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Abstract001

Previous research has sought to enhance the002
graph reasoning capabilities of LLMs by su-003
pervised fine-tuning on synthetic graph data.004
While these led to specialized LLMs better at005
solving graph algorithm problems, we don’t006
need LLMs for shortest path: we need gen-007
eralization from synthetic graph data to real-008
world tasks with implicit graph structures. In009
this work, we propose to unlock generalizable010
learning of graph with post-training alignment011
with synthetic data. We first design solution-012
based and process-based rewards for synthetic013
graph problems: instead of rigid memorizing014
response patterns in direct fine-tuning, we posit015
that post-training alignment would help LLMs016
grasp the essentials underlying graph reason-017
ing and alleviate overfitting on synthetic data.018
We employ post-training alignment algorithms019
such as GRPO and DPO, aligning both off-the-020
shelf LLMs and LLMs fine-tuned on synthetic021
graph data. We then compare them against022
existing settings on both in-domain synthetic023
tasks and out-of-domain real-world tasks with024
implicit graph structures such as multi-hop QA,025
structured planning, and more. Extensive ex-026
periments demonstrate that our post-training027
alignment recipe leads to statistically signifi-028
cant improvement on 5 datasets, with an aver-029
age gain of 12.9% over baseline settings. Fur-030
ther analysis reveals that process-based rewards031
consistently outperform solution-based rewards032
on synthetic data but not on real-world tasks,033
and compositionality and explainable interme-034
diate steps remains a critical challenge even035
after post-training alignment. 1036

1 Introduction037

Going beyond language processing tasks, large lan-038

guage models (LLMs) are increasingly adopted for039

tasks with implicit graphical structures, such as040

1Experimental code and results are publicly avail-
able at https://anonymous.4open.science/r/
Graph_RL-BF08/readme.md

commonsense reasoning (Sakaguchi et al., 2021; 041

Saha et al., 2021), multi-hop QA (Ho et al., 2020; 042

Ding et al., 2024; Geva et al., 2021), and plan- 043

ning (Valmeekam et al., 2023; Padmakumar et al., 044

2022). Existing research focuses on evaluating 045

LLMs on the underlying graph problems such as 046

connectivity and shortest path, revealing that LLMs 047

do have preliminary graph reasoning capabilities 048

(Wang et al., 2023) while suffering from limita- 049

tions such as robustness and hallucination (Wang 050

et al., 2023; Zhang et al., 2024b; Guo et al., 2023). 051

Recent works seek to further improve LLM graph 052

reasoning, mostly through supervised fine-tuning 053

(SFT) on graph synthetic data (He et al., 2024b; 054

Perozzi et al., 2024): these techniques demonstrate 055

substantial improvement in LLMs’ ability to tackle 056

graph algorithm problems. 057

However, we don’t need LLMs to solve synthetic 058

graph problems such as shortest path and topologi- 059

cal sort: we already have algorithms (e.g., Dijkstra 060

and Ford-Fulkerson) that are 100% accurate and 061

much more efficient than calling an LLM. The goal 062

of leveraging synthetic graph data should thus be 063

learning from the structured reasoning data and 064

generalizing from synthetic graph problems to real- 065

world tasks with implicit structures. Unfortunately, 066

existing SFT recipes are not improving real-world 067

performance (Zhang et al., 2024b), even leading to 068

a 12.5% drop for tasks such as Proscript (Sakaguchi 069

et al., 2021). 070

To this end, we propose to unlock the power of 071

synthetic graph data with post-training alignment. 072

Instead of directly memorizing reasoning chains 073

of synthetic problems through SFT, we posit that 074

alignment would help LLMs learn the underlying 075

objectives of graph reasoning and mitigate exces- 076

sive over-fitting to synthetic problems. We design 077

two types of rewards for synthetic graph problems: 078

solution-based, where only the final answer is con- 079

sidered; process-based, where varying weights are 080

given to the soundness of intermediate steps and 081
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the final answer. We then align LLMs, both off-the-082

shelf and fine-tuned on synthetic graph problems,083

with alignment algorithms (e.g., GRPO (Shao et al.,084

2024) and DPO (Rafailov et al., 2023)) using these085

reward models. We then compare these alignment086

models against existing settings (off-the-shelf mod-087

els, SFT, etc.) on 1) in-domain synthetic tasks such088

as connectivity and shortest path; and more impor-089

tantly, 2) out-of-domain real-world graph problems090

such as multi-hop QA (Geva et al., 2021; Ding091

et al., 2024) and structured commonsense reason-092

ing (Saha et al., 2021; Sakaguchi et al., 2021).093

Extensive experiments with two LLMs and 8094

task settings demonstrate that our proposed align-095

ment recipes can sometimes outperform baselines096

across tasks and models on both synthetic and097

real-world graph problems, with important find-098

ings on reasoning on gaps between single-step and099

multi-step reasoning. For synthetic problems, post-100

training aligned models improve by 25% on aver-101

age for the connectivity task. More importantly,102

for real-world graph problems, our recipe provides103

statistically significant improvements on 5 task set-104

tings, with an average improvement of 13%. Our105

experiments also offer insights into the alignment106

recipe: the on-policy RL algorithm GRPO outper-107

forms DPO by 5% on average; process-based re-108

wards offer finer-grained signals for models to learn109

from when using GRPO on synthetic tasks, outper-110

forming solution-based by 24% on average, while111

there is no significant edge of process-based syn-112

thetic rewards on real-world tasks. Further analysis113

reveals that the main bottlenecks for models after114

alignment are twofold: the compositionality gap115

from correct single-step results to a correct multi-116

step solution, and an explainable and hallucination-117

free intermediate single-step to multi-step reason-118

ing path.119

2 Methdology120

Initial Dataset For synthetic graph datasets, we121

follow Wang et al. (2023) and Zhang et al. (2024b)122

to choose connectivity and shortest path problems.123

We choose these two tasks since reasoning behind124

connectivity and shortest path can represent a range125

of real-world graph problems, including compar-126

ing if two ideas are similar or not (if those two127

ideas are connected) (Saha et al., 2021), solving128

an implicit knowledge graph question (where the129

model will try to reason through the shortest path130

between two entities) (Ding et al., 2024). On the131

other hand, it is easy and straightforward to verify 132

the correctness of model responses on these two 133

tasks with a Python program. 134

Overall Pipeline Our approach follows a three- 135

stage pipeline leveraging synthetic graph data 136

for training and evaluation. We begin with an 137

off-the-shelf model (base model in the following 138

sections) and optionally perform supervised fine- 139

tuning (SFT) on a set of synthetic graph problems. 140

This SFT stage provides the model with exemplars 141

of graph reasoning (including structured reasoning 142

steps and final solutions) in a supervised manner, 143

priming it with domain-specific patterns before re- 144

inforcement learning. After SFT (or directly from 145

the base model if SFT is skipped), we further apply 146

post-training alignment methods on synthetic graph 147

tasks. Finally, we evaluate the resulting model on 148

both held-out synthetic problems and real-world 149

graph problems to assess reasoning generalization. 150

This end-to-end pipeline – from base model, to op- 151

tional synthetic SFT, to post-training alignment – 152

is designed to better understand the model’s capa- 153

bilities of learning and generalizing reasoning on 154

synthetic data to real-world problems. 155

Reward Design Our training data only contains 156

synthetic tasks of connectivity and shortest path, 157

whose answers can be easily verified using Python 158

programs, so we design rule-based rewards for 159

each task. For a more straightforward extraction of 160

certain parts of the model’s completion, we specify 161

a special format for the response, which contains 162

three parts: think, response and answer, which are 163

enclosed by “<think>...</think>”, 164

“<response>...</response>” and 165

“<answer>...</answer>” respectively. 166

For response and answer parts, we also specify a 167

given format of solving synthetic problems. We 168

introduce a small format reward to encourage 169

the model to generate clear intermediate steps 170

resembling the format. We design two types of 171

rewards based on this format: 172

• Solution-based Reward: We only extract the 173

solution of the response, which is enclosed by 174

“<answer>...</answer>”. We then as- 175

sign a reward to the response by comparing the 176

model’s solution directly with the ground truth 177

answer. If the extraction of solution fails due to 178

invalid format of the response, we consider it as 179

failing the task. 180
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The following paragraph describes an undirected graph 
with weights.
Node 0 is connected to node 2 with weight 1,
……
What is the shortest path between node 3 and node 2, 
and what is the length of the shortest path?

<think>We can try to find some of the possible shortest 
paths from node 3 to node 2, and then decide which one 
is the shortest.</think>
<response>STEP 1:
ACTION: [Give out one possible solution from node 3 to 
node 2.]
FACTS: [3->(4)4, 4->(3)2]
RESULTS: [3->(7)2]
……</response>
<answer>SHORTEST_PATH: 3->0->2
SHORTEST_PATH_LENGTH: 2</answer>

Synthetic Task

Real-world Task

Reinforcement Learning

OR

Supervised Fine-tuning (optional)

Process-based 
Reward

Answer
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Policy LLM

Reward

Generate

[StrategyQA] Could you make the 
kitchen 'holy trinity' without 
celery?

The following text describes an 
undirected graph.
Node 0 is connected to 1, 2…
Is there a path between node 1 and 
node 2?

[WikiDYK] What type of Japanese 
girls' comics were mostly written 
by men until the 1970s?
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SHORTEST_PATH: 3->1->2
SHORTEST_PATH_LENGTH: 6

SHORTEST_PATH: 3->0->2
SHORTEST_PATH_LENGTH: 2

Solution-based Reward

Evaluation

STEP 1: ACTION: [Check connections from 
node 3] FACTS: [3->1(3), 3->4(4), 3->0(1)] 
RESULTS: [All connections already known]...

STEP 1:ACTION: [Give out one possible 
solution from node 3 to node 2.] FACTS: 
[3->(4)4, 4->(3)2] RESULTS: [3->(7)2]...

Process-based Reward
1970s written by 
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Figure 1: The overall pipeline of our work. We first perform an optional SFT stage (left), followed by RL stage
(middle) with two rule-based reward designs. Both SFT and RL training use purely synthetic graph tasks. At last,
we evaluate models on both synthetic and real-world tasks (right).

• Process-based Reward: We extract the rea-181

soning process and the solution to assign a182

proper reward to each response, which are en-183

closed by “<response>...</response>”184

and “<answer>...</answer>”. For185

the reasoning processes enclosed by186

“<response>...</response>”, we187

reconstruct the underlying graph using Net-188

workX (Hagberg et al., 2008) and evaluate189

if all the reasoning processes are correct190

without hallucination or incorrect statements.191

For the solution, we use the same method192

as the Solution-based reward to evaluate its193

correctness.194

We assign 0.2 point reward to the overall format,195

0.1 point reward to process format (if applicable),196

and 1 point for the solution. We also introduce a197

penalty of -2 points that specializes in penalizing198

hallucinated edges or weights shown in reasoning199

process (and solution for shortest path). We de-200

scribe their principles here while detailed imple-201

mentations of reward functions, reward scores, and202

examples can be found in Appendix B.203

3 Experiment Settings204

3.1 Datasets and Evaluation205

Synthetic Dataset We directly adopt the dataset206

from NLGift (Zhang et al., 2024b) and build upon207

it. For each synthetic task, for each split of train and208

test sets, we take 500 questions and combine the209

two synthetic tasks together to construct our syn-210

thetic dataset. For the input, we choose to represent211

the graph using natural language by iterating all212

nodes first and then for each node iterating through213

all of the edges (and weights, if applicable). In214

the instruction, we also specify the desired format215

for output. For output, we build the ground truth216

response based on the reward design in Section 2. 217

For evaluation, we use rule-based methods to ex- 218

tract the solution to evaluate the accuracy of each 219

task. 220

Real-World Datasets We use the following 221

datasets for real-world tasks with implicit graph 222

structures. In general, we believe there are mainly 223

three categories related to implicit graph reasoning. 224

• Multi-hop QA: Multi-hop QA involves answer- 225

ing questions that need multi-step reasoning on a 226

certain set of knowledge and information, which 227

is strongly related to connectivity (to decide 228

whether two concepts are related) and shortest 229

path (to find the shortest reasoning path to con- 230

nect two concepts). We adopt StrategyQA (Geva 231

et al., 2021), Knowledge Crosswords (Ding et al., 232

2024), and WikiDYK (Zhang et al., 2025) for the 233

multi-hop QA task. 234

• Structured Commonsense Reasoning: Struc- 235

tured commonsense reasoning incooperates com- 236

mensense into questions that require structured 237

reasoning to solve, which is also related to syn- 238

thetic tasks like connectivity (to decide if two 239

daily tasks have direct relationship) or shortest 240

path (to decide if two ideas are supporting or 241

countering each other). We adopt ExplaGraphs 242

(Saha et al., 2021) and Proscript (Sakaguchi et al., 243

2021) for the structured commonsense reasoning 244

task. 245

• Action Planning: Action planning requires fol- 246

lowing a set of rules and figuring out the correct 247

steps without breaking any of the rules, which 248

is also strongly related to connectivity (to de- 249

cide if a certain action steps can reach the final 250

goal state) and shortest path (to generate a opti- 251

mal plan which connects two states). We adopt 252
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two versions of Blocksworld (Valmeekam et al.,253

