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Abstract

Neural networks for point clouds, which respect their natural invariance to per-1

mutation and rigid motion, have enjoyed recent success in modeling geometric2

phenomena, from molecular dynamics Reiser et al. [2022] to recommender systems3

Yi et al. [2023]. Yet, to date, no architecture with polynomial complexity is known4

to be complete, that is, able to distinguish between any pair of non-isomorphic5

point clouds. We fill this theoretical gap by showing that point clouds can be6

completely determined, up to permutation and rigid motion, by applying the 3-WL7

graph isomorphism test to the point cloud’s centralized Gram matrix. Moreover, we8

formulate a Euclidean variant of the 2-WL test and show that it is also sufficient to9

achieve completeness. We then show how our complete Euclidean WL tests can be10

simulated by a Euclidean graph neural network of moderate size and demonstrate11

their separation capability on highly-symmetrical point clouds.12

1 Introduction13

A point cloud is a collection of n points in Rd, where typically in applications d = 3. Machine14

learning on point clouds is an important task with applications in chemistry Gilmer et al. [2017],15

Wang et al. [2022], physical systems Finzi et al. [2021] and image processing Ma et al. [2023]. Many16

successful architectures for point clouds are invariant by construction to the natural symmetries of17

point clouds: permutations and rigid motions.18

The rapidly increasing literature on point-cloud networks with permutation and rigid-motion sym-19

metries has motivated research aimed at theoretically understanding the expressive power of the20

various architectures. This analysis typically focuses on two closely related concepts: Separation21

and Universality. We say an invariant architecture is separating, or complete, if it can assign distinct22

values to any pair of point clouds that are not related by symmetry. An invariant architecture is23

universal if it can approximate all continuous invariant functions on compact sets. Generally speaking,24

these two concepts are essentially equivalent, as discussed in Villar et al. [2021], Joshi et al. [2022],25

Chen et al. [2019], and in our context, in Appendix A.26

Dym and Maron [2020] proved that the well-known Tensor Field Network Thomas et al. [2018]27

invariant architecture is universal, but the construction in their proof requires arbitrarily high-order28

representations of the rotation group. Similarly, universality can be obtained using high-order29

representations of the permutation group Lim et al. [2022]. However, prior to this work, it was not30

known whether the same theoretical guarantees can be achieved by realistic point-cloud architectures31

that use low-dimensional representations, and whose complexity has a mild polynomial dependency32

on the data dimension. In the words of Pozdnyakov and Ceriotti [2022]: "...provably universal33

equivariant frameworks are such in the limit in which they generate high-order correlations. . . It is34

an interesting, and open, question whether a given order suffices to guarantee complete resolving35

power." (p. 6). We note that it is known that separation of point clouds in polynomial time in n36
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is possible, assuming that d is fixed (e.g., d = 3) Arvind and Rattan [2014], Dym and Kovalsky37

[2019], Kurlin [2022]. What still remains to be established is whether separation is achievable for38

common invariant machine learning models, and more generally, whether separation can be achieved39

by computing a continuous invariant feature that is piecewise differentiable.40

In this paper, we give what seems to be the first positive answer to this question. We focus on analyzing41

a popular method for the construction of invariant point-cloud networks via Graph Neural Networks42

(GNNs). This is done in two steps: first, point clouds are represented as a Euclidean graph- which we43

define to be a complete weighted graph whose edge features are simple, rotation-invariant features:44

the inner products between pairs of (centralized) points. We then apply permutation-invariant Graph45

Neural Networks (GNNs) to the Euclidean graphs to obtain a rotation- and permutation-invariant46

global point-cloud feature. This leads to a rich family of invariant point-cloud architectures, which is47

determined by the type of GNN chosen.48

The most straightforward implementation of this idea would be to apply the popular message passing49

GNNs to the Euclidean graphs. One could also consider applying more expressive GNNs. For50

combinatorial graphs, it is known that message-passing GNNs are only as expressive as the 1-WL51

graph isomorphism test. There exists a hierarchy of k-WL graph isomorphism tests, where larger52

values of k correspond to more expressive, and more expensive, graph isomorphism tests. There53

are also corresponding GNNs that simulate the k-WL tests and have an equivalent separation power54

