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Abstract
In this paper, we consider a recommender system
that elicits user feedback through pairwise com-
parisons instead of ratings. We study the problem
of learning personalised preferences from such
comparison data via collaborative filtering. Simi-
lar to the classical matrix completion setting, we
assume that users and items are endowed with
low-dimensional latent features. These features
give rise to user-item utilities, and the comparison
outcomes are governed by a discrete choice model
over these utilities. The task of learning these fea-
tures is then formulated as a maximum likelihood
problem over the comparison dataset. Despite the
resulting optimization problem being nonconvex,
we show that gradient-based methods converge
exponentially to the latent features, given a warm
start. Importantly, this result holds in a sparse
data regime, where each user compares only a few
pairs of items. Our main technical contribution
is to extend key concentration results commonly
used in matrix completion to our model. Simu-
lations reveal that the empirical performance of
the method exceeds theoretical predictions, even
when some assumptions are relaxed. Our work
demonstrates that learning personalised recom-
mendations from comparison data is both compu-
tationally and statistically efficient.

1. Introduction
Recommender systems are central to modern streaming
platforms and digital marketplaces, where they curate per-
sonalized selections for each user from the vast set of items
these platforms host. Algorithms powering such systems
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learn users’ preferences based on the feedback that they
provide, e.g., the ratings on the items they have consumed.
A classical method of learning from ratings data is ma-
trix completion, which is based on the following modeling
assumptions. Each user and item is endowed with a low-
dimensional feature vector, and their inner product is taken
to be the user-item utility. The ratings are assumed to be
noisy reflections of this utility. By fitting this model to the
available rating data, the system can learn to predict users’
preferences over unseen items as well. This approach has
been immensely successful in practice (Koren et al., 2009)
and is also supported by strong theoretical foundations (Ge
et al., 2016).

This work focuses on recommender systems that learn from
pairwise preference comparisons instead of ratings. One
reason to consider such a setting is that comparison data are
widely available as implicit feedback—for instance, when a
user clicks on one of four options, it suggests a preference
for the selected item over the others. Additionally, we be-
lieve explicitly collecting comparison feedback instead of
ratings can be beneficial for several reasons: (i) comparisons
naturally cancel out user biases in ratings (Shah et al., 2013);
(ii) they avoid the discretization issues of rating-based meth-
ods, where responses are typically binary or lie on a 1–5
star scale (Davenport et al., 2014); and (iii) comparing two
items is cognitively easier than rating them on an abstract
scale (Stewart et al., 2005). In fact, the advantages of ordi-
nal (comparison) feedback over cardinal (rating) feedback
have been empirically demonstrated in small-scale tasks
(Shah et al., 2016). We ask whether it is possible to learn
personalized preferences from such comparison data in a
computationally and statistically efficient manner.

To answer this question, it is natural to consider the fol-
lowing comparison-based recommender system model that
arises by combining the matrix completion assumptions
with a discrete choice model. Specifically, assume each user
u has a utility xu,i for every item i, where xu,i is defined as
the inner product of a low-dimensional user feature vector
u and item feature vector v. Thus the utility matrix X can
be factorized into feature matrices as follows: X = UV T .
Comparisons follow a noisy oracle: when presented with
two items i and j, the user u picks i over j with probability
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g(xu,i − xu,j) for some known link function g(·). Given a
dataset that is generated from this model with some ground-
truth features (U∗, V ∗), one can learn these features by op-
timizing the likelihood of the model over the dataset. These
learned features can then be used to predict each user’s pref-
erences over unseen items. The key theoretical question of
interest is whether there exists an efficient algorithm that
can provably recover the ground-truth features.

There has been some progress towards this question, no-
tably by Park et al. (2015) and Negahban et al. (2018). They
prove sample complexity guarantees, showing that it is in-
deed possible to estimate the ground-truth features, even
when each user makes only a few comparisons. However,
their analysis rests on a convex problem posed in terms of
the entire utility matrix X , and is therefore inefficient to
solve. In contrast, the optimization problem posed in terms
of the feature matrices (U, V ) is computationally much eas-
ier to solve, despite being nonconvex. Indeed, the noncon-
vex approach has been applied to large-scale, real-world
comparison datasets, where the convex approach would be
infeasible (Rendle et al., 2009; Park et al., 2015). While this
approach is computationally faster, the nonconvexity in the
problem makes it harder to provide theoretical guarantees.
Proving recovery guarantees for this nonconvex approach
has been highlighted as an important open problem by Ne-
gahban et al. (2018). Our work aims to plug this gap in the
literature.

In this work, we provide the first theoretical recovery guar-
antees for the nonconvex learning-from-comparisons prob-
lem. Our guarantees stem from a careful analysis of the
loss landscape. We show that within a neighborhood of the
true solution, the negative log-likelihood function exhibits a
strong convexity-like property. Therefore, with a warm start,
(projected) gradient descent converges exponentially fast to
the global minimum (see Theorem 4.1). Our proof of this
result involves two broad steps. First, we demonstrate that
the expected log likelihood function satisfies this desirable
structural property. Second, we show that the empirical log
likelihood function is close to its expected value, even when
the dataset is sparse. Showing the latter requires strong
concentration results. Our work introduces new techniques
to establish these results, extending the methods developed
for the matrix completion problem. Our guarantees are
qualitatively similar to those established for matrix comple-
tion, notably the work of Zheng & Lafferty (2016). Further
details of our technical contributions are presented after a
review of related literature.

Our simulation results corroborate our theoretical findings.
Importantly, they show that some of the assumptions (such
as the warm start) needed for our theoretical result are not
necessary in practice. They also show that the constants
in our theoretical results—the sample complexity and the

convergence rate—are quite conservative. Our work sug-
gests that explicitly asking users to compare pairs of items
(instead of rating them) can be a viable approach to learn-
ing user preferences. To the best of our knowledge, such
a dataset is not publicly available. Note that prior works
using near-identical methods on real datasets, such as Ren-
dle et al. (2009) and Park et al. (2015), infer comparisons
from other forms of data. We hope our work will motivate
practitioners to collect a large comparison dataset similar
to the Netflix dataset, on which our method can be tested.
An interesting direction of future research is to empirically
test whether comparison-based feedback leads to better rec-
ommendations than rating-based feedback, possibly due to
lower noise.

2. RELATED WORK
2.1. On Matrix Completion

The matrix completion problem can be stated as follows:
recover a low-rank matrix given a small subset of its entries,
possibly corrupted by noise. There are two approaches
that provide theoretically optimal solutions for this problem.
One approach involves posing a nuclear norm minimization
program, subject to the constraints that some select entries
must match the observation. Candès & Recht (2009) was
the first to theoretically establish that a low rank matrix
can be recovered exactly, given a small, randomly sampled,
subset of its entries (without noise). Later work extended
these results to the setting with noisy observations (Candes
& Plan, 2010; Negahban & Wainwright, 2012).

An alternate approach is to pose the problem in its matrix
factorization form. This is based on the observation that a
low-rank matrix X admits a factorization into two smaller
matrices (U, V ): X = UV T . One can pose a squared-loss
minimization problem in terms of the factors (U, V ) (Mnih
& Salakhutdinov, 2007). While this alternate formulation
leads to a nonconvex objective function, it is much faster
to solve and yields good results on real data (Koren et al.,
2009). This empirical success spurred a long line of theo-
retical research on analyzing this nonconvex optimization
problem. The work of Keshavan et al. (2010a) was the first
to provide theoretical guarantees for this nonconvex formu-
lation. They propose a two-step method. First, they show
that performing the singular value decomposition of the par-
tially observed matrix leads to a candidate solution close to
the ground-truth. Next, using this matrix as a starting point,
they show that a gradient-descent like method converges to
the true solution.

Other works have built upon this initial result to show
slightly stronger theoretical guarantees with improved proof
techniques (Chen & Wainwright, 2015; Sun & Luo, 2016;
Zheng & Lafferty, 2016). Following the two-step approach
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prescribed by Keshavan et al. (2010a), all these works focus
on proving that there exists a basin of attraction around the
true solution. Notably, all these papers use a key concentra-
tion result developed by Candès & Recht (2009) (Theorem
4.1). This result, in turn, relies on the following assumptions
(i) the ground-truth matrix is incoherent (no row or column
of the matrix dominates the rest) and (ii) the observed en-
tries are chosen uniformly at random from all the entries
of the matrix. Furthermore, these methods require that the
iterates always remain incoherent throughout; to this end,
they use a regularizer (Sun & Luo, 2016) or a projection
step (Chen & Wainwright, 2015; Zheng & Lafferty, 2016).

Further work on this problem has led to significant relax-
ations in the assumptions needed to prove theoretical guaran-
tees. Firstly, Ge et al. (2016) and Ge et al. (2017) show that
all local minima are global in the nonconvex formulation.
This implies gradient-based methods are guaranteed to con-
verge to a global optimum, even without the initialization
procedure. Secondly, Ma et al. (2020) shows that gradient
descent has implicit regularization and thus can converge
to the optimal solution without an explicit regularizer or a
projection operation.

2.2. On Learning From Comparisons

The central problem in learning from comparison data is
to estimate the preference order/rank of all the items given
a dataset. A popular approach to solve this problem is to
assume the comparisons arise from a probabilistic choice
model, such as the Bradley-Terry-Luce choice model. Theo-
retical guarantees for learning the parameters of this model
have been established in the literature (Negahban et al.,
2012; Maystre & Grossglauser, 2015; Shah et al., 2016). In
addition to the offline setting, the corresponding active learn-
ing problem has also been well-studied, especially in the
framework of dueling bandits (Bengs et al., 2021). In partic-
ular, the contextual dueling bandit model is quite similar to
our model; however, with the ‘collaborative filtering’ aspect
missing, the basic estimation problem there reduces to that
of logistic regression (Saha, 2021; Bengs et al., 2022).

The problem of learning a low-rank user-item score matrix
from comparison data was first formulated by Rendle et al.
(2009). This work applied a model and algorithm very
similar to ours to a comparison dataset derived from implicit
user feedback such as views, clicks, and purchases. Rendle
et al. (2009) demonstrated that such data is better treated as
ordinal information (a preference of the viewed item over
the rest) instead of cardinal information (a positive rating of
the viewed item).

Park et al. (2015) was the first work to provide theoretical
guarantees for this problem, albeit for convex version. This
work also noted the similarity of this problem to the matrix
completion setting, prompting them to also develop a more

efficient nonconvex method which is nearly identical to ours.
They applied this method to a comparison dataset derived
from movie ratings (higher rated movie is preferred over
a lower rated one), getting recommendations of a quality
similar to processing ratings directly, thereby establishing
the efficacy of this method.

Negahban et al. (2018) studies this problem in much greater
detail, providing matrix recovery guarantees with optimal
sample complexity. It also analyzes more complex settings
such as sampling item pairs in a nonuniform fashion and
learning from one-out-of-k choices. Ultimately, the paper
focuses only on the convex formulation, stating that the
analysis of the corresponding nonconvex formulation is an
important open problem.

2.3. Our Technical Contributions

In this work, we provide a theoretical analysis of the non-
convex formulation for the problem of learning a low-rank
matrix from comparison data. The modeling assumptions
we make, such as the incoherence of the ground-truth matrix
and the uniform sampling of datapoints, are very similar to
prior work on matrix factorization. Our proof strategy is
also inspired by prior work on this subject; most notably,
that of Zheng & Lafferty (2016). In particular, we follow
their approach of using a regularizer to translate an asym-
metric matrix factorization problem (X = UV T ) into a
symmetric one (Y = ZZT ). We also follow their idea of
using projected gradient descent to ensure the iterates stay
incoherent.

The key difference between our work and prior work is
the method used to develop the necessary concentration in-
equalities. Most of the papers analyzing matrix completion
build upon some fundamental results from Candès & Recht
(2009) and Keshavan et al. (2010a).However, these results
do not apply to our problem, because the structure of the
sampling matrix is different. To elaborate, in matrix com-
pletion, a data point consists of a single user and a single
item, while here, a datapoint consists of a single user and
an item-pair. This seemingly minor difference makes us
lose the interpretation of the set of samples acting like a
projection operator (Candès & Recht, 2009), or the samples
being edges of a bipartite graph (Keshavan et al., 2010a). In
this work, we derive the necessary concentration results by
using the matrix Bernstein inequality (Tropp, 2015) as the
main tool. Further details are given in Section 5.

We make two major simplifying assumptions in this work.
First, we assume that our comparisons are noiseless. That
is, instead of observing a binary preference outcome, we
observe the expected value of this outcome. Extending our
analysis to the more realistic setting of noisy, binary com-
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parisons is an important direction of future work.1 Second,
we assume we are given an initial point that is suitably close
to the ground truth solution. In the matrix completion litera-
ture, such an initial solution can be obtained by performing
a singular value decomposition on the partially observed
matrix, as shown by (Keshavan et al., 2010a). However, this
initialization method does not work here. Our simulations in
Section 6 suggest that this warm start may not be a necessity.
Proving convergence from a random point, as done by (Ge
et al., 2016), remains an open problem.

3. Model
3.1. The Data Generation Process

Let there be a fixed set of users and items. Let n1 denote the
number of users and n2 the number of items. We assume
that each user u has a certain utility x∗

u,i for every item i.
Each user u and each item i has a r-dimensional feature
vector. Further, we assume that the score matrix X∗ ∈
Rn1×n2 has rank r. Although our analysis holds for any
rank r ≤ minn1, n2, the results are interesting when the
matrix is low rank, i.e., the r is much smaller than n1 and
n2. We call X∗ the ground-truth utility matrix.

When a user u is asked to choose which option they prefer
between two items i and j, we assume the user makes a
choice by comparing their utilities. To be precise, let w = 1
denote the event that the user picks i over j and w = 0 the
complementary event. We assume

P (w = 1) = g(x∗
u,i − x∗

u,j), (1)

where g : R → (0, 1) is called the link function. This model
captures the intuition that the user is certain in their choices
among items that differ significantly in their utility, but
is more ambiguous when choosing between similar utility
items. A special case is the classical Plackett-Luce choice
model, where the link function is the sigmoid function:
g(x) = 1/(1 + exp(−x)). In general, the link function
is a smooth, strictly increasing function and is symmetric
around zero in the following sense: g(−x) = 1− g(x).

We assume we are given a dataset D where each data point
represents a comparison made by a user between two items.
The size of the dataset, i.e., the number of data points, is
represented by m. We index the dataset by k. Each data
point Dk is of the form ((u; i, j), w) and is sampled ran-
domly as follows. The user index u is chosen uniformly at
random from [n1]. The pair of item indices (i, j) is chosen
uniformly at random from the set of n2(n2 − 1) pairs of

1Indeed, in the matrix completion literature as well, the noise-
less case has been addressed first and the noisy case in a follow
up work (e.g., Candès & Recht (2009) followed by Candes &
Plan (2010), Keshavan et al. (2010a) followed by Keshavan et al.
(2010b)).

distinct items. The item pair (i, j) is sampled independently
from u. The triplets for different datapoints are sampled
independently of each other.

In this work, we assume that comparisons are noiseless,
i.e., instead of a binary outcome, we observe the expected
value of the comparison outcome w (that is, g(x∗

u,i−x∗
u,j)).

