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ABSTRACT

Deep learning (DL) methods have become the state-of-the-art for reconstructing
sub-sampled magnetic resonance imaging (MRI) data. However, studies have
shown that these methods are susceptible to small adversarial input perturbations,
or attacks, resulting in major distortions in the output images. Various strategies
have been proposed to reduce the effects of these attacks, but they require re-
training and may lower reconstruction quality for non-perturbed/clean inputs. In
this work, we propose a novel approach for mitigating adversarial attacks on MRI
reconstruction models without any retraining. Based on the idea of cyclic mea-
surement consistency, we devise a novel mitigation objective that is minimized in
a small ball around the attack input. Results show that our method substantially
reduces the impact of adversarial perturbations across different datasets, attack
types/strengths and PD-DL networks, and qualitatively and quantitatively outper-
forms conventional mitigation methods that involve retraining. We also introduce
a practically relevant scenario for small adversarial perturbations that models im-
pulse noise in raw data, which relates to herringbone artifacts, and show the appli-
cability of our approach in this setting. Finally, we show our mitigation approach
remains effective in two realistic extension scenarios: a blind setup, where the
attack strength or algorithm is not known to the user; and an adaptive attack setup,
where the attacker has full knowledge of the defense strategy.

1 INTRODUCTION

Magnetic resonance imaging (MRI) is an essential imaging modality in medical sciences, providing
high-resolution images without ionizing radiation, and offering diverse soft-tissue contrast. How-
ever, its inherently long acquisition times may lead to patient discomfort and increased likelihood
of motion artifacts, which degrade image quality. Accelerated MRI techniques obtain a reduced
number of measurements below Nyquist rate and reconstruct the image by incorporating supple-
mentary information. Parallel imaging, which is the most clinically used approach, leverages the
inherent redundancies in the data from receiver coils (Pruessmann et al., 1999), while compressed
sensing (CS) utilizes the compressibility of images through linear sparsifying transforms to achieve
a regularized reconstruction (Lustig et al., 2007; Jung et al., 2009). Recently, deep learning (DL)
methods have emerged as the state-of-the-art for accelerated MRI, offering superior reconstruction
quality compared to traditional techniques (Hammernik et al., 2018; Knoll et al., 2020a; Akçakaya
et al., 2022). In particular, physics-driven DL (PD-DL) reconstruction has become popular due to
their improved generalizability and performance (Hammernik et al., 2018; Aggarwal et al., 2019).

While PD-DL methods significantly outperform traditional MRI reconstruction techniques, these
approaches have been shown to be vulnerable to small adversarial perturbations (Goodfellow et al.,
2015; Moosavi-Dezfooli et al., 2016), invisible to human observers, resulting in significant varia-
tions in the network’s outputs (Antun et al., 2020).Various strategies to improve the robustness of
PD-DL networks have been proposed to counter adversarial attacks in MRI reconstruction (Cheng
et al., 2020; Calivá et al., 2021; Jia et al., 2022; Raj et al., 2020; Liang et al., 2023). However, all
these methods require retraining of the network, incurring a high computational cost, while also
having a tendency to lead to additional artifacts for clean/non-attack inputs (Tsipras et al., 2019).

In this work, we propose a novel mitigation strategy for adversarial attacks on DL-based MRI recon-
struction, which does not require any retraining. Our approach utilizes the idea of cyclic measure-
ment consistency (Zhao & Hu, 2008; Kim et al., 2023; Tachella et al., 2022; Zhang et al., 2024) with
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synthesized undersampling patterns. The overarching idea for cyclic measurement consistency is to
simulate new measurements from inference results with a new forward model that is from a similar
distribution as the original forward model, thus consistent with the original inference. This idea has
been used to improve parallel imaging (Zhao & Hu, 2008), then rediscovered in the context of DL
reconstruction training (Kim et al., 2023; Tachella et al., 2022; Zhang et al., 2024) and uncertainty
guidance (Zhang & Akçakaya, 2024). In our work, we use this idea in a completely novel direc-
tion to characterize and mitigate adversarial attacks. Succinctly, without an attack, reconstructions
on synthesized measurements should be cycle-consistent, while with a small adversarial perturba-
tion, there should be large discrepancies between reconstructions from actual versus synthesized
measurements. We use this consistency to devise an objective function over the network input to
effectively mitigate adversarial perturbations. Our contributions are as follows:

• We propose a novel mitigation strategy for adversarial attacks, which optimizes cyclic measure-
ment consistency over the input within a small ball without requiring any retraining.