Morris et al. [2018], Maron et al. [2019]. One could then consider applying these more expressive55

architectures to Euclidean graphs, as suggested in Lim et al. [2022]. Accordingly, we aim to answer56

the following questions:57

Question 1 For which k is the k-WL test, when applied to Euclidean graphs, complete?58

Question 2 Can this test be implemented in polynomial time by a continuous, piecewise-differentiable59

architecture?60

We begin by addressing Question 1. First, we consider a variation of the WL-test adapted for point61

clouds, which we refer to as 1-EWL (’E’ for Euclidean). This test was first proposed by Pozdnyakov62

and Ceriotti [2022], where it was shown that it cannot distinguish between all 3-dimensional point63

clouds, and consequently, neither can GNNs like Victor Garcia Satorras [2021], Schütt et al. [2017],64

which can be shown to simulate it. Our first result, described in Section 2.1, balances this by showing65

that two iterations of 1-EWL are enough to separate almost any pair of point clouds.66

To achieve complete separationfor all point clouds, we consider higher-order k-EWL tests. We first67

consider a natural adaptation of k-WL for Euclidean graphs, which we name the Vanilla-k-EWL test.68

In this test, the standard k-WL is applied to the Euclidean graph induced by the point clouds. We69

show that when k = 3, this test is complete for 3-dimensional point clouds. Additionally, we propose70

a variant of the Vanilla 2-EWL, which incorporates additional geometric information while having71

the same complexity. We call this test the 2-EWL test, and show that it is complete on 3D point72

clouds. We also propose a natural variation of 2-EWL called 2-SEWL, which can distinguish between73

point clouds that are related by a reflection. This ability is important for chemical applications, as74

most biological molecules that are related by a reflection are not chemically identical Kapon et al.75

[2021] (this molecular property is called chirality).76

We next address the second question of how to construct a GNN for Euclidean data with the same77

separation power as that of the various k-EWL tests we describe. For combinatorial graphs, such78

equivalence results rely on injective functions defined on multisets of discrete features Xu et al. [2018].79

For Euclidean graphs, one can similarly rely on injective functions for multisets with continuous80

features, such as those proposed in Dym and Gortler [2023]. However, a naive application of this81

approach leads to a very large number of hidden features, which grows exponentially with the number82

of message-passing iterations (see Figure 2). We show how this problem can be remedied, so that the83

number of features needed depends only linearly on the number of message-passing iterations.84

To summarize, our main results in this paper are:85

1. We show that two iterations of 1-EWL can separate almost all point clouds in any dimension.86

2. We prove the completeness of a single iteration of the vanilla 3-EWL for point clouds in R3.87

3. We formulate the 2-SEWL and 2-EWL tests, and prove their completeness for point clouds88

in R3.89
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4. We explain how to build differentiable architectures for point clouds with the same separation90

power as Euclidean k-WL tests, with reasonable complexity.91

Experiments In Section 5 we present synthetic experiments that demonstrate that 2-SEWL can92

separate challenging point-cloud pairs that cannot be separated by several popular architectures.93

Disambiguation: Euclidean Graphs In this paper we use a simple definition of a Euclidean graph94

as the centralized Gram matrix of a point cloud, and focus on a fundamental theoretical question95

related to this representation. In the learning literature, terms like ‘geometric graphs’ (not used here)96

could refer to graphs that have both geometric and non-geometric edge and vertex features, or graphs97

where pairwise distances are only available for specific point pairs (edges in an incomplete graph).98

1.1 Related Work99

Euclidean WL Pozdnyakov and Ceriotti [2022] showed that 1-EWL is incomplete for 3-100

dimensional point clouds. Joshi et al. [2022] defines separation for a more general definition101

of geometric graph, which combines geometric and combinatorial features. This work holds various102

interesting insights for this more general problem but they do not prove completeness as we do here.103

Other complete constructions As mentioned earlier, Dym and Maron [2020] proved universality104

with respect to permutations and rigid motions for architectures using high-dimensional represen-105

tations of the rotation group. Similar results were obtained inFinkelshtein et al. [2022], Gasteiger106

et al. [2021]. In Lim et al. [2022] universality was proven for Euclidean GNNs with very high-order107

permutation representations. In the planar case d = 2, universality using low-dimensional features108

was achieved in Bökman et al. [2022]. For d ≥ 3 our construction seems to be the first to achieve109

universality using low dimensional representations.110

For general fixed d, there do exist algorithms that can separate point clouds up to equivalence111

in polynomial time, but they do not seem to lend themselves directly to neural architectures. In112