Although this assumption is not a reflection of practice, we
make this assumption for the simplicity of exposition. By
making this assumption, we can show that with sufficient
data, we can estimate the ground-truth matrix to arbitrary
precision. The binary outcome setting can be viewed as a
noisy setting, as any random variable w can be expressed as
the sum of its mean E[w] and some mean-zero noise. We
believe it is possible to extend our results to the noisy case,
except that the recovery guarantees will contain a residual
estimation error due to the noise.

3.2. Notation

We now introduce some additional notation that we will use
throughout the rest of this paper. This notation is useful not
only to succinctly represent the loss function (see Section
3.3), but also to argue about the desired concentration results
(see Section 5).

In Section 3.1, we assumed that the score matrix X∗ ∈
Rn1×n2 has rank r. This implies that it admits the follow-
ing rank-r SVD: X∗ = U∗Σ∗V ∗T . Here, U∗ ∈ Rn1×r

and V ∗ ∈ Rn2×r are orthonormal matrices (satisfying
U∗TU∗ = V ∗TV ∗ = Ir), and Σ∗ ∈ Rr×r is a diagonal
matrix with entries σ∗

1 ≥ . . . ≥ σ∗
r > 0.

Let n = n1 + n2. Define Z∗ ∈ Rn×r and Y ∗ ∈ Rn×n as
follows:

Z∗ =

[
U∗

V ∗

]
Σ∗1/2, (2)

Y ∗ = Z∗Z∗T =

[
U∗Σ∗U∗T X∗

X∗T V ∗Σ∗V ∗T

]
. (3)

We can interpret U∗Σ∗1/2 as the matrix of user feature
vectors, with row u corresponding to user u. Similarly,
V ∗Σ∗1/2 can be viewed the matrix of item feature vectors.
Both user and item features are r-dimensional vectors. Note
that X∗ = (U∗Σ∗1/2)(V ∗Σ∗1/2)T . Thus, the user-item
utility x∗u, i can be viewed as the inner product of the
corresponding user and item feature vectors.

Given the relation between matrices X∗, Y ∗, and Z∗, esti-
mating the ground-truth utility matrix X∗ is equivalent to
estimating Z∗ (barring the symmetries discussed in Section
3.5). The major advantage of this reduction is that it reduces
the number of parameters from n1n2 (in X∗) to (n1 +n2)r
(in Z∗). This significant reduction in parameters (when
r is small) leads to corresponding gains in computational
efficiency. Thus, from here on, the goal of the learning
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problem is to estimate Z∗. Before we present the precise
learning problem in subsequent subsections, we introduce
some more notation that will make the presentation concise.

Let e1, e2, . . . en1
denote unit vectors in Rn1 and let

ẽ1, ẽ2, . . . , ẽn2 denote unit vectors in Rn2 . Let ⟨⟨C,D⟩⟩ =∑
i,j ci,jdi,j denote the matrix inner product between two

matrices of the same size. Therefore:

⟨⟨eu(ẽi − ẽj)
T , X∗⟩⟩ = x∗

u,i − x∗
u,j . (4)

For any triplet (u; i, j), define the corresponding sampling
matrix A ∈ Rn×n to be:

A =

[
0 eu(ẽi − ẽj)

T

0 0

]
. (5)

In the equation above, 0 denotes matrices with all entries
zero of the appropriate size. With this notation, for any data
point ((u; i, j), w), we have:

⟨⟨A, Y ∗⟩⟩ = ⟨⟨AT , Y ∗⟩⟩ = x∗
u,i − x∗

u,j (6)

⇒ P (w = 1 | (u; i, j)) = P (w = 1 |A) = g(⟨⟨A, Y ∗⟩⟩).

Let Ak denote the sampling matrix corresponding to the dat-
apointDk. By our modeling assumptions above, A1, A2, . . .
are i.i.d. random matrices of the same form as (5), with the
index u being chosen uniformly at random from [n1], and
the indices (i, j) being chosen uniformly at random from
[n2] (with the condition i ̸= j).

Lastly, for any matrix Y ∈ Rn×n, define

D(Y ) ≜
1

m

m∑
k=1

⟨⟨Ak +AT
k , Y ⟩⟩

2
. (7)

We overload this notation to highlight the fact that the oper-
ator D(·) captures the collective action of all the sampling
matrices of the dataset D. We shall encounter such terms
repeatedly in our analysis. Observe that D(Y ) is the empir-
ical mean of i.i.d. random terms. Thus, it is reasonable to
expect that D(Y ) ≈ E[D(Y )], if the number of datapoints
m is sufficiently large. Our analysis rests on proving such
concentration results; see Section 5 for more details.

3.3. The Loss Function

Recall, from the previous section, that our goal is to estimate
the matrix Z∗. We do so by maximizing the likelihood as a
function of matrices Z ∈ Rn×r over the dataset D. In other
words, we formulate a loss function in terms of the negative
log likelihood, and minimize this function using a gradient
descent-like method. This section presents the expressions
for the log likelihood and its gradient, using the notation
developed in the previous section.

Given a binary outcome w, the likelihood of the out-
come under a Bernoulli distribution with parameter p is

pw(1 − p)1−w. Therefore, the negative log-likelihood of
this observation is −w log(p)− (1− w) log(1− p). Next,
consider a datapoint ((u; i, j), w) with the corresponding
sampling matrix A. The negative log-likelihood of this
observation with parameters Z is

−w log(g(⟨⟨A,ZZT ⟩⟩))− (1− w) log(1− g(⟨⟨A,ZZT ⟩⟩)).

Then, for the entire dataset, the (normalized) negative log
likelihood is given by:

L(Z) =
1

m

m∑
k=1

−wk log(g(⟨⟨Ak, ZZT ⟩⟩))

− (1− wk) log(1− g(⟨⟨Ak, ZZT ⟩⟩)). (8)

The gradient of L(Z) is

∇L(Z) =
1

m

m∑
k=1

hk(Ak +AT
k )Z, where (9)

hk ≜
g′(zk) (g(zk)− wk)

g(zk)(1− g(zk))
, zk ≜ ⟨⟨Ak, ZZT ⟩⟩.

Here, ∇L(Z) is a matrix of the same size as Z while hk

and zk are scalars. Finally, note that with the noiseless
assumption, we can substitute wk by g(⟨⟨Ak, Z

∗Z∗T ⟩⟩).

3.4. Important Parameters

Condition Number Let σ∗
1 , σ

∗
2 , . . . σ

∗
r denote the singular

values of X∗. Denote the ratio σ∗
1/σ

∗
r , called the condition

number of the data, by κ. Also note κ is also the condi-
tion number of Z∗, because the singular values of Z∗ are√

2σ∗
1 ,
√

2σ∗
2 , . . .

√
2σ∗

r .

Incoherence For any matrix Z, let ∥Z∥2,∞ denote the
maximum of the ℓ2 norm of its rows and let ∥Z∥F denote
the Frobenius norm of Z. Define the incoherence parameter
of the ground-truth matrix as

µ ≜ n(∥Z∗∥22,∞ / ∥Z∗∥2F ). (10)

In principle, µ can take values from 1 to n. However, the
sample complexity worsens with µ, as the concentration
bounds weaken with µ.

Link Function Bounds Let I denote the interval
[−24µ(∥Z∗∥2F /n), 24µ(∥Z∗∥2F /n)]. Let ξ and Ξ be lower
and upper bounds for the following expression:

ξ ≜ min
x∈I,y∈I

g′(x)g′(y)

g(x)(1− g(x))
, (11)

Ξ ≜ max
x∈I,y∈I

g′(x)g′(y)

g(x)(1− g(x))
. (12)

By the assumptions on g(·) stated above, ξ is strictly positive
and Ξ is finite. These terms are used to bound the term hk

in (9) above.

5



Nonconvex Matrix Factorization with Sparse Comparison Data

3.5. Symmetries in the Problem

The generative model, and consequently the log likelihood
function, is invariant to certain transformations in the param-
eters. We explore these symmetries and their consequences
in this section.

Scale Invariance For any score matrix X , the mapping
to Z = (U, V ) is not unique. Indeed, for any invertible
r × r matrix P , the matrix Z ′ = (UPT , V P−1) is indistin-
guishable from (U, V ), as they both lead to the same score
matrix X and hence the same likelihood. However, we can
distinguish ‘imbalanced’ matrices from ‘balanced’ ones by
by adding a regularizer term

∥∥UTU − V TV
∥∥2
F

to the loss
function. Minimizing this regularizer while keeping the
log-likelihood constant leads to a pair of feature matrices
that are balanced in the norms. In more compact terms, the
regularizer can be written as follows:

R(Z) ≜
∥∥ZTDZ

∥∥2
F
; D ≜

[
In1

0
0 −In2

]
. (13)

Note that the ground-truth matrix Z∗ satisfiesR(Z∗) = 0.
Combining the regularizer with the negative log likelihood,
the objective function becomes:

f(Z) ≜ L(Z) + (λ/4)R(Z), (14)

where λ is a positive constant. In this work, we set
λ = ξγ/4; however, in practice, it should be treated as
a hyperparameter. In summary, adding the regularizerR(Z)
factors out the scale-invariance of the problem.

Rotational Invariance Beyond the scale invariance, the
problem at hand also exhibits rotational invariance. Let R
be any orthogonal matrix in r dimensions, i.e., R ∈ Rr×r

such that RRT = RTR = I . The matrix ZR = (UR, V R)
give rise to the same scores as Z = (U, V ). Thus, one can
identify the ground-truth features only up to an orthogonal
transformation. Denote this equivalence class of the ground-
truth feature matrices by Φ:

Φ ≜ {Z̃∗ : Z̃∗ = Z∗R for some orthonormal R}. (15)

This equivalence class of solutions naturally gives rise to a
new distance metric ∆ that measures how close a candidate
solution Z is to Φ. Define

R(Z) ≜ arg min
R:RTR=RRT=Ir

∥Z − Z∗R∥F , (16)

Φ(Z) ≜ arg min
Z̃∗∈Φ

∥∥∥Z − Z̃∗
∥∥∥
F
= Z∗R(Z), (17)

∆(Z) ≜ Z − Φ(Z). (18)

We measure the quality of a solution Z by ∥∆(Z)∥F .

Shift Invariance Under our model, all comparisons in-
volve computing the difference between the utilities of two
items. Therefore, adding a constant vector to each item’s
feature vector does not affect the scores. Mathematically,
this can be seen as follows. Let Ṽ ∗ = V ∗ + 1vT , where
v ∈ Rr and 1 ∈ Rn2 is the vector of all ones. Let X̃∗, Ỹ ∗,
and Z̃∗ denote the corresponding quantities derived from
(U∗, Ṽ ∗). Then for any triplet (u; i, j) and the correspond-
ing sampling matrix A, we have ⟨⟨eu(ẽi − ẽj)

T , X̃∗⟩⟩ =
⟨⟨eu(ẽi − ẽj)

T , X∗⟩⟩, which implies ⟨⟨A, Ỹ ∗⟩⟩ = ⟨⟨A, Y ∗⟩⟩.
Because of this invariance, we assume, without loss of gen-
erality, that 1TV ∗ = 0. In words, we assume that the item
features of all matrices in Φ sum to zero.

The shift invariance also manifests itself in our objective
function L(Z). It is important to factor out the shift invari-
ance in order to establish a strong-convexity like property
(i.e., a curvature) for L(Z). Therefore, we restrict our atten-
tion to the following subspace:

H = {Z ∈ Rn×r : Z = (U, V ), 1TV = 0}. (19)

For any Z = (U, V ), we shall work with the projection of
Z ontoH, denoted by PH(Z). This projection is given by
(U, JV ), where J ≜ In2 − 11T /(n2). Finally, note that by
the assumption stated before, Φ ⊆ H.

4. Algorithm and Result
A naive approach to minimize the loss function (14) is to
simply apply the gradient descent method until one is suffi-
ciently close to convergence. Indeed, in Section 6, we show
this works well in practice. However, for proving theoreti-
cal guarantees, we need to use projected gradient descent.
Notably, the projection step involves two successive projec-
tions, first onto a set of ‘incoherent matrices’ C and then
ontoH (defined in (19)). The set C is defined as follows:

C ≜
{
Z ∈ Rn×r : ∥Z∥2,∞ ≤

4

3

√
µ

n

∥∥Z0
∥∥
F

}
. (20)

Thus, C contains matrices that are ‘nearly as incoherent’
as Z∗ (if

∥∥Z0
∥∥
F
≈ ∥Z∗∥F ). For any Z ∈ Rn×r, the

projection of Z onto C, PC(Z), is a matrix in Rn×r obtained
by clipping the rows of Z to β = (4/3)

√
(µ/n)

∥∥Z0
∥∥
F

:

∀ j ∈ [n], PC(Z)j =

{
Zj if ∥Zj∥2 ≤ β

Zj(β/ ∥Zj∥2) otherwise
.

The rationale for the projections is the following. One, the
objective function displays a strong-convexity like property
only within the region of incoherent matrices. The projec-
tion operation PC ensures that we stay in this region, which
is crucial for proving the theoretical results. The second
projection, PH factors out the shift invariance in the loss

6
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function. This is essential in order to establish strong con-
vexity; otherwise, there is no curvature in the direction of
invariance. Here, there is a caveat: this second projection
may push the iterates out of the set C. However, we show
(in Lemma A.3) that the iterates remain incoherent enough,
i.e., they remain in the set C, where

C ≜
{
Z ∈ Rn×r : ∥Z∥2,∞ ≤

√
12µ/n ∥Z∗∥F

}
(21)

Algorithm 1 Projected Gradient Descent

Input: Objective function f , initial solution Z0 ∈ Rn×r,
stepsize η
t← 0
Z0 ← PH

(
PC
(
Z0
))

repeat
Zt+1 ← PH (PC (Z

t − η∇f(Zt)))
t← t+ 1

until convergence
Output: Zt

Our main theorem states that in the noiseless setting, given
a sufficiently large dataset and a warm start, Algorithm
1 converges exponentially fast to a solution equivalent to
the ground-truth matrix. For the sake of conciseness, we
introduce the following constants:

γ ≜ 2/(n1(n2 − 1)), τ ≜ ξ/Ξ, α ≜ ξγσ∗
r .

Let B(ε) = {Z : ∥∆(Z)∥2F ≤ εσ∗
r} denote a ‘ball’ around

the true solution. With this notation in place, we state the
main result of this paper.

Theorem 4.1. Suppose the following conditions hold:

• The dataset D consists of m i.i.d. samples generated
according to the model presented in Section 3.1.

• The number of samples m is at least
107 (µrκ/τ)

2
n log (8n/δ) for some δ ∈ (0, 1).

• The initial point Z0 lies in B(τ/50).

• The stepsize η in Algorithm 1 satisfies ηα ≤ 2.5 ·
10−6(τ/µrκ)2.

Then, with probability at least 1− δ, the iterates Z1, Z2, . . .
of Algorithm 1 satisfy:∥∥∆(Zt)

∥∥2
F
≤
(
1− αη

4

)t ∥∥∆(Z0)
∥∥2
F
∀ t ∈ N.

We highlight two important points from the above theorem.
First, the dependence on the problem size is O(nr2 log n),
which is near-optimal. Second, for a well-chosen step-
size, the algorithm convergences exponentially at rate

O((τ/µrκ)2). Although the constants in the sample com-
plexity result and convergence rate are quite large in the
statement of Theorem 4.1, our experimental results in Sec-
tion 6 show that in practice, these constants are moderate.
The following section gives a sketch of the proof of Theorem
4.1. The full proof is provided in the appendix.

