
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADEPT: CONTINUAL PRETRAINING VIA ADAPTIVE
EXPANSION AND DYNAMIC DECOUPLED TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Conventional continual pretraining (CPT) for large language model (LLM) do-
main adaptation often suffers from catastrophic forgetting and limited domain ca-
pacity. Existing strategies adopt layer expansion, introducing additional trainable
parameters to accommodate new knowledge. However, the uniform expansion
and updates still entangle general and domain learning, undermining its effective-
ness. Our pilot studies reveal that LLMs exhibit functional specialization, where
layers and units differentially encode general-critical capabilities, suggesting that
parameter expansion and optimization should be function-aware. We then pro-
pose ADEPT, Adaptive Expansion and Dynamic Decoupled Tuning for continual
pretraining, a two-stage framework for domain-adaptive CPT. ADEPT first per-
forms General-Competence Guided Selective Layer Expansion, duplicating lay-
ers least critical for the general domain to increase representational capacity while
minimizing interference with general knowledge. It then applies Adaptive Unit-
Wise Decoupled Tuning, disentangling parameter units within expanded layers
according to their general-domain importance and assigning asymmetric learning
rates to balance knowledge injection and retention. Experiments on mathematical
and medical domains show that ADEPT outperforms full-parameter CPT by up
to 5.76% on the general benchmarks and 5.58% on the target domain benchmarks
with only 15% of parameters tuned and less than 50% training time. Ablation
studies, theoretical analysis, and extended investigations further demonstrate the
necessity of targeted expansion and decoupled optimization, providing new prin-
ciples for efficient and robust domain-adaptive CPT. Our code is open-sourced at
https://anonymous.4open.science/r/ADEPT-F2E3.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance across a wide range of
general-domain tasks (OpenAI, 2023; Dubey et al., 2024c). However, their deployment in special-
ized domains, such as mathematics or healthcare, requires targeted adaptation (Ding et al., 2024;
Chen et al., 2024; Ahn et al., 2024). Continual pretraining (CPT), which conducts post-pretraining
on domain-specific corpora, has emerged as a crucial paradigm for injecting domain knowledge and
capabilities into pretrained LLMs (Wu et al., 2024a; Ibrahim et al., 2024; Yıldız et al., 2024).

Despite its promise, CPT faces a persistent challenge: catastrophic forgetting. After pretraining,
LLMs already encode substantial general knowledge, leaving limited parameter capacity for inte-
grating new domain-specific information. While domain signals can be forcefully fitted through
gradient-based optimization, the aggressive updates on the existing parameters come at the cost of
overfitting to the target corpora, which in turn disrupts general abilities and triggers catastrophic
forgetting (Liu et al., 2024a; Luo et al., 2025). This tension between new knowledge injection and
previous knowledge retention poses a central obstacle to reliable and stable domain adaptation.

To address catastrophic forgetting, some approaches attempt through data-centric strategies, such as
data replay or rehearsal (Huang et al., 2024; Zhang et al., 2025). While replay partially preserves
prior knowledge, it fails to expand model capacity, leaving the conflict between knowledge injection
and retention unresolved. Others focus on increasing capacity via transformer-layer extension (Wu
et al., 2024b), yet typically insert new layers uniformly and update all parameters indiscriminately.
This expansion strategy neglects the functional specialization within LLMs, where different layers
and neurons serve distinct functional roles. Our pilot studies reveal that general-critical layers in

1

https://anonymous.4open.science/r/ADEPT-F2E3


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

LLMs are mainly located in early depths, and functional units within layers contribute unequally
to general-domain performance, highlighting functional specialization similar to that found in the
human brain (Xu et al., 2025; Zheng et al., 2024; Dai et al., 2022c). Consequently, indiscriminate
expansion and optimization may overwrite general-critical regions with new knowledge, compro-
mising general competency preservation and leaving forgetting unresolved.

Inspired by the functional specialization perspective, we propose our core insight: effective CPT
should expand and update the model adaptively, preserving the regions responsible for the
general domain and targeting more adaptable parameters. Specifically, we argue that capacity
allocation must be importance-guided, and optimization must be function-decoupled to minimize in-
terference with general competencies. As illustrated in Figure 1, domain-specific extension should
be allocated to the regions less constrained by general-domain knowledge and skills, and param-
eters within these regions should be decoupled and tuned accordingly, preserving general-critical
parameters and allowing the rest to be more adaptable to absorb new domain-specific information.

General Core
Preserve General 

Knowledge & Skills

Least Important 
Region for 

General Domain
Target Domain

Extension

Figure 1: Illustration of the core idea
of ADEPT. Target domain extension are
applied on the least important region
for general domain, minimizing catas-
trophic forgetting. Asymmetric learn-
ing rates are applied to parameter sub-
sets for targeted knowledge injection.

Building on this insight, we propose Adaptive Expan-
sion and Dynamic Decoupled Tuning for continual pre-
training (ADEPT), a framework for domain-adaptive
continual pretraining. ADEPT comprises two stages:
General-Competence Guided Selective Layer Expansion,
which identifies and duplicates layers least critical for
the general domain, allocating additional capacity pre-
cisely where interference with general capabilities is min-
imized, thereby preventing catastrophic forgetting. Adap-
tive Unit-Wise Decoupled Tuning, which disentangles the
parameters within the expanded layers based on their
importance to the general domain. Asymmetric learn-
ing rates are then applied on their subsets, ensuring
that general-critical parameters are preserved while more
adaptable parameters can fully absorb domain-specific
knowledge. Extensive experiments on mathematical and
medicine domains demonstrate that ADEPT enables effi-
cient and robust domain knowledge injection, while sub-
stantially alleviating catastrophic forgetting. Specifically,
compared to full-parameter CPT, ADEPT achieves up to
5.58% accuracy gain on target-domain benchmarks, and
up to 5.76% gain on the general domain, confirming both effective knowledge acquisition and strong
retention of general competencies. Furthermore, ADEPT attains these improvements with only 15%
of parameters tuned, and reduces training time relative to other baselines greatly, highlighting its
efficiency. Ablation studies and theoretical analysis further validate the designs of ADEPT.

To summarize, our contributions are threefold:

1. Insightfully, we highlight the importance of considering functional specialization in LLMs for
continual pretraining through empirical experiments and theoretical analysis, advocating for tar-
geted layer expansion and decoupled training as a principled solution to domain adaptation.

2. Technically, we propose ADEPT, a framework that consists of General-Competence Guided
Selective Layer Expansion and Adaptive Unit-Wise Decoupled Tuning, enabling adaptive and
effective domain knowledge integration while minimizing catastrophic forgetting.

3. Empirically, we conduct extensive experiments on both mathematical and medical domains,
demonstrating that ADEPT consistently outperforms baselines in domain performance while pre-
serving general competencies.

2 PILOT STUDY: PROBING PARAMETER IMPORTANCE

2.1 EXPERIMENTAL SETUP FOR IMPORTANCE PROBING

To investigate the functional specialization of LLMs and understand how different parameters con-
tribute to preserving general-domain knowledge during CPT, we conduct importance probing on
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Qwen3-1.7B-Base Qwen3-4B-Base Qwen3-8B-Base
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Figure 2: Layer- and unit-level importance distribution of the Qwen3 family. The vertical axis
corresponds to different layers, while the horizontal axis denotes parameter units within each layer.
Deeper blue indicates higher importance for preserving general-domain competencies.

multiple backbone models, including Qwen3-Base (1.7B, 4B, 8B) (Yang et al., 2025) and LLaMA3-
8B (Dubey et al., 2024b). Our analyses focus on probing general-knowledge-critical parameters
rather than domain-specific ones. The rationale is that successful CPT must inject new, domain-
specific knowledge without inducing catastrophic forgetting. This necessitates identifying and pre-
serving the model’s core parameters that are crucial for its general-domain competencies. By con-
trast, domain knowledge can then be effectively allocated to less critical parameters, without risking
the erosion of pre-existing knowledge and skills. To support this analysis, we construct a General
Competence Detection Corpus containing broad world knowledge and instruction-following tasks
in both English and Chinese, which serves as the probing ground to reflect a model’s general com-
petencies. Details of its construction are provided in Appendix B.3.

2.2 LAYER-LEVEL IMPORTANCE PROBING

Our first research question is: How do different layers contribute to preserving general knowl-
edge? To answer this, we measure the importance of each transformer layer by the model’s degra-
dation in general-domain performance when that layer is ablated. Formally, given the General
Competence Detection Corpus Dprobe, we first compute the baseline next-token prediction loss of
the pretrained LLM M0:

Lbase =
1

|Dprobe|
∑

x∈Dprobe

ℓ
(
M0(x), x

)
, (1)

where ℓ(·) denotes the standard next-token prediction loss in CPT. For each transformer layer l ∈
{1, . . . , L}, we mask its output via a residual bypass and recompute the loss:

L̂(l) =
1

|Dprobe|
∑

x∈Dprobe

ℓ
(
M

(−l)
0 (x), x

)
, (2)

where M
(−l)
0 denotes the model with the l-th layer masked. The importance of layer l is defined as

the loss increase relative to the baseline:

I
(l)
layer = L̂

(l) − Lbase. (3)

A larger I(l)layer indicates that layer l plays a more critical role in preserving general knowledge. Fig-
ure 2 (left-hand bars) reports the layer-level importance distributions of the Qwen3 family (results
for LLaMA3-8B provided in Appendix D). We find that general-knowledge-critical layers are con-
centrated in the early layers, with importance gradually decreasing toward later layers. This uneven
distribution suggests that uniformly expanding layers across the entire depth would be subopti-
mal. Since some layers are tightly coupled with general knowledge while others are more flexible,
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uniform expansion not only risks representational interference in critical layers but also allocates
parametric budget where it is too constrained to be leveraged for domain learning. In contrast, iden-
tifying more adaptable layers with minimal impact on general knowledge and allocating expansion
there for knowledge injection is a superior strategy. This leads to our first key observation:

Observation I: Layers exhibit heterogeneous importance for preserving general competencies,
which motivates a selective expansion strategy that targets layers less constrained by general abili-
ties yet more adaptable for domain adaptation.

2.3 UNIT-LEVEL IMPORTANCE PROBING

Building on the layer-level exploration, our next research question is: How do parameter units
within each layer contribute to preserving general knowledge? To answer this, we partition each
transformer layer into functional units (e.g., attention projections, MLP components, and normaliza-
tion) and assess their relative contributions to preserving general competencies. The detailed parti-
tioning scheme is provided in Appendix C. This granularity provides a more fine-grained perspective
than layer-level probing, while avoiding the prohibitive cost of neuron-level analysis. Formally, for
each parameter θj in a unit U , we estimate its importance using a first-order Taylor approximation:

Ij = θj · ∇θjL, (4)

where L is the autoregressive training loss. The importance of unit U is then defined as the average
importance of its parameters:

Iunit =
1

|U |
∑
j∈U

Ij . (5)

A higher Iunit indicates that the unit plays a more critical role in preserving general competencies.
Figure 2 (right-hand heatmaps) illustrates the unit-level importance distributions of the Qwen3 fam-
ily (results for LLaMA3-8B provided in Appendix D). We observe that importance is unevenly
distributed across modules within a layer, with some units contributing more to general competen-
cies and others more flexible. This finding suggests that treating all parameter units equally would
be suboptimal, as a single update rule cannot simultaneously protect critical units and fully train
adaptable ones, risking either damaging previous knowledge or failing to sufficiently learn new
knowledge. This motivates us to pursue unit-level decoupling, where training can selectively protect
critical units while enabling less general-relevant units to absorb new knowledge without constraint.
This leads to our second key observation:

Observation II: Parameter units within each layer exhibit heterogeneous importance, which mo-
tivates unit-level decoupling that selectively protects critical units while enabling more adaptable
ones to sufficiently absorb domain knowledge.

Summary. Building on the above observations, we propose ADEPT, a continual pretraining frame-
work designed to enable effective domain knowledge injection while preserving general compe-
tencies. Inspired by the uneven importance distribution of layers (Observation I), ADEPT selec-
tively expands layers less constrained by general abilities but more receptive to domain adaptation,
thereby introducing fresh parameter capacity rather than uniformly expanding layers as in LLaMA-
Pro (Wu et al., 2024b). Guided by the heterogeneous importance of parameter units within layers
(Observation II), ADEPT further performs unit-level decoupling on the expanded layers, protecting
critical units while enabling adaptable ones to specialize in domain knowledge.

3 METHODOLOGY

As illustrated in Figure 3, ADEPT includes two stages:

• # Stage 1: General-Competence Guided Selective Layer Expansion. adaptively selects and du-
plicates layers that minimally affect general competencies while being more adaptable to domain-
specific knowledge, thereby introducing fresh representational capacity for domain adaptation.

• # Stage 2: Adaptive Unit-Wise Decoupled Tuning. further decouples units within the expanded
layers and apply learning-rate–driven adaptive tuning according to their importance to the general
domain, ensuring knowledge injection while preserving general competencies.
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Stage 1: General-Competence Guided Selective Layer Expansion

Step 1: General-Competence Aware Layer Importance Probing

𝐿1 𝐿2 𝐿𝑖 𝐿𝑀

𝑖
Probing Iteration

General-Competence 
Detection Corpus

ሚℒ𝑖
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… …
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… …

𝐿𝑀+𝑘
Copy Copy Copy
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Expansion

Δℒ 𝑖

𝐼 𝑤𝑖𝑗 = |𝑤𝑖𝑗∇𝑤𝑖𝑗
ℒ|

Step 1: Unit-wise Neuron Decoupling

Calculate Unit-wise
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ℒ

Domain-adaptive
Units
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Step 2: Dynamic Learning Rate Adaptation

Update

Pretrain
Dataset

Trainable

Frozen

Probing

Domain
Units

Identity
Copy

Update
Flow

General
Units

Original
Layer

Expanded
Layer

ℒ Next Token
Prediction

Loss

Forward
Flow

Stage 2: Adaptive Unit-Wise Decoupled Tuning
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Detection Corpus
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Masked
Layer
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Figure 3: Illustration of ADEPT.

3.1 GENERAL-COMPETENCE GUIDED SELECTIVE LAYER EXPANSION

This stage aims to selectively expand model parameters in a way that introduces fresh representa-
tional capacity for domain adaptation while preserving general-domain competencies. To this end,
we first estimate the contribution of each transformer layer to preserving general knowledge through
General-Competence Aware Layer Importance Probing, and then perform Selective Parameter Ex-
pansion via Identity Copy to duplicate layers that are least critical for general abilities yet more
adaptable to domain-specific knowledge.

General-Competence Aware Layer Importance Probing. To guide selective expansion, we lever-
age the layer importance scores I(l)layer defined as Eq.3. Intuitively, I(l)layer quantifies how much the l-th
layer contributes to preserving general-domain knowledge. Layers with lower scores are deemed
less critical for general competencies and are thus selected for expansion, as they can accommodate
domain-specific adaptation with minimal risk of catastrophic forgetting.

Selective Parameter Expansion via Identity Copy. Based on the importance scores I(l)layer, we sort
layers by ascending importance and select the k least-important ones for general competence:

Sk = argmin
S⊆{1,...,L}

|S|=k

∑
l∈S

I
(l)
layer. (6)

We denote the selected set Sk as the Domain-Adaptable Layers. For each selected layer l ∈ Sk, we
create a parallel copy by directly duplicating its parameters without re-initialization (Θ̃(l) = Θ(l)).
To preserve stability, we follow the Function Preserving Initialization (FPI) principle (Chen et al.,
2015), ensuring that the expanded model M1 produces identical outputs as the original model M0

at initialization. Concretely, in the duplicated branch, we set the output projections of both attention
and feed-forward sublayers to zero (W out

MHSA = 0, W out
FFN = 0), so the forward computation remains

unchanged (M1(x) = M0(x), ∀x). The duplicated layers thus provide fresh representational capac-
ity that can specialize for domain signals with minimal risk of eroding general-knowledge-critical
parameters in the original pathway. As formally established in Appendix F.1, expanding the layers
with the lowest general-competence importance provably minimizes the risk of forgetting. Intu-
itively, this strategy ensures that new capacity is added where interference with general abilities is
weakest, yielding the most favorable trade-off between domain adaptation and knowledge retention.
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3.2 ADAPTIVE UNIT-WISE DECOUPLED TUNING

This stage aims to further reduce catastrophic forgetting and enable fine-grained control over pa-
rameters within the expanded layers. To achieve this, we first decouple each expanded layer into
semantic units and evaluate their importance using gradient-based estimation (Unit-wise Neuron
Decoupling), and then dynamically adjust learning rates for different units according to their impor-
tance scores during training (Dynamic Learning Rate Adaptation).

Unit-wise Neuron Decoupling. Guided by the heterogeneous importance of parameter units within
layers, we performs unit-level decoupling on the expanded layers. Following the probing analysis
in Section 2.3, we quantify unit importance Iunit using gradient sensitivity signals (cf. Eq.5), which
aggregate the first-order contributions of parameters θj to the training lossL via∇θjL. A higher Iunit
indicates greater contribution to general competencies and thus warrants more conservative updates,
whereas less important units are encouraged to adapt more aggressively to domain-specific signals.

Dynamic Learning Rate Adaptation. Based on the unit importance Iunit in Eq.5, we assign adap-
tive learning rates to different units within the expanded layers:

lrU = 2 · (1− Iunit) · lrbase, (7)

where lrbase is the base learning rate, and the coefficient 2 normalizes the global scale to keep the
effective average approximately unchanged. Units more important for general knowledge (higher
Iunit) receive smaller learning rates to reduce overwriting, while less important units are encouraged
to adapt more aggressively to domain-specific data. Training proceeds with the standard autore-
gressive objective: L = −

∑T
t=1 logP (xt | x<t; Θ). Since the importance of units may change as

training progresses, we periodically recompute Iunit and update learning rates accordingly, ensuring
dynamic adaptation throughout learning. The full training procedure is provided in Appendix L.
Appendix F.2 further shows that allocating learning rates inversely to unit importance minimizes
an upper bound on general-domain forgetting. In essence, this design formalizes the intuition that
highly general-critical units should be preserved via conservative updates, while less critical yet
more adaptable ones can update more aggressively to absorb domain-specific information.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate ADEPT across two domains, Mathematics and Medicine. For the mathemati-
cal domain, we use OpenWebMath (Paster et al., 2023), together with AceReason-Math (Chen et al.,
2025), concatenated into the continual pretraining corpora. For the medical domain, we adopt the
multilingual MMedC corpus (Qiu et al., 2024), together with IndustryIns and MMedBench, forming
the medical pretraining corpora. Dataset statistics are provided in Appendix B.1 and Appendix B.2.
In addition, for detecting general-knowledge-critical regions, we construct a General Competence
Detection Corpus, following the same setting as in Section 2 and described in Appendix B.3.