Kurlin [2022], Widdowson and Kurlin [2023] complete tests are described, but they represent each113

point cloud as a ‘multiset of multisets’ rather than as a vector as we do, and so are not suitable for114

gradient descent based learning. Efficient tests for equivalence of Euclidean graphs were described in115

Brass and Knauer [2000], Arvind and Rattan [2014], but they compute features that do not depend116

continuously on the point cloud.117

Weaker notions of universality In Widdowson and Kurlin [2022] the authors suggest a method118

for distinguishing almost every point clouds up to equivalence, similar to our result here on 1-EWL.119

Similarly, efficient separation/universality can also be obtained for point clouds with distinct principal120

axes Puny et al. [2021], Kurlin [2022]. Another setting in which universality is easier to obtain is121

when only rigid symmetries are considered and permutation symmetries are ignored Wang et al.122

[2022], Villar et al. [2021], Victor Garcia Satorras [2021]. All these results do not provide universality123

for all point clouds, with respect to the joint action of permutations and rigid motions.124

Mathematical notation125

A (finite) multiset {{y1, . . . , yN}} is an unordered collection of elements where repetitions are allowed.126

Let G be a group acting on a set X . For X,Y ∈ X , we say that X =
G
Y if Y = gX for some g ∈ G.127

We say that a function f : X → Y is invariant if f(gx) = f(x) for all x ∈ X, g ∈ G. We say that f128

is equivariant if Y is also endowed with some action of G and f(gx) = gf(x) for all x ∈ X , g ∈ G.129

A separating invariant mapping is an invariant mapping that is injective, up to group equivalence:130

Definition 1.1 (Separating Invariant). Let G be a group acting on a set X . We say F : X → RK is a G-131

separating invariant with embedding dimension K if for all X,Y ∈ X , F (X) = F (Y ) ⇔ X =
G
Y .132

We focus on the case where X is some Euclidean domain. To enable gradient-based learning, we133

shall need separating mappings that are continuous everywhere and differentiable almost everywhere.134
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Figure 1: Distance matrices (Left), geometric degree histogram (Right) of pairs of point clouds. The
generic pair is a randomly sampled pair of point clouds. Notice each of the nodes in each of the
clouds has a distinct geometric degree. The Hard pair exhibits a distinct geometric degree for each
node, but only within each point cloud, that is the pair shares an identical geometric degree histogram.
The Harder example is a pair of point clouds with identical geometric degree histogram, and each
point cloud is comprised of three pairs of points, with each pair having an identical geometric degree.
Examples from Pozdnyakov and Ceriotti [2022] and Pozdnyakov et al. [2020].

The symmetry group we consider for point clouds (x1, . . . , xn) ∈ Rd×n is generated by a rotation
matrix R ∈ SO(d), and a permutation σ ∈ Sn. These act on a point cloud by

(R, σ)∗(x1, . . . , xn) = (Rxσ−1(1), . . . , Rxσ−1(n)).

We denote this group by SO[d, n]. In some instances, reflections R ∈ O(d) are also permitted,135

leading to a slightly larger symmetry group, which we denote by O[d, n]. Our goal shall be to136

construct separating invariants for these groups. For the sake of brevity, we do not discuss translation137

invariance and separation, as these can easily be achieved by centering the input point clouds, once138

SO[d, n] (or O[d, n]) separating invariants are constructed, see Dym and Gortler [2023].139

For simplicity of notation, throughout this paper, we focus on the case d = 3. In Appendix C we140

explain how our constructions and theorems can be generalized to d > 3.141

2 Euclidean Graph Isomorphism Tests142

The k-WL Graph Isomorphism Test Weisfeiler and Leman [1968] is a classical paradigm for testing143

the isomorphism of combinatorial graphs, which we shall now briefly describe. Let G be a graph with144

vertices indexed by [n] = {1, 2, . . . , n}. We denote each ordered k-tuple of vertices by a multi-index145

i = (i1, . . . , ik) ∈ [n]k. Essentially, for each such k-tuple i, the test maintains a coloring C(i) that146

belongs to a discrete set, and updates it iteratively. First, the coloring of each k-tuple is assigned an147

initial value that encodes the isomorphism type of the corresponding k-dimensional subgraph:148