5. Proof Outline
Theorem 4.1 is nearly identical to the convergence guaran-
tees of gradient descent for a strongly convex and smooth
function, notwithstanding the projection step and the sym-
metries. Lemmas 5.1 and 5.2 establish properties akin to
strong-convexity and smoothness respectively. Note that
we have dropped the dependence on Z for brevity; e.g., we
denote ∇f(Z) by∇f .

Lemma 5.1. Suppose the number of samples m is at least
107 (µrκ/τ)

2
n log (2n/δ), for some δ ∈ (0, 1). Then, with

probability at least 1− δ, ∀ Z ∈ H ∩ B(τ/50) ∩ C,

⟨⟨∇f,∆⟩⟩ ≥ ξγ

4
∥∆∥2F +

ξγ

8

∥∥∆TDΦ
∥∥2
F
.

Lemma 5.2. Suppose the number of samples m is at least
2n log(4n/δ), for some δ ∈ (0, 1). Then, with probability
at least 1− δ, ∀ Z ∈ B(1) ∩ C,

∥∇f∥2F ≤ 105(Ξγµrσ∗
1)

2 ∥∆∥2F +
(ξγ)2

2
σ∗
1

∥∥ΦTD∆
∥∥2
F
.

The lemmas are easy to interpret as strong convexity and
smoothness conditions if we ignore the terms

∥∥∆TDΦ
∥∥2
F

(which stem from the regularizer).

At a high level, the method for proving both these lemmas
is similar. First, the expressions to be bounded, namely
⟨⟨∇f,∆⟩⟩ and ∥∇f∥2F , are written out as the sum and prod-
uct of D(Y ) terms (recall the definition of D(Y ) from (7)).
Second, we demonstrate that these terms, which capture
an empirical mean of i.i.d. random variables, are close to
their statistical mean. Specifically, we show that with high
probability, D(Y ) ≈ E[D(Y )], uniformly for all Y in some
appropriate set. Finally, we put these results together with
the appropriate parameters to ensure that the bounds pre-
sented in Lemmas 5.1 and 5.2 hold. The following sections
flesh out more details.

Showing Strong Convexity The proof of Lemma 5.1 can
be split into the following three lemmas.

Lemma 5.3. For any Z ∈ C,

⟨⟨∇L,∆⟩⟩ ≥ ξ

2
D
(
∆ΦT

)
− 5Ξ

8
D
(
∆∆T

)

7
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Lemma 5.4. Let some ϵ, δ ∈ (0, 1) be given. Suppose
the number of samples m exceeds 96µr (κ/ϵ)2 n log (n/δ).
Then, with probability at least 1− δ, ∀ Z ∈ H,

D
(
∆ΦT

)
≥ γ

(
(1− ϵ)σ∗

r ∥∆∥
2
F + 2⟨⟨ΦU∆

T
V ,∆UΦ

T
V ⟩⟩
)
.

In the above lemma, we use the notation Φ = (ΦU ,ΦV )
and ∆ = (∆U ,∆V ).

Lemma 5.5. Let some ϵ, δ ∈ (0, 1) be given. Suppose the
number of samples m exceeds 845 (µrκ/ϵ)

2
n log (n/δ).

Then, with probability at least 1− δ, ∀ Z ∈ C ∩ B(ϵ),

D(∆∆T ) ≤ 10ϵγσ∗
r ∥∆∥

2
F .

Using these three lemmas, Lemma 5.1 can be derived in
a straightforward manner (proof in Appendix E). Indeed,
if we ignore the cross-term ⟨⟨ΦU∆

T
V ,∆UΦ

T
V ⟩⟩ in Lemma

5.4, it is not hard to see that the three lemmas combined
lead to the lower bound ⟨⟨∇L,∆⟩⟩ ≥ O(1)γσ∗

r ∥∆∥
2
F . The

gradient of the regularizer helps cancel out this cross-term,
but leads to the additional ∥∆DΦ∥2F term.

The steps in the proof of Lemma 5.3 are algebraic in nature
and largely follow the pattern presented in Zheng & Lafferty
(2016); the proof is given in Appendix B. The main technical
contribution of our work lies in the proof of Lemmas 5.4 and
5.5. Although the statements of these lemmas are similar to
Lemmas 10 and 8 respectively of Zheng & Lafferty (2016),
we prove these results in different ways. We outline the
broad steps taken to prove these results, filling in the details
in Appendices C and D respectively.

A key step to prove Lemma 5.4 is to show the identity:

D
(
∆ΦT

)
= vTSDv, where v ≜ vec(∆RT ),

SD ≜
1

m

m∑
k=1

aka
T
k , ak ≜ vec((Ak +AT

k )Z
∗). (22)

Here, we use the notion of vectorization of a matrix, i.e.,
stacking the columns of a matrix to form a vector. Thus, for
a matrix Z ∈ Rn×r, vec(Z) is a vector in Rnr.

Given this quadratic form, it follows that:

|D
(
∆ΦT

)
− E

[
D
(
∆ΦT

)]
| ≤ ∥SD − E[SD]∥2 ∥v∥

2
2

The term ∥SD − E[SD]∥2 can be bounded with high prob-
ability using the matrix Bernstein inequality (see Lemma
C.6). To complete the proof of Lemma 5.4, it remains
to calculate E

[
D
(
∆ΦT

)]
. In Lemma C.2, we show that

E
[
D
(
∆ΦT

)]
= γ

∥∥∆UΦ
T
V +ΦU∆

T
V

∥∥2
F
.

The proof of Lemma 5.5, just like the one for Lemma 5.4,
involves analyzing a quadratic form around a random matrix,

which we split into the mean (expectation) term and the
deviation from the mean. We show that:

D(∆∆T ) = yTBDy = yTE[BD]y + yT (BD − E[BD])y;

y ∈ Rn : yj = ∥∆j∥22 ∀j, BD =
1

m

∑
(u;i,j)∈D

eu(ẽi + ẽj).

The first term is bounded above with the warm-start assump-
tion: ∥∆∥2F ≤ O(1)σ∗

r . The second term is bounded using
the matrix Bernstein inequality (see Lemma D.5).

Showing Smoothness Our method of proving Lemma 5.2
follows the proof style of Zheng & Lafferty (2016). We start
by observing that

∥∇L∥2F = sup
W∈Rn×r:∥W∥F=1

⟨⟨∇L,W ⟩⟩2.

Therefore, it suffices to find a bound for the term on the right
hand side of the above equation. The following lemmas,
proven in Appendix D, provide the requisite bound.

Lemma 5.6. For any Z ∈ C and any W ∈ Rn×r,

⟨⟨∇L,W ⟩⟩2 ≤ 2Ξ2

(
D(∆ΦT ) +

1

4
D(∆∆T )

)
D(WZT ).

Lemma 5.7. Suppose the number of samples m is at least
2n log(4n/δ). Then, with probability at least 1 − δ, the
following inequalities hold uniformly for all Z ∈ C:

D(∆ΦT ) ≤ 16γ(µrσ∗
1) ∥∆∥

2
F ,

D(∆∆T ) ≤ 416γ(µrσ∗
1) ∥∆∥

2
F ,

D(WZT ) ≤ 192γ(µrσ∗
1) ∥W∥

2
F ∀W ∈ Rn×r.

Lemma 5.2 follows by combining these lemmas and ac-
counting for the gradient of the regularizer (see Appendix
E).

6. Simulations
Data Generation: We generated a random ground truth
matrix X∗ ∈ Rn1×n2 with entries selected independently
at random according to normal distribution and calculated
its rank-r SVD, U∗Σ∗V ∗T . We have two settings: a low-
dimensional setting with (n1, n2) = (200, 300) and a high-
dimensional setting with (n1, n2) = (2000, 3000). In both
settings, we had r = 3, µ ≈ 1.01, κ = 1.1. Using this
matrix, we randomly and independently collected m com-
parison data points. Specifically, for each setting, the com-
parison dataset took the form {(Ak, wk) : k = 1, . . . ,m},
where Ak represents the kth sampling matrix as in (5) and
and wk = g(⟨⟨Ak, Z

∗Z∗T ⟩⟩). In this work, we set the reg-
ularizer coefficient to be λ = γ/40. Subsequently, we
applied Algorithm 1 using the stepsize η as recommended

8
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(a) Different initializations (b) Varying dataset size

(c) Different initializations (d) Varying dataset size

Figure 1. The top row and bottom row show the results for (n1, n2) = (200, 300) and (n1, n2) = (2000, 3000), respectively. (a) and (c)
illustrate the effect of different initializations with a fixed number of data points, while the remaining plots demonstrate the effect of
varying dataset size m. Y-axes are in log scale.

by Theorem 4.1. The quality of the algorithm’s output at
iteration t is measured by ||∆(Zt)||F /

√
n1n2. Our code

can be found here. Figure 1 presents the resulting plots.

Initialization: We initialize the algorithm with Z0 = Z∗T +
ϑ(N1, N2J), where N1 ∈ Rn1×r and N2 ∈ Rn2×r, with
their entries drawn from a standard normal distribution. For
our experiments, we use ϑ ∈ {0.5, 1, 2}. Figures 1 (a) and
(c) show the effect of different initial solutions and also
the projection steps in low and high dimensional settings,
respectively. In both settings, the number of data points
m and also the stepsize were chosen as recommended in
Theorem 4.1. This result confirms the linear convergence of
Algorithm 1 as predicted by our theoretical analysis. It is
important to emphasize that while both a warm start and the
projection step are required for our theoretical guarantees,
these simulation results suggest that they are not needed in
practice.

Dataset size: We examine the impact of dataset size m on
the algorithm’s performance. Figures 1 (b) and (d) demon-
strate the resulting normalized errors in low and high dimen-
sional settings, respectively. As depicted in these plots, a
large enough m leads to linear convergence of the algorithm
while for a small m, the error ∥∆(Zt)∥F does not go to zero
as t increases. In both plots, the red curves show the con-

verges rate for m computed by c0(µrκ)
2n log(n/δ) with

δ = 0.05 and c0 being 1/4 for low-dimensional and 1/2
for high-dimensional setting. In Appendix F, we present an
additional plot that highlights the dependence of m on r.

7. Conclusion
In this paper, we consider a mathematical model for a
comparison-based recommender system: the concatena-
tion of the classical matrix factorization framework with
a Plackett-Luce-style comparison oracle. We proved that,
given a relatively sparse dataset, the parameters of the model
can be recovered through an efficient, gradient descent based
algorithm, despite the loss function being nonconvex. Our
proof rests on establishing that the loss function satisfies
properties akin to strong convexity and smoothness in a
neighborhood around the optimal solution. For our analysis,
we made two assumptions: we are given a warm start and
we observe the exact choice probabilities (rather than binary
outcomes). We hope that our work will form the basis of
further analysis of this problem that performs a global anal-
ysis or provides guarantees for data with noisy comparisons.
Finally, we believe that this work is an important contri-
bution in establishing the viability of comparison-based
recommender systems.
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A. Helper Lemmas
A.1. Matrix Inner Product Identities

We state some basic identities of the matrix inner product operator, which are trivial to verify but are used frequently in the
paper. In the following identities, D,E, and F are arbitrary matrices so long as their sizes are compatible with the equations.

⟨⟨E,F ⟩⟩ = Tr(EFT ) = Tr(FET ) (23)

⟨⟨E,F ⟩⟩ = ⟨⟨F,E⟩⟩ = ⟨⟨ET , FT ⟩⟩ (24)

⟨⟨DE,F ⟩⟩ = ⟨⟨D,FET ⟩⟩ = ⟨⟨E,DTF ⟩⟩, ⟨⟨D,EF ⟩⟩ = ⟨⟨DFT , E⟩⟩ = ⟨⟨ETD,F ⟩⟩ (25)

From these identities, we get that for any sampling matrix A (defined in (5)) and any Y,Z ∈ Rn×r:

⟨⟨(A+AT )Y,Z⟩⟩ = ⟨⟨AY,Z⟩⟩+ ⟨⟨ATY,Z⟩⟩
= ⟨⟨A,ZY T ⟩⟩+ ⟨⟨AT , ZY T ⟩⟩
= ⟨⟨A,ZY T + Y ZT ⟩⟩ (26)

Let W and Z be two matrices in Rn×r. Recall the notation convention introduced in Section 5. Using the above identity
and (5), we get that for any sampling matrix A corresponding to the triplet (u; i, j),

⟨⟨(A+AT ),WZT ⟩⟩ = ⟨⟨eu(ẽi − ẽj)
T ,WUZV + ZUWV ⟩⟩ (27)

= ⟨⟨Wu, Zi − Zj⟩⟩+ ⟨⟨Zu,Wi −Wj⟩⟩ (28)

A.2. The Frobenius Norm of the Product of Two Matrices

Let X be any matrix and let σmax(X) and σmin(X) denote the largest and smallest singular values of X . Let v be any
vector such that the product Xv is compatible. By the definition of singular values:

σmin(X) ∥v∥2 ≤ ∥V x∥2 ≤ σmax(X) ∥v∥2

Using this basic fact, we can prove the following result.

Lemma A.1. Let U ∈ Rn1×r and V ∈ Rn2×r be any two matrices. Let σ1(U) ≥ . . . ≥ σr(U) denote the singular values
of U and σ1(V ) ≥ . . . ≥ σr(V ) denote the singular values of V . Then

∥∥UV T
∥∥2
F

satisfies the following bounds:

σr(U)2 ∥V ∥2F ≤
∥∥UV T

∥∥2
F
≤ σ1(U)2 ∥V ∥2F

σr(V )2 ∥U∥2F ≤
∥∥UV T

∥∥2
F
≤ σ1(V )2 ∥U∥2F

Proof. We first prove the inequality
∥∥UV T

∥∥2
F
≥ σr(U)2 ∥V ∥2F . Let Vj denote the jth row of V , written as a column vector

(r × 1 matrix). Let (UV T )j denote the jth column of UV T . Finally, note that the squared Frobenius norm of a matrix is the
sum of the squared ℓ2 norms of its rows or of its columns. Stitching together these simple facts, we get.

∥∥UV T
∥∥2
F
=

n2∑
j=1

∥∥(UV T )j
∥∥2
2
=

n2∑
j=1

∥UVj∥22

≥
n2∑
j=1

σr(U)2 ∥Vj∥22 = σr(U)2
n2∑
j=1

∥Vj∥22

= σr(D)2 ∥V ∥2F

The upper bound
∥∥UV T

∥∥2
F
≤ σ1(U)2 ∥V ∥2F can be derived using the same steps, except we use the inequality ∥UVj∥2 ≤

σ1(U) ∥Vj∥2 instead of ∥UVj∥2 ≥ σr(U) ∥Vj∥2. Finally, the second set of bounds follow by applying the first set of bounds
to the matrix V UT , and noting that

∥∥UV T
∥∥
F
=
∥∥V UT

∥∥
F

.
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A.3. The Incoherence of the Iterates

Recall that we have assumed that the initial point Z0 satisfies the bound
∥∥∆(Z0)

∥∥2
F
≤ σ∗

r/16, i.e., we are given a warm
start (see Section 4). With this assumption, we can prove the following lemmas.

