
Under review as a conference paper at ICLR 2021

QUANTIFYING TASK COMPLEXITY THROUGH GENER-
ALIZED INFORMATION MEASURES

Anonymous authors
Paper under double-blind review

ABSTRACT

How can we measure the “complexity” of a learning task so that we can compare
one task to another? From classical information theory, we know that entropy is a
useful measure of the complexity of a random variable and provides a lower bound
on the minimum expected number of bits needed for transmitting its state. In this
paper, we propose to measure the complexity of a learning task by the minimum
expected number of questions that need to be answered to solve the task. For
example, the minimum expected number of patches that need to be observed to
classify FashionMNIST images. We prove several properties of the proposed com-
plexity measure, including connections with classical entropy and sub-additivity
for multiple tasks. As the computation of the minimum expected number of ques-
tions is generally intractable, we propose a greedy procedure called “information
pursuit” (IP), which selects one question at a time depending on previous ques-
tions and their answers. This requires learning a probabilistic generative model
relating data and questions to the task, for which we employ variational autoen-
coders and normalizing flows. We illustrate the usefulness of the proposed mea-
sure on various binary image classification tasks using image patches as the query
set. Our results indicate that the complexity of a classification task increases as
signal-to-noise ratio decreases, and that classification of the KMNIST dataset is
more complex than classification of the FashionMNIST dataset. As a byproduct
of choosing patches as queries, our approach also provides a principled way of
determining which pixels in an image are most informative for a task.

1 INTRODUCTION

Deep networks have shown remarkable progress in both simple and complex machine learning tasks.
But how does one measure the “complexity” of a learning task? Is it possible to ascertain in a
principled manner which tasks are “harder” to solve than others? How “close” is one task to another?
Answers to these questions would have implications in many fields of machine learning such as
transfer learning, multi-task learning, un/semi/self-supervised learning, and domain adaptation.

In classical information theory, the entropy of a random variable X is a useful measure of com-
plexity for tasks such as compression and transmission, which essentially require reconstructing X .
However, the entropy ofX is insufficient for measuring the complexity of a supervised learning task
TX,Y , where the goal is to predict an output Y from an input X , i.e., to estimate the conditional
pY |X(y | x) from a finite set of samples from pXY (x, y), which we refer to as solving the learning
task. Complexity measures provided by statistical learning theory like VC-dimension or covering
numbers are also inadequate for this purpose because they ignore the dependence between X and
Y for the particular task at hand. Information-theoretic measures such as mutual information, infor-
mation bottleneck (Tishby et al., 2000) and its variants (Strouse & Schwab, 2017) have been used to
study the trade-off between model complexity and accuracy, but have not been developed to focus
on assessing task complexity and can provide unsatisfactory results when comparing different tasks
(see Section 5 for details). Measures based on Kolmogorov complexity (Li, 2006; Vereshchagin &
Vitányi, 2004) could in principle be used to compare different tasks, but they are dataset permutation
sensitive and not easily computable. The work of (Achille et al., 2019a) proposes to quantify task
complexity by measuring the information stored on the network weights, but the approach depends
on the specific neural network architecture used for training. The work of (Tran et al., 2019) does
not require or assume trained models, but makes strict assumptions that limit its broad applicability.

1

Under review as a conference paper at ICLR 2021

In this work, we introduce a novel perspective on task complexity which generalizes classical mea-
sures from information theory. Specifically, one well-known interpretation of classical Shannon
entropy is, given a random variable X , find the minimum number of bits that are needed on average
to encode instances of X so that the instances can be perfectly recovered from the binary code.
Stated differently, if one lets Q be defined as the set of all possible binary functions, on the domain
of X , then Shannon entropy essentially asks what is the optimal sequence of queries to compute
{q1(X), q2(X), . . . : qi ∈ Q} (i.e., how to encode X as a binary string) so that X can be perfectly
recovered from the shortest (on average) sequence of binary answers to the queries (see Section 2
for more discussion of this interpretation). As discussed above, however, in most learning tasks we
are not interested in simply compressing X but rather making a prediction about some other vari-
able Y . Further, notions of complexity can potentially be made more relevant to a specific task by
not having Q to be the set of all possible binary functions on X but rather a smaller set of queries
specific to a measure of interest. From this intuition, we define the complexity of a learning task as
the minimum expected number of queries, selected from a fixed set Q, one needs to ask to predict
Y (to some user-defined level of confidence) from the respective answers to the queries. As a few
specific examples of potential query sets:

• Decision boundary complexity: Here,Q is the the set of all possible half-spaces in Rd (assuming
X ∈ Rd) and q(x) is a binary function response indicating whether x lies in a particular half-space
(q ∈ Q). Then task complexity formalizes the intuition of “level of non-linearity” of the decision
boundary. For example, the complexity of any linearly-separable binary classification task is 1,
whereas, for a non-linearly separable task, this value depends on the curvature of the decision
boundary.

• Task-specific input feature complexity: Here, Q is the set of projection functions of X and q is
of the form q(x) = xq , where xq is the value observed at the qth entry of x. Then task complexity
formalizes the intuition “the greater the redundancy between the input features the easier it is to
solve the task”. For example, Y being a constant function of X would be the simplest task with
complexity 0, since no feature needs to be queried to predict it. This notion of complexity would
help in answering questions such as “which input features are most important for solving a given
task?” and could in turn help in developing more “interpretable” learning algorithms.

• Visual semantic complexity: Given a vocabulary V of different possible entities, their attributes
and relations in a visual scene,Q could be the set of all binary functions indicating the presence or
absence of an entity, its attribute or its relation with other entities (supplied by V) in a designated
region of the image X . For example, a particular q could be the function implementing the query
“Is there a person in the top left corner of the image?”. This notion of complexity would allow
one to gauge the semantic complexity of a visual task. For instance, tasks which ask complex
questions like “Is there a person playing with his dog, next to a river in the image?” would inher-
ently be more complex than simple object detection tasks, “Where is the dog in this image?” and
could be quantified by semantically relevant queries.

While our proposed formal definition of task complexity will be applicable to all such choices of
query functions {q}q∈Q and enjoys several nice theoretical properties that we discuss in section 2,
its computation will generally be intractable. As a result, in section 3 we propose to reduce the
complexity of selecting a minimal set of questions by using the Information Pursuit (IP) algorithm,
which selects questions sequentially, depending on previous questions and answers, in order of in-
formation gain. While IP is generally applicable to any task and query set, its implementation is
still intractable depending on the complexity of the model p(X,Y) and of the set Q. To address this
issue, we posit a tractable graphical model for p(X,Y) and learn the required distributions using
variational autoencoders and normalizing flows. In section 4 we evaluate our approach on various
binary image classification tasks (MNIST, KMNIST, FashionMNIST, Caltech Silhouettes) that can
be tackled using a common set of queries (the set of image patches). Our results show that complex-
ity computed using patch queries aligns with the intuition that the complexity of a classification task
increases as signal-to-noise ratio decreases, and that classification of the KMNIST dataset is more
complex than classification of the FashionMNIST dataset, something that isn’t obvious a priori.
While these experiments are restricted to simple tasks and queries, the proposed framework is gen-
erally applicable provided that tractable models, inference and learning methods can be developed,
which is the subject of ongoing and future work. Finally, we note that to the best of our knowledge,
this is the first time that a subjective notion of task complexity has been proposed in literature, where
the user can incorporate in Q the perception of complexity he/she wishes to measure.

2

Under review as a conference paper at ICLR 2021

2 QUANTIFYING TASK COMPLEXITY

Let the input data be represented by random variable X and the corresponding output/hypothesis
by random variable Y with sample spaces X and Y respectively. A supervised learning task TX;Y

is defined as the task of estimating the conditional distribution pY |X(y | x) from a finite set of
samples from the joint distribution pXY (x, y).1 We propose to quantify the complexity of a task as
the minimum expected number of queries needed to solve the task. Queries, q ∈ Q, are functions of
the input data, whose answers for a given x are denoted as {q(x)}q∈Q. Naturally, the query set needs
to be sufficiently rich so that the task is solvable based on answers to the queries. More formally, we
say the set Q is sufficient for task TX;Y if ∀(x, y) ∈ X × Y ,

p(y | x) = p(y | {x′ ∈ X : q(x′) = q(x) ∀q ∈ Q}). (1)

In other words, Q is sufficient for task TX;Y if whenever two points x and x′ have identical answers
for all queries in Q, then their true posteriors must be equal, p(y | x) = p(y | x′).