C(0) = C(0)(i), i ∈ [n]k. (1)

Then the color of each k-tuple i is iteratively refined according to the colors of its ‘neighboring’149

k-tuples. The update rule is given by150

C(t+1)(i) = Embed(t+1)
(
C(t)(i), {{

(
C(t)(i[j \ 1]), . . . ,C(t)(i[j \ k])

)
| j ∈ [n]}}

)
, (2)

where i[j \ t] is the multi-index i with its t-th coordinate replaced by j; e.g. for j = 1, i[j \ 1] =
(j, i2, . . . , ik). Embed is a function that maps its input injectively to some discrete set. This process
is repeated T times to obtain a final coloring {{C(T)(i)}}i∈[n]k . A global label is then calculated by

CG = Embed(T+1)
(
{{C(T)(i) | i ∈ [n]k}}

)
,
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where Embed(T+1) is a function that maps label-multisets injectively to some discrete set.151

To test whether two graphs G and G′ are isomorphic, the k-WL test computes the corresponding152

colorings CG and CG′ for some chosen T . If CG ̸= CG′ then G and G′ are guaranteed not to be153

isomorphic, whereas if CG = CG′ , then G and G′ may either be isomorphic or not, and the test does154

not, in general, provide a decisive answer for combinatorial graphs. It is known that this test is able155

to distinguish a strictly larger class of combinatorial graphs for every strict increase in the value of k,156

i.e. it is a strict hierarchy of tests in terms of distinguishing power Cai et al. [1992], Grohe [2017].157

Vanilla-k-WL tests As a first step from a combinatorial to a Euclidean setting, we identify each158

point cloud X = (x1, . . . , xn) ∈ Rd×n with a complete graph on n vertices, wherein each edge (i, j)159

is endowed with the weight wij(X) = ⟨xi, xj⟩. We name such a graph a Euclidean graph. Similarly160

to k-WL for combinatorial graphs, k-WL for Euclidean graphs maintains a coloring of the k-tuples of161

vertices. However, the initial color of each k-tuple i is not a discrete label as in the combinatorial case,162

but rather a k × k matrix of continuous features, which represent all edge weights wij corresponding163

to pairs of indices from i. We will call the k-WL test defined by this initial coloring the vanilla k-WL164

test. This test is invariant by construction to reflections, rotations, and permutations. We note that our165

definition of the vanilla k-EWL test via inner products follows that of Lim et al. [2022]. Another166

popular, and essentially equivalent, formulation, uses distances instead.167

k-EWL tests An inherent limitation of the Vanilla-1-EWL test is that no pairwise Euclidean168

information is passed, yielding it rather uninformative. Indeed, Pozdnyakov and Ceriotti [2022]169

proposed a Euclidean analog of the 1-WL test, where the update rule (2) is replaced with170

C(t+1)(i) = Embed(t)
(
C(t)(i), {{

(
C(t)(j), ∥xi − xj∥

)
, j ̸= i}}

)
. (3)

We call this test the 1-EWL test. This formulation is motivated by the fact that many symmetry-171

preserving networks for point clouds are in fact a realization of it, though they use Embed functions172

that are continuous and, in general, may assign the same value to different multisets. Consequently,173

the separation power of these architectures is at most that of 1-EWL with discrete injective hash174

functions. Moreover, the separation power will be equivalent if continuous injective multiset functions175

are used for embedding, as we discuss in Section 4.176

The 1-EWL test strengthens the Vanilla-1-EWL test by allowing the messages passed to a node177

in each step to contain not only previous colorings but also geometric information in the form of178

pairwise distances. More generally, we shall use the term k-EWL to refer to tests that follow the179

Euclidean k-WL paradigm, but incorporate geometric invariants into the message-passing procedure.180

In particular, for point clouds with dimension 3, we define the 2-SEWL test (’SE’ for Special181

Euclidean) by replacing the update step (2) with182

C(t+1)(i, j) = Embed(t)
(
C(t)(i, j), {{

(
C(t)(k, j),C(t)(i, k), ⟨xi × xj , xk⟩

)
}}nk=1

)
. (4)

Note that ⟨xi×xj , xk⟩ is equal to the determinant of the 3×3 matrix whose rows are the three vectors183

xi, xj , xk, which makes this a natural choice as all polynomial invariants of SO(3) are generated by184

these determinants and the inner products we use for the initial coloring Kraft and Procesi [1996].185