2023) (Planning and Verification) for the action254

planning task.255

For all real-world datasets, we randomly sam-256

pled 1000 instances from each dataset. For most of257

the datasets, we follow the exact input and output258

format. Additional processing steps of datasets are259

introduced in Appendix D.260

3.2 Implementation261

Models and Training We conduct experiments262

using two base LLMs to verify generality:263

QWEN2.5-7B-INSTRUCT (Yang et al., 2024)264

and LLAMA-3.1-8B-INSTRUCT (Grattafiori et al.,265

2024). These models are chosen to represent dif-266

ferent model families and to ensure our findings267

are not specific to a single LLM. We chose two268

post-training methods for our experiment, one in269

on-policy RL and one in supervised learning. For270

on-policy RL, we use Group Relative Policy Opti-271

mization (GRPO) (Shao et al., 2024), an on-policy272

reinforcement learning algorithm that forgoes a273

value critic by comparing groups of model out-274

puts to estimate advantages. For supervised super-275

vised learning, we apply Direct Preference Opti-276

mization (DPO) (Rafailov et al., 2023), a reward-277

alignment technique that fine-tunes the policy on a278

static dataset of synthetic data generated with the279

base or tuned model with a high temperature of 0.9.280

We use a black-box LLM, Gemini 2.0 Flash (Pichai,281

2024), to summarize the response if needed.282

Experiment Details We implement the SFT and283

DPO training using the HuggingFace TRL library284

(von Werra et al., 2020), which provides high-level285

APIs for transformer fine-tuning using SFT and286

DPO. For GRPO, we utilize the open-source VeRL287

toolkit (Sheng et al., 2024) to efficiently train the288

model with distributed rollouts and policy updates.289

SFT is run for 3 epochs using learning rate of 1e-290

5, while DPO and GRPO are run for 8 epochs on291

their respective training data using lr of 1e-6 and292

5e-7. We use standard optimization settings and293

apply the AdamW optimizer in all stages (other hy-294

perparameters are kept consistent across SFT and295

RL to isolate the effect of training strategy). Train-296

ing and evaluation are performed on a server with297

16 NVIDIA A100 GPUs (40 GB memory each),298

which allows us to fully fine-tune the 7B/8B mod-299

els in a reasonable time frame. We use proportions300

z-test to test statistical significance for all the ex-301

periments.302

4 Results 303

We present main results of our paper in this sec- 304

tion. We first evaluate on the held-out set of syn- 305

thetic problems, and then select the models with 306

good performance on synthetic tasks to evaluate on 307

real-world datasets. While most settings of align- 308

ment methods achieved significant improvements 309

on synthetic tasks, on real-world implicit graph 310

reasoning tasks there are statistically significant 311

improvements on 5 of the 8 task settings. 312

4.1 Synthetic Tasks 313

As we adopt two reward designs and two alignment 314

training methods with an optional SFT stage, for 315

a single model we have eight experiment settings 316

in total. Detailed performance results are shown 317

in Table 1. In general, half of the settings of both 318

models achieved significant improvements (p-val 319

< 0.01), and 3 of the 16 settings achieved similar 320

performance compared to SFT models. Compared 321

with their original base models, training with SFT 322

brings a performance increase of 156% on average, 323

while directly training the model using alignment 324

methods provides a performance increase of 120% 325

on average, with GRPO performance better than 326

average and SFT, providing a 222% performance 327

increase. Compared with their SFT models, train- 328

ing additionally with alignment brings another 9% 329

performance increase. This indicates that our align- 330

ment recipes advances synthetic graph problems 331

compared to off-the-shelf models and existing SFT 332

approaches. 333

When comparing different alignment methods, 334

we see that GRPO achieved better performance 335

across two models with 8 settings, with 7 out of 8 336

settings achieving significant improvements com- 337

pared to SFT models, while DPO only achieved sig- 338

nificant improvement in 1 out of 8 settings, which 339

is both SFT trained first. The average performance 340

improvement of DPO is lower than those of GRPO, 341

with or without the optional SFT stage. Addition- 342

ally, GRPO can balance the performance of con- 343

nectivity and shortest path, resulting in a smaller 344

gap or even better performance on harder shortest 345

path tasks. 346

When comparing different reward designs, while 347

there is not a huge difference when training with 348

DPO, results of process-based reward are con- 349

stantly better than results of solution-based reward 350

when training with GRPO, with or without the SFT 351

stage. For instance, training with solution-based 352
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Reward Type Solution-based Reward Process-based Reward

Alignment Method GRPO DPO GRPO DPO

QWEN2.5-7B-INSTRUCT

ZERO-SHOT 0.360 (0.602, 0.118)

SFT 0.700 (0.914, 0.486)

ALIGNMENT W/O SFT 0.950 (0.948, 0.952) 0.342 (0.602, 0.082) 0.972 (0.968, 0.976) 0.329 (0.570, 0.088)

ALIGNMENT W/ SFT 0.805 (0.962, 0.648) 0.698 (0.928, 0.468) 0.967 (0.946, 0.988) 0.694 (0.926, 0.462)

LLAMA-3.1-8B-INSTRUCT

ZERO-SHOT 0.232 (0.458, 0.006)

SFT 0.738 (0.972, 0.504)

ALIGNMENT W/O SFT 0.817 (0.912, 0.722) 0.349 (0.658, 0.040) 0.932 (0.950, 0.914) 0.310 (0.616, 0.004)

ALIGNMENT W/ SFT 0.592 (0.942, 0.242) 0.785 (0.974, 0.596) 0.935 (0.938, 0.932) 0.789 (0.974, 0.604)

Table 1: Results on synthetic tasks. The results shown are accuracies on synthetic tasks. The results are presented in
the following format: overall performance (performance on connectivity, performance on shortest path). Results
with significant improvement over SFT are marked with bold, and results with significant performance decreases
are marked with grey. On-policy GRPO performs better than off-policy DPO, with better performance on synthetic
tasks, better robustness to reward type and optional SFT stage.
reward after SFT leads to an average performance353

drop of 26.7% compared to process-based reward354

with also high performance volatility during train-355

ing, proving that deliberately designed rewards that356

can check the reasoning process of the model’s357

response can lead to better results.358

In general, we believe for all of the settings, ex-359

cept training with DPO directly on the base model,360

have satisfactory results on synthetic test sets, and361

for the following real-world evaluation, we will362

use these good model settings: training the base363

model directly with GRPO using both reward de-364

signs, and training the SFT model with both GRPO365

and DPO using both reward designs. We will also366

conduct evaluation on the base and SFT models for367

comparison.368

4.2 Real-World Tasks369

Real-world evaluations reveal a helpful but mixed370

picture: Out of the 8 dataset settings, 3 of them371

exhibit consistent and statistically significant im-372

provements, and 5 where at least one alignment set-373

ting is significant. While post-training alignment374

on average achieve positive gains of 13.6%, it still375

fails to improve on certain settings or tasks. The im-376

pact of post-training alignment is task-dependent,377

with benefits most pronounced in problems closer378

to synthetic tasks such as planning and verification379

tasks, and some binary answer tasks, but limited380

improvements or even detrimental effects are ob-381

served in certain multi-hop and commonsense rea-382

soning benchmarks. Results are shown in Table383

2.384

On average, comparing the zero-shot perfor-385

mance, directly synthetic alignment using GRPO386

improved real-world performance by 5.2%, while 387

introducing synthetic SFT before synthetic alight- 388

nment using GRPO improved real-world perfor- 389

mance by 20.3%. Compared with synthetic SFT 390

performance, additional training using GRPO and 391

DPO increases performance by 9.5% and 4.0% re- 392

spectively. 393

A notable observation is that the choice of re- 394

ward design (process-based vs. solution-based re- 395

wards) does not produce a consistent winner across 396

tasks. In some evaluations the process-based re- 397

ward led to better outcomes, while in others the 398

solution-based reward (which only evaluates the 399

final answer) proved to be more effective. On aver- 400

age, compared with zero-shot performance, tuning 401

with GRPO with process-based or solution-based 402

reward leads to 13% and 8% performance increase 403

when skipping the synthetic SFT stage, while after 404

synthetic SFT the performance increases are 19% 405

and 24% respectively. This inconsistency suggests 406

that the optimal alignment reward for synthetic 407

graph problems may be task-dependent. 408

The impact of purely synthetic SFT is mixed 409

across different datasets. Some tasks derive signifi- 410

cant benefit from SFT alone, whereas others show 411

little performance increase or even worse perfor- 412

mance. For example, the Blocksworld tasks and 413

WikiDYK factual QA saw immediate boosts from 414

SFT with an average of 56%, which on average 415

alignment then amplified performance by 10%. In 416

contrast, other benchmarks did not respond as pos- 417

itively. In tasks like StrategyQA and Knowledge 418

Crosswords, simply applying SFT harmed accu- 419

racy, leading to an average of 28% performance de- 420

crease comparing to zero-shot performance, which 421
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Train Setting StrategyQA K-C WikiDYK-R WikiDYK-F ExplaGraphs Proscript BW-P BW-V Avg. Increase

QWEN2.5-7B-INSTRUCT

ZERO-SHOT 0.702 0.504 0.067 0.431 0.829 0.592 0.114 0.450 -
SYNTHETIC SFT 0.615 0.268 0.069 0.531 0.668 0.488 0.226 0.706 10.6%
DPO-P W/ SFT 0.622 0.280 0.070 0.534 0.689 0.483 0.202 0.734 9.7%
DPO-S W/ SFT 0.624 0.277 0.067 0.534 0.690 0.482 0.192 0.730 7.9%
GRPO-P W/O SFT 0.704 0.492 0.065 0.486 0.870 0.605 0.104 0.408 -0.4%
GRPO-S W/O SFT 0.717 0.523 0.056 0.374 0.831 0.521 0.140 0.482 -0.7%
GRPO-P W/ SFT 0.619 0.248 0.066 0.512 0.679 0.347 0.192 0.686 2.0%
GRPO-S W/ SFT 0.612 0.232 0.070 0.535 0.743 0.465 0.182 0.720 6.2%

LLAMA-3.1-8B-INSTRUCT

ZERO-SHOT 0.722 0.508 0.077 0.297 0.832 0.554 0.074 0.562 -
SYNTHETIC SFT 0.624 0.296 0.061 0.195 0.740 0.460 0.202 0.660 6.5%
DPO-P W/ SFT 0.624 0.326 0.072 0.229 0.754 0.451 0.304 0.556 25.4%
DPO-S W/ SFT 0.615 0.321 0.066 0.227 0.748 0.457 0.272 0.558 18.7%
GRPO-P W/O SFT 0.709 0.509 0.083 0.310 0.837 0.336 0.170 0.724 16.3%
GRPO-S W/O SFT 0.695 0.506 0.081 0.593 0.848 0.258 0.052 0.704 5.6%
GRPO-P W/ SFT 0.658 0.377 0.077 0.319 0.700 0.373 0.370 0.380 36.5%
GRPO-S W/ SFT 0.655 0.313 0.147 0.360 0.657 0.404 0.262 0.690 36.7%

Table 2: Performance of synthetic-only trained models on real-world tasks. Some datasets use abbreviated names:
K-C stands for Knowledge Crosswords; WikiDYK-R stands for Reliability setting, while WikiDYK-F stands for
factual setting; BW stands for Blocksworld, and BW-P and BW-V stands for planning and verification respectively.
-P and -S are reward function choice. All results except Proscript are shown in accuracy, and Proscript result
shows percentage of satisfied constraints. Significant performance increases (p-val < 0.01) compared to zero-shot
performance are marked bold, and significant performance decreases (p-val < 0.01) are marked with grey. Avg.
Increase denotes the average performance increase compared to Zero-Shot. In general, SFT and post-training
alignment have mixed results on different datasets, while on five of the eight tasks there is at least one alignment
setting that achieved statistically significant improvement.

