
Future studies could further extend this approach and validate it in a wider
range of medical image segmentation tasks.
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