We note that, Using the fact that O(3) is just two copies of SO(3), it is not difficult to generalize186

2-SEWL to a complete O[3, n] test, which we name 2-EWL. for general d, similar complete (d− 1)-187

SEWL and (d− 1)-EWL tests can be formulated for point clouds in Rd via the Hodge-star operator;188

see Appendix C for more details.189

In the rest of this section, we shall prove that the 2-SEWL, 2-EWL and vanilla 3-EWL tests are190

complete when applied to R3×n, even when using a single iteration (T = 1). We shall also show that191

two iterations of the 1-EWL test is complete, except on a set of measure zero.192

2.1 Generic completeness of 1-EWL193

The separation power of 1-EWL is closely linked to the notion of geometric degree: For a point
cloud X = (x1, . . . , xn), we define the geometric degree d(i,X) of the ith point, and the induced
geometric degree histogram dH(X), to be the multisets

d(i,X) = {{∥x1 − xi∥, . . . , ∥xn − xi∥}}, dH(X) = {{d(1, X), . . . , d(n,X)}}.
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It is not difficult to see that if dH(X) ̸= dH(Y ) then X and Y can be separated by a single 1-EWL
iteration . An example of such a pair is shown in the left of Figure 1. With two 1-EWL iterations, we
show that can separate X and Y even if dH(X) = dH(Y ), provided that they both belong to the set
of point clouds defined by

R3×n
distinct = {X ∈ R3×n| d(i,X) ̸= d(j,X) ∀i ̸= j}.

Such an example, taken from Pozdnyakov et al. [2020], is visualized in the middle column of Figure 1194

195

Theorem 2.1. Two iterations of the 1-EWL test assign two point clouds X , Y ∈ R3×n
distinct the same196

value, if and only if X =
O[3,n]

Y .197

In the appendix we show that the complement of R3×n
distinct has measure zero. Thus this result198

complements long-standing results for combinatorial graphs, stating that 1-WL can classify almost199

all such graphs as the number of nodes tends to infinity Babai et al. [1980].200

The right-most pair of point clouds (’Harder’) in Figure 1 is taken from Pozdnyakov and Ceriotti201

[2022]. The degree histograms of these point clouds are identical, and they are not in R3×n
distinct.202

Pozdnyakov and Ceriotti [2022] show that this pair cannot be separated by any number of 1-EWL203

iterations.204

2.2 Is 1-EWL All You Need?205

Theorem 2.1 shows that the probability of a failure of206

the 1-EWL is zero. A natural question to ask is whether207

more powerful tests are needed. We believe the answer to208

this question is yes. Typical hypothesis classes used for209

machine learning, such as neural networks, are Lipschitz210

continuous Gama et al. [2020]. In this setting, failure to211

separate on a measure zero set could have implications for212

non-trivial positive measure. This phenomenon is depicted213

in the figure in the inset. On the right, a plot of a Gaussian214

distribution centered at x ∈ R, depicting a target function is shown in blue. In red, a schematic plot215

of how a Lipschitz continuous function that does not distinguish x from y would model the target216

function.217

3 2-SEWL and Vanilla 3-EWL are complete218

We now prove that the vanilla 3-EWL test is complete.219

Theorem 3.1. For every X,Y ∈ R3×n, a single iteration of the vanilla 3-EWL test assigns X and Y220

the same value if and only if X =
O[3,n]

Y .221

Proof. First, it is clear that if X =
O[3,n]

Y then CG(X) = CG(Y ) since the vanilla 3-EWL test is

invariant by construction. The challenge is proving the other direction. To this end, let us assume
that CG(X) = CG(Y ), and assume without loss of generality that r := rank(X) ≥ rank(Y ). Note
that X has rank r ≤ 3, and so it must contain some three points whose rank is also r. By applying
a permutation to X we can assume without loss of generality that these three points are the first
three points. The initial coloring C0(1, 2, 3)(X) of this triplet is their Gram matrix (⟨xi, xj⟩)1≤i,j≤3,
which has the same rank r as the space spanned by the three points. Next, since CG(X) = CG(Y )
are the same, there exists a triplet of points i, j, k such that C(1)(1, 2, 3)(X) = C(1)(i, j, k)(Y )
which implies that the initial colorings are also the same. By applying a permutation to Y we can
assume without loss of generality that i = 1, j = 2, k = 3. Next, since the Gram matrix of x1, x2, x3
and y1, y2, y3 are identical, there is an orthogonal transformation that takes xi to yi for i = 1, 2, 3,
and by applying this transformation to all points in X we can assume without loss of generality that
xi = yi for i = 1, 2, 3. It remains to show that the rest of the points of X and Y are equal, up to
permutation. To see this, first note that X and Y have the same rank since