Baselines. We compare ADEPT with a broad range of baselines from four perspectives:

• Full-parameter tuning. PT-Full directly updates all model parameters on the target corpora.
• Replay-based tuning. Replay mitigates catastrophic forgetting by mixing general-domain data

into the training process (Que et al., 2024).
• Architecture expansion. LLaMA-Pro (Wu et al., 2024b) expands the model by uniformly insert-

ing new layers across the model, placing each new layer at fixed periodic intervals, while freezing
the original weights. Only the newly introduced parameters are trained, enabling structural growth
while preserving prior knowledge.

• Parameter-efficient tuning. PT-LoRA performs CPT using Low-Rank Adaptation (Hu et al.,
2022), updating only a small set of task-adaptive parameters. TaSL (Feng et al., 2024a) extends
PT-LoRA to a multi-task regime by decoupling LoRA matrices across transformer layers, allowing
different subsets of parameters to specialize for different tasks.

See Appendix B.6 for implementation details of all baselines.
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Table 1: Performance comparison across Mathematical and Medical domains. Bold numbers indi-
cate the best performance, and underlined numbers denote the second best.

Method Mathematics Medical
General Domain General Domain

MMLU CMMLU GSM8K ARC-Easy ARC-Challenge MMLU CMMLU MedQA MMCU-Medical CMB

Qwen3-1.7B-Base

Vanilla 62.57 66.86 57.62 81.44 51.19 62.57 66.86 48.39 69.17 63.67
PT-Full 60.07 62.84 51.86 81.24 49.65 59.44 62.84 48.45 67.45 62.77
Replay 60.69 63.52 54.74 81.01 49.73 60.52 63.85 49.00 67.32 62.20
Llama-Pro 61.54 63.40 60.03 81.08 49.80 59.80 65.51 50.43 66.51 63.54
PT-LoRA 60.07 62.69 59.50 80.22 49.34 57.31 59.68 47.29 61.55 57.60
TaSL 60.34 62.95 59.07 79.76 48.89 62.48 66.14 47.06 67.62 61.15

ADEPT 62.62 67.06 70.51 82.48 52.62 62.80 66.89 50.75 71.98 65.43

Qwen3-4B-Base

Vanilla 73.19 77.92 69.07 85.52 59.13 73.19 77.92 62.77 82.44 78.92
PT-Full 70.33 73.07 60.96 85.31 57.59 69.48 72.77 62.84 81.34 76.88
Replay 70.46 73.72 63.91 85.06 57.68 70.74 73.81 63.55 80.60 76.74
Llama-Pro 72.42 77.39 73.16 85.14 57.76 72.28 77.28 62.53 81.20 78.12
PT-LoRA 70.20 72.90 71.34 84.18 57.25 72.73 76.78 61.59 80.49 76.92
TaSL 70.50 73.20 70.84 83.68 56.75 73.03 77.08 60.99 79.20 77.08

ADEPT 73.21 78.30 76.19 88.44 60.98 72.95 78.77 64.49 84.58 79.87

Qwen3-8B-Base

Vanilla 76.94 82.09 69.98 87.12 64.25 76.94 82.09 66.30 86.45 81.67
PT-Full 74.90 78.49 80.21 85.90 61.77 74.06 78.82 67.24 87.69 85.27
Replay 75.19 78.92 81.12 85.98 62.37 74.51 78.86 68.89 86.66 84.73
Llama-Pro 76.16 81.42 80.97 86.62 63.91 76.58 81.69 66.77 87.19 83.76
PT-LoRA 75.66 80.81 82.87 86.36 62.46 76.60 81.57 67.01 86.70 83.04
TaSL 76.63 80.37 80.54 84.81 59.09 76.42 81.86 66.51 86.20 82.54

ADEPT 76.80 82.11 83.87 89.29 64.51 76.77 82.11 69.24 89.84 85.80

Llama3-8B-Base

Vanilla 65.33 50.83 36.84 84.18 54.01 65.33 50.83 58.91 46.29 35.61
PT-Full 61.62 46.21 49.73 84.01 53.52 59.15 51.39 59.23 66.58 61.65
Replay 62.00 53.31 49.51 82.49 54.18 59.98 54.52 59.07 65.84 61.71
Llama-Pro 64.53 50.26 48.29 83.29 53.07 64.19 50.59 59.94 53.96 47.05
PT-LoRA 64.86 49.82 48.82 83.80 54.01 64.34 50.13 58.84 56.05 48.22
TaSL 65.16 50.11 35.43 83.29 53.51 64.64 50.43 55.55 58.34 47.69

ADEPT 65.35 51.90 50.57 84.96 55.52 65.17 51.92 61.17 67.03 61.78

Backbone Models. To assess the generality of our method, we instantiate ADEPT on multiple
backbone models, including Qwen3-Base (1.7B, 4B, 8B) (Yang et al., 2025) and LLaMA3.1-8B-
Base (Dubey et al., 2024b), covering a wide range of parameter scales and architectural variants.

Evaluation Metrics and Strategy. We adopt multiple-choice question answering accuracy as the
primary evaluation metric across all tasks (see Appendix B.9 for further details). For the Mathe-
matics domain, we evaluate on GSM8K (Cobbe et al., 2021), ARC-Easy (Clark et al., 2018), and
ARC-Challenge (Clark et al., 2018), which collectively span a wide range of reasoning difficul-
ties. For the Medical domain, we use MedQA (Jin et al., 2021), MMCU-Medical (Zeng, 2023),
and CMB (Wang et al., 2023b), covering diverse medical subjects and varying levels of complexity.
Among them, MedQA is an English benchmark, while MMCU-Medical and CMB are in Chinese.
To assess the model’s ability to retain general-domain knowledge during continual pretraining, we
additionally evaluate on MMLU (Hendrycks et al., 2020) and CMMLU (Li et al., 2023), two broad-
coverage benchmarks for general knowledge and reasoning in English and Chinese, respectively.

4.2 EXPERIMENTAL RESULTS

Performance Comparison. As shown in Table 1, ADEPT consistently outperforms all CPT base-
lines across both mathematical and medical domains, confirming its effectiveness in domain-specific
knowledge acquisition while substantially alleviating catastrophic forgetting. Concretely, ADEPT
achieves substantial domain-specific improvements. Across all backbones and domain bench-
marks, ADEPT consistently surpasses baselines, achieving the strongest performance. For instance,
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Table 2: Ablation study on ADEPT in Medical domain. Bold numbers indicate the best perfor-
mance, and underlined numbers denote the second best.

Method Qwen3-1.7B-Base Llama3-8B-Base
MMLU CMMLU MedQA MMCU-Medical CMB MMLU CMMLU MedQA MMCU-Medical CMB

ADEPT 62.80 66.89 50.75 70.98 65.43 65.17 51.92 61.17 61.78 67.03

w/o Stage-1 57.31 59.68 47.29 61.55 57.60 57.88 50.76 58.32 53.32 60.32
w/o Stage-2 61.56 64.33 49.23 66.19 64.36 64.34 50.74 59.60 50.68 57.36
Uniform Expansion 59.80 65.51 50.43 66.51 63.54 64.19 50.59 59.94 47.05 53.96

Vanilla W/o stage1 ADEPT

Figure 4: Activation distribution analysis of Qwen3-8B.

on Qwen3-1.7B-Base, ADEPT boosts GSM8K accuracy from 57.62% to 70.51%↑, bringing a large
gain that highlights its advantage on enhancing LLMs’ complex reasoning. Similarly, on LLaMA3-
8B-Base, it drastically improves CMB accuracy improves from 35.61% to 61.78%↑, underscor-
ing the strong enhancement of medical-domain capabilities. On average, ADEPT achieves up to
5.58% gains over full-parameter CPT on target-domain benchmarks, confirming its advantage in
domain knowledge acquisition. Furthermore, ADEPT demonstrates clear advantages in miti-
gating catastrophic forgetting. Whereas most baselines suffer noticeable degradation on general
benchmarks such as MMLU and CMMLU, ADEPT preserves the pretrained LLMs’ general-domain
competencies, and in some cases even surpasses the vanilla backbone. Notably, with Qwen3-4B un-
der medical CPT, ADEPT improves CMMLU accuracy from 77.92% to 78.77%↑. It also results in
an average performance increase of 5.76% on general benchmarks over full-parameter CPT. We at-
tribute this to the disentanglement of domain-specific and general parameters, which prevents harm-
ful representational interference during adaptation, ensuring that learning specialized knowledge
does not corrupt the model’s foundational abilities. Instead, this focused learning process appears
to refine the model’s overall competencies, leading to synergistic improvements on general-domain
tasks. In summary, ADEPT offers a robust solution for CPT achieving superior domain adaptation
while effectively preserving general knowledge.

Ablation Study. To investigate the effectiveness of each component in ADEPT, we conduct ablation
experiments in the medical domain using two representative backbones, Qwen3-1.7B and Llama3-
8B. In w/o Stage-1, we remove the General-Competence Guided Selective Layer Expansion and
directly apply Adaptive Unit-Wise Decoupled Tuning on the k Domain-Adaptable Layers without
introducing any new parameters. In w/o Stage-2, we discard the dynamic decoupled tuning stage
and instead directly fine-tune the expanded layers from Stage-1. In Uniform Expansion, we replace
importance-guided expansion with uniformly inserting layers at fixed periodic intervals followed
by fine-tuning, which is equivalent to the strategy adopted in LLaMA-Pro. As shown in Table 2,
removing either Stage-1 or Stage-2 leads to clear degradation in both general and domain-specific
performance, confirming that both adaptive expansion and decoupled tuning are indispensable.
In particular, eliminating Stage-1 results in the largest performance drop, suggesting that adaptive
capacity allocation is crucial for enabling effective domain adaptation without sacrificing general-
domain competencies. Meanwhile, replacing importance-guided expansion with uniform expansion
yields inferior results, underscoring the advantage of expanding only the most domain-adaptable
layers.
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(a) Token distributions shift in Medical (b) Token distributions shift in Mathematical

Figure 5: Token distribution shifts across domains. Word cloud visualizations of shifted tokens
reveal that ADEPT achieves highly focused alignment, with most changes concentrated on domain-
specific terminology.

Decoupling Effectiveness on Expanded Parameters. We visualize cross-domain activations using
Kernel Density Estimation (KDE) (Silverman, 2018), sampling 500 instances from both Medical
and General corpora. For the original Qwen3-8B-Base (left in Figure 4), the most domain-adaptable
layer (lowest Ilayer) still shows heavy overlap between general and medical activations, evidencing
strong parameter coupling. Direct decoupling without expansion (w/o Stage-1, middle) on the same
layer fails to reduce this entanglement, confirming that pretrained parameters are inherently diffi-
cult to separate. In contrast, after expansion (right), the duplicated layers serve as a “blank slate,”
yielding clearly separated activations across domains. Additional analyses on more backbones are
provided in Appendix C.1, where we observe that this trend consistently holds across nearly all
evaluated LLMs, further validating the generality of our approach.

Token Distribution Shift Analysis. To assess how ADEPT injects domain knowledge while pre-
serving general competencies, we analyze token-level shifts between the base and continually pre-
trained models. Following Lin et al. (2024), tokens are categorized as unshifted, marginal, or shifted.
Only a small proportion of tokens shift, while most remain unchanged, indicating stable adaptation.
In the medical domain, merely 2.18% shift (vs. 5.61% under full pretraining), largely medical terms
such as “prescription,” “diagnosis,” and “therapy” (Figure 5a). In the mathematical domain, only
1.24% shift, mainly scientific terms such as “theorem” and “equation” (Figure 5b). Further details
and analyses are provided in Appendix I. These results demonstrate that ADEPT achieves precise
and economical domain knowledge injection while minimizing perturbation to general competence.

Extended Investigations and Key Insights. We further investigate several design choices of
ADEPT in appendix: In Appendix E, we investigate alternative strategies for probing layer im-
portance and observe the consistency of different measurement methods, offering insight into how
importance estimation affects adaptation outcomes. Appendix G explores the effect of expanding
different numbers of layers and reveals how the number of expansion layers should be selected
under different circumstances and the potential reasons behind this. Appendix H shows that even
with relatively low-quality importance detection corpus from pretrain data, our approach maintains
strong generalization across domains, suggesting the robustness of ADEPT. Appendix J demon-
strates our insights into the potential for merging expanded layers that are independently trained on
different domains, offering an intriguing direction for achieving multi-domain adaptation with min-
imal catastrophic forgetting. In addition, Appendix B.8 analyzes the training efficiency of ADEPT,
showing that our selective updating design substantially accelerates convergence compared to base-
lines. In addition to the core evaluation, we conduct a comprehensive set of extended analyses to
further validate the robustness, generality, and adaptability of ADEPT. In Appendix M, we present
a sensitivity analysis of the importance-score update intervals, demonstrating that ADEPT is stable
across a wide range of update frequencies, with only marginal performance variation. Appendix N
investigates the applicability of ADEPT to supervised fine-tuning settings, showing consistent gains
over standard fine-tuning baselines without requiring architectural changes. To assess generalization
beyond our primary benchmarks, Appendix O includes extended evaluations on additional domains
and datasets, where ADEPT continues to outperform strong baselines. In Appendix P, we eval-
uate ADEPT specifically on code-domain tasks, confirming its effectiveness in structured, logic-
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intensive environments. Appendix Q further extends our evaluation to multilingual medical bench-
marks, highlighting ADEPT’s cross-lingual transfer capability in more challenging domain adaption
setting. Finally, Appendix R addresses a key design question: whether to expand domain-critical
layers or general-noncritical ones. Appendix S investigated the impact of different zero-initialization
strategies. Our analysis reveals that selectively expanding domain-critical layers yields significantly
higher domain performance but more forgetting, providing actionable guidance for layer selection
in domain adaptation scenarios.

5 CONCLUSIONS AND FUTURE WORKS

We present ADEPT, a framework for LLM continual pretraining for domain adaptation that effec-
tively tackles catastrophic forgetting, leveraging functional specialization in LLMs. By selectively
expanding layers less critical to the general domain and adaptively updating decoupled parameter
units, ADEPT minimizes catastrophic forgetting while efficiently incorporating domain-specific ex-
pertise. Our experiments show significant improvements in both domain performance and general
knowledge retention compared to baselines. Future work could focus on refining the decoupled
tuning mechanism, designing more sophisticated learning rate strategies beyond linear mapping to
allow for more precise adjustments. Another direction is to explore better dynamic and real-time
methods for measuring parameter importance during training.

6 ETHICS STATEMENT

All datasets used for training and evaluation in this study are publicly available versions obtained
from the Hugging Face platform. The datasets have been curated, cleaned, and de-identified by their
respective data providers prior to release. No patient personal information or identifiable medical
data is present. Consequently, the research does not involve human subjects, and there are no related
concerns regarding privacy, confidentiality, or legal liability. And for full transparency, we report all
aspects of large language model (LLM) involvement in the Appendix K.

We strictly adhered to the usage and redistribution licenses provided by the original dataset authors
and hosting platforms. Our research poses no risk of harm to individuals or groups and does not
contain any potentially harmful insights, models, or applications. Additionally, there are no conflicts
of interest or sponsorship concerns associated with this work. We are committed to research integrity
and ethical standards consistent with the ICLR Code of Ethics.

7 REPRODUCIBILITY STATEMENT

We actively support the spirit of openness and reproducibility advocated by ICLR. To ensure the
reproducibility of our research, we have taken the following measures:

1. Disclosure of Base Models: All base models used in our experiments are explicitly identified and
described in the main text. This allows readers to directly reference and obtain these models.

2. Datasets and Experimental Details: All experiments are conducted on publicly available datasets
from the Hugging Face platform. In Appendix B, we provide a comprehensive description of our
experimental implementation, including dataset sources, browser links, and detailed data process-
ing procedures. We also detail the experimental setup, such as training duration, hardware envi-
ronment (e.g., GPU type), and configuration of hyperparameters, including LoRA rank, number
of extended layers, batch size, and max length. These details facilitate transparent verification
and replication of our results.

3. Open-Source Code Release: To further support reproducibility, we release all training and
evaluation code in an anonymous repository (https://anonymous.4open.science/
status/ADEPT-F2E3). The repository contains clear instructions on installation, data down-
loading, preprocessing, and experimentation, allowing interested researchers to replicate our re-
sults with minimal effort.

We believe that these actions align with the open science principles championed by the ICLR com-
munity, and we are committed to supporting the reproducibility and transparency of our work.
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A RELATED WORK

A.1 CONTINUAL PRETRAINING FOR LLMS

Continual pretraining updates pretrained LLMs with new corpora to equip them with new knowl-
edge and capabilities. Data-centric approaches adopt data replay to mitigate catastrophic forget-
ting (Huang et al., 2024; Zhang et al., 2025; Xiong et al., 2023; Song et al., 2023), or utilize data
construction strategies to synthesize training corpora (Yang et al., 2024; Arbel et al., 2024). How-
ever, these methods make no changes to the model or training procedure, failing to effective inject
new knowledge due to capacity saturation and only partially alleviating forgetting. Another line of
works focus on adjusting model architecture and training strategy. LoRA (Hu et al., 2022) improve
efficiency for fine-tuning by adapting low-rank updates on top of frozen backbones, but their lim-
ited adjustments to LLMs can not effectively address continual pretraining for deep domain adap-
tation. LLaMA-Pro (Wu et al., 2024b) expands model blocks and tunes the added parameters on
new corpora, improving knowledge injection and mitigating forgetting compared to vanilla CPT.
Yet existing expansion policies insert layers uniformly across depths and treat all expanded parame-
ters indiscriminately during optimization, leaving open how to place capacity where domain signals
concentrate and update it without disturbing general knowledge. Classical continual-learning regu-
larizers (Kirkpatrick et al., 2017) constrain updates on weights deemed important to previous tasks,
but they do not guide where capacity allocation nor how to target LLM domain adaptation learning.