Given a fixed query set Q, we now formally define an encoding function EQ, which we refer to as a
Q-Coder, along with our proposed complexity measure CQ(X,Y) for task TX,Y .

Defining the Encoder function. Given a query set Q, an Encoder is a function, E : S∗ → Q where
S∗ is the set of all finite-length sequences generated using elements from the set S = {(q, q(x)) |
q ∈ Q, x ∈ X}. Additionally, we require that Q contains a special query qSTOP which signals the
encoder to stop asking queries and outputs the code for x as the set of query-answer pairs that have
been asked. The process can be described as follows, given E and input sample x.

1. q1 = E(∅). The first question is independent of x.
2. qk+1 = E({qi, qi(x)}1:k). All subsequent queries depend on the query-answer pairs ob-

served so far for x.
3. If qL+1 = qSTOP terminate and return CodeEQ(x) := (qi, qi(x))1:L as the code for x.

Note that each qi depends on x, but we drop this in the notation for brevity. Note also that the number
of queries L = |CodeEQ(x)| for a particular x generalizes coding length in information theory. The
query qSTOP constrains the code CodeEQ(x) to be prefix-free.

Defining task complexity. Given a joint distribution pXY (x, y) and a sufficient query set Q, we
define task complexity, CQ(X;Y), as the minimum over all encoders E (which are mappings from
X to a subset of queries in Q) of the mean coding length:

CQ(X;Y) := min
E

EX
[
|CodeEQ(X)|

]
s.t. p(y | x) = p(y | CodeEQ(x)) ∀x ∈ X , y ∈ Y (Sufficiency) (2)

Figure 1: Schematic view of the overall framework
for quantifying complexity of a task TX;Y .

The first constraint ensures sufficiency of the
code ∀x ∈ X . By this we mean that there ex-
ists at least one Encoder E for which the first
constraint of “sufficiency” is satisfied, where
p(y | CodeEQ(x)) should be interpreted as the
conditional probability of y given the event
{x′ ∈ X | CodeEQ(x) = CodeEQ(x′)}. The
solution to (2) provides the optimal encoder for
task TX;Y , and Fig. 1 illustrates the overall
framework in detail.

Connection with Shannon entropy H . It can be shown that when Q is taken as the set for all
possible binary questions on X and if Y is a function of X (which it usually is for supervised
classification problems (Kolchinsky et al., 2018)), then the solution, E∗, to (2) gives a coding length
within one bit of the entropy of Y , denoted as H(Y). More formally, one can show that

H(Y) ≤ CQ(X;Y) = EX
[
|CodeE

∗

Q (X)|
]
< H(Y) + 1. (3)

1As commonly used, we denote random variables by capital letters and their realizations with small letters.

3

Under review as a conference paper at ICLR 2021

Note that one example of such an optimal encoder, E∗(x), is given by the Huffman code for Y .

Connection with task complexity & equivalence classes. Notions of complexity of an en-
tity/object, often relate to the level of structural regularity present in the entity (Gell-Mann, 2002).
CQ(X;Y) measures the degree of regularity present in the structure of TX;Y . This structure is im-
plicitly defined by the conditional pY |X(y | x) and the query set Q. Notice that any E partitions X
into equivalence classes.

[x] = {x′ ∈ X | CodeEQ(x) = CodeEQ(x′)}. (4)

The prefix-free constraint on the codes generated by E (due to) ensures that ∀x′ ∈ [x],∀y ∈
Y, pY |X=x′(y) = pY |X=x(y). It is then natural to relate task complexity with the number of equiv-
alence classes induced by the optimal E∗. The greater the number of equivalence classes, the higher
the complexity of the task. This is because knowing the distribution pY |X(y | x′) for any one ele-
ment x′ in each equivalence class is sufficient to predict Y . An extreme case of this would be the
constant function which arguably has the simplest possible structure of any task TX,Y . The equiv-
alence class in this case is just X since pY |X(y | x) is same for all x ∈ X . Thus, the number of
equivalence classes for the constant function is 1 (the minimum possible). This is expected since for
a constant function there is no structure to learn from data whatsoever!

The following lemma (see Appendix A.1 for a proof) relates CQ(X;Y) and the number of equiva-
lence classes, the latter being not easy to compute from finite samples.

Proposition 1. Given a finite query set Q, b-valued query-answers {q(X)}q∈Q and any δ > 0,
the number of equivalence classes induced by the minimizer of (2) can be upper bounded by
bCQ(X;Y)+|Q|

√
2 log(1

δ)) with probability of misclassifying X at most δ.

Proposition 1 indicates that for the sameQ, tasks with greaterCQ(X;Y) will have larger complexity
(by comparing the upper bound on the number of equivalence classes). This also illustrates the role
different bases play. For example, in visual recognition tasks if one queries intensities of all the
pixels in the image at once then CQ(X;Y) = 1 (Observing intensities at all the pixels is sufficient
information to predict Y from X). However b in that case would be large (exponential in the size of
the image). Instead if one queries individual pixels, b would be the number of intensity values each
pixel can take but CQ(X;Y) ≥ 1.

Properties of CQ(X;Y). The following proposition, whose proof can be found in Appendix A.2,
establishes some key properties of our proposed measure of complexity.

Proposition 2. For any query setQ that is sufficient for task TX,Y , CQ(X;Y) satisfies the following
properties:

1. CQ(X;Y) ≥ 0. (non-negativity)

2. CQ(X;Y) = 0 iff X ⊥⊥ Y . (trivial structure)

3. If ∀x, x′ ∈ X , x 6= x′,∃y ∈ Y , such that pY |X=x(y) 6= pY |X=x′(y), then CQ(X;Y) ≥
CQ(X; Ỹ) for all tasks TX,Ỹ provided Q is sufficient for TX,Ỹ . (total structure)

4. CQ(X;Y1, Y2) ≤ CQ(X;Y1) + CQ(X;Y2) for any two tasks with X ∼ pX(x) and
Y1 ⊥⊥ Y2 | X . (sub-additivity under union)

The property “trivial structure” captures the fact that if Y is independent of X , the learning task is
trivial (i.e., there is nothing to be learned about Y from observing X or functions of X).

The property “total structure” captures the intuition that if for a given task TX;Y , the conditional
distribution functioini pY |X=x(y) is different ∀x ∈ X , then learning is “impossible” (assume Y is
a categorical variable, which it is for most classification tasks) as no inductive bias would help in
generalization to unseen inputs for such a task. For example, Y = f(X) where f : X → Y is
injective.

The last property “sub-additivity under union” is especially interesting in transfer learning settings
where source task TX;Y1

and target task TX;Y2
have the same marginal for X ∼ pX(x) but dif-

ferent conditionals pY1|X(y1 | x) and pY2|X(y2 | x). CQ(X;Y1, Y2) refers to the complexity of

4

Under review as a conference paper at ICLR 2021

task TX;Y1,Y2
, defined by pXY1Y2

(x, y1, y2), where the corresponding sufficiency constraint in (2)
becomes

p(y1, y2|x) = p(y1, y2|CodeEQ(x)) ∀x ∈ X , y1 ∈ Y1, y2 ∈ Y2. (5)

This property could potentially be exploited to predict the success of transfer learning for different
choices of source and target tasks. Further, the assumption Y1 ⊥⊥ Y2 | X is not particularly strict as
it simply implies given input X , knowledge of Y1 is not required to predict Y2 and vice-versa.

ε-approximate task complexity. In practice, we are often interested in solving a task “approxi-
mately” rather than “exactly”. To accommodate this, we extend the definition of Sufficiency in (2)
to ε-Approximate Sufficiency by relaxing it to d

(
p(y | x), p(y | CodeEQ(x))

)
≤ ε ∀x ∈ X . Here,

d is any distance-like metric on distributions such as the KL-divergence, total variation, Wasserstein
distance, etc. (Refer Appendix A.3).

Having established the above properties of our complexity measure, we note that unfortunately for
any general query set Q, the problem in (2) is known to be NP-Complete and hence generally
intractable (Laurent & Rivest, 1976). As a result, we instead consider a greedy approximation to
CQ(X;Y) via an algorithm called Information Pursuit (IP) introduced by Geman & Jedynak (1996),
which we describe in detail next.