further limits the performance increase using syn-422

thetic alignment.423

Results also suggest that generalization from syn-424

thetic to real-world via alignment is most success-425

ful when the target task is structurally similar to the426

synthetic tasks used during post-training alignment.427

In particular, Blocksworld planning task benefited428

greatly from alignment. After training on synthetic429

planning-like scenarios, the models were far better430

at solving the Blocksworld planning challenge than431

zero-shot performance. For instance, an alignment-432

tuned LLAMA-3.1-8B-INSTRUCT model achieved433

a dramatically higher planning success rate, in-434

creasing 129.7% compared to base or supervised-435

only counterparts, and an additional 83.2% perfor-436

mance increase when synthetic SFT-trained first.437

Finally, we note there are differences between438

the two model families in how well they general-439

ize with alignment. LLAMA-3.1-8B-INSTRUCT440

sometimes leverages post-training alignment more441

effectively on certain tasks; however, it also comes442

with a high variance of decreasing certain tasks’443

performance. For instance, compared to a perfor-444

mance increase standard error of 0.1 for QWEN2.5-445

7B-INSTRUCT trained with GRPO, LLAMA-3.1-446

8B-INSTRUCT has a standard error of more than447

0.46. 448

Overall, both post-training aligned LLMs show 449

mixed yet encouraging results on real-world tasks 450

with clear successes in certain scenarios, revealing 451

the task-specific nature of post-training alignment 452

successes and generalization from synthetic to real- 453

world problems. 454

5 Analysis 455

While using purely synthetic data and designed 456

rewards to tune the model using post-training 457

alignment achieves good results for certain tasks, 458

the alignment methods we use (GRPO and DPO) 459

still cannot achieve a universal performance boost 460

when testing on different domains. We further 461

conduct additional analysis using QWEN2.5-7B- 462

INSTRUCT to understand the gap between synthetic 463

and real-world reasoning. 464

5.1 Mixing Real-World Data 465

While the original goal for this work is to under- 466

stand and evaluate if alignment can further general- 467

ize synthetic graph reasoning to real-world implicit 468

graph reasoning tasks, we believe that normally we 469

can acquire a small amount of labelled data for a 470

real-world SFT stage with human annotation. We 471
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simulate this phase by introducing an additional472

SFT training using certain amount of labelled real-473

world data, and then we perform the alignment474

stage where all data instances and rewards are syn-475

thetic. While the SFT stage somehow provides476

the model clues about how to answer each kind477

of question, we are interested in finding out if fur-478

ther synthetic alignment training can increase the479

model’s performance.480

We derive a total of 300/1200/6000 samples with481

question and ground-truth pairs from the following482

six datasets: StrategyQA, Knowledge Crosswords,483

WikiDYK (Reliability), WikiDYK (Factual), Expla-484

Graphs, and Proscript, to simulate a small-sample485

SFT stage. Each real-world SFT set consists of 1/6486

of the total data. We train models using SFT for 3487

epochs, and then continue to use synthetic graph488

tasks to GRPO tune the model using process-based489

reward. Results are shown in Appendix B Table 3.490

Out of 18 alignment results, 6 achieved improve-491

ments w.r.t. their real-world SFT setting and other492

baselines; however, none of the improvements is493

statistically significant. Also, alignment’s effects494

are still task-dependent, without bringing a univer-495

sal improvement across all real-world tasks. In496

general, under the current setting, even mixing a497

small to medium portion of real-world data, a syn-498

thetic alignment stage after that is not the golden499

solution to generalize reasoning beyond synthetic500

patterns.501

5.2 Translation Between Single-Step and502

Multi-Step503

As shown in Table 2, results on StrategyQA and504

Knowledge Crosswords after alignment training505

(with or without the optional SFT stage) do not506

show any significant performance increase. Intu-507

itively, single-step results should generally be bet-508

ter, or at least not worse, than multi-step results due509

to the limitation of LLM’s multi-step reasoning ca-510

pabilities. We are interested in whether previous511

results indicate a limitation in knowledge, a reason-512

ing gap between single-step and multi-step implicit513

graph reasoning, or any other interesting findings.514

We build upon two datasets and extract a group of515

single-step questions from each multi-step question516

to probe the synthetic-trained language model’s re-517

sponse. Results are shown in Appendix B Figure 2.518

Examples of single-step questions for two datasets519

and implementation details, and additional analysis520

are presented in Appendix E.521

StrategyQA We see out of all the correct single- 522

step questions, there are at least 25%, or even as 523

much as 46%, of the incorrect multi-step results 524

across all training settings. This means that there 525

is indeed a gap between single-step and multi-step 526

reasoning, and even using synthetic alignment can- 527

not solve this problem. Another interesting finding 528

is that, out of all the correct multi-step results, at 529

least half of the correct results come from a not- 530

completely-correct single-step results. For instance, 531

the model successfully answers a multi-step ques- 532

tion ‘A->C’ which needs the information of single- 533

step ‘A->B’ and ‘B->C’, but fails to answer at least 534

one of the single-step questions. Also, the ratio of 535

incorrect single-step out of all correct multi-step 536

answers tends to increase with more real-world 537

SFT data. This suggests that either the model is 538

hallucinating the final answer, or the model is using 539

alternative methods to solve the multi-step ques- 540

tion. Both scenarios (using wrong/unexplainable 541

intermediate steps to solve a multi-step question, 542

or failing to get the correct final result even with 543

correct intermediate steps) are not desired in this 544

multi-step reasoning setting. 545

Knowledge Crosswords First, there is still a non- 546

negligible portion of incorrect multi-step results out 547

of all the correct single-step results, proving that 548

there is indeed a reasoning gap between single-step 549

and multi-step reasoning for Knowledge Cross- 550

words. Second, similar to StrategyQA analysis 551

results, there is an even larger portion of correct 552

multi-step answers with incorrect single-step re- 553

sults, and with the increased size of real-world 554

SFT, the amount of this portion increases. This 555

further proves that, although the model reached a 556

better overall performance for real-world dataset, 557

it mainly comes from a scenario that the model 558

is either hallucinating the results without correct 559

intermediate reasoning steps, or is using an alter- 560

native reasoning path, which is not the same as 561

human defined, to reason out the correct multi-step 562

answer. 563

In summary, while knowledge gap may be a 564

partial reason for the incapability of generalizing 565

to real-world tasks, two more significant caveats 566

arise. First, alignment struggles to patch the com- 567

positionality gap from single steps to the full prob- 568

lem. Second, performance increases, if any, are 569

more often caused by multi-step hallucination, as 570

models might provide correct answers to the full 571

problem without an accurate understanding of the 572
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underlying intermediate steps. These two limita-573

tions highlight the caveats of alignment learning574

with synthetic graph data and motivate solutions as575

future work.576

6 Related Work577

Post-training with LLMs Large language mod-578

els (LLMs) have been increasingly fine-tuned579

with reinforcement learning from human feedback580

(RLHF) to improve alignment, safety, and reason-581

ing (Ouyang et al., 2022; Bai et al., 2022; Jaech582

et al., 2024). Early applications of RLHF demon-583

strated significant gains in complex tasks such as584

text summarization and instruction-following (Sti-585

ennon et al., 2022; Ouyang et al., 2022) compared586

to previous models(Brown et al., 2020). To re-587

duce the cost of human feedback, RLAIF uses588

AI-generated preferences to train reward models589

with comparable performance (Lee et al., 2023).590

Most RL on LLM pipelines optimize LLM poli-591

cies with on-policy algorithms, notably Proxi-592

mal Policy Optimization (PPO) (Schulman et al.,593

2017), which originates from TRPO (Schulman594

et al., 2015), to iteratively maximize reward model595

outputs while constraining divergence from the596

base model. Group Relative Policy Optimization597

(GRPO) eliminates the need for a separate value598

network by normalizing rewards across batches,599

greatly improving training efficiency on reason-600

ing tasks (Shao et al., 2024). On the other hand,601

Direct Preference Optimization (DPO), reframes602

preference alignment as a simple supervised objec-603

tive without costly sampling (Rafailov et al., 2023).604

Alignment methods have substantially advanced605

the multi-step reasoning capabilities of LLMs (Chu606

et al., 2025; Guo et al., 2025a; Li et al., 2025; Ku-607

mar et al., 2024; Hu, 2025; Luo et al., 2025; Jain608

et al., 2025), with researchers exploring more capa-609

bilities of post-training alignment (Yue et al., 2025;610

Zuo et al., 2025; Shen et al., 2025; Wan et al., 2025;611

Wei et al., 2025; Chen et al., 2025).612

Graph Reasoning with LLMs Recent work has613

extended LLMs to reason over graph-structured614

data by encoding explicit graph structures, fine-615

tuning with graph instructions, and retrieval aug-616

mentation. A key idea is to represent graphs in617

an LM-readable form or code, either by lineariz-618

ing graph topology into text prompts or by inject-619

ing edge lists and paths into the context (Fatemi620

et al., 2024; Wang et al., 2023; Han et al., 2024;621

Madaan et al., 2022). Beyond prompting, special-622

ized graph instruction tuning has emerged: LLMs 623

are fine-tuned on graph reasoning tasks with po- 624

tential diverse modality to better internalize struc- 625

tured knowledge (Chen et al., 2024c; LUO et al., 626

2024; Perozzi et al., 2024; Wang et al., 2024b; Li 627

et al., 2024b; Das et al., 2024; Tang et al., 2024; He 628

et al., 2024b; Zhu et al., 2024; Wang et al., 2024a; 629

Deng et al., 2024; Chen et al., 2024a), or further en- 630

hanced with graph structures (Lin et al., 2024; Chen 631

et al., 2024b; Wu et al., 2024). Such models out- 632

perform zero-shot LLMs on tasks like knowledge 633

graph question answering and multi-hop reasoning, 634

demonstrating that integrating graph context can 635

curb hallucinations and improve relational infer- 636

ence (He et al., 2024a; Guo et al., 2023). However, 637

recent benchmarks suggest that while fine-tuning 638

on synthetic graph data can teach LLMs specific 639

patterns, these models often cannot fully transfer 640

(Zhu et al., 2024; Chu et al., 2025; Tang et al., 2025) 641

or struggle to transfer beyond their training distribu- 642

tion or generalize to real-world tasks (Zhang et al., 643

2024b; Guo et al., 2023). This gap has spurred new 644

efforts to improve LLMs’ graph reasoning robust- 645

ness, though achieving reliable out-of-distribution 646

generalization remains an open challenge. 647

7 Conclusion 648

In this work, we investigate using post-training 649

alignment to generalize LLM graph learning be- 650

yond synthetic problems. We use synthetic graph 651

tasks including connectivity and shortest path, 652

and implement the alignment reward using rule- 653

based rewards with two designs: process-based 654

and solution-based reward, finding that process- 655

based reward consistently outperforms solution- 656

based reward. While models purely trained on syn- 657

thetic problems with alignment can lead to overall 658

synthetic performance increases and partial perfor- 659

mance increases on real-world tasks, post-training 660

alignment on synthetic data does not provide a 661

universal solution to all real-world tasks. Further, 662

we analyze the performance bottleneck of current 663

LLMs graph reasoning, including two important 664

caveats: failure to generalize from single-step to 665

multi-step reasoning, and potential hallucination 666

from single-step reasoning to multi-step reasoning. 667

With the partial success and important findings of 668

synthetic alignment on real-world tasks, we be- 669

lieve further research is in need to fully understand 670

the compositionality and explainability of graph- 671

related generalization of LLMs. 672
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Limitations673