A.2 FUNCTIONAL SPECIALIZATION IN LLMS

Growing evidence indicates that, akin to human brains, LLMs exhibit functional specialization,
where different regions such as layers, attention heads and neurons play distinct roles. A series of
causal and studies show that factual knowledge are predominantly stored in FFN layers (Dai et al.,
2022c), and attention heads usually play specialized roles for certain functions (Zheng et al., 2024),
suggesting that knowledge and skills are unevenly distributed in LLMs. Inspired by this special-
ization, several methods have tried to decouple functional modules during training. For instance,
Parenting (Xu et al., 2025) separates the subspaces responsible for evidence-following and noise-
robustness in retrieval-augmented generation, and optimizes them with tailored objectives to im-
prove performance under noisy retrieval. Similarly, TaSL (Feng et al., 2024a) addresses multi-task
adaptation by disentangling LoRA parameters from different tasks and merging them in a weighted
manner, which helps reduce interference. Other works on orthogonal (Wang et al., 2023a) or decom-
posed LoRA (Liu et al., 2024b) further reflects the idea that training different parameter subspaces
separately improves robustness and transfer. Despite these advances, prior work does not address
CPT, where the tension between knowledge injection and retention needs to be tackled. To our
knowledge, our work is the first to explicitly leverage functional specialization during CPT to simul-
taneously improve domain performance and alleviate catastrophic forgetting.

B DATA RECIPE AND EXPERIMENT SETTINGS

To demonstrate the applicability and generalizability of our approach, we conducted domain-
adaptive continual pretraining experiments on two distinct and highly significant domains: Mathe-
matics and Medicine, both of which play crucial roles in the advancement of artificial intelligence
and the applications of LLM. The mathematical domain often poses challenges that emphasize a
model’s reasoning and computational abilities, while the medical domain predominantly requires a
deep understanding and memorization of medical concepts. From a cognitive perspective, we be-
lieve that the capabilities that need to be infused into the model differ significantly between these
two domains, which further demonstrates the generalisability of our approach.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The continual pretraining process leverages both pretraining datasets for foundational knowledge
and supervised fine-tuning (SFT) datasets for task-specific optimization (Cheng et al., 2023). Below,
we detail the data composition and processing details. All data used will be processed into the
format of pre-training data.

B.1 MEDICAL PRETRAIN DATA SOURCE

Our medicine datasets are divided into pre-training data, designed to provide extensive general
knowledge, and supervised fine-tuning (SFT) data, which refine the model’s understanding for spe-
cific instructions in the medicine domain (will be converted to pretrain data format when training).

• Pre-training data: we utilize English and Chinese portions of MMedC dataset, a multilingual
medical dataset, furnishing a total of 14.3 billion tokens.

• Instrution tuning data: we incorporate two supervised datasets:

1. IndustryIns, contributing 1.6 billion tokens from instruction-based examples

2. MMedBench, with 18 million tokens focused on medical reasoning tasks.

Table 3: Overview of medicine Datasets. This table summarizes medicine-specific pre-training and
SFT datasets, including their language coverage, dataset links, and used token counts. For MMedC,
we only use the English and Chinese parts and we only use the Health-Medicine subset.

Dataset Name Dataset Type Language Dataset Link #Token Used

MMedC Pre-training Multilingual Henrychur/MMedC 14.3B
IndustryIns SFT Chinese and English BAAI/IndustryInstruction 1.6B
MMedBench SFT Chinese and English Henrychur/MMedBench 18M

B.2 MATHEMATICS PRETRAIN DATA SOURCE

Mathematics pretrain datasets include both pre-training and fine-tuning data (will be converted to
pretrain data format when training), structured similarly to the medicine datasets.

• Pre-training data: we use the Open-Web-Math (Paster et al., 2023) dataset, containing a diverse
set of general mathematics knowledge amounting to 14.7 billion tokens.

• For Instruction-tuning data: we use the AceReason-Math (Chen et al., 2025), contributing 102
million tokens, with a strong emphasis on chain-of-thought reasoning and problem-solving.

Table 4: Overview of Mathematics Datasets. This table includes the pre-training and SFT datasets
for mathematical reasoning, highlighting their contents, links, and used token counts.

Dataset Name Dataset Type Language Dataset Link Used Token

Open-Web-Math Pre-training English open-web-math/open-web-math 14.7B
AceReason-Math SFT English nvidia/AceReason-Math 102M

B.3 GENERAL COMPETENCE DETECTION CORPUS

To accurately probe which parameters are critical for preserving general knowledge during contin-
ual pretraining, we construct a General Importance Detection Corpus. This corpus is designed to
capture both broad world knowledge and instruction-following capability in English and Chinese.
Specifically, we include the development splits of two widely recognized multi-task benchmarks,
MMLU dev and CMMLU dev to capture general knowledge without data leakage.

MMLU and CMMLU are formatted as multiple-choice question answering tasks with explicit
prompts and ground-truth answers. For these, we compute gradient-based importance only on the

17

https://huggingface.co/datasets/Henrychur/MMedC
https://huggingface.co/datasets/BAAI/IndustryInstruction_Health-Medicine
https://huggingface.co/datasets/Henrychur/MMedBench
https://huggingface.co/datasets/open-web-math/open-web-math
https://huggingface.co/datasets/nvidia/AceReason-Math


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

target answer tokens to avoid biases from prompt formatting, thereby capturing each parameter
group’s contribution to accuracy.

To clarify how gradient signals are obtained, we illustrate two examples. In SFT-style corpora
(e.g., MMLU, CMMLU), only the ground-truth answer token contributes to gradient computation,
ensuring clean signals for decision-making importance. In PT-style corpora (e.g., FineWeb Edu),
all tokens contribute under the causal LM objective, providing dense gradients that reflect general
modeling capacity. Examples are shown in Example 1 and Example 2.

Table 5: General Competence Detection Corpus. #Examples means the number of examples we
used.

Dataset Language #Examples Hugging Face Link

MMLU dev English 285 cais/mmlu
CMMLU dev Chinese 295 haonan-li/cmmlu

The statistics of the selected datasets are summarized in Table 5.

Example 1

Gradient Flow in SFT Data for Importance Estimation
Input Prompt:
Question: Find all c ∈ Z3 such that Z3[x]/(x

2 + c) is a field.
A. 0 B. 1 C. 2 D. 3
Answer:
B

Explanation:
In this SFT setup, only the target answer token (e.g., B) is used to compute gradients for pa-
rameter importance. The input question and options are excluded from gradient computation
to avoid encoding biases from instruction formatting. By focusing gradient signals solely on
the correct answer token, we measure how each parameter contributes to decision-making
accuracy under structured knowledge tasks, while preventing overfitting to input patterns
and ensuring clean separation between training and probing data.

Example 2

Gradient Flow in PT Data for Importance Estimation
Context (Compute Gradient):
The heart is a muscular organ responsible for pumping blood throughout the body. It con-
sists of four chambers: the left and right atria, and the left and right ventricles. Oxygen-poor
blood enters the right atrium, then flows to the right ventricle, which pumps it to the lungs.
After oxygenation, blood returns to the left atrium, moves to the left ventricle, and is finally
pumped into the aorta for systemic circulation. This process is regulated by electrical sig-
nals originating in the sinoatrial node. These signals ensure synchronized contraction and
efficient blood flow.
Explanation:
In PT-style training, parameter importance is computed using causal language modeling
loss across the entire sequence. Every token — both context and continuation — contributes
to the gradient signal. This captures how parameters support general language modeling
over natural text distributions. Unlike SFT, there is no explicit input/output separation; in-
stead, each token is predicted from its prefix, making the gradient flow dense and continuous.
This allows us to assess parameter sensitivity in open-ended, domain-relevant pre-training
scenarios such as those provided by FineWeb Edu.
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B.4 DATA PROCESSING

To generate training corpus in pretrain format, SFT data is structured by concatenating questions,
chain-of-thought (CoT) reasoning, and final answers for each instance. This ensures that the model
is optimized for multi-step reasoning tasks common in medicine applications. We take Example 3
as an example.

Example 3

Problem: On Liar Island, half the people lie only on Wednesday, Friday, and Saturday, while
the other half lie only on Tuesday, Thursday, and Sunday. One day, everyone on the island
says: “I will tell the truth tomorrow.” What day is it? (2021 Xin Xiwang Bei Competition,
Grade 2, Preliminary Math Exam)
Analysis: We examine the truth-telling patterns over the week:
• First group (lies on Wed, Fri, Sat): Truth pattern across 7 days: True, True, False, True,

False, False, True.
• Second group (lies on Tue, Thu, Sun): Truth pattern: True, False, True, False, True, True,

False.
Now evaluate each option:
Option A (Tuesday): If today is Tuesday, the first group tells the truth today, so their
statement “I will tell the truth tomorrow” implies they should tell the truth on Wednesday.
But they lie on Wednesday — contradiction. The second group lies today, so their statement
is false, meaning they will not tell the truth tomorrow (i.e., lie on Wednesday). But they
actually tell the truth on Wednesday — also a contradiction. So A is invalid.
Option B (Wednesday): First group lies today; their statement is false → they will not tell
the truth tomorrow (i.e., lie on Thursday). But they tell the truth on Thursday — contradic-
tion. Second group tells the truth today → they should tell the truth on Thursday. But they
lie on Thursday — contradiction. So B is invalid.
Option C (Friday): First group lies today → statement is false → they will not tell the truth
tomorrow (i.e., lie on Saturday). They do lie on Saturday — consistent. Second group tells
the truth today → they will tell the truth on Saturday. They do tell the truth on Saturday —
consistent. So C is correct.
Option D (Saturday): First group lies today → should lie on Sunday. But they tell the truth
on Sunday — contradiction. Second group tells the truth today → should tell the truth on
Sunday. But they lie on Sunday — contradiction. So D is invalid.
Option E (Sunday): First group tells the truth today → should tell the truth on Monday.
They do — consistent. Second group lies today → their statement is false → they will not
tell the truth on Monday (i.e., lie). But they tell the truth on Monday — contradiction. So E
is invalid.
Therefore, the correct answer is C (Friday).

[This example demonstrates how structured SFT data — consisting of a standalone problem (in
blue), detailed step-by-step analysis (in green) and a short answer (in red) — is concatenated
into a single coherent narrative. In PT-style training, such concatenation enables models to learn
implicit reasoning patterns from natural language flow, bridging supervised fine-tuning signals with
pre-training objectives.]

To handle input sequences that exceed the maximum context length of 4096 tokens imposed by
transformer-based models, we apply a sliding window segmentation strategy with overlap, following
the approach used in DATAMAN (Peng et al., 2025). For any sequence longer than 4096 tokens, we
split it into multiple segments, each of length at most 4096, using a sliding window with a stride
of 3072 tokens and an overlap of 1024 tokens (i.e., 1/4 of the window size). This ensures that
consecutive segments share contextual information when training in the same or adjacent batches,
preserving semantic continuity and high data utilization rate across boundaries.

Formally, given a token sequence D = [t1, t2, . . . , tL] of length L > 4096, we generate K =⌈
L−1024
3072

⌉
segments. The k-th segment is defined as Sk = D[ℓk : rk], where ℓk = (k−1) ·3072+1

and rk = min(ℓk + 4097, L). The overlapping region between Sk and Sk+1 consists of the last
1024 tokens of Sk, which are identical to the first 1024 tokens of Sk+1.
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This method prevents information loss due to truncation and allows the model to learn from contin-
uous context during training. The 1024-token overlap helps maintain coherence at segment bound-
aries, which is crucial for tasks requiring long-range understanding, while keeping computational
overhead manageable.

B.5 FINAL DATA ORGANIZATION SCHEME

Our final training data is organized as follows:

1. English pre-training corpus

2. Chinese pre-training corpus (if have)

3. English supervised fine-tuning (SFT) corpus

4. Chinese SFT corpus (if have)

This organization is motivated by several key points in Qwen3 Technical Report (Yang et al., 2025)
and Llama3 Technical Report (Dubey et al., 2024a). First, we follow the principle that high-quality
data (SFT data in our work) should be used after extensive pre-training on large-scale general cor-
pora, allowing the model to first acquire broad knowledge and language structure, and then specialize
on more curated tasks and instructions.

What’s more, according to the technical reports, it is further beneficial to place the same language’s
data together during training—this maximizes the coherence within each mini-batch and reduces
unintended cross-lingual transfer until later stages. Most LLMs are dominated by English corpora
in their pre-training phase, supporting the choice of placing English data first. Finally, during later
training stages, continued training and decay are performed on SFT examples, which aligns with
established recipes for improving supervised task performance.

B.6 COMPARED METHODS.

• Full-parameter tuning. PT-Full directly updates all model parameters on the target corpus, serv-
ing as the most straightforward yet commonly used baseline for continual pretraining.

• Replay-based tuning. Replay mitigates catastrophic forgetting by mixing general-domain data
into the continual pretraining process (Que et al., 2024), thereby preserving part of the original
knowledge distribution while adapting to the new domain. Following (Zhang et al., 2025), based
on the data from Data Recipe, we randomly sampled totally 1.91B data from FinewebEdu and
FinewebEdu-Chinese at a ratio of 7:3, and randomly shuffled them into the domain-specific data,
helping the model better recall general domain knowledge.

• Architecture expansion. LLaMA-Pro (Wu et al., 2024b) expands the model by uniformly insert-
ing new layers into each transformer block while freezing the original weights. Only the newly
introduced parameters are trained, enabling structural growth while preserving prior knowledge.

• Parameter-efficient tuning. PT-LoRA performs continual pretraining using Low-Rank Adapta-
tion (Hu et al., 2022), updating only a small set of task-adaptive parameters. TaSL (Feng et al.,
2024a) extends PT-LoRA to a multi-task regime by decoupling LoRA matrices across transformer
layers, allowing different subsets of parameters to specialize for different tasks. This enables more
fine-grained adaptation to domain-specific signals. We used the DEV sets of MMLU and CMMLU
to assess general capabilities, and their mathematics and medical subsets to specifically evaluate
mathematical and medical competencies, respectively. Taking the medical domain as an example,
we treat the original model as one equipped with a LoRA module initialized to all zeros. The final
LoRA module is then obtained by merging the domain-specific LoRA with the original (empty)
LoRA using TaSL.

B.7 EXPERIMENTAL IMPLEMENTATION.

We conduct our all pre-training experiments on the Qwen3-1.7B-Base/Qwen3-4B-Base/Qwen3-8B-
Base/Llama3-8B model with the following hyperparameter configuration. Training is performed for
3 epochs using a batch size of 512 (8 NVIDIA H800 GPUs) and a maximum sequence length of
4096 tokens. We utilize a cosine learning rate scheduler with an initial learning rate of 3.0e-5 and a
warmup ratio of 0.03. Optimization is performed in bf16 precision.
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For methods requiring block expansion, we expand 4 layers; for methods based on LoRA, we set the
LoRA rank to 256 to ensure the number of trainable parameters is roughly comparable between the
two approaches. For the medicine injection into Llama models, which have poor Chinese support,
we expand 8 layers for block expansion methods and set the LoRA rank to 512 for LoRA-based
methods.

For our ADEPT, we calculate the importance score and update learning rate per 500 iterations. (It
does not affect the impact of warmup, decay scheduler on the learning rate, but only performs a
reallocation.)

B.8 EFFICIENCY ANALYSIS OF ADEPT FOR MEDICAL APPLICATIONS

Table 6: Training Time Comparison in the Medical Domain. We select representative baselines
including full-parameter (PT-Full) training, PT-Lora, and Llama Pro to validate the effectiveness of
our method. The bold entries denote the optimal results.

Qwen3-1.7B Qwen3-4B Qwen3-8B Llama3-8B
PT-Full 2 days, 17h 5 days, 14h 8 days, 9h 7 days, 22h
ADEPT 1 day, 9h 2 days, 11h 3 days, 15h 3 days, 19h
PT-Lora 3 days, 0h 6 days, 4h 8 days, 23h 8 days, 2h
Llama Pro 2 days, 1h 3 days, 14h 5 days, 8h 4 days, 21h

As shown in the Table 6, our ADEPT approach achieves the fastest training time across all tested
model sizes, with Llama Pro being the next most efficient competitor. The substantial efficiency
gain of our method is mainly attributed to its design: ADEPT only updates a small subset of pa-
rameters, primarily located in the deeper layers of the network. This structure allows the backward
computation graph to terminate earlier, significantly reducing the overall training time.

We further analyze two aspects that explain and quantify the practical efficiency of ADEPT: (1) the
runtime overhead of the importance-probing steps (layer masking and unit-level gradient probing)
under single- and multi-GPU execution; and (2) the scaling behavior of training time when varying
the number of expanded layers. These measurements complement Table 6 and clarify why ADEPT
achieves shorter end-to-end training times (including both probing and training) in practice.

Probing overhead. The importance-probing in ADEPT comprises: a one-time layer-importance
pass (layer masking) and periodic unit-level gradient probing. Both operations are lightweight rel-
ative to full training: layer masking is computed once before the main CPT loop and is fully paral-
lelizable, and gradient probing requires only a single backward pass per probe interval (every 500
steps). Table 7 reports wall-clock times for these two components on single-GPU and 8-GPU setups,
along with a representative total backpropagation time during training. All measurements use the
same hardware configuration and identical probing data (CMMLU + MMLU dev subsets, ≈580 ex-
amples). The results demonstrate that (1) layer masking is trivially parallelizable across devices and
thus benefits nearly linearly from multi-GPU execution; and (2) gradient probing is a small fraction
of the overall training backpropagation time.

Table 7: Wall-clock time for layer masking and unit-level gradient probing on single-GPU and 8-
GPU settings. ‘Total Backprop (Train)’ reports the total backward probing time during training.

Model Layer Mask (1 GPU) Layer Mask (8 GPUs) Grad Probe (1 GPU) Grad Probe (8 GPUs) Total Backprop (Train)
Qwen3-1.7B-Base 36m30s 8m16s 2m22s 1m50s 16m20s
Qwen3-4B-Base 1h10m 17m39s 3m14s 2m10s 25m43s
Qwen3-8B-Base 1h32m 23m08s 5m24s 2m33s 29m03s
Llama3-8B 1h24m 21m47s 6m26s 3m19s 40m42s

Combined probing time is small relative to the total training backpropagation time, so probing does
not meaningfully affect end-to-end efficiency, as the time saved due to ADEPT’s reduced backprop-
agation significantly outweighs the probing overhead.

Scaling analysis. We next quantify how training time scales as we increase the number of expanded
layers. Because each expanded Transformer layer contributes a known parameter and compute
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footprint, wall-clock training time increases approximately linearly with the number of expanded
layers in our implementation. This near-linear behavior enables straightforward time-constrained
auto-tuning: given a time budget, one can estimate an upper bound on the number of layers that may
be expanded. Table 8 provides empirical training times for expanding different numbers of layers
in Qwen3 base models. These times were measured under the same training configuration used for
Table 6, isolating the effect of expansion count.