3 APPROXIMATING TASK COMPLEXITY USING INFORMATION PURSUIT

From this section onwards we will assume Q is a finite set. Information pursuit (IP) is a greedy
algorithm introduced by Geman & Jedynak (1996) which provides an approximate solution to (2).
The Encoder in IP, denoted as EIP , is recursively defined as follows,

q1 = EIP (∅) = arg max
q∈Q

I(q(X);Y)

qk+1 = EIP ({qi, qi(x)}1:k)) = arg max
q∈Q

I(q(X);Y |Bx,k)
(6)

where x is an input data-point and I stands for mutual information. In other words, IP chooses
the next query qk+1 as the one whose answer maximizes the mutual information with Y given the
history of questions and answers about x chosen by IP till time k, i.e., given the eventBx,k := {x′ ∈
X | {qi, qi(x)}1:k = {qi, qi(x′)}1:k}. Ties in choosing qk are broken arbitrarily if the maximum is
not unique. The algorithm stops when it satisfies the following condition:

qL+1 = qSTOP if max
q∈Q

I(q(X);Y |Bx,m) = 0 ∀m ∈ {L,L+ 1, ..., L+ T}, (7)

where T > 0 is a hyper-parameter chosen via cross-validation, with the rationale behind
this choice provided in Appendix A.4. We will denote this sub-optimal solution EIP as
C̃Q(X;Y). To compute an approximation to CεQ(X;Y) we modify the stopping criteria in (7)
to maxq∈Q I(q(X);Y |Bx,m) ≤ ε and call this estimate C̃εQ(X;Y).

3.1 APPROXIMATION GUARANTEES FOR INFORMATION PURSUIT

While in general it is difficult to have any performance guarantees of IP, in the specialized setting in
which Q indexes the set of all possible binary functions of X , such that H(q(X) | Y) = 0 ∀q ∈ Q
and Y is a function of X , we have the following proposition (see Appendix A.6 for a proof).

Proposition 3. Given task TX;Y with Y being a discrete random variable. If there exists a function
f such that Y = f(X) and Q is the set to all possible binary functions of X such that H(q(X) |
Y) = 0 ∀q ∈ Q then H(Y) ≤ C̃Q(X;Y) ≤ H(Y) + 1.

While the above proposition is often considered to be true, this is the first time a rigorous proof
has been presented (to the best of our knowledge). Thus, in this special case, from (3) we have that
C̃Q(X;Y) ≤ CQ(X;Y)+1 and thus the IP algorithm will be a tight approximation to our proposed
complexity measure.

5

Under review as a conference paper at ICLR 2021

3.2 INFORMATION PURSUIT USING VARIATIONAL AUTOENCODERS + NORMALIZING FLOWS

IP requires probabilistic models relating query-answers and data to compute the required mutual
information terms in (6). Specifically, computing qk+1 in (6) (for any iteration number k) requires
computing the mutual information between q(X) and Y given the history Bx,k till time k. As
histories become longer, we quickly run out of samples in our dataset which belong to the event
Bx,k. As a result, non-parametric sample-based methods to estimate mutual information (such as
Belghazi et al. (2018)) would be impractical. In this subsection, we propose a model-based approach
to address this challenge for a general task TX;Y and query set Q. In section 4 we adapt this model
to the specific case where Q indexes image patches.

Information Pursuit Generative Model. Let Q(X) = {q(X) : q ∈ Q}. To make learning
tractable, we introduce latent variables Z to account for all the dependencies between different
query answers and posit the following factorization of Q(X), Y, Z

pQ(X)ZY (Q(x), η, y) =
∏
q∈Q

pq(X)|ZY (q(x) | η, y)pY (y)pZ(η). (8)

Throughout the paper η and q(x) denote the realizations of Z and q(X) respectively. Equation (8) is
a reasonable assumption unless the answers q(X) are causally related to each other, (Reichenbach’s
common cause principle (Hofer-Szabó et al., 1999)).

In other words, assuming that the query-answers are conditionally independent given the hypothesis
and “some” latent vector is benign and ubiquitous in many machine learning applications.

1. q(X) as object presence indicators evaluated at non-overlapping windows: Let Q
be a set of non-overlapping windows in the image X with q(X) as the random variable
indicating the presence of an object at the qth location. The correlation between the qs is
entirely due to latent image generating factors Z, such as lighting, camera position, scene
layout, and texture along with the scene description signal Y .

2. q(X) as snippets of speech utterances: A common assumption in speech recognition
tasks is that the audio frame features (q(X)) are conditionally independent given latent
phonemes Z (which is often modelled as a Hidden Markov Model).

This latent spaceZ is often a lower-dimensional space compared to the original high-dimensionalX .
We learn Z from data in an unsupervised manner using variational inference. Note, this assumption
of conditional independence will not hold in scenarios where q(X) directly cause each other, for
instance, if in example 1, we considered overlapping patches.

Specifically, we parameterize the distributions {pω(q(x) | η, y) ∀q ∈ Q} with a neural network
with shared weights ω and call it the Decoder Network. These weights are learnt using stochastic
Variational Bayes (Kingma & Welling, 2013) by introducing an approximate posterior distribution
p′φ(η | y,Q(x)) parameterized by another neural network with weights φ called the Encoder Net-
work and priors pY (y) and pZ(η).

Implementing EIP
Q using the generative model. Using the learnt Decoder network one can esti-

mate the distribution pq(X)Y (q(x), y) via Monte Carlo Integration and compute q1 = EIP (∅). For
subsequent queries (k > 1), the computation of qk+1 requires the mutual information conditioned
on current history Bx,k, which can be calculated from the distribution

p(q(x), y | Bx,k) =

∫
p(q(x) | η, y)p(η | y,Bx,k)p(y | Bx,k)dη. (9)

To estimate the left-hand side of (9) via Monte Carlo integration, one needs to sample N i.i.d.
samples ηi ∼ p(η | y,Bx,k) and compute 1

N

∑N
i=1 pω(q(x) | η(i), y)p(y | Bx,k), where the term

p(y | Bx,k) can be estimated recursively with p(y | Bx,0) := pY (y). Appendix A.7 gives more
details on these computations. Note, however, it is not straightforward to sample from this posterior
p(η | y,Bx,k) without resorting to advanced Markov Chain Monte Carlo sampling techniques,
which often suffers from the curse of dimensionality and is computationally intensive. To mitigate
this issue we implement p(η | y,Bx,k) by another neural network trained to learn this posterior.

6

Under review as a conference paper at ICLR 2021

Estimating p(η | y,Bx,k) with Normalizing Flows. We amortize the cost of modelling
p(η | y,Bx,k) for each history encountered during the EIP recursion by assuming the existence
of a function Ψ such that p(η | y,Bx,k) = Ψ({(qi, qi(x))}1:k, y, η) ∀x ∈ X for any iteration k.

Figure 2: Conditional Inference Network.

We employ Normalizing Flows (Dinh
et al., 2016) to approximate Ψ from
data. Specifically, we construct a se-
quence of invertible mappings of the form
ηl = Ψ̃l({(qi, qi(x))}1:k, y, ηl+1; γl), each
parameterized by a neural network with
weights γl, such that η0 is constrained to be
normally distributed. The composite function
η0 = Ψ̃({(qi, qi(x))}1:k, y, η; γ) is a compo-
sition of N neural networks with parameters
γ = {γl}l∈{1,2,...,N}. We call this network,

Ψ̃, as the Conditional Inference Network (Refer Fig. 2). Refer Appendix A.8 for details on the
training procedure.

Using the trained Ψ̃ one can sample from the posterior p(η | y,Bx,k), as required for (9) for any
observed history Bx,k. The sampling procedure is as follows: (i) Sample η0 ∼ N (0, Id) (assuming
η0 ∈ Rd); (ii) Compute η = Ψ̃−1({(qi, qi(x))}1:k, y, η0).

4 CASE STUDY: COMPLEXITY OF BINARY IMAGE CLASSIFICATION TASKS

As a practical instantiation of our theory, we concentrate on the task of classifying binary images.
We choose Q as the set of image patches with answers being the intensities observed at the patch.
The reason for this choice is two-fold: (i) Patches provide a sufficiently rich query set to compare
different learning tasks on binary images and allow us to measure the task-specific input feature
complexity of different tasks; (ii) From a practical stand-point, state-of-the-art deep generative mod-
els for binary images can be assumed to be “perfect” models allowing us to illustrate the usefulness
of the framework with minimal modelling bias.

For all our experiments, we considered Q as index set to all 3× 3 overlapping patches in the image.
This requires some modelling changes. Recall, (8) only holds if q(X) are not causally related. In
case of overlapping patches, this assumption is clearly violated. So instead we model (8) at the
level of pixels Xj (X denoting the binary image, and j the jth pixel), p(xj , η, y) =

∏
xj∈X p(xj |

η, y)p(y)p(η). Further network training details in Appendix A.9.