Lemma A.2. Let C be the set defined in (20), i.e.,

C ≜
{
Z ∈ Rn×r : ∥Z∥2,∞ ≤

4

3

√
µ

n

∥∥Z0
∥∥
F

}
Then all the equivalent ground-truth matrices lie in C, i.e. Φ ⊆ C.

Proof. Start with the identity Z0 = Φ(Z0) + ∆(Z0) (which follows from (18)). By the triangle inequality, we get∥∥Φ(Z0)
∥∥
F
−
∥∥∆(Z0)

∥∥
F
≤
∥∥Z0

∥∥
F
≤
∥∥Φ(Z0)

∥∥
F
+
∥∥∆(Z0)

∥∥
F
.

Note that all matrices in Φ have the same Frobenius norm. This implies that
∥∥Φ(Z0)

∥∥
F
= ∥Z∗∥F . Combining this with the

bound on
∥∥∆(Z0)

∥∥
F

, we get

∥Z∗∥F −
√
σ∗
r/4 ≤

∥∥Z0
∥∥
F
≤ ∥Z∗∥F +

√
σ∗
r/4 (29)

Recall that the singular values of Z∗ are
√
2σ∗

1 ,
√
2σ∗

2 , . . . ,
√
2σ∗

r . We know that the Frobenius norm of a matrix is the ℓ2
norm of the vector of its singular values. Therefore:

∥Z∗∥F =

√√√√2

r∑
i=1

σ∗
i ⇒

√
σ∗
r

4
≤
∥Z∗∥F

4

⇒
∥∥Z0

∥∥
F
≥ ∥Z∗∥F −

√
σ∗
r/4 ≥

3

4
∥Z∗∥F

⇒ ∥Z∗∥2,∞ =
√

µ/n ∥Z∗∥F ≤
4

3

√
µ/n

∥∥Z0
∥∥
F

Thus, we see that Z∗ ∈ C. Because all Z ∈ Φ have the same ℓ2/ℓ∞ norm, it follows that Φ ⊆ C.

Before proceeding further, we introduce some new notation. Recall the convention (established in Section 5) that any matrix
Z can be viewed as a concatenation of two matrices: Z = (ZU , ZV ). To index the rows of Z, we use Zu, u ∈ [n1] for the
user features and Zi, Zj , j ∈ [n2] for the item features. In expressions involving matrix multiplication, we view Zu, Zi, Zj

as row vectors, i.e., as 1× r matrices. By the definition of ∥Z∥2,∞, we get:

∥Z∥2,∞ = max{max
u∈[n1]

∥Zu∥2 , max
i∈[n2]

∥Zi∥2}. (30)

Equipped with this new notation, we can state and prove the next result.

Lemma A.3. For any Z ∈ C, let W = PH(Z). Then W ∈ C, i.e., W satisfies

∥W∥22,∞ ≤
12µ

n
∥Z∗∥2F

Proof. Let z denote the mean of the rows of ZV , i.e.,

z ≜
1

n2

∑
i∈[n2]

Zi

It follows that

⇒ ∥z∥2 =
1

n2

∥∥∥∥∥∥
∑

i∈[n2]

Zi

∥∥∥∥∥∥
2

≤ 1

n2

∑
i∈[n2]

∥Zi∥2 ≤
1

n2

∑
i∈[n2]

∥Z∥2,∞ = ∥Z∥2,∞ (by (30))

13



Nonconvex Matrix Factorization with Sparse Comparison Data

The operation of projecting onto the subspaceH is such that WU = ZU and Wi = Zi − v for all item rows i (see Section
3.5). By the triangle inequality, we get:

∥Wi∥2 = ∥Zi − z∥2 ≤ ∥Zi∥2 + ∥z∥2
⇒ max

i∈[n2]
∥Wi∥2 ≤ max

i∈[n2]
∥Zi∥2 + ∥z∥2 ≤ ∥Z∥2,∞ + ∥z∥2 ≤ 2 ∥Z∥2,∞

Because the rows of U remain unchanged, we have ∥W∥2,∞ ≤ 2 ∥Z∥2,∞.

Next, note that Z ∈ C. Therefore,

∥Z∥2,∞ ≤
4

3

√
µ

n

∥∥Z0
∥∥
F
≤ 5

3

√
µ

n
∥Z∗∥F

The last step uses the inequality
∥∥Z0

∥∥
F
≤ (5/4) ∥Z∗∥F , which follows from (29) in the derivation of Lemma A.2. By

combining the above inequalities, we get the desired result:∥∥∥Ẑ∥∥∥2
2,∞
≤ 4 ∥Z∥22,∞ ≤ 4

25

9

µ

n
∥Z∗∥2F ≤

12µ

n
∥Z∗∥2F .

The above result is important because it establishes a useful bound that holds for all iterates Zt, t ∈ Z+. (Recall that
Algorithm 1 takes successive projections, first on to C and then ontoH.)

A.4. Bounds on the Scores

In this subsection, we derive two related bounds on any Z ∈ Rn×r and any sampling matrix A:

|⟨⟨A,ZZT ⟩⟩| ≤ 2 ∥Z∥22,∞ (31)∥∥(A+AT )Z
∥∥2
F
≤ 6 ∥Z∥22,∞ (32)

Before we prove these bounds, let us explore its consequence. By the definition of the incoherence parameter µ (10),
∥Z∗∥22,∞ = (µ/n) ∥Z∗∥2F . Therefore,

|⟨⟨A,Z∗Z∗T ⟩⟩| ≤ 2µ

n
∥Z∗∥2F (33)∥∥(A+AT )Z∗∥∥2

F
≤ 6µ

n
∥Z∗∥2F (34)

Moreover, for all Z ∈ C,

|⟨⟨A,ZZT ⟩⟩| ≤ 24µ

n
∥Z∗∥2F (35)∥∥(A+AT )Z

∥∥2
F
≤ 72µ

n
∥Z∗∥2F (36)

As argued in the previous subsection, all iterates (Zt)t∈Z+
of Algorithm 1 lie in C and consequently satisfy the above bound.

We now proceed to the derivation of (31). Let Z ∈ Rn×r be some candidate feature matrix and let X = ZUZ
T
V be the

corresponding score matrix. Let (u; i, j) be an arbitrary triplet and let A denote the corresponding sampling matrix. Recall
the definition of the sampling matrix A corresponding to a triplet (u; i, j) from (4) and (5). We have

|⟨⟨A,ZZT ⟩⟩| = |xu,i − xu,j | = |⟨Zu, (Zi − Zj)⟩| ≤ ∥Zu∥2 ∥Zi − Zj∥2 ≤ ∥Zu∥2 (∥Zi∥2 + ∥Zj∥2) ≤ 2 ∥Z∥22,∞

The last inequality follows from the definition of ∥Z∥2,∞ (see (30)).

14
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The derivation of (32) proceeds as follows.

A =

[
0 eu(ẽi − ẽj)

T

0 0

]
⇒ A+AT =

[
0 eu(ẽi − ẽj)

T

(ẽi − ẽj)e
T
u 0

]
⇒ (A+AT )Z =

[
0 eu(ẽi − ẽj)

T

(ẽi − ẽj)e
T
u 0

] [
ZU

ZvV

]
=

[
eu(ẽi − ẽj)

TZV

(ẽi − ẽj)e
T
uZU

]
=

[
eu(Zi − Zj)
(ẽi − ẽj)Zu

]
⇒
∥∥(A+AT )Z

∥∥2
F
= ∥eu(Zi − Zj)∥2F + ∥(ẽi − ẽj)Zu∥2F
= ∥eu∥22 ∥Zi − Zj∥22 + ∥ẽi − ẽj∥22 ∥Zu∥22
= ∥Zi − Zj∥22 + 2 ∥Zu∥22 (∥eu∥22 = 1, ∥ẽi − ẽj∥22 = 2)

≤ 2(∥Zi∥22 + ∥Zj∥22) + 2 ∥Zu∥22 (∥Zi − Zj∥22 ≤ (∥Zi∥2 + ∥Zj∥2)
2 ≤ 2(∥Zi∥22 + ∥Zj∥22))

≤ 6 ∥Z∥22,∞ (by definition of ∥Z∥2,∞ (30))

This establishes the second inequality.

A.5. The Matrix Bernstein Inequality

Here, we state a special version of the matrix Bernstein inequality that we use in our proofs. The statement is identical to
Corollary 6.2.1 in (Tropp, 2015), barring a change in notation.

This concentration result is stated in terms of the operator norm of a matrix X , which we denote as ∥X∥2 and is defined as
follows:

∥X∥2 ≜ sup
v:∥v∥2=1

∥Xv∥2 (37)

It follows that ∥X∥2 = σmax(X). For square matrices X , an alternate definition of the operator norm is:

∥X∥2 ≜ sup
v:∥v∥2=1

vTXv (38)

Lemma A.4 (Matrix Bernstein Inequality). Consider a random matrix X of shape n1 × n2 that satisfies:

E[X] = X̄ and ∥X∥2 ≤ L almost surely.

Let b be an upper bound on the second moment of X:∥∥E[XXT ]
∥∥
2
≤ b and

∥∥E[XTX]
∥∥
2
≤ b.

Let XD = 1
m

∑m
k=1 Xk, where each Xk is an i.i.d. copy of X . Then, for all t ≥ 0,

P (
∥∥XD − X̄

∥∥
2
≥ t) ≤ (n1 + n2) exp

(
−mt2/2

b+ 2Lt/3

)
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B. Initial Lemmas
Following the convention of the main paper, we drop the explicit dependence on Z wherever it is obvious.

B.1. Proof of Lemma 5.3

Lemma 5.3. For any Z ∈ C,

⟨⟨∇L,∆⟩⟩ ≥ ξ

2
D
(
∆ΦT

)
− 5Ξ

8
D
(
∆∆T

)
Proof. From the expression of∇L (see (9)), we get that:

⟨⟨∇L,∆⟩⟩ = 1

m

m∑
k=1

hk⟨⟨(Ak +AT
k )Z,∆⟩⟩ where hk =

g′(zk) (g(zk)− wk)

g(zk)(1− g(zk))
, zk = ⟨⟨Ak, ZZT ⟩⟩.

Recall, by definition (see (18)), that Z = Φ+∆. Therefore. the term ⟨⟨(Ak +AT
k )Z,∆⟩⟩ can be expanded as follows:

⟨⟨(Ak +AT
k )Z,∆⟩⟩ = ⟨⟨(Ak +AT

k )Φ,∆⟩⟩+ ⟨⟨(Ak +AT
k )∆,∆⟩⟩

= ⟨⟨Ak +AT
k ,∆ΦT ⟩⟩+ ⟨⟨Ak +AT

k ,∆∆T ⟩⟩ (by (25))

Since we have assumed that our observations are noiseless, we have the identity wk = g(⟨⟨Ak, Z
∗Z∗T ⟩⟩). Plugging this

equation in the expression of hk, we get:

hk =
g′(zk) (g(zk)− g(z∗k))

g(zk)(1− g(zk))
; z∗k = ⟨⟨Ak, Z

∗Z∗T ⟩⟩ = ⟨⟨Ak,ΦΦ
T ⟩⟩

By the mean value theorem,

g(zk)− g(z∗k) = g′(yk)(zk − z∗k) for some yk in the interval between zk and z∗k

= g′(yk)
(
⟨⟨Ak, ZZT ⟩⟩ − ⟨⟨Ak,ΦΦ

T ⟩⟩
)

= g′(yk)
(
⟨⟨Ak,Φ∆

T +∆ΦT ⟩⟩+ ⟨⟨Ak,∆∆T ⟩⟩
)

(because Z = Φ+∆)

= g′(yk)

(
⟨⟨Ak +AT

k ,∆ΦT ⟩⟩+ 1

2
⟨⟨Ak +AT

k ,∆∆T ⟩⟩
)

(by (26))

Putting the above equations together, we get:

hk⟨⟨(Ak +AT
k )Z,∆⟩⟩

=
g′(zk)g

′(yk)

g(zk)(1− g(zk))

(
⟨⟨Ak +AT

k ,∆ΦT ⟩⟩+ 1

2
⟨⟨Ak +AT

k ,∆∆T ⟩⟩
)(
⟨⟨Ak +AT

k ,∆ΦT ⟩⟩+ ⟨⟨Ak +AT
k ,∆∆T ⟩⟩

)
=

g′(zk)g
′(yk)

g(zk)(1− g(zk))

(
⟨⟨Ak +AT

k ,∆ΦT ⟩⟩2 + 3

2
⟨⟨Ak +AT

k ,∆ΦT ⟩⟩⟨⟨Ak +AT
k ,∆∆T ⟩⟩+ 1

2
⟨⟨Ak +AT

k ,∆∆T ⟩⟩2
)

≥ g′(zk)g
′(yk)

g(zk)(1− g(zk))

(
1

2
⟨⟨Ak +AT

k ,∆ΦT ⟩⟩2 − 5

8
⟨⟨Ak +AT

k ,∆∆T ⟩⟩2
)

The last step uses the inequality 2a2+3ab+b2 ≥ a2− 5b2

4 , which can be derived from the trivial inequality (a+3b/2)2 ≥ 0.

Note also that the coefficient g′(zk)g
′(yk)

g(zk)(1−g(zk))
is positive.

Finally, observe that we have assumed Z ∈ C. The bounds in (33) and (35) imply

|z∗k| ≤ 2
µ ∥Z∗∥2F

n
, |zk| ≤ 24

µ ∥Z∗∥2F
n

, which implies |yk| ≤ 24
µ ∥Z∗∥2F

n

Thus, yk and zk lie in the interval
[
−24µ ∥Z∗∥2F /n, 24µ ∥Z∗∥2F /n

]
. By the definition of ξ and Ξ in (11) and (12), as well

as the definition of the operator D(·) in (7), the desired expression follows.
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B.2. Proof of Lemma 5.6

Lemma 5.6. For any Z ∈ C and any W ∈ Rn×r,

⟨⟨∇L,W ⟩⟩2 ≤ 2Ξ2

(
D(∆ΦT ) +

1

4
D(∆∆T )

)
D(WZT ).

Proof. The proof of this lemma is similar to the proof of Lemma 5.3. One major difference is that we work with terms of
the form ⟨⟨A+AT , Y ⟩⟩ instead of terms ⟨⟨A, Y ⟩⟩.