Table 8: Training time when expanding different numbers of layers in Qwen3 models.

Model 1 Layer 2 Layers 4 Layers 8 Layers 16 Layers
Qwen3-1.7B-Base 24h 1d 2h 1d 9h 2d 1h 2d 20h
Qwen3-4B-Base 1d 17h 2d 4h 2d 11h 3d 4h 4d 10h
Qwen3-8B-Base 2d 18h 3d 2h 3d 15h 4d 6h 6d 22h

The empirical timings show near-linear increases in total training time with expanded-layer count for
all evaluated model sizes. Notably, Qwen3-8B-Base shows a sharp time increase beyond 8 expanded
layers, not due to algorithmic nonlinearity but GPU memory limits that force smaller batch sizes
and thus longer training. Time estimates should therefore account for compute resources. Still, our
measured times offer practical guidance for layer scaling and selecting expansion size under a fixed
time budget.

Summary. The additional measurements above demonstrate that (1) the runtime overhead of our
importance-probing is small and highly parallelizable, and (2) the training-time cost of expanding
more layers grows predictably and near-linearly. Together with the fact that ADEPT updates only
a fraction of parameters, these behaviors explain the consistent end-to-end time savings reported in
Table 6.

B.9 EVALUATION SETTING

We evaluate the performance of large language models on multiple-choice question answering tasks
using accuracy as the primary metric. For a given question with N candidate options (typically
N = 4, labeled A, B, C, D), the model’s prediction is determined by computing the sequence-level
likelihood of each option when appended to the question stem.

Specifically, let Q denote the input question and Oi represent the i-th answer option (e.g., A. True,
B. False). The model computes the conditional probability of the full sequence Q ∥ Oi (i.e., the
concatenation of the question and the i-th option) under the causal language modeling objective. We
calculate the average negative log-likelihood (or perplexity, PPL) of the tokens in Oi given Q:

PPL(Oi | Q) = exp

− 1

|Oi|

|Oi|∑
t=1

logP (ot | Q, o1, . . . , ot−1)

 (8)

The model selects the option with the lowest perplexity as its predicted answer:

ŷ = arg min
Oi∈{A,B,C,D}

PPL(Oi | Q) (9)

This method, often referred to as perplexity-based decoding, does not require fine-tuning or addi-
tional parameters and is widely used for evaluation of base models. It leverages the pre-training
objective directly by predicting the next token, making it particularly suitable for evaluating general
knowledge in base LLMs.

Finally, accuracy is defined as the percentage of questions for which the model’s predicted answer
matches the ground-truth label:

Accuracy =
1

M

M∑
j=1

I(ŷj = yj) (10)
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where M is the total number of test questions, ŷj is the model’s prediction on the j-th question, yj
is the true label, and I(·) is the indicator function.

For our experiments, we evaluate all model checkpoints using the lm harness1 framework. For
the Mathematics domain, we adopt the default configurations of GSM8K cot, ARC-Easy, and
ARC-Challenge. For the Medical domain, we design custom configuration files for MedQA,
MMCU-Medical, and CMB, following the official evaluation protocols of MMLU and CMMLU. For
the General domain, we directly evaluate on MMLU and CMMLU. In all cases, we use 5-shot prompts
and greedy decoding (temperature = 0) for inference. This standardized evaluation protocol ensures
fair comparison across models and tasks.

C MODEL PARAMETER GROUP

To enable efficient and semantically meaningful parameter decoupling during fine-tuning, we parti-
tion the model parameters into modular units based on their functional roles within the transformer
architecture. Given the substantial number of model parameters, extremely fine-grained control at
the neuron level—as used in methods like DAS (Ke et al., 2023)—is computationally prohibitive
and contradicts the goal of parameter-efficient adaptation. Moreover, such fine granularity often
leads to training instability due to noisy importance estimation.

On the other hand, treating an entire layer as a single unit (e.g., standard LoRA) is too coarse and
lacks semantic discrimination. While TaSL (Feng et al., 2024b) proposes decomposing LoRA into
LoRA A and LoRA B, this approach is specific to low-rank adapters and does not generalize well to
full-layer decomposition.

To strike a balance between granularity and efficiency, we introduce a semantic-aware module par-
titioning strategy, which divides each transformer layer into multiple functional units according to
their architectural semantics. This design allows us to manipulate parameters at a meaningful inter-
mediate level—finer than whole layers, but coarser than individual neurons—achieving a practical
trade-off between controllability and computational feasibility.

Table 9 presents the detailed parameter grouping scheme used in this work, exemplified on the
LLaMA architecture.

Table 9: Model Parameter Grouping Scheme

Parameter Type Parameter Name Description

Attention self attn.q proj.weight Query projection weight; maps input to
query space

self attn.k proj.weight Key projection weight; maps input to key
space

self attn.v proj.weight Value projection weight; maps input to
value space

self attn.o proj.weight Output projection weight; projects
attention output back to target dimension

MLP mlp.gate proj.weight Gating projection weight; controls
information flow in SwiGLU activation

mlp.up proj.weight Up-projection weight; maps features to
higher-dimensional intermediate space

mlp.down proj.weight Down-projection weight; projects
features back to original dimension

LayerNorm input layernorm.weight Input layer normalization weight;
normalizes input before attention

post attention layernorm.weight Normalization weight after attention;
stabilizes post-attention outputs

1https://github.com/EleutherAI/lm-evaluation-harness
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As shown in Table 9, each transformer layer is decomposed into three primary functional modules:
Attention, MLP, and LayerNorm. Within each module, parameters are grouped by their semantic
role:

• The Attention module includes all four linear projections (Q, K, V , O), which collectively handle
context modeling through self-attention.

• The MLP module contains the up, gate, and down projection layers, responsible for non-linear
feature transformation.

• The LayerNorm components are kept separate due to their distinct role in stabilizing activations
and gradient flow.

This grouping enables targeted manipulation of specific sub-functions (e.g., disabling attention out-
puts or freezing normalization statistics) while maintaining training stability and interpretability.

C.1 COMPATIBILITY BETWEEN LAYER EXPANSION AND DECOUPLING

First, we would like to share our understanding of the Compatibility between Layer Expansion and
Decoupling:

1. Although layer expansion can minimize changes to the original parameter space, this alone makes
it difficult to fully prevent model drift during long-term pre-training. Parameter decoupling offers a
more fine-grained means of controlling this phenomenon.

2. Since our models are pre-trained on a large corpus, their parameter space is inherently uncon-
trollable, making thorough decoupling of the original model parameters challenging. In contrast,
the newly expanded parameters initially contribute nothing to the model’s output. As we continue
domain-specific training in the medical field, gradually decoupling these new parameters is more
conducive to achieving complete decoupling.

(a) Vanilla (b) W/o stage1 (c) ADEPT

Figure 6: Kernel Density Estimation of activations for Qwen3-1.7B-Base under different configu-
rations. Our layer extension strategy enables effective parameter decoupling. Expanded layers: 22,
23, 25, and 27.

To examine the effectiveness of our layer extension strategy, we conduct activation distribution anal-
ysis across multiple backbones. For each model, we first identify the most domain-adaptable layer
(i.e., the layer with the lowest Ilayer). We then randomly sample 500 instances from both the Medical
and General corpora, compute activations at the selected layer, and visualize their distributions using
Kernel Density Estimation (KDE). The following three configurations are compared: (1) the origi-
nal base model, where we visualize the most domain-adaptable layer; (2) direct decoupling without
expansion (w/o Stage-1), where we visualize the same most domain-adaptable layer; (3) our method
with expanded layers, where we visualize the newly created expanded layer (copied from the most
domain-adaptable layer).

Figure 6 presents the results from three different model configurations, providing compelling evi-
dence for the advantages of our proposed approach.

Figure 6 a) shows the activation distribution in layer 27 of the original Qwen3-1.7B-Base model.
The substantial overlap between general and medical text distributions indicates strong parameter
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coupling, which is an expected consequence of mixed-domain pretraining. This coupling makes
it challenging to achieve clean separation of domain-specific functionalities through conventional
fine-tuning approaches. However, the divergence between the peak values in the general domain
and the medical domain also indicates the potential for decoupling.

This coupling phenomenon persisted in our ablation studies with only the decoupling method in
Figure 6 b). Despite our attempts to decouple the medical and general modules when training,
the model’s activation distributions remained largely entangled (the graph still shows substantial
overlap), failing to achieve distinct separation between domains. This observation further supports
our argument that pre-existing parameter coupling from mixed-domain pretraining creates inherent
challenges for direct decoupling approaches.

In contrast, Figure 6 c) demonstrates the activation distribution in layer 31 of our extended model,
where we first expanded the model by copying parameters from layer 27 and then applied decoupling
training. The clear separation between general and medical text distributions suggests successful pa-
rameter decoupling. This superior decoupling effect can be attributed to our “blank slate” approach:
the extended layers, while initialized with copied parameters, provide a fresh parameter space that
hasn’t been constrained by mixed-domain pretraining. During decoupling training, these extended
layers can adapt more freely to domain-specific patterns through gradient descent and importance-
based learning rate adjustments.

To validate our hypothesis, we also examine the effect of applying in Qwen3-4B-Base (Figure 7),
Qwen3-8B-Base (Figure 8), Llama3-8B (Figure 9). The results indicate limited separation between
domains, which supports our argument that the entangled parameters from mixed-domain pretrain-
ing are challenging to decouple through training alone.

These findings demonstrate that our layer extension strategy provides a more effective pathway for
parameter decoupling compared to direct decoupling training. By creating a new parameter space
through layer extension, we avoid the constraints of pre-existing parameter coupling, allowing for
cleaner separation of domain-specific functionalities during subsequent training. This approach
offers a promising direction for developing more modular and domain-adaptable language models.

(a) Vanilla (b) W/o stage1 (c) ADEPT

Figure 7: Visualization of activation distributions for Qwen3-4B-Base model configurations show-
ing the effectiveness of our layer extension strategy for parameter decoupling. We expand the layer
28, 30, 31, 35 of Qwen3-4B-Base.

D DETAILED IMPORTANCE DISTRIBUTION

To investigate which layers should be expanded, we conduct a comprehensive importance analysis
at both the layer and parameter levels. Specifically, we compute the importance scores for each
layer and parameter across multiple models, and visualize their detailed distributions (see Figure 10,
Figure 11, Figure 12, and Figure 13). Our analysis yields the following key observations:

1. Layer and parameter importance alignment. Overall, the distributions of layer-wise impor-
tance and parameter-wise importance are highly aligned across all four models. This alignment is
expected, as both metrics are fundamentally computed under the same principle—estimating the im-
pact of masking out (setting to zero) a given layer or parameter on model performance. Since param-
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(a) Vanilla (b) W/o stage1 (c) ADEPT

Figure 8: Kernel Density Estimation of activations for Qwen3-8B-Base, showing that our layer
extension strategy enables clear parameter decoupling. We expand layers 26, 28, 29, and 30.

(a) Vanilla (b) W/o stage1 (c) ADEPT

Figure 9: Kernel Density Estimation of activations for Llama3-8B, showing that our layer extension
strategy enables clear parameter decoupling. We expand layers 22, 23, 24, and 28.
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Figure 10: Layer-wise and parameter-wise importance distribution of Qwen3-1.7B-Base model
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Figure 11: Layer-wise and parameter-wise importance distribution of the Qwen3-4B-Base model
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Figure 12: Layer-wise and parameter-wise importance distribution of the Qwen3-8B-Base model

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 13: Layer-wise and parameter-wise importance distribution of the Llama3-8B model
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eter importance essentially decomposes the contribution at the layer level, this consistency reflects
the intrinsic, nested relationship between the two. It also indicates that layer-level and parameter-
level interventions affect the model’s predictive capability in a coherent manner.

2. High importance in lower layers and the penultimate layer exception. A notable pattern
across all models is that the most important layers tend to be concentrated in the lower (early to
middle) layers of the network, with importance values generally decreasing towards higher layers.
This pattern suggests that the early layers play a critical role in the overall function of the model.

One plausible explanation, is that lower layers are responsible for capturing general syntactic prop-
erties and foundational compositionality (Clark et al., 2019; Hewitt & Manning, 2019), such as
basic grammar and phrase structure. In contrast, deeper layers are typically responsible for integrat-
ing more task- or context-specific semantic information. This division of labor (earlier layers for
generic linguistic structure, deeper layers for task semantics) naturally results in higher sensitivity
to interventions at the bottom layers. This also provides a theoretical basis for layer expansion in
deep layers.

An interesting exception observed in all models is that the penultimate layer does not follow this
general trend: its importance appears elevated relative to immediately adjacent layers. This may
stem from the model’s need to consolidate high-level semantic features just before producing the
output prediction. The penultimate layer may act as a “bottleneck” for aggregating information
necessary for the final decision or token generation—potentially as a final representation refinement
step. Similar phenomena have been observed in works such as Intrinsic Dimensionality Explains
the Effectiveness of Language Model Pruning (Aghajanyan et al., 2021), which highlight the special
role of upper- and penultimate layers in output formation.

3. Intra- and inter-family patterns: Qwen vs. Llama models.

Qwen family: Across the Qwen models (Qwen3-1.7B, 4B, 8B), the overall trends are similar:

• Importance is strongly concentrated in the lower and middle layers, particularly within the first 10
layers, regardless of total model depth.

• Among parameters, mlp.down proj and mlp.up proj typically dominate in the most im-
portant layers, suggesting that feed-forward (MLP) components contribute substantially to the
information processing in the Qwen series.

• With increasing model size (from 1.7B to 8B), the importance distribution appears to spread out
slightly, showing less sharpness at the very bottom—possibly reflecting increased capacity and
redundancy in larger networks.

Cross-family: Comparing Qwen models to Llama3-8B, we observe both notable similarities and
differences:

• Both model families consistently exhibit high importance in MLP-related parameters
(mlp.down proj, mlp.up proj, and mlp.gate proj), especially in the most important
layers. This underscores the universal role of the feed-forward network in transforming and inte-
grating information beyond the capabilities of self-attention alone.

• Llama3-8B shows a broader distribution of importance across layers, with non-negligible val-
ues extending further into the middle and upper layers, suggesting a more distributed processing
pipeline. In contrast, Qwen models tend to concentrate importance more in the lower layers.

• The dominance of MLP components in Llama3-8B is somewhat less pronounced than in Qwen,
with parameter importance appearing more diffuse overall. These inter-family differences may
be attributable to variations in architecture (such as normalization, attention mechanisms, or feed-
forward design), pre-training data, or other modeling choices, leading to distinct strategies of
information flow and representation across the network depth.

E LAYER-WISE IMPORTANCE ESTIMATION METHODS COMPARISON

To investigate which layers contribute most to model performance, we employed four different
strategies to compute layer-wise importance:
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1. Cumulate importance of parameters: For each parameter p in a layer, we compute the
product p∂L

∂p , and sum across all parameters in the layer:

Ilayer =
∑

p∈layer

p
∂L
∂p

(11)

2. Module-wise rank aggregation: For each module (e.g., attention, MLP, normalization),
we calculate the importance score, rank layers by their score within each module, and
aggregate rankings to obtain a total rank for each layer.

3. Masking out: For each layer, we mask out its parameters (i.e., set to zero) and evaluate the
change in loss:

Ilayer = L(model with layer l masked)− L(original model) (12)

4. Fisher information: For each parameter p in a layer, using the Fisher information approx-
imation

F (p) = E

[(
∂ log p(y|x)

∂p

)2
]

(13)

Layer-level Fisher importance is obtained by summing over all parameters in the layer.

To further understand the significance and robustness of these metrics, we conducted a preliminary
experiment on the Qwen3-1.7B-Base in the medical domain with dev subset of MMLU, CMMLU
to detect the importance of layers, focusing on how different gradient computation strategies affect
downstream performance.

Table 11: Performance of different expansion methods on medical-domain tasks (best result in each
column is bolded). The numbers in parentheses after each method in the table indicate which layers
were expanded. The Qwen3-1.7B-Base model has a total of 28 layers, indexed from 0 to 27.

Methods Name mmlu cmmlu medqa cmb mmcu

Qwen3-1.7B-Base 62.57 66.86 48.39 63.67 69.17
Uniformly Expansion (6,13,20,27) 59.06 64.98 48.78 64.25 70.10
Uniformly Expansion for first 16 layers (3,7,11,15) 59.60 64.91 48.78 64.07 69.80
Uniformly Expansion for last 16 layers (15,19,23,27) 61.60 66.15 49.32 65.55 71.09
Importance Cumulation (23,24,25,27) 62.63 66.81 50.19 63.85 69.48
Rank Aggregation (22,24,25,27) 62.72 66.86 50.57 63.97 69.78
Masking Out (22,23,25,27) 62.80 66.89 50.75 65.43 71.98
Fisher (23,24,25,26) 61.84 66.43 49.15 64.13 68.82

Table 11 compares the effect of different layer selection methods for expansion on a variety of
medical-domain tasks using Qwen3-1.7B-Base. Several key observations can be made:

1. Similarity of selected layers across methods. All importance calculation methods lead to the
selection of similar layers for expansion. For instance, the layers chosen by methods such as Im-
portance Cumulation (23,24,25,27), Rank Aggregation (22,24,25,27), Masking Out (22,23,25,27),
and Fisher (23,24,25,26) significantly overlap, especially in the last 6 layers of the model (layers 22
and above). This convergence strongly validates our previous observations that general capability-
critical layers tend to be concentrated in the latter half of the model in Appendix D.

In addition, the results show that uniform expansion into the last 16 layers (Uniformly Expansion for
last 16 layers (15,19,23,27)) consistently outperforms expansion into the first 16 layers (Uniformly
Expansion for first 16 layers (3,7,11,15)) or uniformly across all layers, further supporting the result
in Appendix D.

2. Robustness of expansion results across methods. Despite minor variability in the specific lay-
ers chosen by each method, the final performance of all importance-based expansion approaches
is consistently better than both the vanilla baseline and uniform expansion. For example, on the
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MedQA dataset, all methods using calculated importance exceed the baseline score (e.g., Masking
Out achieves 50.75 vs. baseline 48.39), and on MMLU-med, Rank Aggregation achieves 67.95
versus the baseline 66.49. Crucially, the differences in scores among Masking Out, Rank Aggrega-
tion, Importance Cumulatation, and Fisher are relatively small for most tasks (typically less than 2
points), indicating that the overall framework is robust to the choice of importance calculation tech-
nique. Since our principal contribution is the training paradigm rather than the specific importance
metric, for subsequent experiments, we employ the masking out approach, which demonstrated the
strongest effect in preliminary experiment.