Complexity increases with decrease in signal-to-noise ratio. We tested the effect of two different
task-specific nuisances on C̃εQ(X;Y) for MNIST classification by, (i) MNIST-α: randomly flipping
pixels in MNIST images with probability α ∈ [0, 1]; (ii) MNIST-Translated: translating the digits
by at most 4 pixels. Fig. 3a shows the results. The plot shows the trade-off between accuracy and
task complexity for different values of ε. To normalize for the effect of different datasets having
different Bayes error rates, we report the trade-off using relative test accuracies which are the ac-
curacies obtained by predicting Y according to arg maxy∈Y p(y | Bx,L)2 divided by the prediction
made upon observing the entire image (all the patches indexed by Q). The results indicate that for
almost all desired relative accuracy levels, MNIST, MNIST-0.05, and MNIST-0.1 are in increasing
level of complexity. Our experiments also indicate that the complexity of non-centered MNIST digit
classification is the greatest (evaluated at any fixed accuracy level).

Comparing different classification tasks. While in the previous experiment, there was an ex-
pected “correct” trend (complexity increases as nuissance level increases), the complexity ordering
is not so clear intuitively when comparing across datasets. We evaluated our framework to compute
complexities of image classification on four different datasets of binary images, namely, MNIST,
FashionMNIST, KMNIST, and Caltech Silhouettes. Fig. 3b reports the results. Our findings indi-
cate that MNIST < FashionMNIST < KMNIST < Caltech Silhoettes in terms of task complexity
at almost all relative test accuracy levels.

2Recall L is the iteration after which IP terminates

7

Under review as a conference paper at ICLR 2021

Figure 3: The plots (a) & (b) show the trade-off between accuracy and complexity as ε is varied
(c), (d), (e) & (f) pertain to our discussion on interpretability. (a) Complexity results on MNIST
with different levels of nuissances; (b) Complexity results for different image classification tasks;
(c) test image x0 from Caltech Silhouettes dataset with class “Motorbike”; (d) patches queried by
EIP before termination for x0 (shown by the overlayed coloured 3× 3 boxes); (e) Part of image x0
observed through the queried patches; (f) Heatmap for probability a pixel would be visited by the IP
Encoder for a randomly chosen image with label “Motorbike” from the Caltech Silhouettes dataset.

Connections with interpretability. A common theme in all the different notions of interpretability
in ML literature is a “short description length”. An interesting consequence of our formulation is
that when evaluated using queries that index image patches, it gives a principled way of selecting
the most important parts of an image for a task. Fig. 3c, d, e, & f illustrate this with an example. IP
predicts the image label is “motorbike” by just observing the edges of the silhouette which intuitively
should be the most important parts of the image for this task. Indeed, Fig. 3f reveals that EIP
visits these edges with high probability for any random image that has label “Motorbike”. This
heatmap makes sense since the data set only has centered images, for the general case a more in-
depth analysis would be required. This property of IP could be utilized to develop more interpretable
ML algorithms.

5 CONCLUSION AND RELATED WORK

In this paper, we introduced a novel notion of task complexity intimately tied to a query set Q. In
the following paragraphs, we will briefly discuss some relevant prior work with connections to our
proposed measure.

The information pursuit algorithm has roots in the seminal work of (Geman & Jedynak, 1996),
which proposes an active testing framework for tracking roads in an image. That algorithm was
extended in (Sznitman & Jedynak, 2010) for face detection and localization, in Sznitman et al.
(2012) for detection and tracking of surgical instruments, and in (Jahangiri et al., 2017) for scene
interpretation. Also, while (Sznitman & Jedynak, 2010; Jahangiri et al., 2017) learn generative
models for their tasks, their models are radically different from ours.

The problem of classifying objects by sequentially observing different image locations has been
recently re-branded as Hard Attention in vision (Mnih et al., 2014; Elsayed et al., 2019; Li et al.,
2016) and several deep learning solutions have been proposed. These methods typically try to learn
a policy for iteratively choosing different parts of an image for solving different visual tasks. Opti-
mization techniques from reinforcement learning are often employed to achieve this. High variance
in the gradient estimates and scalability issues prevent their widespread adoption. It would be inter-
esting to see if IP can be combined with reinforcement learning-based approaches to design better
reward functions to facilitate efficient policy search.

8

Under review as a conference paper at ICLR 2021

The information bottleneck (IB) method proposed by Tishby et al. (2000) is perhaps the closest to
our work. They define complexity in terms of the mutual information (MI) between input X and its
representations X̃ such that X̃ preserves a certain amount (determined by a user-defined parameter)
of information about the output variable Y . In a way, their measure of complexity accounts for the
relationship between X and Y . However, this complexity isn’t very useful for comparing different
learning tasks. For instance, in Fig. 1 & 2 in Kolchinsky et al. (2019) the MI between X and
X̃ for FashionMNIST and MNIST datasets are roughly the same for the same level of accuracy.
This is a problem since we know from practical experience that MNIST is a much “simpler” than
Fashion-MNIST. Interestingly, when Q is taken to be the set all possible binary functions of X our
proposed measure recovers IB and its variants (Strouse & Schwab, 2017). That discussion however
is out of the scope of this paper. We note in passing that there has recently been work on quantifying
information of a system under limited computation and model constraints (Xu et al., 2020) which
could potentially be explored in the future in conjunction with our framework. In a sense, the choice
of Q constrains the way information from X can be extracted to predict Y .

Task complexity measures based on Kolmogorov Complexity are not computable (Li, 2006; Achille
et al., 2019b; Vereshchagin & Vitányi, 2004). These measures are based on the idea of finding
the minimum length computer program that given input x outputs label y for every (x, y) in the
training dataset. This is in stark contrast to our definition which is a property of the joint distri-
bution pXY (x, y) and not any given finite dataset. Computing CQ(X;Y) is NP-Complete but not
uncomputable. The implication of this is that there exist dynamic programming based solutions that
exactly computeCQ(X;Y). The complexity of these algorithms are typically exponential in |Q| and
so feasible only when |Q| is small. For large |Q|, we must turn to approximations and Information
Pursuit is one such strategy. On the other hand, an algorithm for computing Kolmogorov Com-
plexity does not exist, let alone an efficient one. Besides computability, the more pressing issues
with Kolmogorov complexity is that the measures are sensitive to permutations of the dataset which
is undesirable. Secondly, Kolmogorov complexity fails to distinguish between memorization and
learning. A dataset sampled from pXY (x, y) where Y is independent of X will have the maximum
Kolmogorov-based complexity measure. However, from a learning point of view there is nothing to
learn - an optimal strategy is to simply predict p(Y | X) = p(Y) regardless of the value of X! So,
the task complexity of such tasks should be 0. Achille et al. (2019b) presents for a more detailed
discussion on this. The proposed measure CQ(X;Y) is not dataset permutation-sensitive since it is
a property of the distribution pXY (x, y). Moreover, CQ(X;Y) = 0 when Y is independent of X
(See Proposition 2.2) and so distinguishes learning from memorization.

Our work is related in spirit to the work of Achille et al. (2019b) which introduces an alternate
measure of task complexity based on the intuition that the information stored in the weights of a
trained network can be used as a measure of task complexity. They show that their measure recovers
Kolmogorov’s complexity, Shannon’s information, Fisher’s information as special cases, and is also
related to PAC-Bayes generalization bounds.

REFERENCES

Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Char-
less C Fowlkes, Stefano Soatto, and Pietro Perona. Task2vec: Task embedding for meta-learning.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 6430–6439, 2019a.

Alessandro Achille, Giovanni Paolini, Glen Mbeng, and Stefano Soatto. The information complexity
of learning tasks, their structure and their distance. arXiv preprint arXiv:1904.03292, 2019b.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and R Devon Hjelm. Mine: mutual information neural estimation. arXiv preprint
arXiv:1801.04062, 2018.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Gamaleldin Elsayed, Simon Kornblith, and Quoc V Le. Saccader: improving accuracy of hard
attention models for vision. In Advances in Neural Information Processing Systems, pp. 702–
714, 2019.

9

Under review as a conference paper at ICLR 2021

Murray Gell-Mann. What is complexity? In Complexity and industrial clusters, pp. 13–24. Springer,
2002.

Donald Geman and Bruno Jedynak. An active testing model for tracking roads in satellite images.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(1):1–14, 1996.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. ICLR, 2(5):6, 2017.

Gábor Hofer-Szabó, Miklós Rédei, and László E Szabó. On reichenbach’s common cause principle
and reichenbach’s notion of common cause. The British Journal for the Philosophy of Science,
50(3):377–399, 1999.