r = rank(X) ≥ rank(Y ) ≥ rank(y1, y2, y3) = rank(x1, x2, x3) = r.
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Thus the space spanned by x1 = y1, x2 = y2, x3 = y3 contains all points in X and Y . Next, we can
deduce from the aggregation rule defining C1(1, 2, 3)(X) in (2), that

{{(⟨xj , x1⟩, ⟨xj , x2⟩, ⟨xj , x3⟩) | j ∈ [n]}} = {{(⟨yj , y1⟩, ⟨yj , y2⟩, ⟨yj , y3⟩) | j ∈ [n]}}.
Since all points in X and Y belong to the span of x1 = y1, x2 = y2, x3 = y3, X and Y are the same222

up to permutation of the last n− 3 coordinates. This concludes the proof of the theorem.223

We next outline the completeness proof of the more efficient 2-SEWL.224

Theorem 3.2. For every X,Y ∈ R3×n, a single iteration of the 2-SEWL test assigns X and Y the225

same value if and only if X =
SO[3,n]

Y .226

Proof idea. The completeness of Vanilla-3-EWL was based on the fact that its initial coloring captures227

the Gram matrix of triplets of vectors that span the space spanned by X , and on the availability of228

projections onto this basis in the aggregation step defined in (2). Our proof for 2-EWL completeness229

relies on the fact that a pair of non-degenerate vectors xi, xj induces a basis xi, xj , xi × xj of R3.230

The Gram matrix of this basis can be recovered from the Gram matrix of the first two points xi, xj ,231

and the projection onto this basis can be obtained from the extra geometric information we added in232

(18). A full proof is given in the appendix.233

To conclude this section, we note that the above theorem can be readily used to also show that the234

2-EWL test us also complete with respect to O[3, n]. For details see Appendix A.235

4 WL-equivalent GNNs with continuous features236

In the previous section we discussed the generic completeness of 1-EWL and the completeness of237

2-SEWL and vanilla 3-EWL. The Embed functions in these tests are hash functions, which can be238

redefined independently for each pair of point clouds X,Y . In this section, our goal is to explain how239

to construct GNNs with equivalent separation power to that of these tests, while choosing continuous,240

piecewise differentiable Embed functions that are injective. While this question is well studied for241

combinatorial graphs with discrete features Xu et al. [2018], Morris et al. [2018], Maron et al. [2019],242

Aamand et al. [2022], here we focus on addressing it for Euclidean graphs with continuous features.243

4.1 Multiset injective functions244

Let us first review some known results on injective multiset functions. Recall that a function defined on245

multisets with n elements coming from some alphabet Ω ⊆ RD can be identified with a permutation246

invariant function defined on Ωn. A multiset function is injective if and only if its corresponding247

function on Ωn is separating with respect to the action of the permutation group (see Definition 1.1).248

In Corso et al. [2020], Wagstaff et al. [2022] it was shown that for any separating, permutation249

invariant mappings from Rn to RK , the embedding dimension K will be at least n. Two famous250

examples of continuous functions that achieve this bound are251

Ψsort(x1, . . . , xn) = sort(x1, . . . , xn) and Ψpow(x1, . . . , xn) =

(
n∑

i=1

xti

)n

t=1

. (5)

When the multiset elements are in RD, the picture is similar: if there exists a continuous, permutation252

invariant and separating mapping from RD×n to RK , then necessarily K ≥ n ·D Joshi et al. [2022].253

In Dym and Gortler [2023] it is shown that continuous separating invariants for D > 1, with near-254

optimal dimension, can be derived from the D = 1 separating invariants Ψ = Ψpow or Ψ = Ψsort,255

by considering random invariants of the form256

Embedθ(x1, . . . , xn) = ⟨bj , Ψ
(
aTj x1 . . . , a

T
j xn

)
⟩, j = 1, . . . ,K. (6)

where each aj and bj are d and n dimensional random vectors, and we denote θ =257