Following the steps of the proof of Lemma 5.3, we get:

⟨⟨∇L, H⟩⟩ = 1

m

m∑
k=1

hk⟨⟨(Ak +AT
k )Z,H⟩⟩ where hk =

g′(zk) (g(zk)− wk)

g(zk)(1− g(zk))
, zk = ⟨⟨Ak, ZZT ⟩⟩.

g(zk)− g(z∗k) = g′(yk)
(
⟨⟨Ak,Φ∆

T +∆ΦT ⟩⟩+ ⟨⟨Ak,∆∆T ⟩⟩
)

for some yk in the interval between zk and z∗k

By (24) and (25), we get:

⟨⟨(Ak +AT
k )Z,H⟩⟩ = ⟨⟨Ak +AT

k , HZT ⟩⟩

⟨⟨Ak,Φ∆
T +∆ΦT ⟩⟩+ ⟨⟨Ak,∆∆T ⟩⟩ = ⟨⟨Ak +AT

k ,Φ∆
T ⟩⟩+ 1

2
⟨⟨Ak +AT

k ,∆∆T ⟩⟩

Putting together the equations above, we get:

⟨⟨∇L, H⟩⟩ = 1

m

m∑
k=1

g′(zk)g
′(yk)

g(zk)(1− g(zk))

(
⟨⟨Ak +AT

k ,Φ∆
T ⟩⟩+ 1

2
⟨⟨Ak +AT

k ,∆∆T ⟩⟩
)(
⟨⟨Ak +AT

k , HZT ⟩⟩
)

(39)

Next, we invoke two straightforward inequalities which apply to any sequence of scalars
(ak)k∈[m], (bk)k∈[m], and (ck)k∈[m] with ak ≥ 0 ∀ k:(

1

m

m∑
k=1

akbkck

)2

≤

(
1

m

m∑
k=1

akb
2
k

)(
1

m

m∑
k=1

akc
2
k

)
(

1

m

m∑
k=1

akb
2
k

)
≤
(
max
k∈[m]

ak

)(
1

m

m∑
k=1

b2k

)

The first inequality can be viewed as a form of the Cauchy-Schwarz inequality and the second, a form of Hölder’s inequality.

Squaring both sides of the equation in (39) and applying these inequalities with

ak =
g′(zk)g

′(yk)

g(zk)(1− g(zk))
, bk = ⟨⟨Ak +AT

k ,Φ∆
T ⟩⟩+ 1

2
⟨⟨Ak +AT

k ,∆∆T ⟩⟩, ck = ⟨⟨Ak +AT
k , HZT ⟩⟩,

and observing that maxk∈[m] ak ≤ Ξ (using arguments similar to those in Lemma 5.3), we get

⟨⟨∇L, H⟩⟩2 ≤ Ξ2

(
1

m

m∑
k=1

(⟨⟨Ak +AT
k ,Φ∆

T ⟩⟩+ 1

2
⟨⟨Ak +AT

k ,∆∆T ⟩⟩)2
)(

1

m

m∑
k=1

⟨⟨Ak +AT
k , HZT ⟩⟩2

)

≤ 2Ξ2

((
1

m

m∑
k=1

⟨⟨Ak +AT
k ,Φ∆

T ⟩⟩2
)

+
1

4

(
1

m

m∑
k=1

⟨⟨Ak +AT
k ,∆∆T ⟩⟩2

))(
1

m

m∑
k=1

⟨⟨Ak +AT
k , HZT ⟩⟩2

)

= 2Ξ2

(
D̃(∆ΦT ) +

1

4
D̃(∆∆T )

)
D̃(HZT ),

giving us the bound we want.
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C. A Lower Bound for Strong Convexity
In this section, we present the proof of Lemma 5.4, following the approach presented in Section 5. Recall that the goal is to
find a lower bound for D

(
∆ΦT

)
that holds with high probability. Our approach will be to first derive an expression for

E
[
D
(
∆ΦT

)]
and then show that D

(
∆ΦT

)
is close enough to its expected value. Crucially, we want this result to hold

with high probability uniformly for all Z ∈ C.

C.1. Computing Expectations

Recall the definition of the sampling matrix A corresponding to a triplet (u; i, j) from (4) and (5). In this section, we view
the triplet (u; i, j) as a random variable where u is chosen uniformly at random from [n1] and the pair of item indices (i, j)
is chosen uniformly at random from the set of n2(n2 − 1) pairs of distinct items, independent from u. Consequently, eu is a
random vector in Rn1 , ẽi − ẽj is a random vector in Rn2 , and the sampling matrix A is a random matrix in Rn×n. With this
interpretation, we can compute:

E[eueTu ] =
1

n1
In1

, E[(ẽi − ẽj)(ẽi − ẽj)
T ] =

2

n2 − 1
J, where J = In2

− 1

n2
11T (40)

Also recall that γ denotes the constant 2/(n1(n2 − 1)).

Using these identities, we can show the following result.

Lemma C.1. For any matrix X ∈ Rn1×n2 ,

E
[
⟨⟨eu(ẽi − ẽj)

T , X⟩⟩2
]
= γ ∥XJ∥2F

Proof. This proof makes repeated use of the following properties of the trace operator:

• the trace is invariant under cyclic shifts, i.e., Tr(ABC) = Tr(CAB) = Tr(BCA)

• the trace of a scalar is the scalar itself

• the trace is a linear operator which commutes with the expectation

We also use the fact that the indices u and (i, j) are independent, so the expectation E[·] can be decomposed into Ei,j [Eu[·]].

⟨⟨eu(ẽi − ẽj)
T , X⟩⟩ = Tr(eu(ẽi − ẽj)

TXT ) = Tr((ẽi − ẽj)
TXT eu) = (ẽi − ẽj)

TXT eu = eTuX(ẽi − ẽj)

⇒ ⟨⟨eu(ẽi − ẽj)
T , X⟩⟩2 = (ẽi − ẽj)

TXT eue
T
uX(ẽi − ẽj)

⇒ E[⟨⟨eu(ẽi − ẽj)
T , X⟩⟩2] = E[(ẽi − ẽj)

TXT eue
T
uX(ẽi − ẽj)] = Ei,j [Eu[(ẽi − ẽj)

TXT eue
T
uX(ẽi − ẽj)]]

= Ei,j [(ẽi − ẽj)
TXTEu[eue

T
u ]X(ẽi − ẽj)] =

1

n1
Ei,j [(ẽi − ẽj)

TXTX(ẽi − ẽj)] (by (40))

=
1

n1
Ei,j [Tr((ẽi − ẽj)

TXTX(ẽi − ẽj))] =
1

n1
Ei,j [Tr(XTX(ẽi − ẽj)(ẽi − ẽj)

T )]

=
1

n1
Tr(XTXEi,j [(ẽi − ẽj)(ẽi − ẽj)

T ]) =
2

n1(n2 − 1)
Tr(XTXJ) (by (40))

=
2

n1(n2 − 1)
Tr(XTXJJT ) =

2

n1(n2 − 1)
Tr((JX)TXJ)

=
2

n1(n2 − 1)
∥XJ∥2F = γ ∥XJ∥2F

In the last but one step, we make use of the fact that J is a projection matrix, which implies J = JJT .

We use Lemma C.1 to prove the next result.
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Lemma C.2. For any Z ∈ H,

E
[
D
(
∆ΦT

)]
= γ

∥∥∆UΦ
T
V +ΦU∆

T
V

∥∥2
F
,

where Φ = (ΦU ,ΦV ) and ∆ = (∆U ,∆V ) denote the split of Φ and ∆ into the first n1 and last n2 rows.

Proof.

E
[
D
(
∆ΦT

)]
= E

[
1

m

m∑
k=1

⟨⟨Ak +AT
k ,∆ΦT ⟩⟩2

]
= E

[
⟨⟨A+AT ,∆ΦT ⟩⟩2

]
= E

[
⟨⟨eu(ẽi − ẽj)

T ,ΦU∆
T
V +∆UΦ

T
V ⟩⟩

2
]

(by (27))

= γ
∥∥(ΦU∆

T
V +∆UΦ

T
V )J

∥∥2
F

(by Lemma C.1)

= γ
∥∥ΦU∆

T
V +∆UΦ

T
V

∥∥2
F

The last step uses the fact that ΦT
V J = ΦT

V and ∆T
V J = ∆T

V . These identities can be shown as follows. By our assumption
on Z∗, we know that Z∗ ∈ H. It follows that the entire equivalence class of solutions Φ lies inH. In particular, Φ(Z) ∈ H.
We are given some Z ∈ H. This implies ∆(Z) ∈ H, because ∆(Z) = Z−Φ(Z) andH is a vector space. A characterization
of H is that for any Z = (U, V ) in H, JV = V , or equivalently, V TJ = V T (J is symmetric). Thus, it follows that
ΦT

V J = ΦT
V and ∆T

V J = ∆T
V .

We end this section by bounding the expression in Lemma C.2 from below.

Lemma C.3. For any Z ∈ H,

E
[
D
(
∆ΦT

)]
≥ γ

(
σ∗
r ∥∆∥

2
F + 2⟨⟨ΦU∆

T
V ,∆UΦ

T
V ⟩⟩
)

Proof. By Lemma C.2,

E
[
D
(
∆ΦT

)]
= γ

∥∥∆UΦ
T
V +ΦU∆

T
V

∥∥2
F

= γ
(∥∥∆UΦ

T
V

∥∥2
F
+
∥∥ΦU∆

T
V

∥∥2
F
+ 2⟨⟨ΦU∆

T
V ,∆UΦ

T
V ⟩⟩
)

≥ γ
(
σ∗
r ∥∆U∥2F + σ∗

r ∥∆V ∥2F + 2⟨⟨ΦU∆
T
V ,∆UΦ

T
V ⟩⟩
)

(by Lemma A.1)

= γ
(
σ∗
r ∥∆∥

2
F + 2⟨⟨ΦU∆

T
V ,∆UΦ

T
V ⟩⟩
)

Here, we use the fact that σr(ΦU ) = σr(ΦV ) =
√
σ∗
r . This can be shown as follows. Recall Z∗ = (U∗Σ∗1/2, V ∗Σ∗1/2)

and Φ = Z∗R for some orthogonal matrix R. Therefore, ΦU = U∗Σ∗1/2R and ΦV = V ∗Σ∗1/2R. These expressions are
already in SVD form. Therefore, the singular values for both ΦU and ΦV are the diagonal elements of Σ∗1/2, namely,√

σ∗
1 , . . . ,

√
σ∗
r .

C.2. Vectorization and a Quadratic Form

In this section, we shall show that D
(
∆ΦT

)
can be expressed as a quadratic form around a random matrix. This identity

will help us prove the desired concentration result in the next section. Let us establish the following notation.

v ≜ vec(∆RT ), ak ≜ vec((Ak +AT
k )Z

∗), Sk ≜ aka
T
k , SD ≜

1

m

m∑
k=1

Sk (41)

where for any matrix Z ∈ Rn×r, vec(Z) is a vector in Rnr, obtained by stacking the columns of the matrix one after another.
This operation is called ‘vectorization of a matrix’. With this notation in place, we proceed to establish the following
identities:
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Lemma C.4.

D
(
∆ΦT

)
= vTSDv

∥v∥22 = ∥∆∥2F

Proof. Recall from (17) that Φ = Z∗R. Let ∆̃ ≜ ∆RT . Then

∆ΦT = ∆RTZ∗T = ∆̃Z∗T ⇒
(
∆ΦT +Φ∆T

)
= (∆̃Z∗T + Z∗∆̃T ) (42)

Next, invoking the notion of vectorization, we get that for any k ∈ m:

⟨⟨Ak, ∆̃Z∗T + Z∗∆̃T ⟩⟩ = ⟨⟨(Ak +AT
k )Z

∗, ∆̃⟩⟩ (by (26))

= ⟨vec((Ak +AT
k )Z

∗), vec(∆̃)⟩
= ⟨ak, v⟩ (by (7))

∴ ⟨⟨Ak, ∆̃Z∗T + Z∗∆̃T ⟩⟩2 = ⟨v, ak⟩ ⟨ak, v⟩
= vTSkv

∴ D
(
∆ΦT +Φ∆T

)
= D

(
∆̃Z∗T + Z∗∆̃T

)
(by (42))

=
1

m

m∑
i=1

⟨⟨Ak, ∆̃Z∗T + Z∗∆̃T ⟩⟩2 (by (7))

=
1

m

m∑
i=1

vTSkv

= vT

(
1

m

m∑
i=1

Sk

)
v

= vTSDv

The second statement can be derived easily as shown below:

∥v∥22 =
∥∥vec(∆RT )

∥∥2
2

= ⟨vec(∆RT ), vec(∆RT )⟩
= ⟨⟨∆RT ,∆RT ⟩⟩
= ⟨⟨∆RTR,∆⟩⟩ (by (25))

= ⟨⟨∆,∆⟩⟩ (because R is an orthonormal matrix, RTR = I)

= ∥∆∥2F

C.3. A Concentration Result on SD

Recall, from (41), that SD is the empirical mean of i.i.d. random matrices (Sk)k∈m. Let S denote the prototype random
matrix of which (Sk)k∈[m] are i.i.d. copies, and let S̄ denote E[S]. In this section, we will use the matrix Bernstein inequality
(Lemma A.4) to establish an upper bound on

∥∥SD − S̄
∥∥
2
. (Recall from (37) that ∥X∥2 denotes the operator norm of X .)

In order to apply the matrix Bernstein inequality, we need to compute two parameters, b and L, that satisfy:

∥S∥2 ≤ L almost surely,
∥∥E[SST ]

∥∥
2
≤ b

Here, S is symmetric, so E[SST ] = E[STS]).
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For any rank-one symmetric matrix Y = yyT , ∥Y ∥2 = ∥y∥22. Here, S = aaT where a = vec((A + AT )Z∗) for some
sampling matrix A. Using this formula, we get

∥S∥2 = ∥a∥22 =
∥∥vec((A+AT )Z∗)

∥∥2
2
=
∥∥(A+AT )Z∗∥∥2

F
≤ 6µ

n
∥Z∗∥2F almost surely (by (34))

Thus, L = 6(µ/n) ∥Z∗∥2F . Moving on to the calculation for b, we get:

E[SST ] = E[aaTaaT ] = E[∥a∥22 aa
T ]⇒

∥∥E[SST ]
∥∥
2
=
∥∥∥E[∥a∥22 aaT ]∥∥∥

2
≤ sup

a
(∥a∥22)

∥∥E[aaT ]∥∥
2
≤ L

∥∥E[aaT ]∥∥
2

Where, in the last step, we use the fact that ∥a∥22 ≤ L almost surely. The following lemma establishes the bound∥∥E[aaT ]∥∥
2
≤ 4σ∗

1

n1(n2−1) . Thus, we can choose b = 2γσ∗
1L.

Lemma C.5. Let a ∈ Rnr denote a random vector such that a = vec((A+AT )Z∗), with A being the random sampling
matrix defined in Section C.1. Then ∥∥E[aaT ]∥∥

2
≤ 2γσ∗

1

Proof. We adapt the definition of the operator norm of a matrix as follows:∥∥E[aaT ]∥∥
2
= sup

v∈Rnr:∥v∥2=1

vTE[aaT ]v

= sup
Z∈Rn×r:∥Z∥F=1

vec(Z)TE[aaT ]vec(Z)

= sup
Z∈Rn×r:∥Z∥F=1

E[vec(Z)TaaT vec(Z)]

= sup
Z∈Rn×r:∥Z∥F=1

E[⟨vec((A+AT )Z∗), vec(Z)⟩2]

= sup
Z∈Rn×r:∥Z∥F=1

E[⟨⟨(A+AT )Z∗, Z⟩⟩2].