Ehsan Jahangiri, Erdem Yoruk, Rene Vidal, Laurent Younes, and Donald Geman. Information
pursuit: A bayesian framework for sequential scene parsing. arXiv preprint arXiv:1701.02343,
2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Artemy Kolchinsky, Brendan D Tracey, and Steven Van Kuyk. Caveats for information bottleneck
in deterministic scenarios. arXiv preprint arXiv:1808.07593, 2018.

Artemy Kolchinsky, Brendan D Tracey, and David H Wolpert. Nonlinear information bottleneck.
Entropy, 21(12):1181, 2019.

Hyafil Laurent and Ronald L Rivest. Constructing optimal binary decision trees is np-complete.
Information processing letters, 5(1):15–17, 1976.

Ling Li. Data complexity in machine learning and novel classification algorithms. PhD thesis,
California Institute of Technology, 2006.

Mingming Li, Shuzhi Sam Ge, and Tong Heng Lee. Glance and glimpse network: A stochastic
attention model driven by class saliency. In Asian Conference on Computer Vision, pp. 572–587.
Springer, 2016.

Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention. In
Advances in neural information processing systems, pp. 2204–2212, 2014.

DJ Strouse and David J Schwab. The deterministic information bottleneck. Neural computation, 29
(6):1611–1630, 2017.

Raphael Sznitman and Bruno Jedynak. Active testing for face detection and localization. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(10):1914–1920, 2010.

Raphael Sznitman, Rogerio Richa, Russell H Taylor, Bruno Jedynak, and Gregory D Hager. Unified
detection and tracking of instruments during retinal microsurgery. IEEE transactions on pattern
analysis and machine intelligence, 35(5):1263–1273, 2012.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

Anh T Tran, Cuong V Nguyen, and Tal Hassner. Transferability and hardness of supervised clas-
sification tasks. In Proceedings of the IEEE International Conference on Computer Vision, pp.
1395–1405, 2019.

Nikolai K Vereshchagin and Paul MB Vitányi. Kolmogorov’s structure functions and model selec-
tion. IEEE Transactions on Information Theory, 50(12):3265–3290, 2004.

Yilun Xu, Shengjia Zhao, Jiaming Song, Russell Stewart, and Stefano Ermon. A theory of usable
information under computational constraints. arXiv preprint arXiv:2002.10689, 2020.

10

Under review as a conference paper at ICLR 2021

A APPENDIX

In proofs of propositions and lemmas we rewrite the statement for convenience.

A.1 PROOF OF PROPOSITION 1

Proposition. Given a finite query set Q, b-valued query-answers {q(X)}q∈Q and any δ > 0,
the number of equivalence classes induced by the minimizer of (2) can be upper bounded by
bCQ(X;Y)+|Q|

√
2 log(1

δ)) with probability of misclassifying X at most δ.

Proof. Let dQ(X) be a random variable denoting the optimal code-length for X using E∗, the
solution to (2). Since, 0 ≤ dQ(X) ≤ |Q|. From the definition, CQ(X;Y) = EX [dQ(X)]. So,
Hoeffding’s Lemma we have

dQ(X)− CQ(X;Y) ∼ subG(
|Q|2

4
) (10)

Since dQ(X) is sub-gaussian, for any δ > 0

P

(
dQ(X) > CQ(X;Y) + |Q|

√
2 log

1

δ

)
≤ δ (11)

Notice, the prefix-free nature of E∗ naturally gives rise to a tree with d(X) being the depth of the
corresponding tree TQ for input X . The number of equivalence classes is exactly the number of
leaves of TQ. Given, each query-answer q(X) is b-valued. So we can upper bound the number of

leaves by replacing TQ with a balanced b-ary tree with bCQ(X;Y)+|Q|
√

2 log 1
δ leaves called T̃Q. T̃Q

can be constructed from TQ as follows:

1. For any leaf node with depth d(X) < CQ(X;Y) + |Q|
√

2 log 1
δ vacuously increase the

depth till equality is achieved by repeatedly asking the last query. For any internal node in
TQ that is not balanced, add vacuous subtrees by randomly selecting queries from Q (no
x ∈ X would be sent to these new subtrees) to make the tree balanced with each internal

node having b children nodes. As a result, ∀x ∈ X with d(x) < CQ(X;Y)+ |Q|
√

2 log 1
δ ,

T̃Q(X) would compute the same posterior as TQ(X), that is p(y | CodeE∗Q (x)), and thus
not make an error.

2. For any leaf node with depth d(X) > CQ(X;Y) + |Q|
√

2 log 1
δ , cut the path at depth

u(X) = CQ(X;Y) + |Q|
√

2 log 1
δ by merging the subtree rooted at depth u(X) and

creating a leaf node. An input x ∈ X sent to this new leaf node would be misclassified.
The probability of such an event is given by (11).

A.2 PROOF OF PROPOSITION 2

Proposition. For any query set Q that is sufficient for task TX,Y , CQ(X;Y) satisfies the following
properties.

1. CQ(X;Y) ≥ 0. (non-negativity)

2. CQ(X;Y) = 0 iff X ⊥⊥ Y . (trivial structure)

3. If ∀x, x′ ∈ X , x 6= x′,∃y ∈ Y , such that pY |X=x(y) 6= pY |X=x′(y), then CQ(X;Y) ≥
CQ(X; Ỹ) for all tasks TX,Ỹ provided Q is sufficient for TX,Ỹ . (total structure)

11

Under review as a conference paper at ICLR 2021

4. CQ(X;Y1, Y2) ≤ CQ(X;Y1) + CQ(X;Y2) for any two tasks with X ∼ pX(x) and
Y1 ⊥⊥ Y2 | X . (sub-additivity under union)

Proof.

1. Follows trivially from the definition.

2. For proving the “if” part, observe that ifX ⊥⊥ Y then pY |X=x(y) = pY (y) ∀y ∈ Y, x ∈ X .
Choose E1 to be an encoder such that q1 = qSTOP . Then

EX
(
|CodeE1

Q (X)|
)

= 0

E1 is trivially prefix-free (all x ∈ X gets mapped to the same code ∅). Recall that
p(y|CodeE1

Q (x)) should be interpreted as the conditional probability of y given the event
{x′ ∈ X | CodeE1

Q (x) = CodeE1

Q (x′)}. Since ∀x ∈ X , CodeE1

Q (x) = ∅, p(y |
CodeE1

Q (x)) = p(y | X) = p(y). Hence, E1 also provides a sufficient code and thus
is a feasible solution to the optimization problem in (2). From property 1 we know that E1

achieves the optimal CQ(X;Y).
The proof for the “only if” part is very similar. Consider E∗ as the optimal solution to
(2) and CQ(X;Y) = 0. This implies CodeE

∗

Q (x) = ∅ ∀x ∈ X . Since E∗ is sufficient,
p(y | x) = p(y | CodeE∗Q (x)) = p(y) ∀x ∈ X , y ∈ Y . This implies X ⊥⊥ Y .

3. Let ET denote the minimizer of (2) for the task TX;Y where Y given X is distributed as
stated. From sufficiency we know that no two different inputs x, x′ ∈ X could have the
same code, that is, CodeETQ (x) 6= CodeETQ (x′) ∀x, x′ ∈ X , x 6= x′. Consider any other
task TX,Ỹ defined by p(X, Ỹ) with the same marginals X ∼ pX(x) but possibly different
conditional Ỹ ∼ pỸ |X(ỹ | x) such that Q is also sufficient for TX,Ỹ . ET is a feasible
solution for (2) with respect to task TX,Ỹ since p(ỹ | CodeETQ (x)) = p(ỹ | {x}). Thus,

CQ(X; Ỹ) ≤ EX
(
|CodeETQ (X)|

)
for any other task TX;Ỹ for which Q is sufficient.

4. Let E1 and E2 be the optimal encoders for tasks TX;Y1
and TX;Y2

respectively. Construct
an encoder E12 for that task TX;Y1,Y2

by concatenating the two codes. It is not hard to see
that

EX
(
|CodeE12

Q (X)|
)
≤ EX

(
|CodeE1

Q (X)|
)

+ EX
(
|CodeE2

Q (X)|
)
.