F THEORETICAL ANALYSIS

Our theoretical analysis relies on several simplifying assumptions as outlined below. We discuss the
rationality and limitations of each assumption:

(A1) Linearized Model Structure: We model the transformer as a stack of L independent
residual blocks, effectively ignoring cross-layer coupling effects such as those arising from
pre-norm and residual connections.
Justification: In our layer expansion scheme, the newly added layers are always sepa-
rated by at least one original frozen layer and never arranged in a cascading manner.
This design substantially weakens direct coupling between newly expanded layers, which,
in turn, reduces the degree of inter-layer interaction and nonlinearity affecting our analysis.
And this abstraction is commonly used in theoretical studies (e.g., NTK analysis or pruning
literature) to make layerwise analysis tractable.

(A2) Loss Function Smoothness: We assume the loss function ℓ(·, ·) is β-smooth and L∞-
Lipschitz with respect to predictions.
Justification: Standard loss functions such as cross-entropy (with stability improvement)
and mean squared error are widely established to satisfy these properties. These condi-
tions allow us to relate small output perturbations to controlled changes in loss, facilitating
theoretical bounds.

(A3) Training Dynamics: Our analysis assumes training is performed with a first-order SGD-
like optimizer, disregarding effects from Adam or other adaptive methods.
Justification: First-order SGD provides well-understood theoretical properties and is com-
monly used in theoretical deep learning research. While Adam introduces adaptive scaling
that can affect convergence, many results (e.g., generalization gap bounds) transfer quali-
tatively between SGD and Adam in practice.

(A4) NTK Regime and Sensitivity: Our analysis of layer sensitivity relies on the NTK (Neural
Tangent Kernel) approximation (Jacot et al., 2018), which essentially assumes the model
behaves locally linearly around its current parameters. Moreover, we should consider the
model training process to be relatively stable, with no anomalous occurrences such as gra-
dient explosion.
Justification: This assumption is particularly well-motivated in our setting for two reasons.
First, our adaptation protocol only updates a small number of newly introduced parameters
while keeping the vast majority of the pre-trained weights frozen and decouples parameters
to maximize the retention of general capabilities. This ensures that the parameter changes
remain minimal, keeping the network within the local linear (NTK) regime throughout
adaptation. Second, unlike random initialization, our starting point is a well-trained model
on a large general-domain corpus, which already provides robust and meaningful repre-
sentations. Perturbations induced by finetuning are thus intrinsically local in the function
space and less likely to induce sudden or nonlinear model behavior, further enhancing the
validity of the NTK approximation.

Overall, these assumptions enable us to derive interpretable upper bounds and provide actionable
layer selection criteria, but should be considered as idealizations. The correspondence between
these theoretical insights and practical behavior is also validated in our empirical experiments.
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F.1 OPTIMALITY OF LEAST-IMPORTANT BLOCK EXPANSION FOR PRESERVING GENERAL
CAPABILITIES

Notation: Let M0 denote the original base model, and M
(T )
S denote the model after T steps of

adaptation, wherein only the set S of k layers are unfrozen and updated, and ℓ(·, y) is the loss func-
tion (e.g., cross-entropy) which is L-Lipschitz and β-smooth in its first argument. ∆(l) represents
the importance score of layer l as defined below.

Layer Importance Score:

∆(l) := Ex∼Dgen

[
ℓ(M

(−l)
0 (x), y(x))− ℓ(M0(x), y(x))

]
where M

(−l)
0 is M0 with the l-th layer masked out.

Theorem F.1 (Upper Bound on Generalization Gap by Layer Importance). Let S ⊆ [L] be the set
of layers selected for expansion/adaptation, and G(S) denote the source-domain generalization gap
after adaptation, i.e.,

G(S) := Ex∼Dgen

[
ℓ(M

(T )
S (x), y(x))− ℓ(M0(x), y(x))

]
.

Under function-preserving initialization, limited adaptation steps, and L-Lipschitz and β-smooth
loss, the following upper bound holds:

G(S) ≤ C
∑
l∈S

∆(l) +O
(
k(∆W )2

)
where C is a constant depending on the learning rate, steps, loss smoothness, and initialization, and
∆W is the maximal per-layer parameter change over adaptation.

Proof. Step 1: Output Deviation Linearization. By function-preserving initialization, M (0)
S (x) =

M0(x). After adaptation, since only layers in S are modified and changes are small (Assumption
A4), the output difference admits a first-order Taylor expansion:

M
(T )
S (x)−M0(x) ≈

∑
l∈S

Jl(x) ∆Wl

where Jl(x) =
∂M
∂Wl

∣∣∣
W=W0

and ∆Wl = W
(T )
l −W

(0)
l .

Step 2: Lipschitz Property Application. By L-Lipschitzness of ℓ(·, y) in its first argument,

|ℓ(M (T )
S (x), y)− ℓ(M0(x), y)| ≤ L

∥∥∥M (T )
S (x)−M0(x)

∥∥∥
2
.

Taking the expectation over x ∼ Dgen,

G(S) ≤ L Ex

[
∥M (T )

S (x)−M0(x)∥2
]
.

Step 3: Breaking by Layer via Triangle Inequality. According to Assumption A1 and using the
triangle inequality,

∥M (T )
S (x)−M0(x)∥2 ≤

∑
l∈S

∥Jl(x)∆Wl∥2,

thus,
G(S) ≤ L

∑
l∈S

Ex

[
∥Jl(x)∆Wl∥2

]
.

Step 4: Relating to Layer Importance Score. Recall the definition:

∆(l) = Ex

[
ℓ(M

(−l)
0 (x), y)− ℓ(M0(x), y)

]
.
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By Taylor expansion and Lipschitz continuity,

|ℓ(M (−l)
0 (x), y)− ℓ(M0(x), y)| ≈ L∥Jl(x)W (0)

l ∥2,

so for small modifications,

Ex[∥Jl(x)∆Wl∥2] ≤
∥∆Wl∥2
∥W (0)

l ∥2
∆(l) +O(∥∆Wl∥22).

Assume ∥∆Wl∥2 ≤ ∆W for all l ∈ S and ∥W (0)
l ∥2 are similar or lower-bounded by w0 > 0, so

G(S) ≤ L
∆W

w0

∑
l∈S

∆(l) +O
(
k(∆W )2

)
.

Step 5: Optimization Control. In standard SGD (Assumption A3), ∆W is controlled by learning
rate η, steps T , batch size N , and bounded gradients:

∆W ≲
ηT

N
max
t,i
∥∇Wl

ℓ(M0(xi), yi)∥2.

Thus, all learning and initialization constants can be absorbed into a scalar constant C (Assumption
A3 and A4).

Step 6: Conclusion. Thus,

G(S) ≤ C
∑
l∈S

∆(l) +O
(
k(∆W )2

)
.

which completes the proof.

Due to the use of residual connections, the original block and the expanded block can be viewed
as a single aggregated unit. Importantly, before training, the addition of the new block does
not alter the model’s output, and thus the overall importance of the aggregated block remains
exactly the same as that of the original block (i.e., ∆(l)). As a result, when we train the parameters
of the new block, it is effectively equivalent to adapting the aggregated block as a whole, whose im-
portance is still characterized by the original importance score ∆(l). This justifies why the potential
impact of training the expanded layer is governed by the original layer’s importance.

The tightness of the derived upper bound hinges on both the local linearity of the expansion regime
and the control over parameter updates during adaptation. In cases where the expansion layers are
initialized to be function-preserving and the adaptation is performed with sufficiently small learning
rates and moderate step sizes, the Taylor and Lipschitz approximations used in the proof become
increasingly sharp. Thus, the upper bound is not only theoretically attainable, but also approaches
the realistic generalization gap observed in practice under these conditions. This means that mini-
mizing the sum

∑
l∈S ∆(l) when selecting layers for expansion is not merely a mathematical conve-

nience—it is a principled, actionable strategy for controlling catastrophic forgetting and generaliza-
tion degradation. As a consequence, our criterion provides practical guidance: by limiting updates to
those layers with the lowest importance scores, practitioners can reliably minimize negative trans-
fer from domain adaptation, especially when adapting large pre-trained models with limited new
capacity.

F.2 OPTIMALITY OF IMPORTANCE-BASED LEARNING RATE ADJUSTMENT FOR MODULES

We provide a rigorous analysis of learning rate reallocation in Stage 2. Specifically, let the impor-
tance of each parameter θj in the general domain be defined as

Iθj =

∣∣∣∣∂Lgen

∂θj

∣∣∣∣
where Lgen denotes the general-domain loss and Iθj quantifies the sensitivity of the overall perfor-
mance with respect to θj . Under the constraint of a fixed average learning rate, our strategy assigns
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lower learning rates to parameters with high general-domain importance, and higher learning rates
to those deemed less important. This importance-weighted reallocation is provably optimal for min-
imizing the upper bound of catastrophic forgetting in the general domain, subject to the constant
average learning rate constraint. Furthermore, we formulate and analytically solve the underlying
constrained optimization problem to ensure that our reallocation approach achieves relative optimal-
ity in practice.

Setup and Notation Let Dgen be the general domain distribution with loss Lgen(θ). With θ∗

as the original pre-trained parameters, we define parameter importance Ij ≜ θj
∂Lgen

∂θj
|θ∗ and unit

importance:

IUi
≜

1

|Ui|
∑
j∈Ui

Ij ∈ [0, 1] (14)

under learning rate budget constraint: ∑
i

|Ui|
|Θ∼|

lrUi = lrbase (15)

F.2.1 UPPER BOUND ON FORGETTING

Define forgetting as:

F ≜ Lgen(θ(T ))− Lgen(θ
∗) (16)

Assuming Lgen is β-smooth, the first-order Taylor expansion provides:

F ≤ ∇θLgen(θ
∗)⊤∆(T ) +

β

2
∥∆(T )∥2 (17)

Due to parameter freezing, the gradient∇θLgen(θ
∗) is only non-zero for expanded parameters:

∇θLgen(θ
∗) =

∑
i

∑
j∈Ui

Ijej (18)

where Ij =
∂Lgen

∂θj
, ej are basis vectors.

Assuming gradient descent with per-group step size ηUi
and T steps, for each parameter j ∈ Ui (As-

sumption A4):

∆j(T ) ≈ −TηUi

∂Lmed

∂θj
(19)

Substitute into the smoothness bound:

F ≤
∑
i

∑
j∈Ui

Ij∆j(T ) +
β

2

∑
i

∑
j∈Ui

(∆j(T ))
2 (20)

≤
∑
i

|Ui| · |IUi
| · (TηUi

G) +
β

2
T 2
∑
i

|Ui|η2Ui
G2 (21)

where G := maxj |∂Lmed

∂θj
| upper-bounds the adaptation gradients.

The derived upper bound encompasses all possible learning rate allocations and ensures conservative
control over catastrophic forgetting. Note that if group gradients G or importance scores IUi

are
heterogeneous, a more refined bound can be obtained by analyzing variance rather than worst-case
values.
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F.3 OPTIMAL IMPORTANCE-DRIVEN LEARNING RATE REALLOCATION

Problem Statement:
We aim to allocate learning rates ηUi

for each parameter group Ui so as to minimize the upper bound
on forgetting:

F ≤ a
∑
i

wiIiηUi
+ b

∑
i

wiη
2
Ui

where wi = |Ui| is the number of parameters in group Ui, Ii = |IUi | indicates the average im-
portance of parameters in Ui, a, b > 0 are constants determined by training steps, gradient norms,
and the smoothness constant (β (Assumption A2)). The constraint is that the average learning rate
remains fixed: ∑

i

wiηUi
= Wηavg

where W =
∑

i wi is the total number of trainable parameters.

Lagrangian Formulation:
Introduce a Lagrange multiplier λ and write the Lagrangian:

L({ηUi}, λ) = a
∑
i

wiIiηUi + b
∑
i

wiη
2
Ui

+ λ

(∑
i

wiηUi −Wηavg

)

Optimality Condition:
Taking derivatives and setting to zero, we obtain for each j:

∂L
∂ηUj

= awjIj + 2bwjηUj
+ λwj = 0

=⇒ η∗Uj
= − a

2b
Ij −

λ

2b

Including the constraint: ∑
j

wjη
∗
Uj

= Wηavg

Plugging in the expression for η∗Uj
gives:

− a

2b

∑
j

wjIj −
λ

2b
W = Wηavg

Solving for λ:
λ = −2bηavg −

a

W

∑
j

wjIj

So the optimal learning rate for group Uj is:

η∗Uj
= ηavg −

a

2b

Ij −
1

W

∑
j′

wj′Ij′

 (22)

Interpretation and Guidance:
When the theoretical upper bound is tight—which is often the case in well-controlled, locally linear
training regimes—this result has direct practical utility. Notably, the optimal learning rate allo-
cation η∗Uj

is an affine (linear) function of the group importance Ij . Our method, which assigns
lrU = 2 · (1 − Iunit) · lrbase, can be viewed as a simplified implementation of the derived optimal
form. By decreasing the learning rate for groups with high general-domain importance and increas-
ing it for those with low importance, this strategy effectively minimizes the risk of catastrophic
forgetting while respecting the global learning rate constraint. Thus, our approach provides action-
able guidance for tailoring learning rates based on parameter importance in continual learning and
domain adaptation.
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G EXPERIMENT ABOUT THE NUMBER OF EXPANDED LAYERS

In Stage 1, determining the optimal number of expanded layers emerges as a crucial hyperparameter.
To investigate this, we conducted systematic experiments across various model scales in the medical
domain by expanding different numbers of layers. These comprehensive experiments aim to pro-
vide empirical insights into selecting the most effective layer expansion strategy, offering valuable
guidance for future research in this direction.

Table 12: Comparative Performance of Different Layer Expansion Strategies across Model Scales
and Medical Tasks. Bold indicates the best-performing setup for each task; underline shows the
second-best. This highlights optimal and near-optimal choices for each scenario.

Model MMLU CMMLU MedQA MMCU-Medical CMB

Qwen3-1.7B

Vanilla 62.57 66.86 48.39 69.17 63.67
1-layer 62.31 66.23 48.08 69.95 61.40
2-layer 62.48 66.91 48.63 70.78 62.89
4-layer 62.80 66.89 50.75 71.98 65.43
8-layer 61.84 66.02 49.57 72.41 65.00
16-layer 60.96 64.65 48.86 70.13 64.88

Qwen3-4B

Vanilla 73.19 77.92 62.77 82.44 78.92
1-layer 72.98 77.69 63.39 82.83 78.21
2-layer 73.10 77.84 63.08 82.80 78.48
4-layer 72.95 78.77 64.49 84.58 79.87
8-layer 73.06 77.65 65.02 84.22 78.81
16-layer 72.06 77.11 62.61 82.09 78.61

Qwen3-8B

Vanilla 76.94 82.09 66.30 86.45 81.67
1-layer 76.84 82.06 67.87 86.95 81.50
2-layer 76.70 82.10 67.93 87.99 82.90
4-layer 76.77 82.11 69.24 89.84 85.80
8-layer 76.77 82.15 68.34 88.02 84.85
16-layer 77.12 82.28 68.56 87.76 84.32

LLaMA3-8B

Vanilla 65.33 50.83 58.91 46.29 35.61
1-layer 65.29 51.12 58.97 50.83 40.45
2-layer 65.61 50.98 59.56 55.92 47.83
4-layer 65.25 51.73 60.82 63.17 54.65
8-layer 65.17 51.92 61.17 67.03 61.78
16-layer 65.12 52.45 61.92 70.86 65.31

For general language tasks such as MMLU and CMMLU, all models largely preserve their baseline
performance regardless of the number of expanded layers. This indicates that layer expansion does
not compromise the models’ general language capabilities and robustness.

However, for domain-specific medical tasks (MedQA, MMCU-Medical, and CMB), the impact of
layer expansion is more pronounced. Across all Qwen model variants (1.7B, 4B, and 8B), expanding
4 layers consistently yields optimal performance, as shown by the bolded results in Table 12. Specif-
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ically, the Qwen3-1.7B, 4B, and 8B models improve on MMCU-Medical by up to 2.8%, 2.1%, and
3.4%, respectively, when increasing from baseline to 4-layer expansion. Notably, expanding be-
yond 4 layers (e.g., to 8 or 16 layers) does not systematically improve performance—and in several
cases, results in diminishing or even degraded accuracy. This suggests that moderate layer expan-
sion (4 layers) achieves a balance between performance gain and model stability, while excessive
expansion may introduce optimization difficulties, overfitting, or disrupt the pre-trained knowledge
representations, leading to suboptimal outcomes.

In contrast, the LLaMA3-8B model displays a unique trend: performance improvements are con-
tinuous as more layers are expanded, with the best results observed at expanding 16 layers. The
gains are considerable for tasks like MMCU-Medical and CMB, where scores rise dramatically
from 46.29% and 35.61% in the vanilla model to 70.86% and 65.31% with 16 expanded layers.
This behavior contrasts with the Qwen models and is likely due to LLaMA’s more limited Chinese
capability in its original configuration. The need for extensive architectural expansion reflects the
necessity to build new, specialized representations to compensate for baseline deficiencies when ad-
dressing Chinese-centric tasks. Therefore, while moderate layer expansion is optimal for models
pre-trained on Chinese data (Qwen), more substantial expansion may be required for models less
adapted to the target language or domain (LLaMA).

Overall, these results indicate that expanding more layers does not guarantee better performance. For
well-aligned models, excessive expansion may lead to interference with the original knowledge or
cause optimization instability. In contrast, for models lacking target domain competence, increased
expansion helps establish the missing representations, albeit at the cost of greater computational
complexity.

H TAKE PRETRAIN DATA AS IMPORTANCE SOURCE

Our previous experiments employed the dev sets of MMLU and CMMLU as benchmark datasets
for gradient-based importance estimation. However, such high-quality and carefully curated bench-
marks are often scarce, especially in practical industrial scenarios. To investigate the robustness of
our ADEPT method under more realistic conditions where benchmark data may not be available,
we explore the use of noisier pretraining data for importance estimation.

Table 13: General Competence Detection Pretrain Corpus. #Examples means the number of exam-
ples we used.

Dataset #Examples Hugging Face Link

FineWeb Edu 500 HuggingFaceFW/fineweb-edu
FineWeb Edu Chinese V2.1 500 HuggingFaceFW/fineweb-edu

Specifically, we utilize the FineWebEdu and FineWebEdu-Chinese datasets (Data overview and links
in Table 13), extracting the top 500 samples with the highest educational scores from the first 10,000
entries in each corpus to serve as our importance estimation set. Compared to curated benchmarks,
these datasets are much more accessible in real-world applications. Furthermore, the computational
cost for filtering out such high-quality samples is negligible relative to the overall cost of large-scale
pretraining.