Adopted Methods We only adopt two represen-674

tative post-training alignment methods (GRPO and675

DPO) on LLMs, while there are still a wide range676

of on-policy optimization methods (Zhang et al.,677

2024a; Schulman et al., 2017; Yuan et al., 2025b;678

Yu et al., 2025; Guo et al., 2024; Rosset et al., 2024;679

Agarwal et al., 2024) and off-policy optimization680

methods (Xu et al., 2024; Ethayarajh et al., 2024;681

Meng et al., 2024) with possible model-based re-682

wards (Uesato et al., 2022). With that in mind, in683

general, we do see that different methods are en-684

hancing training efficiency and stability and should685

not impact the overall results of our work greatly.686

We also notice there are different methods be-687

sides adopted post-training alignment, aiming to688

improve general reasoning capabilities of LLMs, in-689

cluding test-time scaling (Muennighoff et al., 2025;690

Snell et al., 2024; Setlur et al., 2025; Li et al., 2025;691

Zuo et al., 2025; Huang et al., 2025; Yuan et al.,692

2025a) and sub-response level reward or supervi-693

sion (Xiong et al., 2024; Uesato et al., 2022; Light-694

man et al., 2023). We leave experimenting using695

these methods for future work.696

Adopted Models We only adopt two repre-697

sentative open-source models (QWEN2.5 and698

LLAMA3.1 with relative small size (7B and 8B re-699

spectively) (Li et al., 2024a). While there are still a700

wide range of open-source LLMs (Grattafiori et al.,701

2024; Yang et al., 2024; Jiang et al., 2023; Liu702

et al., 2024a; Team et al., 2024) and close-source703

LLMs (ant; Guo et al., 2025b; dee; ope; Jaech et al.,704

2024; Hurst et al., 2024; Pichai, 2024) with differ-705

ent model sizes, we do believe the ultimate goal706

is to achieve a universal and general good perfor-707

mance across all models and all sizes, especially708

with potential of fully utilizing synthetic data on709

real-world tasks, and reliable and huallicination-710

free reasoning steps in multi-step reasoning tasks.711

Real-World Datasets We only adopt 8 real-712

world tasks within 3 main categories (multi-hop713

QA, commonsense reasoning, and action planning).714

There are still plenty of datasets that belong to these715

three categories (Mavi et al., 2024; Davis, 2023;716

Talmor et al., 2021; Ghazal et al., 2013; Yang et al.,717

2025; Liu et al., 2024b; Choi et al., 2024) and other718

reasoning related datasets and domains (Hendrycks719

et al., 2021; Cobbe et al., 2021; Tong et al., 2024;720

Qiu et al., 2025; Jimenez et al., 2023; Zhuo et al.,721

2024; Sui et al., 2024; Xiong et al., 2023; Sprague722

et al., 2023; Xin et al., 2024; Wen et al., 2024). 723

We also notice that our selected datasets may not 724

thoroughly represent real-world datasets and tasks 725

perfectly, but in general they still have a large gap 726

with purely synthetic data generated by algorithms 727

and symbolic representations. 728

References 729

Claude 3.7 Sonnet and Claude Code — anthropic.com. 730
https://www.anthropic.com/news/ 731
claude-3-7-sonnet. [Accessed 13-05-2025]. 732

Gemini 2.5 Pro — deepmind.google. https: 733
//deepmind.google/technologies/ 734
gemini/pro/. [Accessed 13-05-2025]. 735

OpenAI o3 and o4-mini System Card — ope- 736
nai.com. https://openai.com/index/ 737
o3-o4-mini-system-card/. [Accessed 13- 738
05-2025]. 739

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Pi- 740
otr Stanczyk, Sabela Ramos Garea, Matthieu Geist, 741
and Olivier Bachem. 2024. On-policy distillation 742
of language models: Learning from self-generated 743
mistakes. In The Twelfth International Conference 744
on Learning Representations. 745

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda 746
Askell, Anna Chen, Nova DasSarma, Dawn Drain, 747
Stanislav Fort, Deep Ganguli, Tom Henighan, and 1 748
others. 2022. Training a helpful and harmless assis- 749
tant with reinforcement learning from human feed- 750
back. arXiv preprint arXiv:2204.05862. 751

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 752
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 753
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 754
Askell, and 1 others. 2020. Language models are 755
few-shot learners. Advances in neural information 756
processing systems, 33:1877–1901. 757

Nuo Chen, Yuhan Li, Jianheng Tang, and Jia Li. 2024a. 758
Graphwiz: An instruction-following language model 759
for graph computational problems. In Proceedings 760
of the 30th ACM SIGKDD Conference on Knowl- 761
edge Discovery and Data Mining, KDD ’24, page 762
353–364, New York, NY, USA. Association for Com- 763
puting Machinery. 764

Runjin Chen, Tong Zhao, Ajay Kumar Jaiswal, Neil 765
Shah, and Zhangyang Wang. 2024b. LLaGA: Large 766
language and graph assistant. In Proceedings of the 767
41st International Conference on Machine Learning, 768
volume 235 of Proceedings of Machine Learning 769
Research, pages 7809–7823. PMLR. 770

Yanda Chen, Joe Benton, Ansh Radhakrishnan, 771
Jonathan Uesato, Carson Denison, John Schulman, 772
Arushi Somani, Peter Hase, Misha Wagner, Fa- 773
bien Roger, and 1 others. 2025. Reasoning models 774
don’t always say what they think. arXiv preprint 775
arXiv:2505.05410. 776

9

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://deepmind.google/technologies/gemini/pro/
https://deepmind.google/technologies/gemini/pro/
https://deepmind.google/technologies/gemini/pro/
https://deepmind.google/technologies/gemini/pro/
https://deepmind.google/technologies/gemini/pro/
https://openai.com/index/o3-o4-mini-system-card/
https://openai.com/index/o3-o4-mini-system-card/
https://openai.com/index/o3-o4-mini-system-card/
https://doi.org/10.1145/3637528.3672010
https://doi.org/10.1145/3637528.3672010
https://doi.org/10.1145/3637528.3672010
https://proceedings.mlr.press/v235/chen24bh.html
https://proceedings.mlr.press/v235/chen24bh.html
https://proceedings.mlr.press/v235/chen24bh.html


Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi777
Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin,778
Wenqi Fan, Hui Liu, and 1 others. 2024c. Explor-779
ing the potential of large language models (llms) in780
learning on graphs. ACM SIGKDD Explorations781
Newsletter, 25(2):42–61.782

Jae-Woo Choi, Youngwoo Yoon, Hyobin Ong, Jaehong783
Kim, and Minsu Jang. 2024. Lota-bench: Bench-784
marking language-oriented task planners for embod-785
ied agents. In The Twelfth International Conference786
on Learning Representations.787

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Sheng-788
bang Tong, Saining Xie, Dale Schuurmans, Quoc V789
Le, Sergey Levine, and Yi Ma. 2025. Sft mem-790
orizes, rl generalizes: A comparative study of791
foundation model post-training. arXiv preprint792
arXiv:2501.17161.793

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,794
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias795
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro796
Nakano, and 1 others. 2021. Training verifiers797
to solve math word problems. arXiv preprint798
arXiv:2110.14168.799

Debarati Das, Ishaan Gupta, Jaideep Srivastava, and800
Dongyeop Kang. 2024. Which modality should I use801
- text, motif, or image? : Understanding graphs with802
large language models. In Findings of the Associ-803
ation for Computational Linguistics: NAACL 2024,804
pages 503–519, Mexico City, Mexico. Association805
for Computational Linguistics.806

Ernest Davis. 2023. Benchmarks for automated com-807
monsense reasoning: A survey. ACM Computing808
Surveys, 56(4):1–41.809

Yihe Deng, Chenchen Ye, Zijie Huang, Mingyu Derek810
Ma, Yiwen Kou, and Wei Wang. 2024. Graphvis:811
Boosting llms with visual knowledge graph integra-812
tion. In The Thirty-eighth Annual Conference on813
Neural Information Processing Systems.814

Wenxuan Ding, Shangbin Feng, Yuhan Liu, Zhaoxuan815
Tan, Vidhisha Balachandran, Tianxing He, and Yulia816
Tsvetkov. 2024. Knowledge crosswords: Geometric817
knowledge reasoning with large language models.818
In Findings of the Association for Computational819
Linguistics: ACL 2024, pages 2609–2636, Bangkok,820
Thailand. Association for Computational Linguistics.821

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,822
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model823
alignment as prospect theoretic optimization. arXiv824
preprint arXiv:2402.01306.825

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi.826
2024. Talk like a graph: Encoding graphs for large827
language models. In The Twelfth International Con-828
ference on Learning Representations.829

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,830
Dan Roth, and Jonathan Berant. 2021. Did aristotle831
use a laptop? a question answering benchmark with832

implicit reasoning strategies. Transactions of the 833
Association for Computational Linguistics, 9:346– 834
361. 835

Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois 836
Raab, Meikel Poess, Alain Crolotte, and Hans-Arno 837
Jacobsen. 2013. Bigbench: Towards an industry stan- 838
dard benchmark for big data analytics. In Proceed- 839
ings of the 2013 ACM SIGMOD international confer- 840
ence on Management of data, pages 1197–1208. 841

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 842
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 843
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, 844
Alex Vaughan, and 1 others. 2024. The llama 3 herd 845
of models. arXiv preprint arXiv:2407.21783. 846

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 847
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong 848
Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025a. 849
Deepseek-r1: Incentivizing reasoning capability in 850
llms via reinforcement learning. arXiv preprint 851
arXiv:2501.12948. 852

Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, 853
Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang, 854
Jianyu Jiang, Jiawei Wang, and 1 others. 2025b. 855
Seed1. 5-vl technical report. arXiv preprint 856
arXiv:2505.07062. 857

Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi 858
He, and Shi Han. 2023. Gpt4graph: Can large 859
language models understand graph structured data? 860
an empirical evaluation and benchmarking. arXiv 861
preprint arXiv:2305.15066. 862

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, 863
Misha Khalman, Felipe Llinares, Alexandre Rame, 864
Thomas Mesnard, Yao Zhao, Bilal Piot, and 1 others. 865
2024. Direct language model alignment from online 866
ai feedback. arXiv preprint arXiv:2402.04792. 867

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 868
2008. Exploring network structure, dynamics, and 869
function using networkx. In Proceedings of the 870
7th Python in Science Conference, pages 11 – 15, 871
Pasadena, CA USA. 872

Jiuzhou Han, Nigel Collier, Wray Buntine, and Ehsan 873
Shareghi. 2024. PiVe: Prompting with iterative veri- 874
fication improving graph-based generative capability 875
of LLMs. In Findings of the Association for Compu- 876
tational Linguistics: ACL 2024, pages 6702–6718, 877
Bangkok, Thailand. Association for Computational 878
Linguistics. 879

Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam 880
Perold, Yann LeCun, and Bryan Hooi. 2024a. Har- 881
nessing explanations: LLM-to-LM interpreter for en- 882
hanced text-attributed graph representation learning. 883
In The Twelfth International Conference on Learning 884
Representations. 885

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh Chawla, 886
Thomas Laurent, Yann LeCun, Xavier Bresson, 887

10

https://openreview.net/forum?id=ADSxCpCu9s
https://openreview.net/forum?id=ADSxCpCu9s
https://openreview.net/forum?id=ADSxCpCu9s
https://openreview.net/forum?id=ADSxCpCu9s
https://openreview.net/forum?id=ADSxCpCu9s
https://doi.org/10.18653/v1/2024.findings-naacl.34
https://doi.org/10.18653/v1/2024.findings-naacl.34
https://doi.org/10.18653/v1/2024.findings-naacl.34
https://doi.org/10.18653/v1/2024.findings-naacl.34
https://doi.org/10.18653/v1/2024.findings-naacl.34
https://doi.org/10.18653/v1/2024.findings-acl.154
https://doi.org/10.18653/v1/2024.findings-acl.154
https://doi.org/10.18653/v1/2024.findings-acl.154
https://openreview.net/forum?id=IuXR1CCrSi
https://openreview.net/forum?id=IuXR1CCrSi
https://openreview.net/forum?id=IuXR1CCrSi
https://doi.org/10.18653/v1/2024.findings-acl.400
https://doi.org/10.18653/v1/2024.findings-acl.400
https://doi.org/10.18653/v1/2024.findings-acl.400
https://doi.org/10.18653/v1/2024.findings-acl.400
https://doi.org/10.18653/v1/2024.findings-acl.400
https://openreview.net/forum?id=RXFVcynVe1
https://openreview.net/forum?id=RXFVcynVe1
https://openreview.net/forum?id=RXFVcynVe1
https://openreview.net/forum?id=RXFVcynVe1
https://openreview.net/forum?id=RXFVcynVe1


and Bryan Hooi. 2024b. G-retriever: Retrieval-888
augmented generation for textual graph understand-889
ing and question answering. Advances in Neural890
Information Processing Systems, 37:132876–132907.891