(a1, . . . , aK , b1, . . . , bK) ∈ RK(D+n). When K = 2nD + 1, for almost any choice of θ, the258

function Embedθ will be separating on RD×n. Thus the embedding dimension in this construction is259

optimal up to a multiplicative constant of two.260

7



An important property of this results of Dym and Gortler [2023] for our discussion, is that the261

embedding dimension K can be reduced if the domain of interest is a non-linear subset of RD×n262

of low dimension. For example, if the domain of interest is a finite union of lines in RD×n, then263

the instrinsic dimension of the domain is 1, and so we will only need an embedding dimension of264

K = 2 · 1 + 1 = 3. Thus, the required embedding dimension depends on the intrinsic dimension of265

the domain rather than on its ambient dimension, which in our case is n ·D.266

To formulate these results precisely we will need to introduce some real algebraic geometry terminol-267

ogy (see Basu et al. [2006] for more details): A semi-algebraic subset of a real finite-dimensional268

vector space is a finite union of subsets that are defined by polynomial equality and inequality269

constraints. For example, polygons, hyperplanes, spheres, and finite unions of these sets, are all270

semi-algebraic sets. A semi-algebraic set is always a finite union of manifolds, and its dimension is271

the maximal dimension of the manifolds in this union. Using these notions, we can now state the272

‘intrinsic version’ of the results in Dym and Gortler [2023]:273

Theorem 4.1 (Dym and Gortler [2023]). Let X be an Sn-invariant semi-algebraic subset of RD×n of274

dimension DX . Denote K = 2DX + 1. Then for Lebesgue almost every θ ∈ RK(D+n) the mapping275

Embedθ : X → RK is Sn invariant and separating.276

4.2 Multiset injective functions for GNNs277

We now return to discuss GNNs and explain the importance of the distinction between the intrinsic278

and ambient dimensions in our context. Suppose we are given n initial features (h(0)1 , . . . , h
(0)
n ) in279

Rd, and for simplicity let us assume they are recursively refined via the simple aggregation rule:280

h
(t+1)
i = Embed(t)

(
{{h(t)j }}nj=1,j ̸=i

)
. (7)

Let us assume that each Embed(t) is injective on the space of all multisets with n− 1 elements in281

the ambient space of h(t)j . Then the injectivity of Embed(1) implies that h(1)i is of dimension at least282

(n− 1) · d. The requirement that Embed(2) is injective on a mult-set of n− 1 features in R(n−1)·d283

implies that h(2)i will be of dimension at least (n− 1)2 · d. Continuing recursively with this argument284

we obtain an estimate of ∼ (n − 1)T d for the dimensions of each h(T )
i after T iterations of (7).285

௜
଴

௜
ଵ

௜
ଶ

௜
ଷ

௜
் output

…
…

dim

dim 𝟐 𝟑

ambient

intrinsic

Figure 2: The exponential growth in the dimension
that would result from only considering the ambi-
ent feature dimension can be avoided by exploiting
the constant intrinsic dimension.

286

Fortunately the analysis presented above is287

overly pessimistic, because it focused only on288

the ambient dimension. Let us denote the ma-289

trix containing all n features at time t by H(t).290

Then H(t) = Ft(H
(0)), where Ft is the con-291

catenation of all Embed(t′) functions from all292

previous time-steps. ThusH(t) resides in the set293

Ft(Rd×n). Here we again rely on results from294

algebraic geometry: if Ft is a composition of295

piecewise linear and polynomial mappings, then296

it is a semi-algebraic mapping, which means297

that Ft(H
(0)) will be a semi-algebraic set of di-298

mension dim(Rn×d) = n · d. This point will be299

explained in more detail in the proof of Theo-300

rem 4.2. By Theorem 4.1 we can then use Embedθ as a multiset injective function on Xt with a fixed301

embedding dimension of 2n · d+ 1 which does not depend on T . This is visualized in Figure 2.302

2-SEWLnet Based on the discussion above, we can devise architectures that simulate the various303

tests discussed in this paper and have reasonable feature dimensions throughout the construction, In304

particular, we can simulate T iterations of the 2-SEWL test by replacing all Embed(t) functions1with305