Following the same reasoning as given in the proof of Lemma C.2, we see that:

E[⟨⟨(A+AT )Z∗, Z⟩⟩2] = γ
∥∥Z∗

UZ
T
V J + ZUZ

∗T
V J

∥∥2
F

≤ γ(
∥∥Z∗

UZ
T
V J
∥∥
F
+
∥∥ZUZ

∗T
V J

∥∥
F
)2 (by triangle inequality)

≤ 2γ(
∥∥Z∗

UZ
T
V J
∥∥2
F
+
∥∥ZUZ

∗T
V J

∥∥2
F
) (by (a+ b)2 ≤ 2(a2 + b2)

= 2γ(
∥∥Z∗

UZ
T
V J
∥∥2
F
+
∥∥ZUZ

∗T
V

∥∥2
F
) (because Z∗T

V J = Z∗T
V )

≤ 2γ(σ∗
1

∥∥ZT
V J
∥∥2
F
+ σ∗

1 ∥ZU∥2F ) (by Lemma A.1; σ1(Z
∗
U ) = σ1(Z

∗
V ) =

√
σ∗
1)

≤ 2γσ∗
1(
∥∥ZT

V

∥∥2
F
+ ∥ZU∥2F ) (by Lemma A.1;σ1(J) = 1)

= 2γσ∗
1 ∥Z∥

2
F

Plugging this bound into the expression above, we get∥∥E[aaT ]∥∥
2
= sup

Z∈Rn×r:∥Z∥F=1

E[⟨⟨(A+AT )Z∗, Z⟩2]

≤ sup
Z∈Rn×r:∥Z∥F=1

2γσ∗
1 ∥Z∥

2
F

= 2γσ∗
1

We now have all the ingredients to prove the bound on
∥∥SD − S̄

∥∥
2
.
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Lemma C.6. Let ϵ ∈ (0, 1) and δ ∈ (0, 1) be given. Suppose the number of samples m is at least 96µrn (κ/ϵ)
2
log (n/δ).

Then, with probability at least 1− δ, ∥∥SD − S̄
∥∥
2
≤ γϵσ∗

r

Proof. Let the amount of deviation we wish to tolerate be denoted by t, i.e., t = γϵσ∗
r . We have already established the

bounds

∥S∥2 ≤ L almost surely,
∥∥E[SST ]

∥∥
2
≤ b; L =

6µ

n
∥Z∗∥2F , b = 2γσ∗

1L

Note that b = (2Ltκ/ϵ), since κ = σ∗
1/σ

∗
r .

By Lemma A.4,

P (
∥∥SD − S̄

∥∥
2
≥ t) ≤ 2nr exp

(
−mt2/2

b+ 2Lt/3

)
We would like the right hand side to be less than δ. I.e.,

2nr exp

(
−mt2/2

b+ 2Lt/3

)
≤ δ

⇔ mt2/2

b+ 2Lt/3
≥ log

(
2nr

δ

)
⇔ mt2/2

2Lt(κ/ϵ+ 1/3)
≥ log

(
2nr

δ

)
(∵ b = 2Ltκ/ϵ)

⇔ m ≥ 4L

t

(
κ

ϵ
+

1

3

)
log

(
2nr

δ

)
Next, note that n = n1 + n2, which implies n1(n2 − 1) ≤ n2. Further, the Frobenius norm of a matrix is the ℓ2 norm of
its singular values. We have noted before that the singular values of Z∗ are

√
2σ∗

1 , . . .
√
2σ∗

r . Therefore ∥Z∗∥2F ≤ 2rσ∗
1 .

Using these inequalities, we get

4L

t
= 4

(
6µ

n
∥Z∗∥2F

)(
1

γϵσ∗
r

)
= 4

(
6µ

n
∥Z∗∥2F

)(
n1(n2 − 1)

2ϵσ∗
r

)
= 12

µ

ϵ

(
n1(n2 − 1)

n

)(
∥Z∗∥2F
σ∗
r

)
≤ 24

(µrκn
ϵ

)
Also note that κ > 1 and ϵ < 1, so κ/ϵ + 1/3 is bounded above by 2κ/ϵ. Finally, note that r ≤ n1 and r ≤ n2, so
2r ≤ n1 + n2 = n. Therefore, 2nr/δ ≤ n2/δ ≤ (n/δ)2. Putting these inequalities together, we get:

96µrn
(κ
ϵ

)2
log
(n
δ

)
≥ 4L

t

(
κ

ϵ
+

1

3

)
log

(
2nr

δ

)
Thus, the desired concentration result holds with probability at least 1 − δ if the number of samples m exceeds
96µrn (κ/ϵ)

2
log (n/δ).

C.4. Completing the Proof of Lemma 5.4

Lemma 5.4. Let some ϵ, δ ∈ (0, 1) be given. Suppose the number of samples m exceeds 96µr (κ/ϵ)2 n log (n/δ). Then,
with probability at least 1− δ, ∀ Z ∈ H,

D
(
∆ΦT

)
≥ γ

(
(1− ϵ)σ∗

r ∥∆∥
2
F + 2⟨⟨ΦU∆

T
V ,∆UΦ

T
V ⟩⟩
)
.
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Proof. In Lemma C.4, we established that D
(
∆ΦT

)
= vTSDv. Consequently, E[D

(
∆ΦT

)
] = vT S̄v. Therefore,

|D
(
∆ΦT

)
− E

[
D
(
∆ΦT

)]
| = |vTSDv − vT S̄v| (by Lemma C.4)

= |vT (SD − S̄)v|

≤
∥∥SD − S̄

∥∥
2
∥v∥22 (by (38))

=
∥∥SD − S̄

∥∥
2
∥∆∥2F (by Lemma C.4)

⇒ D
(
∆ΦT

)
≥ E

[
D
(
∆ΦT

)]
−
∥∥SD − S̄

∥∥
2
∥∆∥2F

≥ γ
(
σ∗
r ∥∆∥

2
F + 2⟨⟨ΦU∆

T
V ,∆UΦ

T
V ⟩⟩
)
−
∥∥SD − S̄

∥∥
2
∥∆∥2F (by Lemma C.3)

≥ γ
(
(1− ϵ)σ∗

r ∥∆∥
2
F + 2⟨⟨ΦU∆

T
V ,∆UΦ

T
V ⟩⟩
)

(by Lemma C.6)

D. Upper Bounds for Strong Convexity and Smoothness
D.1. The Dual Sampling Matrix

Associated with each triplet (u; i, j), we define the dual sampling matrix as follows:

B ∈ Rn1×n2 : B = eu(ẽi + ẽj)
T (43)

If we endow the triplets with randomness, B is a random matrix, whose mean is:

B̄ ≜ E[B] = E[eu(ẽi + ẽj)
T ] = E[eu]E[(ẽi + ẽj)

T ] =
2

n1n2
11T (44)

Here, 11T is a matrix of all ones of shape n1 × n2.

Let B1, . . . , BD denote the dual sampling matrices for each of the datapoints, similar to the notation for A. Define the
empirical mean of the dual sampling matrices, BD, as follows:

BD =
1

m

m∑
k=1

Bk (45)

In our analysis, we will use the fact that this empirical mean BD is close to the statistical mean B̄, in a manner made precise
by Lemma D.5. In preparation for this concentration result, we two parameters, L and b. (The same notation was used
to denote related terms for the random matrix SD in the previous section; however, the correct interpretation should be
clear from context.) L is a uniform bound on ∥B∥2. For each triplet (u; i, j), the operator norm of the corresponding dual
sampling matrix is

√
2. It follows that L =

√
2. The definition and bound for v is given in the lemma below.

Lemma D.1. Let B be the random dual sampling matrix as defined above. Let b1 ≜
∥∥E[BTB]

∥∥
2
, b2 ≜

∥∥E[BBT ]
∥∥
2
, and

b = max{b1, b2}. Then

b ≤ 4

min{n1, n2}
.

Proof. We know that ∥eu∥22 = 1 and ∥ẽi + ẽj∥22 = 2 almost surely. Further,

E[eueTu ] =
1

n1
In1

, E[(ẽi + ẽj)(ẽi + ẽj)
T ] =

1(
n2

2

) (11T + (n2 − 2)In2
)
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Using these identities, we get

E[BTB] = E[(ẽi + ẽj)e
T
u eu(ẽi + ẽj)

T ]

= Ei,j [(ẽi + ẽj)Eu[e
T
u eu]w

T ]

= Ei,j [(ẽi + ẽj)(ẽi + ẽj)
T ]

=
1(
n2

2

) (11T + (n2 − 2)In2
)

E[BBT ] = E[eu(ẽi + ẽj)
T (ẽi + ẽj)e

T
u ]

= Eu[euEi,j [(ẽi + ẽj)
T (ẽi + ẽj)]e

T
u ]

= 2Eu[eue
T
u ]

=
2

n1
In1

Computing the operator norms of these matrices is straightforward:

b1 =
∥∥E[BTB]

∥∥
2
=

1(
n2

2

) ∥∥11T + (n2 − 2)In2

∥∥
2
≤ 1(

n2

2

) (∥∥11T∥∥
2
+ (n2 − 2) ∥In2

∥2
)
=

1(
n2

2

) (n2 + (n2 − 2)) =
4

n2

b2 =
∥∥E[BBT ]

∥∥
2
=

2

n1
∥In1∥2 =

2

n1
≤ 4

n1

∴ b = max{b1, b2} ≤ 4

min{n1, n2}

D.2. Algebraic Upper Bounds on D(WZT )

This subsection contains three lemmas that we shall use in the proof of Lemmas 5.5 and 5.7. The first of these three lemmas,
Lemma D.2, gives an upper bound on D(WZT ) as a quadratic form around the random matrix BD that we defined earlier
in the section.

Before we state the result, we introduce some additional notation. Corresponding to any matrix Z ∈ Rn×r, define the vector
z ∈ Rn as follows:

zj = ∥Zj∥2 ∀ j ∈ [n] (46)

It follows from the definition that

∥z∥1 = ∥Z∥2F , ∥z∥∞ = ∥Z∥22,∞ (47)

Following the convention of splitting the matrix Z into user and item components Z = (ZU , ZV ), we split the vector z into
vectors zU ∈ Rn1 and zV ∈ Rn2 (z = (zU , zV )). The norms of these vectors satisfy the following relations:

∥z∥1 = ∥zU∥1 + ∥zV ∥1 , ∥z∥
2
2 = ∥zU∥22 + ∥zV ∥

2
2 , ∥z∥∞ = max{∥zU∥∞ , ∥zV ∥∞} (48)

With these notations and identities in place, we proceed to establish the following result.

Lemma D.2. For any two matrices W and Z in Rn×r,

D(WZT ) ≤4(wT
UBDzV + zTUBDwV )
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Proof.

D(WZT ) =
1

m

m∑
k=1

⟨⟨Ak +AT
k ,WZT ⟩⟩2 (by (7))

=
1

m

∑
(u;i,j)∈D

(⟨⟨Wu, Zi − Zj⟩⟩+ ⟨⟨Zu,Wi −Wj⟩⟩)2 (by (28))

≤ 2

m

∑
(u;i,j)∈D

⟨⟨Wu, Zi − Zj⟩⟩2 + ⟨⟨Zu,Wi −Wj⟩⟩2 (by (a+ b)2 ≤ 2(a2 + b2))

≤ 2

m

∑
(u;i,j)∈D

∥Wu∥22 ∥Zi − Zj∥22 + ∥Zu∥22 ∥Wi −Wj∥22 (by Cauchy-Schwarz inequality)

≤ 2

m

∑
(u;i,j)∈D

∥Wu∥22 (∥Zi∥2 + ∥Zj∥2)
2 + ∥Zu∥22 (∥Wi∥2 + ∥Wj∥2)

2 (by triangle inequality)

≤ 4

m

∑
(u;i,j)∈D

∥Wu∥22 (∥Zi∥22 + ∥Zj∥22) + ∥Zu∥22 (∥Wi∥22 + ∥Wj∥22) (by (a+ b)2 ≤ 2(a2 + b2))

=
4

m

∑
(u;i,j)∈D

wu(zi + zj) +
4

m

∑
(u;i,j)∈D

zu(wi + wj)

=
4

m

∑
(u;i,j)∈D

wT
U

(
eu(ẽi + ẽj)

T
)
zV +

4

m

∑
(u;i,j)∈D

zTU
(
eu(ẽi + ẽj)

T
)
wV

= 4wT
U

 1

m

∑
(u;i,j)∈D

eu(ẽi + ẽj)
T

 zV + 4zTU

 1

m

∑
(u;i,j)∈D

eu(ẽi + ẽj)
T

wV

= 4wT
UBDzV + 4zTUBDwV

The next lemma builds upon the previous result to obtain an upper bound in terms of
∥∥BD − B̄

∥∥
2
.

Lemma D.3. For any Z ∈ Rn×r,

D(ZZT ) ≤ 2
(
γ ∥Z∥2F + 2

∥∥BD − B̄
∥∥
2
∥Z∥22,∞

)
∥Z∥2F

Proof. We start by using the relations in (48) along with the arithmetic mean-geometric mean (AM-GM) inequality to
obtain the following bound

∥zU∥1 ∥zV ∥1 ≤
(
∥zU∥1 + ∥zV ∥1

2

)2

=
∥z∥21
4

, ∥zU∥2 ∥zV ∥2 ≤
(
∥zU∥2 + ∥zV ∥2

2

)2

≤
∥z∥22
2

(49)
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Using the bound in (49), we can show the desired result as follows.

D(ZZT )

8
≤ zTUBDzV (by Lemma D.2)

= zTU B̄zV + zTU (BD − B̄)zV

≤ zTU B̄zV + ∥zU∥2
∥∥(BD − B̄)zV

∥∥
2

(by the Cauchy-Schwarz inequality)

≤ zTU B̄zV +
∥∥BD − B̄

∥∥
2
∥zU∥2 ∥zV ∥2 (by definition of the operator norm)

=
2

n1n2
zTU11

T zV +
∥∥BD − B̄

∥∥
2
∥zU∥2 ∥zV ∥2 (by (44))

≤ γzTU11
T zV +

∥∥BD − B̄
∥∥
2
∥zU∥2 ∥zV ∥2 (2/(n1n2) ≤ 2/(n1(n2 − 1)) = γ)

≤ γ ∥zU∥1 ∥zV ∥1 +
∥∥BD − B̄

∥∥
2
∥zU∥2 ∥zV ∥2 (1T z ≤ ∥z∥1)

≤ 1

4

(
γ ∥z∥21 + 2

∥∥BD − B̄
∥∥
2
∥z∥22

)
(by (49))

≤ 1

4

(
γ ∥z∥21 + 2

∥∥BD − B̄
∥∥
2
∥z∥∞ ∥z∥1

)
(by Hölder’s inequality)

=
1

4

(
γ ∥Z∥2F + 2

∥∥BD − B̄
∥∥
2
∥Z∥22,∞

)
∥Z∥2F (by (47))

∴ D(ZZT ) ≤ 2
(
γ ∥Z∥2F + 2

∥∥BD − B̄
∥∥
2
∥Z∥22,∞

)
∥Z∥2F

The third and final result of this section builds on Lemma D.2 in a different way as compared to the previous one. Here, we
obtain a bound in terms of the ℓ1 operator norm of BD. For any matrix X ∈ Rn1×n2 ,

∥X∥1 ≜ sup
v:∥v∥1=1

∥Xv∥1 (50)

It follows that for any v ∈ Rn2 ,

∥Xv∥1 ≤ ∥X∥1 ∥v∥1 (51)

It can be easily shown that

∥X∥1 = max
j∈[n2]

∑
i∈[n1]

|xij | (52)

In addition, we will need Hölder’s inequality, which states that for any vectors a, b,

⟨a, b⟩ ≤ ∥a∥∞ ∥b∥1 ⇒ ∥a∥
2
2 ≤ ∥a∥∞ ∥a∥1 (53)

Using these inequalities, we get the next result.