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul892
Arora, Steven Basart, Eric Tang, Dawn Song, and893
Jacob Steinhardt. 2021. Measuring mathematical894
problem solving with the MATH dataset. In Thirty-895
fifth Conference on Neural Information Processing896
Systems Datasets and Benchmarks Track (Round 2).897

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,898
and Akiko Aizawa. 2020. Constructing a multi-899
hop QA dataset for comprehensive evaluation of900
reasoning steps. In Proceedings of the 28th Inter-901
national Conference on Computational Linguistics,902
pages 6609–6625, Barcelona, Spain (Online). Inter-903
national Committee on Computational Linguistics.904

Jian Hu. 2025. Reinforce++: A simple and efficient905
approach for aligning large language models. arXiv906
preprint arXiv:2501.03262.907

Chengsong Huang, Langlin Huang, Jixuan Leng, Ji-908
acheng Liu, and Jiaxin Huang. 2025. Efficient test-909
time scaling via self-calibration. arXiv preprint910
arXiv:2503.00031.911

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam912
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,913
Akila Welihinda, Alan Hayes, Alec Radford, and 1914
others. 2024. Gpt-4o system card. arXiv preprint915
arXiv:2410.21276.916

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-917
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,918
Aleksander Madry, Alex Beutel, Alex Carney, and 1919
others. 2024. Openai o1 system card. arXiv preprint920
arXiv:2412.16720.921

Arnav Kumar Jain, Gonzalo Gonzalez-Pumariega,922
Wayne Chen, Alexander M Rush, Wenting Zhao, and923
Sanjiban Choudhury. 2025. Multi-turn code gener-924
ation through single-step rewards. arXiv preprint925
arXiv:2502.20380.926

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-927
sch, Chris Bamford, Devendra Singh Chaplot, Diego928
de las Casas, Florian Bressand, Gianna Lengyel, Guil-929
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,930
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,931
Thibaut Lavril, Thomas Wang, Timothée Lacroix,932
and William El Sayed. 2023. Mistral 7b. Preprint,933
arXiv:2310.06825.934

Carlos E Jimenez, John Yang, Alexander Wettig,935
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik936
Narasimhan. 2023. Swe-bench: Can language mod-937
els resolve real-world github issues? arXiv preprint938
arXiv:2310.06770.939

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal,940
Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,941
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, and942

1 others. 2024. Training language models to self- 943
correct via reinforcement learning. arXiv preprint 944
arXiv:2409.12917. 945

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kel- 946
lie Ren Lu, Thomas Mesnard, Johan Ferret, Colton 947
Bishop, Ethan Hall, Victor Carbune, and Abhinav 948
Rastogi. 2023. Rlaif: Scaling reinforcement learning 949
from human feedback with ai feedback. 950

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nan- 951
ning Zheng, Han Hu, Zheng Zhang, and Houwen 952
Peng. 2024a. Common 7b language models already 953
possess strong math capabilities. arXiv preprint 954
arXiv:2403.04706. 955

Dacheng Li, Shiyi Cao, Chengkun Cao, Xiuyu Li, 956
Shangyin Tan, Kurt Keutzer, Jiarong Xing, Joseph E 957
Gonzalez, and Ion Stoica. 2025. S*: Test 958
time scaling for code generation. arXiv preprint 959
arXiv:2502.14382. 960

Yunxin Li, Baotian Hu, Haoyuan Shi, Wei Wang, 961
Longyue Wang, and Min Zhang. 2024b. Visiongraph: 962
leveraging large multimodal models for graph theory 963
problems in visual context. In Proceedings of the 964
41st International Conference on Machine Learning, 965
ICML’24. JMLR.org. 966

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri- 967
son Edwards, Bowen Baker, Teddy Lee, Jan Leike, 968
John Schulman, Ilya Sutskever, and Karl Cobbe. 969
2023. Let’s verify step by step. In The Twelfth Inter- 970
national Conference on Learning Representations. 971

Fangru Lin, Emanuele La Malfa, Valentin Hofmann, 972
Elle Michelle Yang, Anthony G. Cohn, and Janet B. 973
Pierrehumbert. 2024. Graph-enhanced large lan- 974
guage models in asynchronous plan reasoning. In 975
Proceedings of the 41st International Conference on 976
Machine Learning, ICML’24. JMLR.org. 977

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, 978
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi 979
Deng, Chenyu Zhang, Chong Ruan, and 1 others. 980
2024a. Deepseek-v3 technical report. arXiv preprint 981
arXiv:2412.19437. 982

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu 983
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen 984
Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Ao- 985
han Zeng, Zhengxiao Du, Chenhui Zhang, Sheng 986
Shen, Tianjun Zhang, Yu Su, Huan Sun, and 3 others. 987
2024b. Agentbench: Evaluating LLMs as agents. In 988
The Twelfth International Conference on Learning 989
Representations. 990

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian- 991
Guang Lou, Chongyang Tao, Xiubo Geng, Qingwei 992
Lin, Shifeng Chen, Yansong Tang, and Dongmei 993
Zhang. 2025. Wizardmath: Empowering mathemat- 994
ical reasoning for large language models via rein- 995
forced evol-instruct. In The Thirteenth International 996
Conference on Learning Representations. 997

11

https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://arxiv.org/abs/2310.06825
https://openreview.net/forum?id=zAdUB0aCTQ
https://openreview.net/forum?id=mMPMHWOdOy
https://openreview.net/forum?id=mMPMHWOdOy
https://openreview.net/forum?id=mMPMHWOdOy
https://openreview.net/forum?id=mMPMHWOdOy
https://openreview.net/forum?id=mMPMHWOdOy


LINHAO LUO, Yuan-Fang Li, Gholamreza Haffari, and998
Shirui Pan. 2024. Reasoning on graphs: Faithful and999
interpretable large language model reasoning. In1000
The Twelfth International Conference on Learning1001
Representations.1002

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,1003
and Graham Neubig. 2022. Language models of code1004
are few-shot commonsense learners. In Proceedings1005
of the 2022 Conference on Empirical Methods in Nat-1006
ural Language Processing, pages 1384–1403, Abu1007
Dhabi, United Arab Emirates. Association for Com-1008
putational Linguistics.1009

Vaibhav Mavi, Anubhav Jangra, Adam Jatowt, and1010
1 others. 2024. Multi-hop question answering.1011
Foundations and Trends® in Information Retrieval,1012
17(5):457–586.1013

Yu Meng, Mengzhou Xia, and Danqi Chen. 2024.1014
SimPO: Simple preference optimization with a1015
reference-free reward. In The Thirty-eighth Annual1016
Conference on Neural Information Processing Sys-1017
tems.1018

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-1019
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke1020
Zettlemoyer, Percy Liang, Emmanuel Candès, and1021
Tatsunori Hashimoto. 2025. s1: Simple test-time1022
scaling. arXiv preprint arXiv:2501.19393.1023

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,1024
Carroll Wainwright, Pamela Mishkin, Chong Zhang,1025
Sandhini Agarwal, Katarina Slama, Alex Ray, and 11026
others. 2022. Training language models to follow in-1027
structions with human feedback. Advances in neural1028
information processing systems, 35:27730–27744.1029

Aishwarya Padmakumar, Jesse Thomason, Ayush Shri-1030
vastava, Patrick Lange, Anjali Narayan-Chen, Span-1031
dana Gella, Robinson Piramuthu, Gokhan Tur, and1032
Dilek Hakkani-Tur. 2022. Teach: Task-driven em-1033
bodied agents that chat. In Proceedings of the AAAI1034
Conference on Artificial Intelligence, volume 36,1035
pages 2017–2025.1036

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsit-1037
sulin, Mehran Kazemi, Rami Al-Rfou, and Jonathan1038
Halcrow. 2024. Let your graph do the talking: En-1039
coding structured data for llms. arXiv preprint1040
arXiv:2402.05862.1041

Sundar Pichai. 2024. Introducing gemini 2.0: Our new1042
ai model for the agentic era.1043

Shi Qiu, Shaoyang Guo, Zhuo-Yang Song, Yunbo Sun,1044
Zeyu Cai, Jiashen Wei, Tianyu Luo, Yixuan Yin,1045
Haoxu Zhang, Yi Hu, and 1 others. 2025. Phybench:1046
Holistic evaluation of physical perception and rea-1047
soning in large language models. arXiv preprint1048
arXiv:2504.16074.1049

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-1050
pher D Manning, Stefano Ermon, and Chelsea Finn.1051
2023. Direct preference optimization: Your language1052
model is secretly a reward model. In Advances in1053

Neural Information Processing Systems, volume 36, 1054
pages 53728–53741. Curran Associates, Inc. 1055

Corby Rosset, Ching-An Cheng, Arindam Mi- 1056
tra, Michael Santacroce, Ahmed Awadallah, and 1057
Tengyang Xie. 2024. Direct nash optimization: 1058
Teaching language models to self-improve with gen- 1059
eral preferences. arXiv preprint arXiv:2404.03715. 1060

Swarnadeep Saha, Prateek Yadav, Lisa Bauer, and Mo- 1061
hit Bansal. 2021. Explagraphs: An explanation graph 1062
generation task for structured commonsense reason- 1063
ing. In Proceedings of the 2021 Conference on Em- 1064
pirical Methods in Natural Language Processing, 1065
pages 7716–7740. 1066

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan 1067
Le Bras, Niket Tandon, Peter Clark, and Yejin Choi. 1068
2021. Proscript: Partially ordered scripts generation. 1069
In 2021 Findings of the Association for Computa- 1070
tional Linguistics, Findings of ACL: EMNLP 2021, 1071
pages 2138–2149. Association for Computational 1072
Linguistics (ACL). 1073

John Schulman, Sergey Levine, Pieter Abbeel, Michael 1074
Jordan, and Philipp Moritz. 2015. Trust region pol- 1075
icy optimization. In International conference on ma- 1076
chine learning, pages 1889–1897. PMLR. 1077

John Schulman, Filip Wolski, Prafulla Dhariwal, 1078
Alec Radford, and Oleg Klimov. 2017. Proxi- 1079
mal policy optimization algorithms. arXiv preprint 1080
arXiv:1707.06347. 1081

Amrith Setlur, Nived Rajaraman, Sergey Levine, and 1082
Aviral Kumar. 2025. Scaling test-time compute with- 1083
out verification or rl is suboptimal. arXiv preprint 1084
arXiv:2502.12118. 1085

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, 1086
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan 1087
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024. 1088
Deepseekmath: Pushing the limits of mathemati- 1089
cal reasoning in open language models. Preprint, 1090
arXiv:2402.03300. 1091

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wen- 1092
jing Zhang, Jiangze Yan, Ning Wang, Kai Wang, and 1093
Shiguo Lian. 2025. Dast: Difficulty-adaptive slow- 1094
thinking for large reasoning models. arXiv preprint 1095
arXiv:2503.04472. 1096

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin 1097
Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin 1098
Lin, and Chuan Wu. 2024. Hybridflow: A flexible 1099
and efficient rlhf framework. arXiv preprint arXiv: 1100
2409.19256. 1101

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku- 1102
mar. 2024. Scaling llm test-time compute optimally 1103
can be more effective than scaling model parameters. 1104
arXiv preprint arXiv:2408.03314. 1105

Zayne Sprague, Kaj Bostrom, Swarat Chaudhuri, and 1106
Greg Durrett. 2023. Deductive additivity for plan- 1107
ning of natural language proofs. In Proceedings of 1108

12

https://openreview.net/forum?id=ZGNWW7xZ6Q
https://openreview.net/forum?id=ZGNWW7xZ6Q
https://openreview.net/forum?id=ZGNWW7xZ6Q
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://openreview.net/forum?id=3Tzcot1LKb
https://openreview.net/forum?id=3Tzcot1LKb
https://openreview.net/forum?id=3Tzcot1LKb
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/#ceo-message
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/#ceo-message
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/#ceo-message
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://doi.org/10.18653/v1/2023.nlrse-1.11
https://doi.org/10.18653/v1/2023.nlrse-1.11
https://doi.org/10.18653/v1/2023.nlrse-1.11


the 1st Workshop on Natural Language Reasoning1109
and Structured Explanations (NLRSE), pages 139–1110
156, Toronto, Canada. Association for Computational1111
Linguistics.1112