Embed(t)
θ , where in our implementation we choose Ψ = Ψsort in (6). The embedding dimension for306

all t is taken to be 6n+ 1, since the input is in R3×n. We denote the obtained parametric function307

by Fϕ. Based on a formalization of the discussion above, we prove in the appendix that Fϕ has the308

separation power of the complete 2-SEWL test, and therefore Fϕ is separating.309
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Theorem 4.2. Let Fϕ denote the parametric function simulating the 2-SEWL test. Then for Lebesgue310

almost every ϕ the function Fϕ : R3×n → R6n+1 is separating with respect to the action of SO[3, n].311

To conclude this subsection, we note that while sort-based permutation invariants are used as aggrega-312

tors in GNNs Zhang et al. [2020, 2018], Blondel et al. [2020], the polynomial-based aggregators Ψpow313

are not as common. To a certain extent, one can use the approach in Xu et al. [2018], Maron et al.314

[2019], replace the polynomials in Ψpow by MLPs, and justify this by the universal approximation315

power of MLPs. A limitation of this approach is that it only guarantees separation at the limit.316

5 Synthetic Experiments317

In this section we implement 2-SEWLnet, described in Section 4, and empirically evaluate its318

separation power, and the separation power of alternative SO[3, n] invariant point cloud architectures.319

We trained the architectures on permuted and rotated variations of highly-challenging point-cloud320

pairs, and measured separation by the test classification accuracy. We considered three pairs of point321

clouds (Hard1-Hard3) from Pozdnyakov et al. [2020]. These pairs were designed to be challenging322

for distance-based invariant methods. However, our analysis reveals that they are in fact separable323

by two iterations of the 1-EWL test. We then consider a pair of point clouds from Pozdnyakov and324

Ceriotti [2022] which was proven to be indstinguishable by the 1-EWL tests. The results of this325

experiment are given in Table 1. Further details on the experimental setup appear in Appendix B.326

Separation complete ∼=1-EWL unknown unknown unknown
Point Clouds 2-SEWLnet EGNN MACE TFN GVPGNN

Hard1 100 % 100 % 100 % 100 % 100 %
Hard2 100 % 100 % 100 % 100 % 50 %
Hard3 100 % 100 % 100 % 100 % 95.0 ± 15.0 %
Harder 100 % 50 % 100 % 100 % 53.7 ± 13.1 %

Table 1: Separation accuracy on challenging 3D point clouds. Hard examples correspond to point
clouds which cannot be distinguished by a single 1-EWL iteration but can be distinguished by two
iterations, according to Theorem 2.1. The Harder example is a point cloud not distinguishable by
1-EWL Pozdnyakov and Ceriotti [2022]. GNN implementations and code pipeline based on Joshi
et al. [2022].

As expected, we find that 2-SEWLnet, which has complete separation power, succeeded in perfectly327

separating all examples. We also found that EGNN Victor Garcia Satorras [2021], which is essentially328

an implementation of 1-EWL, does not separate the Harder example, but does separate the Hard329

example after two iterations, as predicted by Theorem 2.1. We also considered three additional330

invariant point cloud models whose separation power is not as well understood. We find that MACE331

Batatia et al. [2022] and TFN Thomas et al. [2018] achieve perfect separation, (when applying them332

with at least 3-order correlations and three-order SO(3) representations). The third GVPGNN Jing333

et al. [2021] architecture attains mixed results. We note that we cannot necessarily deduce from our334

empirical results that MACE and TFN are complete. While it is true that TFN is complete when335

considering arbitrarily high order representations Dym and Maron [2020], it is not clear whether336

order three representation suffices for complete separation. We conjecture that this is not the case.337

However, finding counterexamples is a challenging problem we leave for future work.338

Future Work In this work, we presented several invariant tests for point clouds that are provably339

complete, and have presented and implemented 2-SEWL-net which simulates the complete 2-SEWL340

test. Currently, this is a basic implementation that only serves to corroborate our theoretical results. A341

practically useful implementation requires addressing several challenges, including dealing with point342

clouds of different sizes, the non-trivial ∼ n4 complexity of computing even the relatively efficient343

2-SEWL-net, and finding learning tasks where complete separation leads to gains in performance.344

We are actively researching these directions and hope this paper will inspire others to do the same.345

1A minor technicality is that the Embed functions are actually defined on vector-multiset pairs. This issue is
discussed in the proof of the theorem.
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