This experimental setting allows us to rigorously evaluate the robustness of ADEPT when real-
world, easily accessible pretraining data replaces ideal benchmark datasets for importance-based
layer expansion decisions.

Table 14 summarizes the performance of our ADEPT method when the importance estimation is
conducted with either high-quality benchmark data or more easily accessible pretraining data across
different model scales. Overall, the results demonstrate that ADEPT not only consistently out-
performs the vanilla baseline but also shows remarkable robustness across most scenarios when
using pretraining data for importance calculation. In Qwen3 series models, the difference between
benchmark-based and pretraining-data-based importance estimation is minimal. In several cases, the
latter even slightly surpasses the benchmark version (e.g., Qwen3-1.7B on MMLU and Qwen3-8B
on MMLU and CMMLU), validating the practical applicability and flexibility of our approach.

39

https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu


2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Table 14: Performance comparison of ADEPT with benchmark-based and pretraining-data-based
importance estimation across model scales. Bold indicates the best performance per column;
underline marks the second-best.

Model MMLU CMMLU MedQA MMCU-Medical CMB

Qwen3-1.7B

Vanilla 62.57 66.86 48.39 69.17 63.67
ADEPT (Benchmark) 62.80 66.89 50.75 71.98 65.43
ADEPT (PT Data) 62.85 66.87 49.39 70.84 63.07

Qwen3-4B

Vanilla 73.19 77.92 62.77 82.44 78.92
ADEPT (Benchmark) 72.95 78.77 64.49 84.58 79.87
ADEPT (PT Data) 73.14 77.96 63.94 83.34 79.62

Qwen3-8B

Vanilla 76.94 82.09 66.30 86.45 81.67
ADEPT (Benchmark) 76.77 82.11 69.24 89.84 85.80
ADEPT (PT Data) 76.83 82.20 67.56 87.20 83.92

LLaMA3-8B

Vanilla 65.33 50.83 58.91 46.29 35.61
ADEPT (Benchmark) 65.25 51.73 60.82 63.17 54.65
ADEPT (PT Data) 65.21 50.27 59.13 60.29 51.32

For LLaMA3-8B, ADEPT with pretraining data still yields clear improvements over the vanilla
baseline on all tasks, particularly in domain-specific metrics such as MedQA and MMCU-Medical.
However, compared to the benchmark-based ADEPT, the pretraining-data variant shows slightly
lower performance, with a gap of approximately 1–5% across tasks. This modest drop can be at-
tributed to two main factors: first, the inherent discrepancy between noisier pretraining data and
expertly curated benchmarks introduces less precise gradient signals for importance estimation. Sec-
ond, LLaMA3-8B’s weaker baseline in Chinese tasks means its optimization is more sensitive to the
quality of importance source, and benefits more from highly targeted benchmark data. Nonethe-
less, even with this gap, the pretraining-data approach remains highly valid, especially in practical
scenarios where access to dedicated benchmarks is limited.

In summary, ADEPT demonstrates strong effectiveness and robustness when layer expansion is
guided by pretraining data, making it highly suitable for real-world deployment. The slight perfor-
mance drop observed in LLaMA3-8B highlights the additional value of benchmark data for models
or tasks with substantial baseline limitations, but does not diminish the overall utility of our method
in resource-constrained settings.

I TOKEN DISTRIBUTION SHIFT

Following the methodology proposed by Lin et al. (2024), we conducted a comprehensive analysis of
token distribution shifts between the base and aligned models using the MMLU (Massive Multitask
Language Understanding) dataset. The analysis focuses on identifying and quantifying the changes
in token prediction patterns that occur during the alignment process.

Our analysis procedure consists of the following steps:

1) For each position in the input text, we use the aligned model with greedy decoding to generate
the output token ot.
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2) We then examine how this token is ranked in the base model’s probability distribution Pbase. This
ranking, denoted as η, serves as our primary metric for categorizing token shifts.

3) Based on the base ranking η, we classify each token position into three categories:

• Unshifted positions (η = 1): The token is top-ranked in both base and aligned models
• Marginal positions (1 < η ≤ 3): The token has a relatively high probability in the base

model
• Shifted positions (η > 3): The token is unlikely to be sampled by the base model

4) For shifted tokens, we calculate Rank Improvement Ratio: base rank
aligned rank

Our analysis of the MMLU dataset revealed significant distribution shifts between the base and
continual pretrained models by ADEPT. Figure 14 visualizes the most significantly shifted tokens,
where the size of each token is proportional to its rank improvement ratio.

Figure 14: Word cloud visualization of shifted tokens. The size of each token represents its rank
improvement ratio ( base rank

aligned rank ), indicating the magnitude of distributional shift during alignment.
Larger tokens indicate more significant shifts in the model’s prediction patterns.

Our analysis of the MMLU dataset revealed significant and efficient distribution shifts between the
base and aligned models. Figure 14 visualizes the most significantly shifted tokens, where the size
of each token is proportional to its rank improvement ratio.

The analysis revealed a notably efficient token distribution shift pattern. Specifically, only 2.18% of
tokens underwent significant shifts (compared to 5.61% in full pretraining), with 88.78% remaining
unshifted and 9.04% showing marginal changes (Totally 645496 tokens analyzed). This represents
a more focused and efficient alignment compared to full pretraining scenarios, which typically show
higher shift percentages (unshifted: 75.59%, marginal: 18.80%, shifted: 5.61%).

Most remarkably, the shifted tokens demonstrate a clear concentration in medical terminology and
medicine-related concepts. Key examples include: ”prescription”, ”diagnosis”, ”symptoms”, ”dia-
betes”, ”arthritis”, ”tumor”, ”MRI”, ”therapy”, ”treatment”, ”hospital”, ”care”, ”patients”.

This specialized distribution stands in stark contrast to the more general token shifts observed in full
pretraining, where top shifted tokens (such as <|im end|>, ”CIF”, ”Registered”, ”progression”,
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”median”) show no particular domain focus and more noise. This comparison suggests that ADEPT
achieved a more targeted and efficient knowledge injection, specifically enhancing the model’s med-
ical domain expertise while maintaining stability in other areas. The lower percentage of shifted
tokens (2.18% vs 5.61%) combined with their high domain relevance indicates a more precise and
economical alignment process that effectively injects medical knowledge without unnecessary per-
turbation of the model’s general language capabilities.

These findings suggest that domain-specific alignment can be achieved with minimal token distribu-
tion disruption while maintaining high effectiveness in knowledge injection. This efficiency in token
shifting demonstrates the potential for targeted domain adaptation without the broader distributional
changes typically seen in full pretraining scenarios.

Similarly, in mathematical domain alignment (Figure 15), we observed an even more efficient to-
ken distribution shift. The analysis shows only 1.24% of tokens underwent significant shifts, with
91.51% remaining unshifted and 7.25% showing marginal changes. This represents an even more
concentrated alignment compared to full pretraining (unshifted: 85.45%, marginal: 10.18%, shifted:
4.37%).

The shifted tokens clearly reflect mathematical and scientific terminology, as evidenced by terms
such as ”theorem”, ”quantum”, ”parameters”, ”physics”, and ”equation”. This highly focused shift
pattern, utilizing merely one-third of the token shifts compared to full pretraining (1.24% vs 4.37%),
demonstrates the effectiveness of our approach in precisely targeting mathematical knowledge in-
jection while maintaining model stability in other domains.

Figure 15: Word cloud visualization of shifted tokens in mathematical domain alignment. The pre-
dominance of mathematical and scientific terminology demonstrates the precise targeting of domain-
specific knowledge.

J LINEAR MERGE OF DOMAIN-SPECIFIC EXTENSIONS: RESULTS AND
INSIGHTS

In Table 15, we compare the performance of the Vanilla model and the Merged Model, which was
constructed by linearly merging the domain-specific extension layers (with equal weights of 0.5 for
medical and mathematical domains) after independent training. Our results show that the merged
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Table 15: Performance comparison of Vanilla and Merged Models on multiple benchmarks (Qwen3-
1.7B and Qwen3-4B).

MMLU CMMLU GSM8K ARC-E ARC-C MedQA MMCU CMB

Qwen3-1.7B

Vanilla 62.57 66.86 57.62 81.44 51.19 48.39 69.17 63.67
Merged Model 62.70 65.83 60.80 81.06 51.94 48.39 68.61 64.83

Qwen3-4B

Vanilla 73.19 77.92 69.07 85.52 59.13 62.77 82.44 78.92
Merged Model 72.96 77.99 73.16 85.27 58.96 62.83 82.83 78.42

model does not exhibit any significant collapse, and in some indicators even surpasses the original
base model. For example, on the GSM8K benchmark for Qwen3-1.7B, the merged model achieves
60.80%, compared to 57.62% for the vanilla model. This demonstrates the generalization and ex-
tensibility of our method, enabling fusion across multiple vertical domains.

Our extension approach ensures that each newly added layer is separated by at least one original
frozen layer, rather than being directly adjacent. This design leads to greater stability during model
merging. On one hand, if the merged models were purely cascaded, the non-linear transforma-
tions introduced could lead to more unpredictable interactions between layers. On the other hand,
because each layer operates within a consistent contextual environment provided by surrounding
frozen layers during continual pre-training, we believe that this fixed hierarchical structure imposes
constraints that make the semantic representations learned by the new layers more aligned in certain
dimensions. As a result, the merging process becomes more reliable and beneficial to overall model
performance.

It is worth noting that our merging strategy adopts the simplest possible weighted average. The
specific merging algorithm is not the focus of this work; we believe that with more scientific weight-
ing schemes, even better results can be obtained. Here, we hope to stimulate further research and
provide preliminary insights based on our observations.

K USE OF LLM

In the preparation of this article, we utilized large language models (LLM) solely for writing assis-
tance purposes. Specifically, we employed the GPT-4.1-0414 model to polish language expressions,
condense sentences, and improve the overall clarity and readability of the text. The model was used
exclusively for editing and refining manuscript language and did not participate in any conceptual
or technical aspects of this work.

All research ideas, theoretical proof methods, experimental designs, and visualizations were con-
ceived, executed, and finalized by the authors without the involvement of any LLM tools. The
development of new concepts, formulation and validation of proofs, experimental setups, analysis
of results, and the creation of figures were performed independently by the research team. At no
point was the LLM model used to generate, modify, or validate the scientific content, methodology,
or results presented in this article.

We emphasize that the role of GPT-4.1-0414 in this research was strictly limited to linguistic en-
hancement at the writing stage, and that all substantive intellectual and scientific contributions orig-
inate solely from the authors.

L ALGORITHM

Please see Algorithm 1.
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Algorithm 1 ADEPT

Require: Pretrained LLM M0 with layers {Θ(1), . . . ,Θ(L)}, domain probing corpus Dprobe, con-
tinual pretraining corpus Dtrain, number of layers to expand k, base learning rate lrbase, update
interval Tupdate

1: # Stage 1: General-Competence Guided Selective Layer Expansion
2: Compute base loss Lbase ← 1

|Dprobe|
∑

x ℓ(M0(x), x)

3: for l← 1 to L do
4: Temporarily mask layer l to get M (−l)

0

5: Compute masked loss L̂(l) ← 1
|Dprobe|

∑
x ℓ(M

(−l)
0 (x), x)

6: Compute importance score ∆(l) ← L̂(l) − Lbase
7: end for
8: Select k least-important layers Sk ← LowestK({∆(l)})
9: for each l ∈ Sk do

10: Duplicate parameters Θ̃(l) ← Θ(l) ▷ Identity copy
11: Initialize W out

MHSA = 0, W out
FFN = 0 ▷ Function Preserving Init

12: Freeze original Θ(l), mark Θ̃(l) as trainable
13: end for
14: # Stage 2: Adaptive Unit-Wise Decoupled Tuning
15: for each training step t do
16: if t mod Tupdate == 0 then
17: for each expanded layer Θ̃(l) do
18: Partition into semantic units {U1, . . . , Un}
19: for each unit Ui do
20: Compute gradient-based importance IUi

← 1
|Ui|

∑
j∈Ui

θj · ∇θjL
21: Assign adaptive learning rate lrUi ← 2 · (1− IUi) · lrbase
22: end for
23: end for
24: end if
25: Sample training sequence x = (x1, x2, . . . , xT ) ∼ Dtrain
26: Compute autoregressive loss:
27: L = −

∑T
t=1 logP (xt | x<t; Θ)

28: Update parameters {Θ̃(l)} using adaptive learning rates {lrUi
}

29: end for

M SENSITIVITY ANALYSIS OF IMPORTANCE-SCORE UPDATE INTERVALS

To assess the effect of the update frequency in Stage 2, we conduct a systematic sensitivity anal-
ysis on the interval at which unit importance scores are recomputed. While the main experiments
adopt an update interval of 500 steps, it remains unclear how sensitive ADEPT is to more or less fre-
quent updates. To this end, we perform additional experiments on Qwen3-4B-Base in the medical
domain, evaluating intervals ranging from 10 to 5000 steps. This setup allows us to quantify how dif-
ferent recomputation frequencies influence model performance and overall training time. As shown
in Table 16 and Table 17, we report both the medical-domain and general-domain performance of
ADEPT under different update intervals, together with the corresponding training time (Descriptions
of these newly added benchmarks and their evaluation protocols are provided in Appendix O). This
allows us to clearly quantify how the recomputation frequency impacts domain-specific adaptation,
general knowledge retention, and overall efficiency.

Interestingly, the most frequent update setting (every 10 steps) does not yield the best results.
We hypothesize that this is due to training stability: excessively frequent adjustments of unit-wise
learning rates may introduce noise, as the importance scores are estimated via a first-order approx-
imation and thus inherently sensitive to stochastic fluctuations. The performance of the 500-step
interval is largely comparable to that of the 100-step interval across benchmarks, while the latter
already offers a substantially reduced training time comparing to 10-step interval. This further indi-
cates that the computational overhead of backpropagation dominates the overall training cost,
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Table 16: Sensitivity of ADEPT to the update interval for recomputing unit importance scores on
Qwen3-4B-Base in the medical domain.

Interval PubMedQA (%) MedQA (%) MMCU (%) CMB (%) CMB-Clin (%) Time

Qwen3-4B-Base 73.60 62.77 82.44 78.92 – –
Step-10 77.60 63.26 83.51 79.04 54.12 5d 10h
Step-100 77.40 64.45 84.34 80.46 55.28 2d 12h
Step-500 77.20 64.49 84.58 79.87 54.40 2d 11h
Step-1000 77.40 62.97 82.62 79.44 53.64 2d 11h
Step-5000 77.20 62.05 81.48 77.58 52.26 2d 11h

Table 17: Sensitivity of ADEPT to the update interval for recomputing unit importance scores on
Qwen3-4B-Base on general-purpose benchmarks.

Interval TruthfulQA-MC1 (%) TruthfulQA-MC2 (%) CEval (%) CMMLU (%) BBH (%) HellaSwag (%) MMLU (%) Time

Qwen3-4B-Base 36.84 53.38 79.49 77.92 70.73 55.41 73.19 –
Step-10 37.47 54.24 79.90 77.66 71.05 54.24 72.98 5d 10h
Step-100 37.68 54.33 79.68 78.60 71.51 55.21 73.01 2d 12h
Step-500 38.31 54.63 79.00 78.77 71.08 55.35 72.95 2d 11h
Step-1000 37.21 53.39 78.90 78.65 70.70 54.26 72.43 2d 11h
Step-5000 37.09 53.31 79.05 77.68 70.66 54.00 72.44 2d 11h

and that the recomputation of importance scores is relatively lightweight. Notably, even an
extremely infrequent update interval such as 5000 steps (i.e., only six updates throughout training)
maintains competitive performance, highlighting the robustness of ADEPT.

We also oberserve the parameter importance during training and find that the overall distribution
of importance across modules remains relatively stable after the initial update. Subsequent updates
produce smaller changes, which explains ADEPT’s stable effectiveness.

N APPLICABILITY TO SUPERVISED FINE-TUNING

To demonstrate ADEPT’s transferability beyond continual pretraining, we further conduct Super-
vised Fine-Tuning (SFT) experiments in the medical domain on two widely used instruction-tuned
backbones, LLaMA3-8B-Instruct and Qwen3-8B.

SFT Experimental Setup. For the SFT experiments, we fine-tune each model on the
MMedBench training split (the SFT portion of the MMedC dataset). We adopt a mixed training
regime that interleaves CoT-style samples (including a detailed rationale) and non-CoT sam-
ples (without rationales), with each item appearing once in both formats. We train with a global
batch size of 128, a learning rate of 1 × 10−5, and all other optimization and regularization hy-
perparameters identical to those used during CPT. LoRA is applied with rank 128. The full SFT
dataset contains 75,156 samples, and all models are trained for 3 epochs. For ADEPT, we employ
a single-layer expansion and recompute unit-importance scores every 100 steps, consistent with our
CPT-stage procedures. To illustrate how each SFT item appears once in both CoT and non-CoT
formats, we provide an example pair in Examples 4 and 5. Both correspond to the same underlying
clinical question, with the former including a detailed rationale and the latter containing only the
concise answer.

Overall, the SFT results reveal several noteworthy patterns. First, lightweight adaptation methods
such as LoRA and TaSL perform relatively well in the SFT setting, substantially better than in
CPT. This reflects the suitability of parameter-efficient adapters for supervised updates performed
on relatively small training corpora. Second, fully updating all model parameters (SFT-Full) yields
consistently weaker performance, likely due to the large degree of parameter perturbation introduced
by full-model fine-tuning on a relatively small SFT dataset. Finally, while ADEPT does not exhibit
the same magnitude of gains as in the CPT experiments, it remains competitive and stable across
both medical and general benchmarks. Given the limited size of the supervised dataset used here,

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Table 18: SFT results on LLaMA3-8B-Instruct with different adaptation strategies. “Vanilla”
denotes the original pretrained model without any further training. All metrics are reported in %.
Best and second-best scores for each metric are highlighted in bold and underlined, respectively.