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M.1113
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,1114
Dario Amodei, and Paul Christiano. 2022. Learn-1115
ing to summarize from human feedback. Preprint,1116
arXiv:2009.01325.1117

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and1118
Dongmei Zhang. 2024. Table meets llm: Can large1119
language models understand structured table data?1120
a benchmark and empirical study. In Proceedings1121
of the 17th ACM International Conference on Web1122
Search and Data Mining, pages 645–654.1123

Alon Talmor, Ori Yoran, Ronan Le Bras, Chandra Bha-1124
gavatula, Yoav Goldberg, Yejin Choi, and Jonathan1125
Berant. 2021. CommonsenseQA 2.0: Exposing the1126
limits of AI through gamification. In Thirty-fifth Con-1127
ference on Neural Information Processing Systems1128
Datasets and Benchmarks Track (Round 1).1129

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su,1130
Suqi Cheng, Dawei Yin, and Chao Huang. 2024.1131
Graphgpt: Graph instruction tuning for large lan-1132
guage models. In Proceedings of the 47th Interna-1133
tional ACM SIGIR Conference on Research and De-1134
velopment in Information Retrieval, pages 491–500.1135

Jianheng Tang, Qifan Zhang, Yuhan Li, Nuo Chen, and1136
Jia Li. 2025. Grapharena: Evaluating and exploring1137
large language models on graph computation. In1138
The Thirteenth International Conference on Learning1139
Representations.1140

Gemma Team, Thomas Mesnard, Cassidy Hardin,1141
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,1142
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,1143
Juliette Love, and 1 others. 2024. Gemma: Open1144
models based on gemini research and technology.1145
arXiv preprint arXiv:2403.08295.1146

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu,1147
and Junxian He. 2024. Dart-math: Difficulty-aware1148
rejection tuning for mathematical problem-solving.1149
Advances in Neural Information Processing Systems,1150
37:7821–7846.1151

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-1152
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,1153
Geoffrey Irving, and Irina Higgins. 2022. Solv-1154
ing math word problems with process-and outcome-1155
based feedback. arXiv preprint arXiv:2211.14275.1156

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,1157
Sarath Sreedharan, and Subbarao Kambhampati.1158
2023. Planbench: An extensible benchmark for eval-1159
uating large language models on planning and reason-1160
ing about change. In Advances in Neural Information1161
Processing Systems, volume 36, pages 38975–38987.1162
Curran Associates, Inc.1163

Leandro von Werra, Younes Belkada, Lewis Tunstall, 1164
Edward Beeching, Tristan Thrush, Nathan Lambert, 1165
Shengyi Huang, Kashif Rasul, and Quentin Gal- 1166
louédec. 2020. Trl: Transformer reinforcement learn- 1167
ing. https://github.com/huggingface/ 1168
trl. 1169

Ziyu Wan, Yunxiang Li, Yan Song, Hanjing Wang, Linyi 1170
Yang, Mark Schmidt, Jun Wang, Weinan Zhang, 1171
Shuyue Hu, and Ying Wen. 2025. Rema: Learning to 1172
meta-think for llms with multi-agent reinforcement 1173
learning. arXiv preprint arXiv:2503.09501. 1174

Duo Wang, Yuan Zuo, Fengzhi Li, and Junjie Wu. 2024a. 1175
Llms as zero-shot graph learners: Alignment of gnn 1176
representations with llm token embeddings. Ad- 1177
vances in Neural Information Processing Systems, 1178
37:5950–5973. 1179

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan 1180
Tan, Xiaochuang Han, and Yulia Tsvetkov. 2023. 1181
Can language models solve graph problems in natural 1182
language? In Thirty-seventh Conference on Neural 1183
Information Processing Systems. 1184

Jianing Wang, Junda Wu, Yupeng Hou, Yao Liu, Ming 1185
Gao, and Julian McAuley. 2024b. InstructGraph: 1186
Boosting large language models via graph-centric 1187
instruction tuning and preference alignment. In Find- 1188
ings of the Association for Computational Linguistics: 1189
ACL 2024, pages 13492–13510, Bangkok, Thailand. 1190
Association for Computational Linguistics. 1191

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin 1192
Carbonneaux, Lingming Zhang, Daniel Fried, 1193
Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. 1194
2025. Swe-rl: Advancing llm reasoning via reinforce- 1195
ment learning on open software evolution. arXiv 1196
preprint arXiv:2502.18449. 1197

Jiaxin Wen, Jian Guan, Hongning Wang, Wei Wu, and 1198
Minlie Huang. 2024. Codeplan: Unlocking reason- 1199
ing potential in large language models by scaling 1200
code-form planning. In The Thirteenth International 1201
Conference on Learning Representations. 1202

Xixi Wu, Yifei Shen, Caihua Shan, Kaitao Song, Siwei 1203
Wang, Bohang Zhang, Jiarui Feng, Hong Cheng, Wei 1204
Chen, Yun Xiong, and 1 others. 2024. Can graph 1205
learning improve planning in llm-based agents? In 1206
The Thirty-eighth Annual Conference on Neural In- 1207
formation Processing Systems. 1208

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, 1209
Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and 1210
Xiaodan Liang. 2024. Deepseek-prover: Advancing 1211
theorem proving in llms through large-scale synthetic 1212
data. arXiv preprint arXiv:2405.14333. 1213

Jing Xiong, Jianhao Shen, Ye Yuan, Haiming Wang, 1214
Yichun Yin, Zhengying Liu, Lin Li, Zhijiang Guo, 1215
Qingxing Cao, Yinya Huang, Chuanyang Zheng, 1216
Xiaodan Liang, Ming Zhang, and Qun Liu. 2023. 1217
TRIGO: Benchmarking formal mathematical proof 1218

13

https://arxiv.org/abs/2009.01325
https://arxiv.org/abs/2009.01325
https://arxiv.org/abs/2009.01325
https://openreview.net/forum?id=qF7FlUT5dxa
https://openreview.net/forum?id=qF7FlUT5dxa
https://openreview.net/forum?id=qF7FlUT5dxa
https://openreview.net/forum?id=Y1r9yCMzeA
https://openreview.net/forum?id=Y1r9yCMzeA
https://openreview.net/forum?id=Y1r9yCMzeA
https://proceedings.neurips.cc/paper_files/paper/2023/file/7a92bcdede88c7afd108072faf5485c8-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/7a92bcdede88c7afd108072faf5485c8-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/7a92bcdede88c7afd108072faf5485c8-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/7a92bcdede88c7afd108072faf5485c8-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/7a92bcdede88c7afd108072faf5485c8-Paper-Datasets_and_Benchmarks.pdf
https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://openreview.net/forum?id=UDqHhbqYJV
https://openreview.net/forum?id=UDqHhbqYJV
https://openreview.net/forum?id=UDqHhbqYJV
https://doi.org/10.18653/v1/2024.findings-acl.801
https://doi.org/10.18653/v1/2024.findings-acl.801
https://doi.org/10.18653/v1/2024.findings-acl.801
https://doi.org/10.18653/v1/2024.findings-acl.801
https://doi.org/10.18653/v1/2024.findings-acl.801
https://doi.org/10.18653/v1/2023.emnlp-main.711
https://doi.org/10.18653/v1/2023.emnlp-main.711


reduction for generative language models. In Pro-1219
ceedings of the 2023 Conference on Empirical Meth-1220
ods in Natural Language Processing, pages 11594–1221
11632, Singapore. Association for Computational1222
Linguistics.1223

Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu,1224
Xun Wang, Ke Wang, Cheng Li, Wei Peng, and1225
Sujian Li. 2024. Watch every step! LLM agent1226
learning via iterative step-level process refinement.1227
In Proceedings of the 2024 Conference on Empiri-1228
cal Methods in Natural Language Processing, pages1229
1556–1572, Miami, Florida, USA. Association for1230
Computational Linguistics.1231

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan,1232
Lingfeng Shen, Benjamin Van Durme, Kenton Mur-1233
ray, and Young Jin Kim. 2024. Contrastive prefer-1234
ence optimization: Pushing the boundaries of LLM1235
performance in machine translation. In Proceedings1236
of the 41st International Conference on Machine1237
Learning, volume 235 of Proceedings of Machine1238
Learning Research, pages 55204–55224. PMLR.1239

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,1240
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,1241
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-1242
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,1243
Jingren Zhou, Junyang Lin, Kai Dang, and 22 oth-1244
ers. 2024. Qwen2.5 technical report. arXiv preprint1245
arXiv:2412.15115.1246

Rui Yang, Hanyang Chen, Junyu Zhang, Mark1247
Zhao, Cheng Qian, Kangrui Wang, Qineng Wang,1248
Teja Venkat Koripella, Marziyeh Movahedi, Manling1249
Li, and 1 others. 2025. Embodiedbench: Compre-1250
hensive benchmarking multi-modal large language1251
models for vision-driven embodied agents. arXiv1252
preprint arXiv:2502.09560.1253

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan,1254
Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu,1255
Lingjun Liu, Xin Liu, and 1 others. 2025. Dapo:1256
An open-source llm reinforcement learning system1257
at scale. arXiv preprint arXiv:2503.14476.1258

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding,1259
Xingyao Wang, Boji Shan, Zeyuan Liu, Jia Deng,1260
Huimin Chen, Ruobing Xie, Yankai Lin, Zheng-1261
hao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu, and1262
Maosong Sun. 2025a. Advancing LLM reasoning1263
generalists with preference trees. In The Thirteenth1264
International Conference on Learning Representa-1265
tions.1266

Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu,1267
Wenyuan Xu, Jiaze Chen, Chengyi Wang, TianTian1268
Fan, Zhengyin Du, Xiangpeng Wei, and 1 others.1269
2025b. Vapo: Efficient and reliable reinforcement1270
learning for advanced reasoning tasks. arXiv preprint1271
arXiv:2504.05118.1272

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai1273
Wang, Shiji Song, and Gao Huang. 2025. Does re-1274
inforcement learning really incentivize reasoning ca-1275

pacity in llms beyond the base model? arXiv preprint 1276
arXiv:2504.13837. 1277

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei 1278
Gao, and Min Lin. 2024a. Chain of preference opti- 1279
mization: Improving chain-of-thought reasoning in 1280
llms. Advances in Neural Information Processing 1281
Systems, 37:333–356. 1282

Yizhuo Zhang, Heng Wang, Shangbin Feng, Zhaox- 1283
uan Tan, Xiaochuang Han, Tianxing He, and Yulia 1284
Tsvetkov. 2024b. Can LLM graph reasoning general- 1285
ize beyond pattern memorization? In Findings of the 1286
Association for Computational Linguistics: EMNLP 1287
2024, pages 2289–2305, Miami, Florida, USA. Asso- 1288
ciation for Computational Linguistics. 1289

Yuwei Zhang, Wenhao Yu, Shangbin Feng, Yifan 1290
Zhu, Letian Peng, Jayanth Srinivasa, Gaowen Liu, 1291
and Jingbo Shang. 2025. Bidirectional lms are 1292
better knowledge memorizers? a benchmark for 1293
real-world knowledge injection. arXiv preprint 1294
arXiv:2505.12306. 1295

Kerui Zhu, Bo-Wei Huang, Bowen Jin, Yizhu Jiao, 1296
Ming Zhong, Kevin Chang, Shou-De Lin, and Jiawei 1297
Han. 2024. Investigating instruction tuning large 1298
language models on graphs. In First Conference on 1299
Language Modeling. 1300

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, 1301
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani 1302
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, and 1303
1 others. 2024. Bigcodebench: Benchmarking code 1304
generation with diverse function calls and complex 1305
instructions. arXiv preprint arXiv:2406.15877. 1306

Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng, 1307
Xuekai Zhu, Biqing Qi, Youbang Sun, Ganqu 1308
Cui, Ning Ding, and Bowen Zhou. 2025. Ttrl: 1309
Test-time reinforcement learning. arXiv preprint 1310
arXiv:2504.16084. 1311