The inequality is due to the fact that (query,answer) tuples can overlap in the codes con-
structed by two encoders E1 and E2 for the same input x. E12 is prefix-free by construc-
tion. Now, for any observation y1 of output Y1

p(y1 | CodeE12

Q (x))

= p(y1 | CodeE1

Q (x) ∪ CodeE2

Q (x))

= p(y1 | {x′ ∈ X : CodeE1

Q (x′) ∪ CodeE2

Q (x′) = CodeE1

Q (x) ∪ CodeE2

Q (x)})

= p(y1 | {x′ ∈ X : CodeE1

Q (x′) = CodeE1

Q (x)} ∩ {x′ ∈ X : CodeE2

Q (x′) = CodeE2

Q (x)})
= p(y1 | x)

The last equality appeals to the fact that E1 satisfies the “sufficiency” constraint in (2) for
task TX;Y1

. Similarly, p(y2 | CodeE12

Q (x)) = p(y2 | x) for any observation y2 of output
Y2. Given, Y1 ⊥⊥ Y2 | X . This implies ∀x ∈ X

p(y1, y2 | x) = p(y1 | x)p(y2 | x)

= p(y1 | CodeE12

Q (x))p(y2 | CodeE12

Q (x))

= p(y1, y2 | CodeE12

Q (x))

12

Under review as a conference paper at ICLR 2021

This proves E12 is sufficient for the task T (X;Y1, Y2). Since E12 is a feasible solution for
the optimization problem with respect to T (X;Y1, Y2) we get the required inequality.

A.3 ε-APPROXIMATE COMPLEXITY OF TASK

In practice, we are often interested in solving a task “approximately” rather than “exactly”. This
requires introducing a notion of approximate sufficiency instead of exact sufficiency, and we extend
the definition in (2) to incorporate this.

CεQ(X;Y) := min
E

EX
[
|CodeEQ(X)|

]
(12)

s.t. d
(
p(y | x), p(y | CodeEQ(x))

)
≤ ε ∀x ∈ X (Approx. Sufficiency)

(13)

Here, d is any distance-like metric on distributions such as the KL-divergence, total variation,
Wasserstein distance, etc. Additionally, if d is convex in both its arguments, symmetric and sat-
isfies the triangle-inequality then CεQ(X;Y) satisfies the properties in Proposition 2 with two key
differences:

1. In Property 3, CεQ(X;Y) is the complexity of the task for which
d
(
pY |X=x(y), pY |X=x′(y)

)
> 2ε ∀x, x′ ∈ X , x 6= x′.

2. In Property 4, the relation is CεQ(X;Y1, Y2) ≤ C
ε
2

Q(X;Y1) + C
ε
2

Q(X;Y2).

A.4 TERMINATION CRITERIA FOR EIPQ

Ideally we would like to terminate (EIP outputs qSTOP) after L steps if

p(y | x) = p(y | x′) ∀x, x′ ∈ Bx,L, y ∈ Y (14)

However, detecting this is difficult in practice. We have the following lemma.
Lemma A.4.1. Assume Y ⊥⊥ q(X) | X ∀q ∈ Q. If event Bx,L satisfies the condition specified by
(14) then for all subsequent queries qm, m ≥ L, maxq∈Q I(q(X);Y |Bx,m) = 0. Since ties are
broken arbitrarily if the maximum not unique, EIP chooses any q ∈ Q as a subsequent query qm.

Refer to Appendix A.5 for a proof. The assumption Y ⊥⊥ q(Xx) | X ∀q ∈ Q is generally true since
we have the following Markov Chain Y → X → q(X) ∀q ∈ Q.

Using Lemma A.4.1, the correct stopping criteria should be

L = inf{k ∈ {1, 2, ..., |Q|} : max
q∈Q

I(q(X);Y |Bx,m) = 0 ∀m ≥ k,m ≤ |Q|} (15)

Evaluating (15) would be computationally costly since it would involve processing all the queries
for every input x. We employ a more practically amenable criteria

qL+1 = qSTOP if max
q∈Q

I(q(X);Y |Bx,m) = 0 ∀m ∈ {L,L+ 1, ..., L+ T} (16)

T > 0 is a hyper-parameter chosen via cross-validation. Note, it is possible that there does not
exist any informative query in one iteration, but upon choosing a question there suddenly appears
informative queries in the next iteration. For example, consider the XOR problem. X ∈ R2 and
Y ∈ {0, 1}. Let Q be the set to two axis-aligned half-spaces. Both half-spaces have zero mu-
tual information with Y . However, upon choosing any one as q1, the other half-space is suddenly
informative about Y .

A.5 PROOF OF LEMMA A.4.1

Lemma. Assume Y ⊥⊥ q(X) | X ∀q ∈ Q. If event Bx,L satisfies the condition specified by (14)
then for all subsequent queries qm, m ≥ L, maxq∈Q I(q(X);Y |Bx,m) = 0. Since ties are broken
arbitrarily, EIP chooses any q ∈ Q as a subsequent query qm.

13

Under review as a conference paper at ICLR 2021

Proof. Recall each query q partitions the set X and Bx,L is the event {x′ ∈ X | {qi, qi(x)}1:L =
{qi, qi(x′)}1:L}. It is easy to see that if Bx,L satisfies the condition specified by (14) then

P (y | Bx,m) = P (y | x′) ∀x′ ∈ Bx,m ∀m ≥ L, ∀q ∈ Q (17)

This is because subsequent query-answers partition a set in which all the data points have the same
posterior distributions3. Now, ∀q ∈ Q, ∀a ∈ Range(q), y ∈ Y

p(q(X) = a, y|Bx,m) = p(q(X) = a | Bx,m)p(y | q(X) = a,Bx,m) (18)

eq: chain rule of prob is just an application of the chain rule of probability. The randomness in
Aq(X) is entirely due to the randomness in X . For any a ∈ Range(Aq), y ∈ Y

p(y | q(X) = a,Bx,m) =
∑

x′∈Bx,m∩{x∈X|q(X)=a}

p(y, x′ | a,Bx,m)

=
∑

x′∈Bx,m∩{x∈X|q(X)=a}

p(y | x′, a, Bx,m)p(x′ | a,Bx,m)

=
∑

x′∈Bx,m∩{x∈X|q(X)=a}

p(y | x′)p(x′ | a,Bx,m)

= p(y | Bx,m)
∑

x′∈Bx,m∩{x∈X|q(X)=a}

p(x′ | a,Bx,m)

= p(y | Bx,m)

(19)

The first equality is an application of the law of total probability, third due to conditional indepen-
dence of the history and the hypothesis given X = x′ (assumption) and the fourth by invoking
((17)).

Substituting (19) in (18) we obtain Y ⊥⊥ q(X) | Bx,m ∀m ≥ L, q ∈ Q. This implies that for all
subsequent queries qm, m > L, maxq∈Q I(q(X);Y |Bx,m) = 0. Hence, Proved.

A.6 PROOF OF PROPOSITION 3

Proposition. Given task TX;Y with Y being a discrete random variable. If there exists a function
f such that Y = f(X) and Q is the index set to all possible binary functions of X such that
H(q(X) | Y) = 0 ∀q ∈ Q then H(Y) ≤ C̃Q(X;Y) ≤ H(Y) + 1.

We make two remarks before turning to the proof.
Remark 1:

The task is to determine the true state of a latent variable Y ∈ Y based on querying an observed
data point x0. We assume Y = f(X) with f unknown. Were Y observable, the natural queries
would be indexed by subsets D ⊂ Y , one query for every D ⊂ Y , namely q(Y) = 1 if Y ∈ D
and 0 otherwise. (This is essentially the classic “twenty questions game”, but with an “oracle”
and “complete tests”.) There are 2|Y| such queries and obviously they collectively determine Y .
Now since Y = f(X), these queries are, at least implicitly, functions of the data X , but we need
realizable functions, not requiring knowledge of f . So our fundamental assumption is that for each
subset D ∈ Y the corresponding subset D′ ∈ X (D′ = f−1(D)) can be checked for inclusion of
X , i.e., Y ∈ D if and only if X ∈ D′. Or, what is the same, a binary query q(X) (and still denoted
q for simplicity) with q(X) = q(Y). In effect, we are assuming that whereas we cannot determine
Y directly from X , we can answer simple binary queries which determine Y and can be expressed
as observable data features.

Remark 2: The sequence of queries q1, q2, ... generated by the IP algorithm for a particular
data point can be seen as one branch, root to leaf, of a decision tree constructed by the standard
machine learning strategy based on successive reduction of uncertainty as measured by entropy:

3We refer to the distribution p(y | x) for any x ∈ X as the posterior distribution of x.