Medical Domain General Benchmarks

Method PubMedQA CMB-Clin MedQA MMCU CMB CEval TruthQA-MC1 TruthQA-MC2 CMMLU BBH HellaSwag MMLU

Vanilla 78.80 - 62.68 57.36 52.40 51.04 35.12 51.03 51.91 67.90 56.32 65.30
SFT-Full 75.60 47.28 55.06 57.90 50.20 42.64 35.49 42.64 43.57 19.96 52.82 55.74
SFT-Lora 78.80 52.88 60.56 61.61 53.34 51.63 37.45 51.63 51.69 67.86 57.53 64.28
Llama-Pro 78.20 51.44 61.74 57.46 51.66 51.26 35.98 51.26 51.78 66.76 57.06 65.24
TaSL 76.40 53.14 61.32 59.85 52.30 51.76 36.32 51.86 51.76 67.62 57.73 64.64
ADEPT 78.80 53.76 63.92 60.85 53.81 51.70 37.10 52.10 51.90 68.00 57.20 65.40

Table 19: SFT results on Qwen3-8B with different adaptation strategies. “Vanilla” denotes the
original pretrained model without any further training. All metrics are reported in %. Best and
second-best scores for each metric are highlighted in bold and underlined, respectively.

Medical Domain General Benchmarks

Method PubMedQA CMB-Clin MedQA MMCU CMB CEval TruthQA-MC1 TruthQA-MC2 CMMLU BBH HellaSwag MMLU

Vanilla 78.40 - 63.55 79.88 73.17 78.75 35.86 53.49 77.97 79.18 55.85 74.59
SFT-Full 76.20 52.48 65.04 79.28 75.53 74.59 37.57 55.91 75.39 56.90 56.90 73.03
SFT-Lora 77.40 51.84 66.84 82.29 77.50 78.82 37.82 55.94 78.26 80.47 56.12 74.87
Llama-Pro 78.00 54.16 63.70 80.59 75.38 78.75 35.98 53.93 77.75 80.63 55.95 74.59
TaSL 77.20 52.14 63.94 78.71 75.65 78.45 36.71 56.32 78.41 80.06 56.92 75.09
ADEPT 77.80 53.36 65.94 83.02 79.51 78.90 36.96 54.60 77.98 81.21 57.06 74.72

we anticipate that ADEPT’s benefits, particularly its targeted capacity expansion, would become
more pronounced when scaling SFT to larger and more diverse training corpora.

Example 4

Problem: A 23-year-old pregnant woman at 22 weeks gestation presents with burning upon
urination for one day, worsening despite increased fluid intake and cranberry extract. She
is otherwise well and is followed regularly for prenatal care. Vitals are normal (T 97.7◦F,
BP 122/77 mmHg, HR 80/min, RR 19/min, SpO2 98%). Physical examination shows no
costovertebral angle tenderness and a gravid uterus. Which of the following is the best
treatment for this patient?
Analysis: This patient is pregnant, afebrile, and presents with symptoms of acute cystitis,
with no signs of pyelonephritis. Safe antibiotic selection during pregnancy is essential:
• Nitrofurantoin is a first-line therapy for uncomplicated cystitis in pregnancy (especially

after the first trimester), with an excellent safety profile.
• Ampicillin and ceftriaxone may be used for certain infections but are not first-line for

simple cystitis in pregnant patients.
• Doxycycline is contraindicated during pregnancy due to risks of teratogenicity and adverse

effects on fetal bone and tooth development.
Given her presentation and gestational age, nitrofurantoin is the safest and most appropriate
therapy.
Therefore, the correct answer is D. Nitrofurantoin.

Example 5

Problem: A 23-year-old pregnant woman at 22 weeks gestation presents with dysuria and
worsening urinary discomfort for one day. Vitals and examination are normal. Which of the
following is the best treatment for this patient?
Answer: D. Nitrofurantoin.
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O EXTENDED EVALUATION ON ADDITIONAL BENCHMARKS AND DOMAINS

In this section, we incorporate a substantially more diverse collection of domain-specific and
general-purpose benchmarks to more rigorously evaluate the robustness and effectiveness of our
method.

Extended Medical-Domain Benchmarks. To enrich the evaluation of medical-domain capabili-
ties, we additionally include two complementary benchmarks. CMB-Clin (Wang et al., 2023b) is
an open-ended clinical QA benchmark containing 74 complex consultation questions (each ques-
tion will be followed by several sub-questions and we will score each sub-question independently)
across all major medical specialties. Each question is paired with a reference answer, and evaluation
follows an LLM-as-a-judge protocol, where GPT-5 compares model outputs against the reference to
compute a pairwise win rate to Vanilla model. (We omit the percent sign (%) in the presentation.)
PubMedQA (Jin et al., 2019) is a biomedical question answering dataset constructed from PubMed
abstracts. Each question asks whether a specific biomedical claim is supported by the evidence
in the abstract, and the answer is one of yes, no, or maybe. The benchmark therefore evaluates a
model’s ability to read a short biomedical abstract and make an evidence-based judgment. We report
accuracy following standard practice.

Extended Mathmatic-Domain Benchmarks. To more comprehensively assess improvements in
mathematical reasoning, we alsp include two challenging benchmarks that target advanced problem-
solving skills. GPQA (Rein et al., 2024) is a multiple-choice benchmark of 448 expert-written ques-
tions designed to demand deep scientific reasoning and deliberate problem-solving. The questions
are intentionally difficult, providing a rigorous testbed for evaluating whether Math-domain training
improves a model’s capacity for complex, expert-level reasoning. GSM-Plus (Li et al., 2024) is
an adversarial extension of GSM8K that introduces controlled variations such as added statements
and altered question targets to evaluate robustness in mathematical reasoning. These perturbations
reduce reliance on pattern matching and require models to generalize their reasoning beyond sur-
face cues, making GSM-Plus a stringent benchmark for assessing the stability of Mathmatic-domain
training. We report accuracy for both benchmarks.

Extended General-Capability Benchmarks. To more fully assess the general-capability perfor-
mance of our trained models, we introduce a broader set of diverse and challenging benchmarks
that are largely orthogonal to our existing evaluation suite. These additional datasets provide a more
comprehensive evaluation of the model’s overall general ability beyond the settings covered in our
primary experiments. BBH (Suzgun et al., 2023) is a curated subset of 23 challenging tasks from
BIG-Bench that remain difficult for LLMs. These tasks emphasize multi-step reasoning, abstrac-
tion, and compositional generalization, making BBH a stringent measure of cross-domain general
capability. HellaSwag (Zellers et al., 2019) is a challenging commonsense inference benchmark
created through adversarial filtering. Models must choose the most plausible continuation among
highly confounding distractors, making it a strong test of robustness in everyday reasoning. CE-
val (Huang et al., 2023) is a comprehensive Chinese exam-style benchmark covering a wide range
of subjects and professional knowledge areas. It assesses broad general-domain understanding and
factual reasoning through multiple-choice questions. For BBH, HellaSwag, and CEval, we report
accuracy. TruthfulQA (Lin et al., 2022) evaluates a model’s factuality by testing whether it can
avoid reproducing widely held misconceptions. The benchmark comprises 817 questions across 38
domains, each constructed so that factually incorrect but popular answers are tempting. We report
performance under both official TruthfulQA metrics. MC1 evaluates single-answer multiple choice:
given a question and candidate options, the model must select the uniquely correct answer, and ac-
curacy is computed over all questions. MC2 evaluates multi-answer probability assignment: given
a question and sets of true and false reference answers, the score is the normalized total probability
that the model assigns to the true answer set. MC1 thus measures strict answer accuracy, whereas
MC2 assesses how much probability mass the model places on factually correct responses.

Table 20 reports the results under the Medical domain, where we directly reuse the same medical-
domain checkpoint from Table 1 and evaluate it on additional medical benchmarks as well as broader
general-capability tasks. The results show that ADEPT maintains consistently strong performance
on the newly introduced medical benchmarks, demonstrating robust domain adaptation. Notably,
ADEPT also exhibits a clear advantage in mitigating catastrophic forgetting on general-capability
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Table 20: Comparison of ADEPT and baseline methods on a broad suite of medical and general
benchmarks. All results are obtained using the same medical-domain–trained checkpoint reported
in Table 1, here evaluated on additional medical and general tasks to further assess cross-domain
generalization. For ease of comparison, all metrics are uniformly mapped to the [0, 100] range.

Medical General

Method PubMedQA CMB-Clin TruthQA-MC1 TruthQA-MC2 CEval BBH HellaSwag

LLaMA-3-8B-Base

Vanilla 76.60 – 26.81 43.95 50.45 62.33 60.46
PT-Full 77.00 56.84 23.75 37.74 49.70 47.47 58.03
Replay 78.20 59.20 29.50 44.15 52.75 51.48 58.71
Llama-Pro 76.40 54.92 24.85 38.03 49.70 62.31 60.00
PT-LoRA 73.20 53.48 24.24 38.16 49.93 61.77 59.79
TASL 72.40 50.00 26.35 39.46 50.51 61.92 58.34

ADEPT 78.20 59.70 28.40 45.03 52.11 62.52 60.39

Qwen3-1.7B-Base

Vanilla 69.20 – 32.19 48.80 65.53 53.05 49.15
PT-Full 70.20 51.92 29.87 45.24 62.78 46.38 48.73
Replay 69.40 52.76 31.82 46.28 63.19 49.17 48.30
Llama-Pro 70.40 52.88 28.27 42.42 60.03 37.37 48.74
PT-LoRA 68.40 48.08 26.81 42.53 64.04 37.87 48.76
TASL 68.00 45.67 25.95 40.83 59.88 36.15 47.15

ADEPT 69.60 53.84 34.39 51.05 66.64 52.96 49.28

Qwen3-4B-Base

Vanilla 73.60 – 36.84 53.38 79.49 70.73 55.41
PT-Full 76.60 52.64 33.05 47.10 73.11 63.22 53.15
Replay 76.40 51.64 33.05 48.83 73.18 65.32 50.79
Llama-Pro 76.60 52.16 34.27 49.33 77.71 69.37 52.82
PT-LoRA 74.00 51.36 33.90 49.08 78.01 58.02 53.54
TASL 72.60 51.80 35.11 47.54 76.43 60.33 53.76

ADEPT 77.20 54.40 38.31 54.63 78.60 71.08 55.35

Qwen3-8B-Base

Vanilla 77.40 – 35.13 52.29 82.91 76.69 59.25
PT-Full 78.80 50.36 32.93 47.41 80.09 68.81 56.46
Replay 79.00 52.46 32.93 48.50 79.72 69.73 55.75
Llama-Pro 78.60 51.64 35.74 52.04 78.16 71.80 54.87
PT-LoRA 78.00 51.16 32.56 48.58 81.20 71.11 57.33
TASL 78.20 52.40 31.64 49.92 80.79 70.14 58.39

ADEPT 79.00 52.88 37.58 53.91 82.54 76.33 59.05

benchmarks, outperforming baseline methods by a large margin. Table 21 summarizes the results
under the Mathematical domain. We observe similar trends: ADEPT retains strong mathematical
reasoning performance on extended math benchmarks while preserving general abilities more effec-
tively than competing approaches. These findings further validate the robustness and effectiveness
of ADEPT across heterogeneous domains.

P CODE-DOMAIN EVALUATION

To further examine the applicability of ADEPT beyond natural-language and scientific domains, we
additionally conduct experiments in the Code domain. Due to computational constraints, we select
Qwen3-4B as a representative model and perform continual pretraining on a Python-only corpus
constructed from two public datasets: Swallow-Code-v22 and Python-Codes-25k3. The

2https://hf-mirror.com/datasets/tokyotech-llm/swallow-code-v2
3https://hf-mirror.com/datasets/flytech/python-codes-25k
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Table 21: Comparison of ADEPT and baseline methods on a broad suite of medical and general
benchmarks. All results are obtained using the same mathmatical-domain–trained checkpoint
reported in Table 1, here evaluated on additional medical and general tasks to further assess cross-
domain generalization. For ease of comparison, all metrics are uniformly mapped to the [0, 100]
range. GSM+ refers to the GSM-Plus benchmark.

Math General

Method GPQA GSM+ TQA-MC1 TQA-MC2 CEval BBH HellaSwag

LLaMA-3-8B

Vanilla 22.32 30.03 26.80 43.94 50.44 62.33 60.46
PT-Full 23.99 33.19 29.13 45.09 46.80 62.93 55.60
Replay 27.23 33.62 29.25 44.14 51.70 62.51 56.10
Llama-Pro 25.44 29.54 26.68 43.22 50.96 63.51 58.65
PT-LoRA 25.22 29.90 27.78 43.46 50.14 62.75 59.11
TASL 24.86 30.26 27.71 41.68 49.68 62.37 58.91

ADEPT 27.78 34.44 28.78 44.31 51.89 63.47 60.77

Qwen3-1.7B-Base

Vanilla 26.12 50.16 32.19 48.80 65.53 53.05 49.15
PT-Full 27.23 52.11 29.87 49.73 62.85 48.20 48.99
Replay 27.34 52.32 33.23 51.23 62.43 48.93 49.04
Llama-Pro 27.01 54.37 32.19 49.13 62.26 51.45 48.91
PT-LoRA 26.56 51.80 30.23 46.97 63.59 32.62 48.44
TASL 26.56 52.25 32.68 49.03 59.45 45.62 48.27

ADEPT 31.02 54.82 33.65 50.00 66.27 54.40 49.17

Qwen3-4B-Base

Vanilla 27.68 61.62 36.84 53.38 79.49 70.73 55.41
PT-Full 26.44 57.37 31.82 47.83 74.07 68.80 50.61
Replay 26.10 57.87 32.06 49.14 75.48 69.73 51.94
Llama-Pro 27.23 61.74 33.05 49.44 77.27 71.11 52.34
PT-LoRA 26.89 60.26 31.33 47.31 77.71 71.80 51.64
TASL 26.86 62.63 32.31 48.18 77.43 70.83 53.23

ADEPT 29.90 63.76 38.31 54.25 78.26 72.21 55.29

Qwen3-8B-Base

Vanilla 35.26 63.42 35.13 52.29 82.91 76.69 59.25
PT-Full 35.66 64.54 32.93 49.83 79.42 73.15 55.83
Replay 34.55 65.14 34.27 50.18 78.08 74.62 55.64
Llama-Pro 35.44 64.36 29.86 46.05 81.64 75.50 56.16
PT-LoRA 33.66 67.01 33.78 51.64 78.38 79.81 54.86
TASL 35.19 65.58 34.16 49.38 77.98 75.55 54.42

ADEPT 38.91 66.72 38.18 53.39 82.39 79.83 59.16

former provides a large, professionally curated Python corpus, while the latter contributes high-
quality SFT-style Python tasks covering code generation, code-oriented natural language under-
standing, behavior analysis, and educational coding variations. Combined, the corpus contains ap-
proximately 13.7B tokens (∼ 4.2 × 104 samples of length ≈ 512 tokens), enabling a controlled
examination of ADEPT’s behavior when adapting models to a specialized programming domain.

For downstream assessment, we adopt three widely used code domain benchmarks, all evaluated
using the standard pass@k metric: HumanEval (Chen, 2021), a functional correctness benchmark
for code synthesis; MBPP (Austin et al., 2021), a curated set of introductory-level programming
tasks; and CRUXEval (Gu et al., 2024), which tests execution-based correctness across diverse
constraint-solving problems. Together, these benchmarks provide a comprehensive view of coding
capability under continual pretraining in the code domain.

Table 22 summarizes the results of Code-domain continual pretraining. Across the three code
domain benchmarks, ADEPT demonstrates the most balanced and robust performance among
lightweight adaptation methods. While PT-Full and Replay benefit from updating the entire
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Table 22: Code-domain and general-capability results of Qwen3-4B-Base under different CPT
strategies. All metrics are mapped to the [0, 100] range. Best and second-best results for each
column are highlighted in bold and underlined, respectively. TQA means TruthfulQA.

Code General

Method HumanEval MBPP CRUXEval TQA-MC1 TQA-MC2 HellaSwag BBH CEval

pass@1 pass@5 pass@10 pass@1 pass@5 pass@10 pass@1 pass@5 pass@10

Vanilla 50.37 78.61 86.59 8.71 32.42 49.80 48.95 76.69 84.69 36.84 53.38 55.41 70.73 79.49
PT-Full 50.79 83.85 89.02 26.50 58.62 67.70 46.64 72.62 80.18 32.07 48.29 52.30 63.94 71.77
Replay 53.23 80.31 85.37 19.30 40.67 54.36 43.12 69.55 78.29 33.54 49.73 53.23 66.46 74.00
Llama-Pro 49.70 79.69 87.10 20.86 45.86 59.81 42.81 70.65 78.42 34.27 51.97 53.99 66.29 77.27
PT-LoRA 36.77 74.43 82.93 28.17 61.64 70.04 39.65 70.97 79.80 31.82 49.28 51.94 34.48 75.85
TaSL 37.42 75.21 84.37 25.94 58.19 66.53 40.18 70.05 80.63 32.45 48.70 52.67 33.96 77.21

ADEPT 51.13 84.81 87.20 31.17 55.07 67.98 46.68 74.57 83.69 35.13 53.83 54.98 70.77 79.63

Table 23: Multilingual medical and general-capability evaluation of Qwen3-4B-Base after con-
tinual pretraining on a multilingual medical corpus. All metrics are mapped to the [0, 100] range,
and best/second-best results are highlighted in bold and underlined. Language abbreviations: ES
(Spanish), FR (French), JA (Japanese), RU (Russian), EN (English), CN (Chinese). TQA means
TruthfulQA.

Multilingual Medical Multilingual General CN/EN General

MMedBench MMMLU TQA-MC1 TQA-MC2 MMLU CMMLU CEval

Method ES FR JA RU ES FR JA RU EN EN EN CN CN

Vanilla 73.78 75.08 55.78 73.05 66.68 66.19 60.85 62.56 36.84 53.38 73.19 77.92 79.49
PT-Full 73.34 75.40 66.33 59.68 61.77 60.86 56.91 59.68 30.60 43.97 66.91 68.88 69.61
Replay 74.47 72.83 62.31 59.54 63.47 62.33 58.19 59.54 30.72 45.21 68.39 72.19 71.62
Llama-Pro 73.74 74.43 53.27 60.70 65.32 64.43 59.79 60.70 35.86 52.54 72.03 77.08 77.79
PT-LoRA 72.36 73.95 57.29 61.33 64.22 63.56 58.26 61.33 30.82 46.75 70.27 72.52 74.89
TaSL 71.22 73.88 56.45 61.58 65.49 62.59 58.97 60.49 30.70 45.67 70.40 71.65 76.98

ADEPT 74.56 74.92 62.26 74.61 66.64 66.15 61.01 63.19 36.60 54.01 73.69 78.67 78.63

model, ADEPT achieves competitive results despite modifying only four layers, and consistently
outperforms Llama-Pro under the same expansion budget. LoRA shows clear instability across
tasks, whereas ADEPT maintains stable performance across HumanEval, MBPP, and CRUXEval. In
addition, ADEPT preserves general capabilities substantially better than full-parameter CPT and Re-
play, matching or exceeding Llama-Pro on most general benchmarks. Overall, ADEPT provides
a favorable trade-off, combining strong performance, stable generalization, and parameter
efficiency.