Lemma D.4. For any matrices W,Z ∈ Rn×r,

D(WZT ) ≤ 4(max{∥BD∥1 ,
∥∥BT

D
∥∥
1
}) ∥Z∥22,∞ ∥W∥

2
F ,

Proof. We start by invoking Lemma D.2, we get:

D(WZT ) ≤ 4wT
UBDzV + 4zTUBDwV

= 4zTV B
T
DwU + 4zTUBDwV

Applying (48), (51) and (53), we get:

zTV B
T
DwU = ⟨zV , BT

DwU ⟩ ≤ ∥zV ∥∞
∥∥BT

DwU

∥∥
1
≤ ∥zV ∥∞

∥∥BT
D
∥∥
1
∥wU∥1 ≤ ∥z∥∞

∥∥BT
D
∥∥
1
∥wU∥1

zTUBDwV = ⟨zU , BDwV ⟩ ≤ ∥zU∥∞
∥∥BT

DwV

∥∥
1
≤ ∥zU∥∞ ∥BD∥1 ∥wV ∥1 ≤ ∥z∥∞ ∥BD∥1 ∥wV ∥1
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Putting the above inequalities together, we get the desired result:

D(WZT ) ≤ 4zTV B
T
DwU + 4zTUBDwV

≤ 4 ∥z∥∞
∥∥BT

D
∥∥
1
∥wU∥1 + 4 ∥z∥∞ ∥BD∥1 ∥wV ∥1

≤ 4 ∥z∥∞ (max{∥BD∥1 ,
∥∥BT

D
∥∥
1
})(∥wU∥1 + ∥wV ∥1)

= 4 ∥z∥∞ (max{∥BD∥1 ,
∥∥BT

D
∥∥
1
}) ∥w∥1 (by(48))

= 4 ∥Z∥22,∞ (max{∥BD∥1 ,
∥∥BT

D
∥∥
1
}) ∥W∥2F (by(47))

D.3. Norm Bounds on the Dual Sampling Matrix

First, we provide an upper bound on
∥∥BD − B̄

∥∥
2
. This result will be used in conjunction with Lemma D.3 to prove Lemma

5.5.

Lemma D.5. Let ϵ ∈ (0, 1) and δ ∈ (0, 1) be given. Suppose the number of samples m is at least (5/ϵ2)n log(n/δ). Then,
with probability at least 1− δ, ∥∥BD − B̄

∥∥
2
≤ ϵ

min{n1, n2}

Proof. The matrix Bernstein inequality (Lemma A.4) states that

P (
∥∥B̄m − B̄

∥∥
2
≥ t) ≤ n exp

(
− mt2/2

v + 2Lt/3

)
,

where v = max{
∥∥E[BBT ]

∥∥
2
,
∥∥E[BTB]

∥∥
2
} and L = supB ∥B∥2. We have already established that L =

√
2 and

v = 4/(min{n1, n2}) (see Lemma D.1). We would like
∥∥B̄m − B̄

∥∥
2

to be bounded above by t = ϵ/(min{n1, n2}) (for
some ϵ ∈ (0, 1)) with probability at least 1− δ. Therefore, the number of samples m must satisfy:

n exp

(
− mt2/2

v + 2Lt/3

)
≤ δ

⇔ mt2/2

v + 2Lt/3
≥ log

(n
δ

)
Plugging in the value L =

√
2 and noting that v = 4t/ϵ, we get

mt2/2

(4t/ϵ) + 2
√
2t/3

≥ log
(n
δ

)
⇔ m

4/ϵ+ 2
√
2/3
≥ 2

t
log
(n
δ

)
⇔ m ≥

(
4

ϵ
+

2
√
2

3

)
2min{n1, n2}

ϵ
log
(n
δ

)
Finally, note that 4 + 2

√
2ϵ/3 ≤ 5 (∵ ϵ < 1) and 2min{n1, n2} ≤ n1 + n2 = n. Therefore, m ≥ (5/ϵ2)n log (n/δ) is a

sufficient condition for the concentration result to hold.

Next, we move on to proving a high probability bound on max{∥BD∥1 ,
∥∥BT

D
∥∥
1
}. This result will be used in conjunction

with Lemma D.4 to prove Lemma 5.7.

For this result, we need to introduce some new notation and some basic inequalities. Define the random matrix C ∈ Rd1×d2

as follows:

C =
1

m

m∑
k=1

eik ẽ
T
jk

(54)
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where (ik)k∈[m] are sampled i.i.d. uniformly at random from [n1] and (jk)k∈[m] are sampled i.i.d. uniformly at random
from [n2], independent of (ik)k∈[m]. Let Ci ∈ Rn2 denote the ith row of C, but expressed as a column vector. Then

Ci =
1

m

m∑
k=1

1ik=iẽjk (55)

It follows that

∥Ci∥1 =
1

m

m∑
k=1

1ik=i (56)

Note that ∥Ci∥1 is the empirical mean of m i.i.d. Bernoulli random variables of mean 1/n1. Thus, we can bound it from
above by the Chernoff bound.
Lemma D.6 (Chernoff bound). Suppose x1, x2, . . . , xm are i.i.d. Bernoulli random variables with parameter p and let
ϵ > 0 be given. Then:

P

(
1

m

m∑
k=1

xk ≥ p+ ϵ

)
≤ exp

(
− mϵ2

2p(1− p)

)

Using Lemma D.6 with p = ϵ = 1/n1, we get that for any i ∈ [n1],

P

(
∥Ci∥1 ≥

2

n1

)
≤ exp

(
− m

2n1

)
Using the union bound, it follows that

P

(
max
i∈[n1]

∥Ci∥1 ≥
2

n1

)
≤ n1 exp

(
− m

2n1

)
Finally, by (52), we know that ∥∥CT

∥∥
1
= max

i∈[n1]
∥Ci∥1

In conclusion,

P

(∥∥CT
∥∥
1
≥ 2

n1

)
≤ n1 exp

(
− m

2n1

)
(57)

Since n1 and n2 are arbitrary in the above analysis, one can use the same logic to show that

P

(
∥C∥1 ≥

2

n2

)
≤ n2 exp

(
− m

2n2

)
(58)

Lemma D.7. Suppose the number of samples m is at least 2n log(4n/δ). Then, with probability at least 1− δ,

max{∥BD∥1 ,
∥∥BT

D
∥∥
1
} ≤ 4

min{n1, n2}

Proof. Define the following two matrices

B1
D =

1

m

∑
(u;i,j)∈D

euẽ
T
i ; B2

D =
1

m

∑
(u;i,j)∈D

euẽ
T
j

Both B1
D and B1

D are statistically identical to the random matrix C defined in (54). By (58), we have that if m ≥
2n2 log(4n2/δ),

P

(∥∥B1
D
∥∥
1
≥ 2

n2

)
≤ δ

4
, P

(∥∥B2
D
∥∥
1
≥ 2

n2

)
≤ δ

4
(59)

(60)
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By construction, BD = B1
D +B2

D. By the triangle inequality, we get ∥BD∥1 ≤
∥∥B1

D
∥∥
1
+
∥∥B2

D
∥∥
1
. Therefore,

∥BD∥1 ≥
4

n2
⇒
∥∥B1

D
∥∥
1
+
∥∥B2

D
∥∥
1
≥ 4

n2
⇒
∥∥B1

D
∥∥
1
≥ 2

n2
or
∥∥B2

D
∥∥
1
≥ 2

n2
. (61)

Put together, we get that if m ≥ 2n2 log(4n2/δ),

P

(
∥BD∥1 ≥

4

n2

)
≤ P

(∥∥B1
D
∥∥
1
≥ 2

n2
or
∥∥B2

D
∥∥
1
≥ 2

n2

)
(by (61))

≤ P
(∥∥B1

D
∥∥
1
≥ 2

n2

)
+ P

(∥∥B2
D
∥∥
1
≥ 2

n2

)
≤ δ

2
. (by (59))

By a similar argument, we can show that if m ≥ 2n1 log(4n1/δ),

P

(∥∥BT
D
∥∥
1
≥ 4

n1

)
≤ δ

2

Finally, note that

∥BD∥1 ≤
4

n2
and

∥∥BT
D
∥∥
1
≤ 4

n1
⇒ max{∥BD∥1 ,

∥∥BT
D
∥∥
1
} ≤ 4

min{n1, n2}

∴
∥∥BT

D
∥∥
1
≥ 4

min{n1, n2}
⇒ ∥BD∥1 ≥

4

n2
or
∥∥BT

D
∥∥
1
≥ 4

n1

Invoking the union bound once again, we get that if m ≥ 2n log(4n/δ),

P

(∥∥BT
D
∥∥
1
≥ 4

min{n1, n2}

)
≤ P

(
∥BD∥1 ≥

4

n2
or
∥∥BT

D
∥∥
1
≥ 4

n1

)
≤ P

(
∥BD∥1 ≥

4

n2

)
+ P

(∥∥BT
D
∥∥
1
≥ 4

n1

)
≤ δ

D.4. Proof of Lemma 5.5

Lemma 5.5. Let some ϵ, δ ∈ (0, 1) be given. Suppose the number of samples m exceeds 845 (µrκ/ϵ)2 n log (n/δ). Then,
with probability at least 1− δ, ∀ Z ∈ C ∩ B(ϵ),

D(∆∆T ) ≤ 10ϵγσ∗
r ∥∆∥

2
F .

Proof. The proof follows from the following facts:

• D(∆∆T ) ≤ 2
(
γ ∥∆∥2F + 2

∥∥BD − B̄
∥∥
2
∥∆∥22,∞

)
∥∆∥2F , by Lemma D.3.

• ∥∆∥2F ≤ ϵσ∗
r ∀ Z ∈ B(ϵ).

• ∥∆∥22,∞ ≤ 52µrσ∗
1/n ∀ Z ∈ C. This can be derived as follows.

∥∆∥22,∞ = ∥Z − Φ∥22,∞ ≤ 2
(
∥Z∥22,∞ + ∥Φ∥22,∞

)
≤ 2

(
12µ ∥Z∗∥2F

n
+

µ ∥Z∗∥2F
n

)
≤ 52µrσ∗

1

n
,

where the last step follows from the fact that ∥Z∗∥2F ≤ 2rσ∗
1 .
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• The number of samples is at least 5 (13µrκ/ϵ)2 n log (n/δ) (845 = 5 · 132). By Lemma D.5, with probability at least
1− δ, ∥∥BD − B̄

∥∥
2
≤ ϵ

13µrκ

1

min{n1, n2}

Combining these inequalities, we get that with probability at least 1− δ, ∀ Z ∈ B ∩ C,

D(∆∆T ) ≤ 2
(
γ ∥∆∥2F + 2

∥∥BD − B̄
∥∥
2
∥∆∥22,∞

)
∥∆∥2F

≤ 2

(
ϵγσ∗

r + 2
ϵ

13µrκ

1

min{n1, n2}
52µrσ∗

1

n

)
∥∆∥2F

≤ 10ϵγσ∗
r ∥∆∥

2
F

The last step is reasoned as follows:

2

nmin{n1, n2}
=

2

(n1 + n2)min{n1, n2}
≤ 2

max{n1, n2}min{n1, n2}
=

2

n1n2
≤ 2

n1(n2 − 1)
= γ

D.5. Proof of Lemma 5.7

The proof of Lemma 5.7 depends on Lemmas D.4 and D.7.
Lemma 5.7. Suppose the number of samples m is at least 2n log(4n/δ). Then, with probability at least 1− δ, the following
inequalities hold uniformly for all Z ∈ C:

D(∆ΦT ) ≤ 16γ(µrσ∗
1) ∥∆∥

2
F ,

D(∆∆T ) ≤ 416γ(µrσ∗
1) ∥∆∥

2
F ,

D(WZT ) ≤ 192γ(µrσ∗
1) ∥W∥

2
F ∀W ∈ Rn×r.

Proof. By Lemma D.4, we have that for any matrices W,Z ∈ Rn×r,

D(WZT ) ≤ 4(max{∥BD∥1 ,
∥∥BT

D
∥∥
1
}) ∥Z∥22,∞ ∥W∥

2
F ,

By Lemma D.7 and the assumption on the number of samples we have made, we get that with probability at least 1− δ,

max{∥BD∥1 ,
∥∥BT

D
∥∥
1
} ≤ 4

min{n1, n2}

Putting these inequalities together, we get that with probability at least 1− δ, for any matrices W,Z ∈ Rn×r,

D(WZT ) ≤ 16

min{n1, n2}
∥Z∥22,∞ ∥W∥

2
F ,

For the first of the bounds we wish to prove, we replace W by ∆ and Z by Φ. We know that

∥Φ∥22,∞ =
µ

n
∥Z∗∥2F ≤

2µrσ∗
1

n
(∵ ∥Z∗∥2F ≤ 2rσ∗

1)

⇒D(∆ΦT ) ≤ 16

min{n1, n2}
2µrσ∗

1

n
∥∆∥2F ≤ 16γ(µrσ∗

1) ∥∆∥
2
F

Here, as in the proof of Lemma 5.5, we use the fact that 2/(nmin{n1, n2}) ≤ γ. The second and third bounds can be
derived in a similar fashion. For the second bound, we use the bound that we established in the proof of Lemma 5.5.

∥∆∥22,∞ ≤
52µrσ∗

1

n

Finally, for the third bound, we use the fact that Z ∈ C (see Lemma A.3) to get the bound

∥Φ∥22,∞ ≤ 12
µ

n
∥Z∗∥2F ≤

24µrσ∗
1

n
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E. Proof of Main Result
In this concluding section, we prove the main results of our paper, namely Lemma 5.1, Lemma 5.2, and Theorem 4.1.

E.1. Proof of Lemma 5.1

As mentioned in Section 5, Lemma 5.1 follows from Lemmas 5.3, 5.4, and 5.5; these are proven in Appendices B, C, and D
respectively. We restate the results here for convenience.

Lemma 5.3. For any Z ∈ C,

⟨⟨∇L,∆⟩⟩ ≥ ξ

2
D
(
∆ΦT

)
− 5Ξ

8
D
(
∆∆T

)
Lemma 5.4. Let some ϵ, δ ∈ (0, 1) be given. Suppose the number of samples m exceeds 96µr (κ/ϵ)2 n log (n/δ). Then,
with probability at least 1− δ, ∀ Z ∈ H,

D
(
∆ΦT

)
≥ γ

(
(1− ϵ)σ∗

r ∥∆∥
2
F + 2⟨⟨ΦU∆

T
V ,∆UΦ

T
V ⟩⟩
)
.

Lemma 5.5. Let some ϵ, δ ∈ (0, 1) be given. Suppose the number of samples m exceeds 845 (µrκ/ϵ)2 n log (n/δ). Then,
with probability at least 1− δ, ∀ Z ∈ C ∩ B(ϵ),

D(∆∆T ) ≤ 10ϵγσ∗
r ∥∆∥

2
F .

Lemma 5.1. Suppose the number of samples m is at least 107 (µrκ/τ)2 n log (2n/δ), for some δ ∈ (0, 1). Then, with
probability at least 1− δ, ∀ Z ∈ H ∩ B(τ/50) ∩ C,

⟨⟨∇f,∆⟩⟩ ≥ ξγ

4
∥∆∥2F +

ξγ

8

∥∥∆TDΦ
∥∥2
F
.