14

https://doi.org/10.18653/v1/2023.emnlp-main.711
https://doi.org/10.18653/v1/2024.emnlp-main.93
https://doi.org/10.18653/v1/2024.emnlp-main.93
https://doi.org/10.18653/v1/2024.emnlp-main.93
https://proceedings.mlr.press/v235/xu24t.html
https://proceedings.mlr.press/v235/xu24t.html
https://proceedings.mlr.press/v235/xu24t.html
https://proceedings.mlr.press/v235/xu24t.html
https://proceedings.mlr.press/v235/xu24t.html
https://openreview.net/forum?id=2ea5TNVR0c
https://openreview.net/forum?id=2ea5TNVR0c
https://openreview.net/forum?id=2ea5TNVR0c
https://doi.org/10.18653/v1/2024.findings-emnlp.127
https://doi.org/10.18653/v1/2024.findings-emnlp.127
https://doi.org/10.18653/v1/2024.findings-emnlp.127
https://openreview.net/forum?id=xdg4CS5mkl
https://openreview.net/forum?id=xdg4CS5mkl
https://openreview.net/forum?id=xdg4CS5mkl


A Tables and Graphs1312

Table for Section 5.1 of results of mixing real-world1313

data, figure for Section 5.2 of comparing between1314

multi-hop and single-hop and figure for of correla-1315

tion analysis are attached here.1316

B Reward Implementation Details1317

Reward Function We provide a high-level al-1318

gorithm of connectivity reward and shortest path1319

reward function in Algorithm 1 and Algorithm 2.1320

The actual implementation follows the overall logic1321

given by the algorithm but may has minor differ-1322

ences. We further define the following reward val-1323

ues for evaluating the agent’s response:1324

• Correct answer reward:1325

rcorrect_answer = +11326

• Incorrect answer penalty:1327

rincorrect_answer_penalty = 01328

• Hallucination penalty:1329

rhallucination_penalty = −21330

• Correct reasoning step reward:1331

rcorrect_step = +0.051332

• Incorrect reasoning penalty:1333

rincorrect_step_penalty = 01334

• Correct format reward:1335

rformat_reward = +0.11336

• Format error penalty:1337

rformat_penalty = 01338

C Additional Training Implementation1339

Details1340

LLAMA3.1-8B-INSTRUCT Training Details1341

Experiments on LLAMA3.1-8B-INSTRUCT ex-1342

perience high level of volatility, shown in Table 1.1343

While we try to tune hyper-parameters to get best1344

results using LLAMA3.1-8B-INSTRUCT, some1345

settings (especially with GRPO) trained to collapse,1346

leading to worse results compared to zero-shot on1347

synthetic tasks. For three of the previous settings1348

in Table 1 and Table 2 using LLAMA3.1-8B-1349

INSTRUCT, including GRPO-P W/O SFT, GRPO-1350

S W/O SFT, GRPO-S W/ SFT, we train around 3.21351

epochs (rather than standard 8 epochs) using saved1352

checkpoints for better representation of model’s1353

performance.1354

D Real-World Dataset Implementation 1355

Details 1356

Dataset Processing For all real-world datasets, 1357

we first randomly sample 1,000 samples as test set, 1358

and then leave the remaining for potential training 1359

set used for analysis. Several different implementa- 1360

tions include: 1361

• Knowledge Crosswords: We transform this 1362

dataset from a multiple blank choice question 1363

(for instance, a question will have a separate set 1364

of choices for each blank, making it hard to ex- 1365

tract the answer) to a common multiple-choice 1366

question with 4 choices. 1367

• Blocksworld: We remove the one-shot prompt 1368

style to match with other tasks settings. Also, 1369

Blocksworld dataset has only 500 instances per 1370

setting. Thus, during analysis of mixing real- 1371

world data, no Blocksworld data is used to train 1372

the model. 1373

We provide examples of prompts, summariza- 1374

tion prompts (if applicable) for each real-world 1375

dataset in Table 4. 1376

E Additional Analysis 1377

In this section, we provide more analysis on ex- 1378

periment results, with additional analysis on Pro- 1379

script, implementation details of compositionality 1380

gap, and synthetic SFT’s role in real-world perfor- 1381

mance. 1382

E.1 Additional Translation Between 1383

Single-Step and Multi-Step 1384

Proscript We deliberately probe the model with 1385

a single constraint per prompt for our Proscript 1386

single-step setting. Results are shown in Table 6. 1387

When using a significance threshold of α = 0.05, 1388

we find that the performance difference between 1389

the two experimental groups is all statistically sig- 1390

nificant, with 5 out of 6 analysis results showing 1391

that multi-step is doing much better. On one hand, 1392

SFT using synthetic data leads to decreased multi- 1393

step reasoning capabilities on real-world tasks; on 1394

the other hand, the model’s performance increases, 1395

with the help of real-world SFT or synthetic align- 1396

ment, but comes with a more severe hallucination 1397

on multi-step performance, as the performance gap 1398

between single-step and multi-step is significant. 1399

We can cautiously conclude that in Proscript, per- 1400

formance gains rise from more severe hallucination 1401
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QWEN2.5-7B-INSTRUCT StrategyQA K-C WikiDYK-R WikiDYK-F ExplaGraphs Proscript

ZERO-SHOT 0.702 0.504 0.067 0.431 0.829 0.592
SYNTHETIC SFT 0.615 0.268 0.069 0.531 0.668 0.488
SYNTHETIC SFT/ALIGNMENT BEST 0.717 0.523 0.070 0.535 0.870 0.605

REAL-WORLD SFT 6K 0.682 0.785 0.096 0.676 0.932 0.851
/W SYNTHETIC ALIGN 0.671 0.791 0.092 0.676 0.936 0.789

REAL-WORLD SFT 1.2K 0.698 0.654 0.077 0.660 0.915 0.795
/W SYNTHETIC ALIGN 0.661 0.645 0.072 0.648 0.922 0.757

REAL-WORLD SFT 0.3K 0.708 0.579 0.069 0.601 0.901 0.729
/W SYNTHETIC ALIGN 0.742 0.449 0.066 0.641 0.907 0.638

Table 3: Results of mixing real-world data during the SFT stage and further tuning using GRPO on synthetic tasks.
Improvements provided by synthetic RL compared to their respective REAL-WORLD SFT results are marked with
bold. While there are 6 out of 18 settings that achieved improvements, none of the improvements is statistically
significant (p-val < 0.01).
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Figure 2: Proportions of cases regarding whether single steps and the final answer are correct on StrategyQA and
Knowledge Crosswords. Bolded numbers indicate mismatched translations (i.e., wrong single steps with correct
final answers and correct single steps with wrong final answers). For StrategyQA, both mismatched translations
account for a significant non-zero portion of the overall result, and K-C’s correct results mainly come from incorrect
single-step reasoning processes.
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Figure 3: (left) Correlation between the synthetic tasks’ performance and the reward score. The high correlation
demonstrates the effectiveness of our reward design. (right) Correlation between performance on synthetic tasks
and real-world tasks, showing mixed performance gains provided by synthetic training across different training
methods. The red shaded area indicates the 95% confidence interval for the regression estimate.
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Algorithm 1 Connectivity Reward

Require: R: agent’s full response with step-by-step reasoning and a final connectivity answer.
Require: G: graph definition (nodes and edges of the given graph).
Require: A and B: two nodes in the given graph.
Require: type: either “process” or “solution”.
Require: ground_truth: ground truth connectivity (“yes” if A and B is connected, “no” otherwise).
Ensure: r: total reward for the response.

r ← 0 ▷ initialize reward score
// Format checking
if response R is not in the expected format (e.g., missing reasoning steps or no clear final answer) then

r ← r + rformat_penalty ▷ penalize formatting issue
else

r ← r + rformat_reward ▷ reward correct format
end if
(thought, reasoningProcess, answer)← SEPARATERESPONSE(R)
// Evaluate each reasoning step for correctness and hallucinations
if type = “process” then

rewards ← [ ] ▷ initialize an empty list
for each step s in reasoningProcess do

if s references any node or edge not present in G then
Append rhallucination_penalty to rewards ▷ penalize hallucinated graph elements

else if s is a correct logical statement about G then
Append rcorrect_step to rewards ▷ reward a correct reasoning step

else
Append rincorrect_step_penalty to rewards ▷ penalize a step with incorrect format

end if
end for
ravg ← Average(rewards) ▷ average the process reward
r ← r + ravg

end if
// Final answer correctness
if answer matches ground_truth (e.g., correctly says “yes” or “no”) then

r ← r + rcorrect_answer ▷ reward correct conclusion
else

r ← r + rincorrect_answer_penalty ▷ penalize incorrect conclusion
end if
return r
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Algorithm 2 Shortest Path Reward
Require: R: agent’s full response with step-by-step reasoning and a final shortest path answer.
Require: G: weighted graph (nodes, edges, and edge weights).
Require: s, t: start and end nodes for shortest path query.
Require: type: either “process” or “solution”.
Require: ground_truth: shortest path length between s and t in G.
Ensure: r: total reward for the response.

r ← 0
// Format checking
if response R is not in the expected format (e.g., missing reasoning steps or no clear final answer) then

r ← r + rformat_penalty
else

r ← r + rformat_reward
end if
(thought, reasoningProcess, answer)← SEPARATERESPONSE(R)
if type = “process” then

rewards ← [ ]
for each step s in reasoningProcess do

if s references any node or edge not in G then
Append rhallucination_penalty to rewards

else if s describes a valid fact or update consistent with shortest path logic then
Append rcorrect_step to rewards

else
Append rincorrect_step_penalty to rewards

end if
end for
ravg ← Average(rewards)
r ← r + ravg

end if
// Final answer evaluation
(path, length)← PARSESHORTESTPATH(answer)
if path or length is missing or ill-formed then

r ← r + rformat_penalty + rincorrect_answer_penalty
else if path contains non-existent nodes or edges in G then

r ← r + rhallucination_penalty
else if length = ground_truth and path is valid in G then

r ← r + rcorrect_answer
else

r ← r + rincorrect_answer_penalty
end if
return r

18



Task Example Prompt Summarization Prompt

StrategyQA Please think step by step and then answer the following question with either yes or no: Could you make the kitchen ‘holy trinity’
without celery?

The following paragraph is the answer to the ques-
tion. Summarize the paragraph’s answer using
either "YES", "NO" or "UNKNOWN".
Question: {prompt}
Paragraph: {response}

K-C Please select one option that satisfies all the constraints in the question. Please note that the 3 words in each option are from blank 1 to
3. The question is: blank 2 actedIn Casper_(film), blank 2 actedIn The_Man_Who_Cried, Rose_McGowan actedIn blank 3, blank 1
actedIn blank 3, blank 1 actedIn The_Man_Who_Cried.
Options:
A. Brandon_Routh, Christina_Ricci, Robinson_Crusoe_(1997_film)
B. Marjorie_Rambeau, Sin\u00e9ad_Cusack, Robinson_Crusoe_(1997_film)
C. John_Turturro, Christina_Ricci, Monkeybone
D. Marjorie_Rambeau, Christina_Ricci, Robinson_Crusoe_(1997_film)
Please think step by step. Your last sentence should give a single letter from A to D.