Q MULTILINGUAL MEDICAL EVALUATION

In Table 1, the continual pretraining data are predominantly English and Chinese. To further
strengthen the domain-transfer setting and evaluate cross-lingual robustness, we extend our study
to multilingual medical tasks. This setting introduces a substantially larger linguistic and domain
distribution shift, providing a stringent test of whether ADEPT can retain its effectiveness under
multilingual medical evaluation.

For CPT, we construct a multilingual medical corpus by combining the multilingual portion of
MMedC with the training split of the multilingual portion of MMedBench, explicitly removing
all English and Chinese samples and retaining only the remaining languages. The resulting cor-
pus comprises approximately 16B tokens spanning diverse medical subdomains and typologically
varied languages. For evaluation, we use the multilingual section of the MMedBench test set to
measure multilingual medical capability, and MMMLU (Hendrycks et al., 2020) to assess multilingual
general capability. Finally, we report English and Chinese general capabilities using TruthfulQA,
MMLU, CMMLU, and CEval.
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Table 24: Layer-importance rankings for General, Math, Medicine, and calibrated variants (lower
index = higher importance).

Setting Layer Importance Ranking

General 0, 2, 1, 5, 4, 3, 6, 7, 9, 8, 15, 16, 10, 11, 13, 26, 20, 17, 14, 21, 24, 12, 18, 19, 22, 25, 27, 23
Math 0, 2, 9, 4, 3, 1, 5, 6, 16, 8, 15, 11, 7, 17, 21, 13, 10, 20, 24, 12, 18, 14, 19, 22, 26, 27, 23, 25
Medicine 2, 0, 5, 6, 4, 1, 7, 9, 3, 17, 11, 15, 21, 10, 8, 16, 14, 13, 12, 18, 20, 24, 19, 26, 22, 23, 27, 25
Math (Calibrated) 16, 15, 6, 8, 27, 24, 7, 9, 5, 14, 4, 11, 10, 18, 19, 0, 20, 21, 23, 12, 22, 13, 26, 17, 3, 2, 25, 1
Medicine (Calibrated) 16, 24, 6, 7, 15, 5, 23, 9, 10, 8, 11, 4, 14, 18, 19, 20, 21, 0, 27, 12, 2, 3, 22, 25, 17, 13, 1, 26

Table 23 presents the multilingual medical and general-capability evaluation results. A clear pattern
emerges in the Japanese subset of MMedBench, where both PT-Full and Replay obtain the
strongest scores among all methods. This aligns with the fact that the Japanese portion exhibits
a relatively large distributional shift, and full-parameter as well as replay-based strategies tend to
absorb such shifts more directly, yielding higher task-specific performance. However, this adaptation
is accompanied by a noticeable decline in multilingual general capability and in CN/EN evaluations.

In contrast, ADEPT maintain consistently stronger CN/EN general performance, showing minimal
degradation on TruthfulQA, MMLU, CMMLU, and CEval. Among all evaluated methods, ADEPT
achieves the most balanced multilingual behavior. Its importance-aware expansion and decoupled
tuning effectively limit overfitting to individual languages while preserving broad generaliza-
tion, resulting in stable improvements across multilingual medical benchmarks and multilingual as
well as CN/EN general tasks.

R DOMAIN-CRITICAL OR GENERAL-NONCRITICAL: WHICH LAYERS
SHOULD BE EXPANDED?

Motivation for Expanding General-Noncritical Layers. The design choice in ADEPT to ex-
pand layers that are least important for the general domain is grounded in several considerations.
First, injecting new domain knowledge is relatively easy for gradient-based optimization, whereas
catastrophic forgetting is far more harmful and can substantially degrade model abilities; prior
work (Dai et al., 2022b; Geva et al., 2021a) has shown that domain-specific fine-tuning may improve
in-domain performance but often causes large drops in general skills. Thus, ADEPT intentionally
minimizes interference with general-critical parameters. Second, new domain-specific information
may overwrite existing domain knowledge (e.g., medical factual updates), meaning that even ac-
curately identifying domain-important layers does not guarantee preservation of previously learned
domain-specific representations. In contrast, general-critical layers correspond to knowledge that
must remain stable, making them a more reliable target for protection. Third, domain-important lay-
ers frequently overlap with general-critical layers due to shared semantic structures across domains,
so expanding them still risks inducing forgetting. Finally, in practical settings, high-quality domain
data may be insufficient to reliably identify domain-critical units, whereas general-noncritical units
provide a safe and universal expansion region that works consistently across different domains.

Probing and Expanding Domain-Critical Layers. To analyze whether expanding domain-
critical layers could further improve adaptation, we first probe the importance distribution for the
mathematics and medical domains and examine their overlap with the general-critical set. The prob-
ing procedure follows exactly the same strategy used for identifying general-critical layers. For the
Medical domain, the probe corpus consists of 500 Chinese and 500 English samples drawn from the
training split of MMedBench; for the Mathematics domain, we use the math-5004 dataset.

Table 24 reports the probed layer-importance rankings for the General, Math, and Medical do-
mains. We observe substantial overlap across these three distributions, with early layers consis-
tently ranked as highly important in all domains. This pattern indicates that early transformer layers
encode fundamental semantic representations shared across tasks and domains. As a result, directly
expanding domain-important layers would risk interfering with these shared representations,
making them unsuitable as expansion targets during domain-specific continual pretraining.

4https://huggingface.co/datasets/HuggingFaceH4/MATH-500
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Table 25: Comparison of Math-domain and General performance between domain-critical expan-
sion (calibrated) and least-general-critical expansion (default ADEPT) on Qwen3-1.7B-Base.
All metrics are mapped to [0, 100]. Best and second-best results per column are marked in bold and
underline, respectively.

Math-Domain Benchmarks General Benchmarks

Method GPQA GSM+ GSM8K ARC-e ARC-c BBH TQA-MC1 TQA-MC2 CEval HellaSwag MMLU CMMLU

Qwen3-1.7B-Base 26.12 50.16 57.62 81.44 51.19 53.05 32.19 48.80 65.53 49.15 62.57 66.86
ADEPT (least-general-critical expansion) 31.03 54.83 70.51 82.48 52.62 54.40 33.66 50.00 66.27 49.17 62.62 67.06
ADEPT (domain-critical expansion) 31.79 52.47 71.02 81.78 53.84 55.26 32.82 48.36 65.16 48.83 61.35 66.26

Table 26: Comparison of Medical-domain and General performance between domain-critical expan-
sion (calibrated) and least-general-critical expansion (default ADEPT) on Qwen3-1.7B-Base.
All metrics are mapped to [0, 100]. Best and second-best results per column are marked in bold and
underline, respectively.

Medical-Domain Benchmarks General Benchmarks

Method PubMedQA CMB-Clin MedQA MMCU CMB TQA-MC1 TQA-MC2 CEval HellaSwag MMLU CMMLU

Qwen3-1.7B-Base 69.20 – 48.39 69.17 63.67 32.19 48.80 65.53 49.15 62.57 66.86
ADEPT (least-general-critical expansion) 69.60 53.84 50.75 71.98 65.43 34.39 51.05 66.64 49.28 62.80 66.89
ADEPT (domain-critical expansion) 67.00 52.92 49.70 72.55 66.82 32.31 48.30 66.90 48.80 61.69 66.15

Therefore, we introduce an importance calibration technique: for each layer we subtract its general-
domain importance rank from its domain-specific importance rank, and use this calibrated score
to identify layers that are important for the target domain but not important for the general do-
main(see the calibrated results in Table 24). We then perform layer expansion on this calibrated
domain-important subset, while keeping the same decoupling strategy as in ADEPT. In subsequent
experiments, we refer to this variant as domain-critical expansion.

Table 25 and Table 26 summarize the empirical results comparing calibrated domain-critical ex-
pansion with the original ADEPT strategy of expanding the least important layers for the general
domain, across both Mathematics and Medical CPT settings. We observe that domain-critical expan-
sion yields slightly stronger domain-knowledge injection, demonstrating that focusing on domain-
specific importance can indeed enhance in-domain adaptation. However, this improvement consis-
tently comes at the cost of greater degradation on general benchmarks. This behavior reflects an
inherent trade-off between aggressive domain adaptation and preservation of broad general abilities.

These findings reaffirm the motivation behind ADEPT’s original design: expanding the least im-
portant layers for the general domain minimizes interference with general-critical parameters
and reduces the risk of catastrophic forgetting. While domain-critical expansion is a useful alterna-
tive when stronger domain specialization is desired, the general-noncritical strategy offers a more
balanced and stable solution. We have therefore included the domain-critical expansion variant as
an optional configuration in the released ADEPT codebase to support both adaptation preferences.

In the figures below, we present the domain importance profiles across all layers for both the medical
and mathematical domains, including both the original (uncalibrated) and calibrated attention vari-
ants. Here, parameter importance may be more sensitive to fine-grained calibration, so we primarily
focus on layer importance. We can observe that without calibration, the similarity in importance dis-
tribution across general, math, and medicine domains is remarkably high. We can observe that the
early layers related to semantic understanding are of paramount importance across all tasks. Notably,
from a layer-wise perspective, the medical domain exhibits important layers distributed throughout
all layers, likely because medical tasks demand a complex combination of reasoning, factual recall,
and contextual understanding. In contrast, the mathematical domain shows a concentration of im-
portance in the middle or slightly earlier-middle layers, suggesting that the core computational and
deductive processes for mathematical reasoning are primarily localized in these regions.
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(a) Llama3-8B-Base on Math (raw importance)
(b) Llama3-8B-Base on Math (calibrated impor-
tance)

(c) Llama3-8B-Base on Medical (raw importance)
(d) Llama3-8B-Base on Medical (calibrated im-
portance)

Figure 16: Importance visualization for Llama3-8B-Base across Math and Medical domains, with
and without calibration.
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(a) Qwen3-1.7B-Base on Math (raw importance)
(b) Qwen3-1.7B-Base on Math (calibrated impor-
tance)

(c) Qwen3-1.7B-Base on Medical (raw impor-
tance)

(d) Qwen3-1.7B-Base on Medical (calibrated im-
portance)

Figure 17: Importance visualization for Qwen3-1.7B-Base across Math and Medical domains, with
and without calibration.
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(a) Qwen3-4B-Base on Math (raw importance)
(b) Qwen3-4B-Base on Math (calibrated impor-
tance)

(c) Qwen3-4B-Base on Medical (raw importance)
(d) Qwen3-4B-Base on Medical (calibrated im-
portance)

Figure 18: Importance visualization for Qwen3-4B-Base across Math and Medical domains, with
and without calibration.

55



2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

(a) Qwen3-8B-Base on Math (raw importance)
(b) Qwen3-8B-Base on Math (calibrated impor-
tance)

(c) Qwen3-8B-Base on Medical (raw importance)
(d) Qwen3-8B-Base on Medical (calibrated im-
portance)

Figure 19: Importance visualization for Qwen3-8B-Base across Math and Medical domains, with
and without calibration.
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Table 27: Comparison of Math-domain and General performance between different zero-
Initialization strategies on Qwen3-1.7B-Base. All metrics are mapped to [0, 100]. Best and
second-best results per column are marked in bold and underline, respectively.

Math-Domain Benchmarks (%) General Benchmarks (%)

Method GPQA GSM+ GSM8K ARC-e ARC-c BBH TQA-MC1 TQA-MC2 CEval HellaSwag MMLU CMMLU

Qwen3-1.7B-Base 26.12 50.16 57.62 81.44 51.19 53.05 32.19 48.80 65.53 49.15 62.57 66.86
ADEPT 31.03 54.83 70.51 82.48 52.62 54.40 33.66 50.00 66.27 49.17 62.62 67.06
ADEPT up projection 29.01 53.14 71.11 82.10 51.62 51.82 32.68 47.92 66.34 48.54 62.32 66.72
ADEPT gate projection 26.89 54.19 69.58 81.81 51.79 52.53 33.29 47.88 66.20 48.61 62.28 66.33

S ANALYSIS OF ZERO-INITIALIZATION STRATEGIES IN MLP EXPANSION:
UP-PROJECTION, DOWN-PROJECTION, AND GATE PROJECTION

S.1 PRELIMINARY OBSERVATION: DOMINANT IMPORTANCE OF MLPS AND DIFFERENT
ROLES OF PROJECTIONS.

The dominance of MLP layers observed in Figure 2 is not merely a consequence of their param-
eter scale, but also reflects their intrinsic representational role in storing and conveying factual
knowledge, as supported by a growing body of interpretability research. Prior work has shown
that feed-forward networks in transformers behave as key-value memories (Geva et al., 2021b), that
individual “knowledge neurons” in FFNs encode relational and entity-level facts (Dai et al., 2022a),
and that modifying mid-layer FFNs can directly alter factual outputs during generation (Meng et al.,
2022). Additional studies further demonstrate that specific MLP pathways are repeatedly reused
when reasoning with particular facts (Yao et al., 2024), reinforcing the view that MLPs serve as
central repositories of semantic and factual information. Complementing this, large-scale analy-
ses indicate that the factual capacity of MLPs grows linearly with parameter count (Nichani et al.,
2025), underscoring that their quantitative dominance aligns with their qualitative representational
role. Together, these findings explain why ADEPT’s importance probe naturally highlights MLPs as
high-value components for preserving and modifying general-domain competence.

Building on this understanding, zero-initializing the MLP down-projection (the output projection)
emerges as a principled and effective design choice. First, this choice is consistent with established
model-expansion techniques such as LLaMA-Pro, which similarly employ zero-initialized output
projections to guarantee strict function preservation. Second, zeroing the down-projection ensures
that the replicated MLP branch remains a lossless adapter, preserving the original key–value map-
pings without interfering with existing knowledge; formal justification is provided in Appendix F.
Third, zero initialization actively facilitates knowledge acquisition: because ADEPT’s decoupled
update mechanism assigns learning rates inversely proportional to parameter importance, zeroing
the new projection reduces its initial importance and thereby increases its learning rate. This allows
the expanded region to rapidly absorb new information, matching the established view that MLPs act
as the primary storage units for factual knowledge . Finally, zero-initializing the down-projection is
particularly suitable for domain-specific knowledge updates. Since the down-projection corresponds
to the “value” component of the MLP memory , resetting it permits efficient learning of new values
while preserving the semantic keys encoded by the up-projection. This structure is desirable for
controlled knowledge rewriting (e.g., updating medical facts), where modifying values while main-
taining stable keys is essential. In contrast, zeroing the gate projection provides minimal semantic
capacity for learning, and zeroing the up-projection disrupts key retrieval, making both alternatives
less suitable for reliable and interpretable knowledge injection.

In summary, the empirical importance of MLPs, their theoretically grounded role as key-value mem-
ories, and the optimization dynamics introduced by ADEPT jointly motivate zero-initializing the
down-projection as the most principled and effective strategy for stable, function-preserving model
expansion.

S.2 EXPERIMENT ON DIFFERENT LAYER EXPANSION STRATEGIES

To validate the correctness of our theoretical conjecture above, we employed different initialisation
methods for layer expansion.
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Table 28: Comparison of Medicine-domain and General performance between different zero-
Initialization strategies on Qwen3-1.7B-Base. All metrics are mapped to [0, 100]. Best and
second-best results per column are marked in bold and underline, respectively.

Medical-Domain Benchmarks (%) General Benchmarks (%)

Method PubMedQA CMB-Clin MedQA MMCU CMB BBH TQA-MC1 TQA-MC2 CEval HellaSwag MMLU CMMLU

Qwen3-1.7B-Base 69.20 — 48.39 69.17 63.67 53.05 32.19 48.80 65.53 49.15 62.57 66.86
ADEPT 69.60 53.84 50.75 71.98 65.43 52.96 34.39 51.05 66.64 49.28 62.80 66.89
ADEPT up projection 72.60 53.12 48.47 71.62 65.04 52.56 33.29 48.93 66.57 48.56 62.57 67.04
ADEPT gate projection 68.00 52.76 49.18 71.16 64.39 52.57 32.93 47.83 65.97 48.51 62.60 67.02

In our experiments, we observe that zero-initializing either the MLP up-projection or down-
projection yields consistently strong performance across both mathematical and medical bench-
marks, whereas zeroing the gate projection leads to a clear degradation in accuracy (Tables 27 and
28). This discrepancy arises from the distinct functional roles these projections play within the MLP
and their interaction with the key–value structure of knowledge storage.

The up- and down-projections jointly form the semantic key–value mapping of the MLP: the up-
projection builds high-dimensional semantic keys, while the down-projection retrieves values asso-
ciated with those keys. Zero-initializing either side preserves the original key–value mapping of the
pretrained MLP.

• When the down-projection is zeroed, the expanded branch produces no output at initializa-
tion, thus strictly maintaining functional equivalence with the original model. Meanwhile,
the up-projection remains intact and continues to generate meaningful keys, enabling the
expanded subspace to learn new value information. This behavior aligns with prior prelim-
inary research on controlled knowledge injection and with theoretical views of MLPs as
fact-storage modules.

• When the up-projection is zeroed, the semantic keys of the expanded branch are reinitial-
ized, while the original MLP’s key–value mapping remains untouched. Although this limits
the ability of the expanded dimensions to encode richer key structures, the overall perfor-
mance remains comparable to zero-down initialization, consistent with the small empirical
gap observed in Tables 27 and 28.

In contrast, the gate projection plays a fundamentally different role from the up- and down-
projections, which primarily modulate the dynamic importance of activation channels and govern
amplitude-level feature selection, rather than providing a semantic space suitable for storing or mod-
ifying knowledge. Zeroing the gate projection, therefore, does not offer the expanded dimensions
any meaningful representational capacity for knowledge injection or rewriting. This misalignment
is reflected in the empirical results: zero-gate consistently underperforms zero-up and zero-down
across mathematical reasoning tasks and medical tasks in Tables 27 and 28. In contrast, zero-up
and zero-down preserve the core semantic pathways of the MLP, enabling the expanded dimensions
to learn new information effectively. Consequently, these results reinforce the distinct functional
decomposition of MLPs into key–value mapping and gating components in our preliminaries, and
they offer practical guidance for selecting initialization strategies in ADEPT’s layer expansion.
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