14

Under review as a conference paper at ICLR 2021

q1 = arg maxq∈Q I(q(X);Y), qk+1 = arg maxq∈Q I(Aq(X);Y |Bx0,k) where the Bx0,k is the
event that for the first k questions the answers agree with those for x0. We stop as soon as Y is
determined. Whereas a decision tree accommodates all x simultaneously, the questions along the
branch depends on having a particular, fixed data point. But the learning problem in the branch
version (“active testing”) is exponentially simpler.

Proof of Proposition 3.1: The lower bound H(Y) ≤ C̃Q(X;Y) comes from Shannon’s source
coding theorem for symbol codes.
Now for the upper bound, since I(q(X);Y |Bx0,k) = H(q(X)|Bx0,k) − H(q(X)|Y,Bx0,k) and
since Y determines q(Y) and hence also q(X), the second entropy term is zero (since given
H(Aq(X) | Y) = 0). So our problem is maximize the conditional entropy of the binary random
variable q(X) given Bx0,k. So the IP algorithm is clearly just “divide and conquer”:

q1 = arg max
q∈Q

H(q(X)),

qk+1 = arg max
q∈Q

H(q(X)|Bx0,k).

Equivalently, since entropy of a binary random variable ρ is maximized when P (ρ) = 1
2 ,

qk+1 = arg min
q∈Q
|P (q(X) = 1|Bx0,k)− 1

2
|.

Let Yk be the set of “active hypotheses” after k queries (denoted as Ak), namely those y with
positive posterior probability: P (Y = y|Bx0,k) > 0. Indeed,

P (Y = y|Bx0,k) =
P (Bx0,k|Y = y)p(y)∑
y P (Bx0,k|Y = y)p(y)

=
1Ykp(k)∑
y∈Ak p(y)

since

P (Bx0,k|Y = y) =

{
1, if y ∈ Ak
0, y /∈ Ak

In particular, the classes in the active set have the same relative weights as at the outset. In summary:

p(y|Bx0,k) =

{
p(y)/

∑
Ak p(l), y ∈ Ak

0, otherwise

The key observation to prove the theorem is that if a hypothesis y generates the same answers to the
first m or more questions as y0, and hence is active at step m, then its prior likelihood p(y) is at
most 2−(m−1), m = 1, 2, This is intuitively clear: if y has the same answer as y0 on the first
question, and p(y0) > 1

2 , then only one question is needed and the active set is empty at step two;
if q1(y) = q1(y0) and q2(y) = q2(y0) and p(y0) > 1

4 , then only two question are needed and the
active set is empty at step three, etc.

15

Under review as a conference paper at ICLR 2021

Finally, since C, the code length, takes values in the non-negative integers {0, 1, . . . , }:

C̃Q(X;Y) := E[C]

=

∞∑
m=1

P (C ≥ m)

≤
∞∑
m=1

P (p(Y) < 2−(m−1))

=

∞∑
m=1

∑
y:p(y)<2−(m−1)

p(y)

=
∑
y∈Y

∞∑
m=1

1{p(y)<2−(m−1)}p(k)

=
∑
y∈Y

p(k)(1− log p(k))

= H(Y) + 1

A.7 COMPUTING MUTUAL INFORMATION FOR (6)

A.7.1 IMPLEMENTING EIP : COMPUTING THE FIRST QUESTION q1

Once the Decoder network has been learnt using variational inference, the first question q1 can be
calculated as per (6). Since the mutual information is completely determined by p(q(x), y), which
is obtained by numerically marginalizing the nuisances Z from (8) using Monte Carlo integration.
∀q ∈ Q

pq(X)Y (q(x), y) =

∫
η

pQ(X)ZY (Q(x), η, y)dη

=

∫
η

pq(X)|ZY (q(x) | η, y)pY (y)pZ(η)dη

≈ 1

N

N∑
i=1

pω(q(x) | y, η(i))pY (y)

(20)

In the last approximation, pω(q(x) | y, η(i)) is the distribution obtained using the trained Decoder
network. N is the number of i.i.d. samples drawn and ηi ∼ pZ(η).

A.7.2 DERIVATION FOR (9)

.
p(q(x), y | Bx,k) =

∫
p(q(x), η, y | Bx,k)dη

=

∫
p(q(x) | η, y,Bx,k)p(η | y,Bx,k)p(y | Bx,k)dη.

=

∫
p(q(x) | η, y)p(η | y,Bx,k)p(y | Bx,k)dη.

(21)

The first equality is an application of the law of total probability. The last equality appeals to the
assumption that {q(X), q ∈ Q} are conditionally independent given Y,Z ((8)).

A.7.3 RECURSIVE ESTIMATION OF p(y | Bx,k)

Finally, p(y|Bk(x0)) (required for (9)) is computed recursively via the Bayes’ theorem.

p(y | Bx,k) ∝ p(y,Bx,k)

= p(qk(x), y, Bx,k−1)

∝ p(qk(x) | y,Bx,k−1)p(y | Bx,k−1)

(22)

16

Under review as a conference paper at ICLR 2021

Bx,0 = ∅ (since no evidence via queries has been gathered from x yet) and so p(y | Bx,0) = pY (y).
p(y | Bx,k) is obtained by normalizing the last equation in (22) such that

∑
y p(y|Bx,k) = 1.

p(qk(x) | y,Bx,k−1) can be estimated using (9).

A.8 TRAINING THE CONDITIONAL INFERENCE NETWORK

A normalizing flow is a sequence of invertible transformations that takes a random variable from a
simple source distribution (say Uniform or Gaussian) to an arbitrarily complex multi-modal target
distribution. These invertible transformations are parameterized by deep neural networks that can
express a richer family of distributions than the Gaussian/Uniform family. Specifically, we construct
a sequence of invertible mappings of the form ηl = Ψ̃l({(qi, qi(x))}1:k, y, ηl+1; γl), each parame-
terized by a neural network with weights γl, such that η0 is constrained to be normally distributed.
The composite function η0 = Ψ̃({(qi, qi(x))}1:k, y, η; γ) is a composition of N neural networks
with parameters γ = {γl}l∈{1,2,...,N}.

We call this network, Ψ̃, as the Conditional Inference Network. (Refer Fig. 2 for a pictorial depic-
tion). By the change-of-variables formula for probability densities, p(η | y,Bx,k) can be written
as.

pη(η | y,Bx,k) = pη0(Ψ̃({(qi, qi(x))}1:k, y, η; γ))

|∇ηΨ̃({(qi, qi(x))}1:k, y, η; γ)|
(23)

To ensure Ψ̃(η, y, {(qi, qi(x))}1:k; γ) is invertible and the determinant in (23) is efficiently com-
putable, the family of functions used is often constrained to those that admit an upper/lower tri-
angular Jacobin. The normalizing flow model employed here is the realNVP model introduced in
Dinh et al. (2016). For training we construct a dataset D∗ from given dataset D (of N i.i.d samples
{xi, yi} ∼ pXY (x, y)) in the following manner.

1. Since we assumed Q is finite, fix an enumeration. For every (x, y) in D, evaluate all the
functions in Q = {q : q ∈ Q} and obtain the sample (Q(x), y). Sample k ∼ pK(k),
then sample k random positions in Q(x) as mk ∼ pM (mk). pK(k) and pM (mk) are
user-defined distributions. In our applications PK(k) is taken to be Poisson(λ = 10) and
pM (mk) = U{1, 2, ..., |Q|}

2. Sample η ∼ qφ(η|y,Q(x)) using the trained Encoder network.

3. Mask Q(x) according to positions in mk to obtain k-length sequence {(q, q(x))q∈Q̃⊆Q}.
In this way, we obtain samples from the desired joint p(K,BK(X), Y, η). BK(X) is a
K-length random sequence {(q, q(X)) : q ∈ Q̃} for some Q̃ ⊆ Q.

The weights γ are then learnt using stochastic approximation by optimizing the following objective
using D∗.

max
γ

EK,BK(X),Y,η[log pη(η|Y,BK(X))] =

max
γ

EK,BK(X),Y,η[log pη0(Ψ̃(BK(X), Y, η; γ))

log |∇ηΨ̃(BK(X), Y, η; γ)|]

(24)

The second equality is obtained by substituting (23) in (24). p(η0) = N (0, Id).

To understand the objective in 24, assume general random variables ξ and ψ. Let our proposal
distribution be p̃(ψ|ξ) and the true distribution be p(ψ|ξ). Consider a loss function

KL(p(ψ|ξ)||p̃(ψ|ξ)) =

∫
p(ψ|ξ)log p(ψ|ξ)dψ

−
∫
p(ψ|ξ)log p̃(ψ|ξ)dψ

(25)

17

Under review as a conference paper at ICLR 2021

Since (25) should hold ∀ξ, we take an expectation over ξ.