The following paragraph is the answer to a
the question. Decide if the paragraph gives
a definite answer of yes or no, and what the
answer is. Summarize the paragraph’s an-
swer using either "A", "B", "C", "D" or "UN-
KNOWN". Put your answer in double asterisks,
like **A/B/C/D/UNKNOWN**.
Question: {prompt}
Paragraph: {response}

WikiDYK-R What type of Japanese girls’ comics were mostly written by men until the 1970s? Does the following paragraph mention the follow-
ing word (doesn’t have to be exact match)? An-
swer using either "YES", "NO" or "UNKNOWN".
Paragraph: {response}
Word: {ground_truth}

WikiDYK-F until the 1970s, most Shojo manga (Japanese girls’ comics ) were written by men. Is this statement true or false? N/A

ExplaGraphs Please judge if the following two sentences support each other or counter each other: "Bad foster care parents has negative effect on a
kid" and "When parent of foster homes are not good it tends to have a traumatizing effect on a child". Please think step by step, and
then respond either "support" or "counter":

N/A

Proscript Identify the logical order of all the following steps to achieve the following goal. Note that the numbering of the steps does not indicate
their execution order, and your response should include all steps. Please think step by step.
Goal: Get glass of milk
Steps: step0: close the fridge; step1: retrieve the milk from the fridge; step2: retrieve a glass from the cabinet; step3: walk toward the
kitchen; step4: open the door to the fridge; step5: pour the milk into the glass; step6: put the milk back in the fridge; step7: decide to
Get glass of milk; step8: Get glass of milk
Format your response as a sequence, using "->" to separate (e.g., "step8->step4->step3").

summarize the response so that it follows the fol-
lowing format (arrow linked with no space in be-
tween): stepA->stepB->stepC->...->stepK, where
A, B, C, K are single digit numbers. Do not in-
clude or use any other texts. If the response doesn’t
include any steps, respond with "UNKNOWN".
The response is: {response}

BW-P I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the actions I can do
(all rules)
Your task is to generate a plan for the following goal. The plan should be valid and can be executed in the blocksworld environment.
The plan should be a sequence of actions that can be performed to achieve the goal.
As initial conditions I have that, the red block is clear, the yellow block is clear, the hand is empty, the red block is on top of the blue
block, the yellow block is on top of the orange block, the blue block is on the table and the orange block is on the table.
My goal is to have that the orange block is on top of the red block.
My plan is as follows:
[PLAN]

The following paragraph is a plan to solve the
blocksworld problem. Verify if the plan is exe-
cutable and can reach the goal while following all
the rules. Summarize the paragraph’s answer us-
ing either "VALID" or "INVALID".
Problem: {prompt}
Paragraph: {response}

BW-V I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the actions I can do
(all rules)
Your task is to verify if the following plan is valid or invalid, and give out an explanation of why it is valid or invalid. The plan is valid
if it can be executed in the blocksworld environment while following all rules and the outcome is the same as the goal. The plan is
invalid if it cannot be executed or the outcome is different from the goal.
As initial conditions I have that, the red block is clear, the blue block is clear, the yellow block is clear, the hand is empty, the blue
block is on top of the orange block, the red block is on the table, the orange block is on the table and the yellow block is on the table.
My goal is to have that the orange block is on top of the blue block.
My plan is as follows:
[PLAN]
unstack the blue block from on top of the orange block
stack the orange block on top of the blue block
pick up the orange block
[PLAN END]
[VERIFICATION]

The following paragraph is the answer to a certain
question. Summarize the paragraph’s answer using
either "VALID", "INVALID" or "UNKNOWN".
Paragraph: {response}

Table 4: A full list of example prompts and example summarization prompt (if applicable) of real-world tasks. All
example prompt are exactly the same with the actuall prompt for the LLM, except BW-P and BW-V rules part is
omitted for better display. Most of the datasets follow their original implementation, while we change K-C, BW-P
and BW-V a little for aligned evaluation.

19



Task Multi-step Q&A Single-step Q&A Analysis

StrategyQA User: Does Adam Sandler skip celebrat-
ing Easter?
Assistant: ...Based on my knowledge,
I couldn’t find any specific information
about Adam Sandler skipping Easter cele-
brations. %

User: Easter is usually celebrated by peo-
ple of which religion?
Assistant: Easter is primarily celebrated
by Christians, specifically those who fol-
low the Christian faith. "
User: What is Adam Sandler’s religion?
Assistant: Adam Sandler is Jewish."

incorrect final multi-step
answer, but intermediate
steps are correct, possi-
bly single-to-multi-step
reasoning gap

K-C User: ...The question is:
blank 2 actedIn Casper_(film)
blank 2 actedIn The_Man_Who_Cried
...
Options (blank 1, blank 2, blank 3):
...
C. John_Turturro, Christina_Ricci, Mon-
keybone
...
Assistant: ...The answer is C."

User: Please decide if the following in-
formation is true or false: Christina_Ricci
actedIn Casper_(film).
Assistant: true"
User: Please decide if the following in-
formation is true or false: Christina_Ricci
actedIn The_Man_Who_Cried.
Assistant: false%
(3 remaining, all correct)

correct multi-step final
answer but incorrect in-
termediate single-step an-
swers, hallucination or
unexplainable intermedi-
ate steps

Proscript User: Identify the logical order of all the
following steps to achieve the following
goal. Note that the numbering of the
steps does not indicate their execution
order, and your response should include
all steps. Please think step by step.
Goal: Get glass of milk
Steps: step0: close the fridge...
Assistant: To achieve the goal of getting a
glass of milk, the logical order of steps is:
step7->step3->step4->step0->step1-
>step2->step5->step6
(multi-step achieved 6 out of 9 con-
straints)

User: We have a target of ’Get glass of
milk’. We already completed certain steps.
Now there are two intermediate next steps
we need to take: step 1: retrieve the milk
from the fridge step 2: open the door to the
fridge. We plan to do step 1 before step 2.
Is this the right order to execute these two
steps in order to achieve the target? You
should answer yes or no.
Assistant: Yes. %
(8 remaining, 5 of them are correct, and 3
of them are incorrect, single-step achieved
5 out of 9 constraints)

single-step reasoning is
worse than multi-step
reasoning, possibly hal-
lucination or alternative
single-step reasoning
steps

Table 5: Examples of multi-step and single-step prompts and model’s responses. Some prompts are shortened for
readability. Results shown in this table and previous analysis show that two shortcomings of model’s real-world
reasoning capabilities: failure to generalize from single-step to multi-step, and failure to provide an explainable and
correct reasoning process due to incorrect single-step response.

20



after real-world SFT or synthetic alignment, rather1402

than increased graph reasoning capabilities. Pro-1403

script’s results align with previous results of Strat-1404

egyQA and Knowledge Crosswords, and further1405

emphasize the importance of understanding and1406

investigating hallucination-free and explainable in-1407

termediate steps in multi-step reasoning tasks.1408

E.2 Compositionality Gap Implementation1409

Details1410

StrategyQA StrategyQA involves using at least1411

two steps to solve a single question. The dataset1412

provides intermediate questions for us to decom-1413

pose the multi-step question. For example, to1414

answer a multi-hop question like “Does Adam1415

Sandler skip celebrating Easter?”, the dataset pro-1416

vides a series of single-step questions, including:1417

1. “Easter is usually celebrated by people of which1418

religion?”, 2. “What is Adam Sandler’s religion?”,1419

3. “Is #1 different from #2?”, and related facts,1420

including [“Adam Sandler is Jewish.” and “Jew-1421

ish religious people do not celebrate Easter.”]. We1422

prompt the LM with single-step questions with all1423

except any with the “#”, and use a LM as judge to1424

decide if the model’s response is included in the list1425

of facts. We then map all the single-step responses1426

to the original multi-step question, and consider if1427

there is any compositionality gap or hallucination1428

of final answer. An example of single-step and1429

multi-step prompt is shown in Table 5.1430

Knowledge Crosswords For Knowledge Cross-1431

words, we insert all the correct answers to all blanks1432

and prompt the model if each constraint is correct1433

or not, to build a single-step setting for this dataset.1434

We then map the single-step results back to their1435

original question to investigate if there is a sim-1436

ilar pattern with StrategyQA. For instance, for a1437

multi-step question with five constraints and three1438

blanks, we insert the correct answer to all blanks1439

and prompt the language model with single-step1440

questions of all the constraints.1441

Proscript Proscript is a task where a goal of a1442

daily task is proposed and the model is prompted1443

to arrange several steps into the right order. For1444

instance, let the goal be “Get a glass of milk”, and1445

several intermediate steps are “step1:retrieve the1446

milk from the fridge”, “step2:pour the milk into1447

the glass” and “step3:retrieve a glass from the cabi-1448

net”. A possible right sequence of actions is “step3-1449

>step1->step2”, since a person needs a glass (step3)1450

and the milk (step1) ready to pour the milk into the1451

glass (step2), which we denote as two constraints 1452

for this single question (step3 before step2, step1 1453

before step2). For the multi-step setup, we prompt 1454

the model to generate the complete action sequence, 1455

which in expectation should contain all steps men- 1456

tioned in the intermediate steps. For instance, if the 1457

model’s response is “step1->step3->step2”, it satis- 1458

fies both constraints, while “step1->step2->step3” 1459

only satisfies one constraint of step1 before step2. 1460

Results for multi-step setup are calculated as the 1461

number of all satisfied constraints from all samples 1462

divided by the number of all the constraints, and 1463

shown in 2. For the single-step setup, we are only 1464

prompting the model with a single constraint. For 1465

instance, we prompt the model "The goal is to get 1466

a glass of milk. Should step3:retrieve a glass from 1467

the cabinet be executed before step2:pour the milk 1468

into the glass?" and the correct answer should be 1469

"yes". An example of single-step and multi-step is 1470

shown in Table 5. 1471

E.3 Correlation Analysis 1472

We investigate the correlation between various per- 1473

formance and reward metrics. First, to better un- 1474

derstand the reward design’s effect, we analyze 1475

the correlation between the synthetic task’s accu- 1476

racy performance and the reward score achieved 1477

by the model. The Pearson correlation coefficient 1478

is 0.951: our reward design is highly correlated 1479

with the performance of the model, proving the re- 1480

ward function’s effectiveness. Second, we analyze 1481

the correlation between synthetic performance and 1482

real-world performance (denoted by the mean per- 1483

formance of all real-world tasks). The correlation 1484

is -0.336, which aligns with our finding that per- 1485

formance gains provided by synthetic training are 1486

mixed across models and different tasks. Detailed 1487

results are shown in Appendix B Figure 3. 1488

E.4 Synthetic SFT’s Role on Synthetic Tasks 1489

SFT stage acts as different roles for different align- 1490

ment methods for synthetic tasks, as shown in Table 1491

1. For on-policy method GRPO, it may decrease the 1492

robustness of the trained model as 2 out 4 settings 1493

(SFT + GRPO) cannot achieve comparable results 1494

compared to those GRPO trained models trained 1495

without SFT stage, leading to limitation of the 1496

model’s performance if SFT stage is enforced be- 1497

fore GRPO. However, for off-policy method DPO, 1498

SFT can somehow bring advantage to the model, 1499

with 2 out of 4 settings (SFT + DPO) achieved 1500

better results compared to only those only trained 1501
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QWEN2.5-7B-INSTRUCT Single-step Multi-step Proportion z-test p-val

ZERO-SHOT 0.575 0.592 0.046
SYNTHETIC SFT 0.627 0.488 7.35E-61
BEST ALIGNMENT: GRPO-P W/O SFT 0.573 0.605 1.00E-4
REAL-WORLD SFT 6K 0.681 0.851 1.24E-124
REAL-WORLD SFT 1.2K 0.613 0.795 1.51E-123
REAL-WORLD SFT 0.3K 0.607 0.729 2.01E-52

Table 6: Proscript translation between single-step and multi-step result. Single-step means we only prompt the
model to answer whether a single fact can be satisfied, while multi-step is to let the model directly generate a
complete multi-step reasoning answer. For most settings, p value is small, stating that there is fundamental difference
in single-step and multi-step reasoning capabilities.
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Figure 4: Performances on Blocksworld Verification task grouped by the length of action steps needs to be verified.
With synthetic SFT and real-world SFT, the performance on verifying plans with longer steps gradually increases,
while using alignment alone cannot produce the result.

using SFT, while those models directly trained us-1502

ing DPO cannot achieve better results than SFT1503

models.1504

E.5 Synthetic SFT’s Role on Real-world Tasks1505

While the synthetic SFT stage has mixed results for1506

different datasets, performance on Blocksworld has1507

somewhat satisfactory results, and models trained1508

with synthetic SFT achieved most of the good re-1509

sults. We dive in and analyze the verification re-1510

sults generated by models grouped by the length of1511

action steps needed to achieve the target goal.1512

Results in Figure 4 show surprising results: with1513

the help of synthetic SFT and real-world SFT, the1514

model’s performance on long sequence plans in-1515

creases, while only using alignment methods can-1516

not provide this result. We believe that this result1517

comes from the help of strong supervision using1518

strict format SFT data without any hallucination1519

errors. This result also strengthens the idea that 1520

providing correct reasoning steps for the correct 1521

tasks should generally be helpful, while the best 1522

method for supervision still require future research. 1523

22


	Introduction
	Methdology
	Experiment Settings
	Datasets and Evaluation
	Implementation

	Results
	Synthetic Tasks
	Real-World Tasks

	Analysis
	Mixing Real-World Data
	Translation Between Single-Step and Multi-Step

	Related Work
	Conclusion
	Tables and Graphs
	Reward Implementation Details
	Additional Training Implementation Details
	Real-World Dataset Implementation Details
	Additional Analysis
	Additional Translation Between Single-Step and Multi-Step
	Compositionality Gap Implementation Details
	Correlation Analysis
	Synthetic SFT's Role on Synthetic Tasks
	Synthetic SFT's Role on Real-world Tasks