• We show that the mitigation strategy can be applied in a manner that is blind to the size of the
perturbation or the algorithm that was used to generate the attack.

• For the first time, we provide a realistic scenario for small adversarial attacks in MRI recon-
struction, related to impulse noise in k-space, associated with herringbone artifacts (Stadler et al.,
2007), as a sparse & bounded adversarial attack. We show our method also mitigates such attacks.

• Our method readily combines with existing robust training strategies to further improve recon-
struction quality of DL-based MRI reconstruction under adversarial attacks.

• Our results demonstrate effectiveness across various datasets, PD-DL networks, attack types and
strengths, and undersampling patterns, outperforming existing methods qualitatively and quanti-
tatively, without affecting the performance on non-perturbed images.

• Finally, we show that the physics-driven nature of our method makes it robust even to adaptive
attacks, where the attacker is aware of the defense strategy and finds the worst-case perturbation
that maximize its effectiveness in bypassing the defense algorithm.

2 BACKGROUND AND RELATED WORK

2.1 PD-DL RECONSTRUCTION FOR ACCELERATED MRI

In MRI, raw measurements are collected in the frequency domain, known as the k-space, using
multiple receiver coils, where each coil is sensitive to different parts of the field-of-view. Accelerated
MRI techniques acquire sub-sampled data, yΩ = EΩx + n, where EΩ ∈ CM×N is the forward
multi-coil encoding operator, with M > N in the multi-coil setup (Pruessmann et al., 1999), Ω is
the undersampling pattern with acceleration rate R, n is measurement noise, and x is the image to
be reconstructed. The inverse problem for this acquisition model is formulated as

argmin
x
∥yΩ −EΩx∥22 +R(x) (1)

where the first quadratic term enforces data fidelity (DF) with the measurements, while the sec-
ond term is a regularizer, R(·). The objective in Eq. (1) is conventionally solved using iterative
algorithms (Fessler, 2020) that alternate between DF and a model-based regularization term.

On the other hand, PD-DL commonly employs a technique called algorithm unrolling (Monga et al.,
2021), which unfolds such an iterative reconstruction algorithm for a fixed number of steps. Here,
the DF is implemented using conventional methods with a learnable parameter, while the proximal
operator for the regularizer is implemented implicitly by a neural network (Hammernik et al., 2023).
The unrolled network is trained end-to-end in a supervised manner using fully-sampled reference
data (Hammernik et al., 2018; Aggarwal et al., 2019) using a loss of the form:

argmin
θ

E
[
L
(
f(zΩ,EΩ;θ),xref

)]
, (2)

where zΩ = EH
Ω yΩ is the zerofilled image that is input to the PD-DL network; f(·, ·;θ) is the

output of the PD-DL network, parameterized by θ, in image domain; L(·, ·) is a loss function;
xref is the reference image. In this work, we unroll the variable splitting with quadratic penalty
algorithm (Fessler, 2020), as in MoDL (Aggarwal et al., 2019).
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Figure 1: Overview of the proposed mitigation strategy. a) If there is an adversarial attack, the
k-space corresponding to the reconstructions of MRI data synthesized from previous DL model
outputs will be disrupted. b) This idea is used to devise a novel loss function to find a “corrective”
perturbation around the input that ensures cyclic measurement consistency.

2.2 ADVERSARIAL ATTACKS IN PD-DL MRI RECONSTRUCTION

Adversarial attacks create serious challenges for PD-DL MRI reconstruction, where small, visually
imperceptible changes to input data can lead to large errors in the reconstructed image (Zhang et al.,
2021; Antun et al., 2020; Calivá et al., 2021). These find the worst-case degradation r within a small
ℓp ball that will lead to the largest perturbation in the output of the network (Antun et al., 2020):

arg max
r:||r||p≤ϵ

L
(
f(zΩ + r,EΩ;θ), f(zΩ,EΩ;θ)

)
. (3)

We note that this attack calculation is unsupervised, which is the relevant scenario for MRI
reconstruction (Jia et al., 2022; Zhang et al., 2021), as the attacker cannot know the fully-sampled
reference for a given undersampled dataset. In MRI reconstruction, ℓ∞ perturbations are commonly
used in image domain (Zhang et al., 2021; Antun et al., 2020; Liang et al., 2023; Jia et al., 2022),
while ℓ2 perturbations are used in k-space (Raj et al., 2020) due to scaling differences between
low and high-frequency in Fourier domain. In this work, we concentrate on the former, while
examples for the latter are provided in Appendix D.7. We also note that image domain attacks can
be converted to k-space as: w = (EH

Ω )†r = EΩ(E
H
ΩEΩ)

−1r, since M > N for multi-coil MRI
acquisitions (Pruessmann et al., 1999). Note w is only non-zero at Ω, and its zerofilled image is
EH

Ωw = r, as expected. In other words, ℓ∞ attacks have k-space representations, where only the
acquired locations Ω are perturbed, aligning with the underlying physics of the problem.