Proof. Our proof strategy will be to put together the statements of the three lemmas and work backwards to calculate the
value of the parameter ϵ needed from Lemmas 5.4 and 5.5 (call them ϵ1 and ϵ2 for now). Combining the three aforementioned
lemmas gives us:

⟨⟨∇L,∆⟩⟩ ≥ ξγ

2

(
(1− ϵ1)σ

∗
r ∥∆∥

2
F + 2⟨⟨ΦU∆

T
V ,∆UΦ

T
V ⟩⟩
)
− 25Ξγ

4

(
ϵ2σ

∗
r ∥∆∥

2
F

)
=

2ξ(1− ϵ1)− 25Ξϵ2
4

γσ∗
r ∥∆∥

2
F + ξγ⟨⟨ΦU∆

T
V ,∆UΦ

T
V ⟩⟩

Recall from (13) thatR(Z) =
∥∥ZTDZ

∥∥2
F

. Therefore, ∇R(Z) = 4DZZTDZ. Using this identity and (14), we get:

⟨⟨∇f,∆⟩⟩ = ⟨⟨∇L,∆⟩⟩+ λ

4
⟨⟨∇R,∆⟩⟩

≥ 2ξ(1− ϵ1)− 25Ξϵ2
4

γσ∗
r ∥∆∥

2
F + ξγ⟨⟨ΦU∆

T
V ,∆UΦ

T
V ⟩⟩+ λDZZTDZ.

We focus on the last two terms. Define λ′ = 2λ
ξγ . Then

ξγ⟨⟨ΦU∆
T
V ,∆UΦ

T
V ⟩⟩+ λDZZTDZ =

ξγ

2

(
2⟨⟨ΦU∆

T
V ,∆UΦ

T
V ⟩⟩+ λ′DZZTDZ

)
Following the steps laid out in Zheng & Lafferty (2016) (Appendix C.1), we get the inequality:

2⟨⟨ΦU∆
T
V ,∆UΦ

T
V ⟩⟩+ λ′DZZTDZ ≥ λ′

2

∥∥ΦTD∆
∥∥2
F
− 7λ′

2
∥∆∥4F +

(
λ′ − 1

2

)
Tr(ΦTD∆ΦTD∆)
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We know that λ = ξγ
4 (see (14)), which implies λ′ = 1/2. Thus, the last term in the above inequality is cancelled out.

Plugging this inequality back into the expression above, we get:

⟨⟨∇f,∆⟩⟩ ≥ 2ξ(1− ϵ1)− 25Ξϵ2
4

γσ∗
r ∥∆∥

2
F + ξγ⟨⟨ΦU∆

T
V ,∆UΦ

T
V ⟩⟩+ λDZZTDZ

≥ 2ξ(1− ϵ1)− 25Ξϵ2
4

γσ∗
r ∥∆∥

2
F +

ξγ

2
(2⟨⟨ΦU∆

T
V ,∆UΦ

T
V ⟩⟩+ λ′DZZTDZ)

≥ 2ξ(1− ϵ1)− 25Ξϵ2
4

γσ∗
r ∥∆∥

2
F +

ξγ

2

(
1

4

∥∥ΦTD∆
∥∥2
F
− 7

4
∥∆∥4F

)
≥ 4ξ(1− ϵ1)− 50Ξϵ2 − 7ξϵ2

8
γσ∗

r ∥∆∥
2
F +

ξγ

8

∥∥ΦTD∆
∥∥2
F

Choosing ϵ1 = 1/8 and ϵ2 = τ/50 = ξ/(50Ξ) gives us 4ξ(1− ϵ1)− 50Ξϵ2 − 7ξϵ2 ≥ 2ξ. Therefore,

⟨⟨∇f,∆⟩⟩ ≥ ξγ

4
σ∗
r ∥∆∥

2
F +

ξγ

8

∥∥ΦTD∆
∥∥2
F

The number of samples needed for Lemma 5.4 to hold with probability at least 1− δ/2 is

m1 ≥ 96µr (κ/ϵ1)
2
n log (2n/δ) = 6144µrκ2n log (2n/δ)

The number of samples needed for Lemma 5.5 to hold with probability at least 1− δ/2 is

m2 ≥ 845 (µrκ/ϵ2)
2
n log (n/δ) ≥ 2112500 (µrκ/τ)

2
n log (2n/δ)

The two lemmas jointly hold with probability at least 1− δ. Clearly, the sample complexity requirement from Lemma 5.5 is
higher. Thus, we can conclude that given m ≥ 107 (µrκ(Ξ/ξ))

2
n log (2n/δ) samples, with probability at least 1− δ,

⟨⟨∇f,∆⟩⟩ ≥ ξγ

4
σ∗
r ∥∆∥

2
F +

ξγ

8

∥∥ΦTD∆
∥∥2
F
∀ Z ∈ H ∪ B(τ/50) ∪ C,

E.2. Proof of Lemma 5.2

Lemma 5.2 follows from Lemmas 5.6 and 5.7; these are proven in Appendices B and D respectively. We restate the results
here for convenience.

Lemma 5.6. For any Z ∈ C and any W ∈ Rn×r,

⟨⟨∇L,W ⟩⟩2 ≤ 2Ξ2

(
D(∆ΦT ) +

1

4
D(∆∆T )

)
D(WZT ).

Lemma 5.7. Suppose the number of samples m is at least 2n log(4n/δ). Then, with probability at least 1− δ, the following
inequalities hold uniformly for all Z ∈ C:

D(∆ΦT ) ≤ 16γ(µrσ∗
1) ∥∆∥

2
F ,

D(∆∆T ) ≤ 416γ(µrσ∗
1) ∥∆∥

2
F ,

D(WZT ) ≤ 192γ(µrσ∗
1) ∥W∥

2
F ∀W ∈ Rn×r.

Lemma 5.2. Suppose the number of samples m is at least 2n log(4n/δ), for some δ ∈ (0, 1). Then, with probability at
least 1− δ, ∀ Z ∈ B(1) ∩ C,

∥∇f∥2F ≤ 105(Ξγµrσ∗
1)

2 ∥∆∥2F +
(ξγ)2

2
σ∗
1

∥∥ΦTD∆
∥∥2
F
.
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Proof. From (14), we get that

∇f = ∇L+
λ

4
∇R = ∇L+ λDZZTDZ

∴ ∥∇f∥2F =
∥∥∇L+ λDZZTDZ

∥∥2
F
≤ (∥∇L∥F +

∥∥λDZZTDZ
∥∥
F
)2

≤ 2(∥∇L∥2F + λ2
∥∥DZZTDZ

∥∥2
F
) (62)

We have assumed that Z ∈ B(1), which implies ∥∆∥2F ≤ σ∗
r ≤ σ∗

1 . Using this bound along with the analysis in Zheng &
Lafferty (2016) (Appendix C.2), we get:∥∥DZZTDZ

∥∥2
F
≤ 6(∥∆∥2F + 4σ∗

1) ∥∆∥
2
F ∥Z∥

2
2 + 4σ∗

1

∥∥ΦTD∆
∥∥2
F

≤ 30σ∗
1 ∥∆∥

2
F ∥Z∥

2
2 + 4σ∗

1

∥∥ΦTD∆
∥∥2
F

≤ 180(σ∗
1)

2 ∥∆∥2F + 4σ∗
1

∥∥ΦTD∆
∥∥2
F

(∥Z∥22 ≤ 6σ∗
1) (63)

The last bound can be derived as follows:

∥Z∥22 = ∥Φ+∆∥22 ≤ (∥Φ∥2 + ∥∆∥2)
2 ≤ 2(∥Φ∥22 + ∥∆∥

2
2) ≤ 2(∥Φ∥22 + ∥∆∥

2
F ) ≤ 2(2σ∗

1 + σ∗
1) = 6σ∗

1

Combining the bounds from Lemma 5.6 and Lemma 5.7, we see that if the number of samples m is at least 2n log(4n/δ),
then with probability at least 1− δ, ∀Z ∈ C,

⟨⟨∇L,W ⟩⟩2 ≤ 2Ξ2

(
D(∆ΦT ) +

1

4
D(∆∆T )

)
D(WZT )

≤ 2Ξ2
(
16γ(µrσ∗

1) ∥∆∥
2
F + 104γ(µrσ∗

1) ∥∆∥
2
F

)
192γ(µrσ∗

1) ∥W∥
2
F

= 46080(Ξγµrσ∗
1)

2 ∥∆∥2F ∥W∥
2
F

∴ ∥∇L∥2F = sup
W∈Rn×r:∥W∥F=1

⟨⟨∇L,W ⟩⟩2

≤ 46080(Ξγµrσ∗
1)

2 ∥∆∥2F (64)

Putting together the bounds in (62), (63), and (64), and plugging in the value of λ = ξγ/4, we see that if the number of
samples m is at least 2n log(4n/δ), then with probability at least 1− δ, ∀ Z ∈ B ∩ C,

∥∇f∥2F ≤ 2
(
46080(Ξγµrσ∗

1)
2 ∥∆∥2F + 12(ξγσ∗

1)
2 ∥∆∥2F

)
+

(ξγ)2

2
σ∗
1

∥∥ΦTD∆
∥∥2
F

≤ 105(Ξγµrσ∗
1)

2 ∥∆∥2F +
(ξγ)2

2
σ∗
1

∥∥ΦTD∆
∥∥2
F

E.3. Proof of Theorem 4.1

Lemmas 5.1 and 5.2 are the two key ingredients needed to prove the main theorem of this paper.

Theorem 4.1. Suppose the following conditions hold:

• The dataset D consists of m i.i.d. samples generated according to the model presented in Section 3.1.

• The number of samples m is at least 107 (µrκ/τ)2 n log (8n/δ) for some δ ∈ (0, 1).

• The initial point Z0 lies in B(τ/50).

• The stepsize η in Algorithm 1 satisfies ηα ≤ 2.5 · 10−6(τ/µrκ)2.
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Then, with probability at least 1− δ, the iterates Z1, Z2, . . . of Algorithm 1 satisfy:∥∥∆(Zt)
∥∥2
F
≤
(
1− αη

4

)t ∥∥∆(Z0)
∥∥2
F
∀ t ∈ N.

Proof. We begin by following the standard steps in the analysis of gradient descent.∥∥∆(Zt+1)
∥∥2
F
=
∥∥Zt+1 − Φ(Zt+1)

∥∥2
F

≤
∥∥Zt+1 − Φ(Zt)

∥∥2
F

=
∥∥PH(PC

(
Zt − η∇f(Zt)

)
)− Φ(Zt)

∥∥2
F

≤
∥∥Zt − η∇f(Zt)− Φ(Zt)

∥∥2
F

=
∥∥∆(Zt)− η∇f(Zt)

∥∥2
F

=
∥∥∆(Zt)

∥∥2
F
+ η2

∥∥∇f(Zt)
∥∥2
F
− 2η⟨⟨∇f(Zt),∆(Zt)⟩⟩

The first inequality comes from the fact that Φ(Zt+1) is the closest point in Φ to Zt+1; this is by definition of Φ(Zt+1). The
second inequality follows from the fact that Φ(Zt) ∈ C (by Lemma A.2) and Φ(Zt) ∈ H (by assumption); thus, successive
projections of the iterate on to C andH can only bring it closer to Φ(Zt).

Next, suppose the following bounds hold for some positive constants a, b, c, and d and for all t ∈ Z+:

⟨⟨∇f(Zt),∆(Zt)⟩⟩ ≥ a
∥∥∆(Zt)

∥∥2
F
+ c

∥∥∆(Zt)TDΦ(Zt)
∥∥2
F
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∥∥2
F
≤ b

∥∥∆(Zt)
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F
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∥∥∆(Zt)TDΦ(Zt)
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(66)

It follows that: ∥∥∆(Zt+1)
∥∥2
F
≤
∥∥∆(Zt)

∥∥2
F
+ η2

∥∥∇f(Zt)
∥∥2
F
− 2η⟨⟨∇f(Zt),∆(Zt)⟩⟩

≤ (1− 2ηa+ η2b)
∥∥∆(Zt)

∥∥2
F
+ (η2d− 2ηc)

∥∥∆(Zt)TDΦ(Zt)
∥∥2
F

≤ (1− ηa)
∥∥∆(Zt)

∥∥2
F
, (67)

provided η ≤ min(a/b, 2c/d). The last step can be justified as follows:

η ≤ a

b
⇒ (1− 2ηa+ η2b) ≤ 1− ηa, η ≤ 2c

d
⇒ η2d− 2ηc ≤ 0

Further, if η ≤ 1/a, then 1− ηa ≥ 0, implying that the right-hand side of (67) remains positive. This allows us to use the
inequality repeatedly to yield: ∥∥∆(Zt)

∥∥2
F
≤ (1− ηa)t

∥∥∆(Z0)
∥∥2
F
∀ t ∈ Z+

Finally, observe that we have assumed the number of samples given, m, is at least 107 (µrκ/τ)2 n log (8n/δ). This ensures
that with probability at least 1− δ, both Lemmas 5.1 and 5.2 hold. Lemmas 5.1 and 5.2 imply that the inequalities (65) and
(66) hold for all Z ∈ H ∩ B(τ/50) ∩ C with parameters:

a =
ξγ

4
σ∗
r , b = 105(Ξγµrσ∗

1)
2, c =

ξγ

8
, d =

(ξγ)2

2
σ∗
1

Given these parameters, as long as the stepsize η satisfies η ≤ a/b = 2.5 · 10−6(τ/µrκ)2/α, the other conditions on η are
automatically satisfied.

F. Extra Simulation Results
In this section, we present simulation results that highlight the dependency of the sample complexity of the learning
problem on the rank r of the ground-truth matrix X∗. In this experiment, the parameters used are as follows. The
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Figure 2. Variation of the reconstruction error as a function of the underlying rank of the matrix r and the sample size m, for ground-truth
matrices of size (2000, 3000).

generated matrices have size (n1, n2) = (2000, 3000). We vary the rank r among the values {2, 3, . . . , 6}. For every
possible value of r, we generate a dataset the manner described in Section 3.1, whose size m varies among the values
{30, 000, 40, 000, . . . , 100, 000}. The comparisons are noiseless. The regularizer coefficient (λ/4) was set to 0.01.

For faster implementation, we optimize the loss function using the PyTorch implementation of Adam instead of using
gradient descent. As our experiments in Section 6 show, we need neither a smart initialization nor the projection step. At the
end of 300 epochs, we compute the reconstruction error ∥Xt −X∗∥F /

√
n1n2. For each value of r and m, we run this

experiment with ten fresh seeds. The values reported in Figure 2 are the mean and standard deviation of the reconstruction
error across these ten runs.

We observe that the reconstruction error uniformly increases with the rank r and decreases with the sample size m.
Interestingly, if we observe the boxes with roughly the same error, we see that the sample complexity increases roughly
linearly with the rank r. This is not surprising, as ultimately the matrix to be estimated is Z∗, which has nr parameters.
However, our theoretical analysis gives us a sample complexity that grows as O(nr2). Thus, there is scope for further
research in order to develop O(nr) sample complexity guarantees.
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