Eξ[KL(p(ψ|ξ)||p̃(ψ|ξ))] =

∫
p(ξ)p(ψ|ξ)log p(ψ|ξ)dψdξ

−
∫
p(ξ)p(ψ|ξ)log p̃(ψ|ξ)dψdξ

=

∫
p(ξ, ψ)log p(ψ|ξ)dψdξ

−
∫
p(ξ, ψ)log p̃(ψ|ξ)dψdξ

(26)

min
p̃(ψ|ξ)

Eξ[KL(p(ψ|ξ)||p̃(ψ|ξ))]

= max
p̃(ψ|ξ)

∫
p(ξ, ψ)log p̃(ψ|ξ)dψdξ

= max
p̃(ψ|ξ)

Eψ,ξ[log p̃(ψ|ξ)]

(27)

The first term in (26) disappears since it does not depend on p̃(ψ|ξ). Compare (27) and (24). Sub-
stitute ψ := η and ξ := (K,BK(X), Y). The proposal p̃(.) is parameterized by the Conditional
Inference Network as pη(η|y,Bx,k).

The issue is that we don’t have access to the true distribution p(ψ|ξ) to generate samples for a
training set and learn an optimal p̃(ψ|ξ) for each Ξ = ξ. However, we have access to the joint
p(ξ, ψ) := p(k,Bk(x), y, η) from which we could generate data D∗ for optimizing (27) using
stochastic approximation.

A.9 NETWORK ARCHITECTURES AND TRAINING PROCEDURE

A.9.1 ENCODER AND DECODER NETWORKS

For the Information Pursuit Generative Model in subsection 3.2, we implemented a β-VAE as in-
troduced in Higgins et al. (2017). The encoder-decoder architecture used is depicted in Fig. 4.

Notation for Fig. 4:

• L(x, y) - Linear layer with x input units and y output units, followed by a BatchNorm layer
and leakyRELU activation.
• C x - Convolution layer with x 3×3 filters followed by a BatchNorm layer and leakyRELU

activation.
• C x M - Same as C x, followed by a Maxpool layer.
• DC x y z - Transposed Convolution layer with x y × y filters and stride z, followed by a

BatchNorm layer and leakyRELU activation.

Slope for leakyRELU activation was taken to be 0.3. BatchNorm and leakyRELU activation was
not applied to the output layer of the encoder network (Fig. 4a). BatchNorm was not applied and
the leakyRELU activation was replaced by Sigmoid in the output layer of the decoder network (Fig.
4).

Training. The β-VAE was trained by optimizing the Evidence Lower BOund (ELBO) objective,

max
ω,φ

n∑
i=1

[Eη∼p′φ(η|y(i),x(i))[log pω(x(i)|η, y(i))]

− βKL(p′φ(η|y(i), x(i))‖p(η))].

(28)

using ADAM with learning rate 0.001 and momentum parameters β1 = 0.9 & β2 = 0.999. β was
taken as 4.0 for all experiments. The prior over latents pZ(η) is taken as N (0, I100) and pY (y)
estimated from the empirical distribution of the outputs from the training data. Data augmentation
was performed on MNIST and its variants via elastic deformations. No Data augmentation was done
for the other datasets. The network was trained for 200 epochs.

18

Under review as a conference paper at ICLR 2021

Figure 4: The encoder-decoder architecture used in the β-VAE network. Recall from section 3.2 4,
Xj are the image pixels, Y is the class label and Z are the nuisances. (a) Encoder Network: Takes
the image {Xj}j∈{1,2,...,28×28} and class label Y as inputs and predicts the mean µ and diagonal
covariance matrix Σ of the nuisances Z. The weights of this network are denoted as ω in the main
text; (b) Decoder Network: Takes the nuisance Z and class label Y as inputs and predicts the
Bernoulli parameters of each pixel Xj in the image. The weights of this network are denoted as φ
in the main text. Best viewed in colour.

A.9.2 CONDITIONAL INFERENCE NETWORKS

Unless stated otherwise, the notation for the figures in this section is the same as introduced in
subsection A.9.1.

Network Architecture. For the Conditional Inference Network, introduced in Section 3.2, imple-
mented a variant of the flow network introduced in Dinh et al. (2016). Fig. 5 depicts the overall
architecture.

In Fig. 5 for our use-case with binary images and patch queries, {qi, qi(x)}1:k, represents a masked
image (sequence of patches observed), y denotes the class label, η are the nuisances distributed
according to the target complex distribution and η0 are the transformed random variables distributed
according to a uni-modal standard Gaussian distribution. Each triplet of (Actnorm Layer, Permute
Layer, Affine Layer) forms a layer of the flow network. The overall network is 25 layers deep. Each
layer represents the function ηl = Ψ̃l({qi, qi(x)}1:k, y, ηl+1); γl), with weights γl. The weights of
the flow network is denoted as γ = {γl}l∈{0,1,...,24}. In what follows, we describe in detail each of
the layers in a triplet.

Actnorm Layer: It has been proposed in literature to add a Batchnorm style layer with learnable
scale s and shift b parameters to stabilize network optimization. Fig. 6 depicts the Actnorm layer
network architecture used.

Permute Layer: This layer implements a permutation operation.

ηpermutel−1 = Pηactnorml−1 (29)

19

Under review as a conference paper at ICLR 2021

Figure 5: Overall architecture of the Conditional Inference Network used based on RealNVP
normalizing flows. The network takes {qi, qi(x)}1:k, Y and η as inputs and performs 25 trans-
formations η → η24 → η23 → . . . → η0. Each transformation is referred to as Ψ̃l :=
DNN({qi, qi(x)}1:k, y, ηl+1; γl) in Fig. 2.

Figure 6: The Actnorm layer used in each layer of the Conditional Inference Network. This layer
takes ηl, {qi, qi(x)}1:k) and y as input and outputs ηactnorml−1 . ◦ denotes element-wise multiplication.

Here P is a permutation matrix which swaps the first 50 dimensions of ηactnorml−1 with the next 50
dimensions. Recall, ηl ∈ R100 ∀l ∈ {0, 1, . . . , 25}.
Affine Layer: This layer implements the following operations.

h1l−1, h
2
l−1 = split(ηpermutel−1) (30)

20

Under review as a conference paper at ICLR 2021

s, t = NNaffine(h
1
l−1, Bk(x), y) (31)

α1
l−1 = h1l−1

α2
l−1 = h2l−1 ◦ s+ (1− s) ◦ t

(32)

◦ denotes element-wise multiplication.

ηl−1 = concat(α1
l−1, α

2
l−1) (33)

The split operation in (30) divides ηpermutel−1 into two halves, such that, h1l−1 = ηpermutel−1 [0 : 50] and
h2l−1 = ηpermutel−1 [50 : 100].

Fig. 7 depicts the network architecture used for the NNaffine in (31).

Figure 7: The NNaffine used in each Affine layer (31) of the Conditional Inference Network. This
layer takes h1l−1, {qi, qi(x)}1:k and y as inputs and outputs scale vector s and shift vector t.

Notice, each of the layers are invertible functions and hence their compositions (the 25 layer deep
flow network) is also invertible, which is a key requirement for (23).

Training. The dataset for optimizing (24) was generated as outlined in section A.8 (denoted as
D∗). The Conditional Inference Network was trained by optimizing this objective using ADAM
with learning rate 0.001 and momentum parameters β1 = 0.9 & β2 = 0.999. L2 regularization was
added to stabilize the training and prevent gradients from exploding (a common problem in training
normalizing flow networks). A scheduling was done for the regularization constant. Namely, we
optimized (24) with L2 regularization parameter {1012, 108, 102} for 5 epochs each. Finally, the L2
regularization was relaxed (that is, regularization constant was made 0) and the network was trained
for 500 epochs.

21

	Introduction
	Quantifying Task Complexity
	Approximating task complexity using Information Pursuit
	Approximation guarantees for Information Pursuit
	Information Pursuit using Variational Autoencoders + Normalizing Flows

	Case study: complexity of binary image classification tasks
	Conclusion and Related Work
	Appendix
	Proof of Proposition 1
	Proof of Proposition 2
	-approximate complexity of task
	Termination Criteria for EQIP
	Proof of Lemma A.4.1
	Proof of Proposition 3
	Computing Mutual Information for (6)
	Implementing EIP: computing the first question q1
	Derivation for (9)
	Recursive estimation of p(y Bx, k)

	Training the Conditional Inference Network
	Network Architectures and Training Procedure
	Encoder and Decoder networks
	Conditional Inference networks