Adversarial attacks are typically calculated using a gradient-based strategy (Goodfellow et al., 2015;
Mkadry et al., 2018), where the input is perturbed in the direction of maximal change within the ℓ∞
ball. In this study, we use iterative projected gradient descent (PGD) (Mkadry et al., 2018), as it leads
to more drastic perturbations than the single-step fast gradient sign method (FGSM) (Goodfellow
et al., 2015). Further results with FGSM are included in Appendix D.6. Finally, we note that neural
network based attacks have also been used (Raj et al., 2020), but these are mainly preferred for
reduced computation time in training, and often fail to match the degradation caused by iterative
optimization-based techniques (Jaeckle & Kumar, 2021).

2.3 DEFENSE AGAINST ADVERSARIAL ATTACKS IN MRI RECONSTRUCTION

Adversarial training (AT) incorporates an adversarial term in the training objective for robust train-
ing, and has been used both in the image domain (Jia et al., 2022) or k-space (Raj et al., 2020). The
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two common approaches either enforce perturbed outputs to the reference (Jia et al., 2022):

min
θ

E
[

max
∥r∥∞≤ϵ

L[fθ(zΩ + r,EΩ;θ),xref)]
]

(4)

or aim to balance normal and perturbed training (Raj et al., 2020):

min
θ

E
[

max
∥r∥∞≤ϵ

L[fθ(zΩ,EΩ;θ),xref)] + λL[fθ(zΩ + r,EΩ;θ),xref)]
]
, (5)

where λ is a hyperparameter controlling the trade-off. While such training strategies improve robust-
ness against adversarial attacks, it often comes at the cost of reduced performance on non-perturbed
inputs (Tsipras et al., 2019). Another recent method for robust PD-DL reconstruction proposes the
idea of smooth unrolling (SMUG) (Liang et al., 2023). SMUG (Liang et al., 2023) modifies de-
noised smoothing (Salman et al., 2020), introduces robustness to a regularizer part of the unrolled
network. Each unrolled unit of SMUG performs:

x(i+1)
s = argmin

x
∥EΩx

(i)
s − yΩ∥22 + λ∥x− Eη[Dθ(x

(i)
s + η)]∥22 (6)

where Dθ represents the denoiser network with parameters θ, and η ∼ N (0, σ2I) is random Gaus-
sian noise. During the training, SMUG (Liang et al., 2023) incorporates P Monte Carlo sampling
to smooth the denoiser outputs, averaging them before entering the next DF block.

2.4 WHY ARE ADVERSARIAL ATTACKS IMPORTANT IN DL MRI RECONSTRUCTION?

Non-zero probability of worst-case perturbations. MRI reconstruction pipelines are closed pro-
prietary systems (Winter et al., 2024), thus it is unlikely that an adversary may successfully inject
adversarial perturbations during this process. Nonetheless, adversarial attacks provide a controlled
means to understand the worst-case stability and overall robustness of DL-based reconstruction sys-
tems (Antun et al., 2020; Gottschling et al., 2025; Zhang et al., 2021; Han et al., 2024; Alkhouri
et al., 2024). It has been argued both empirically (Antun et al., 2020) and theoretically (Gottschling
et al., 2025) that worst-case perturbations are not rare events. In particular, if one samples a new
input from a small ball around the worst-case perturbation this still leads to a failed reconstruction
(Antun et al., 2020). Recent work further shows that sampling from Gaussian noise, i.e. the thermal
noise model in MRI, leads to such an instability with non-zero probability (Gottschling et al., 2025).

Connection to herringbone artifacts. Apart from Gaussian noise, there are several other causes
of perturbations in an MRI scan, including body motion (Zaitsev et al., 2015) or hardware issues
(Kashani et al., 2020), which are hard to model mathematically in general, but whose combined
effect may lead to similar instabilities for DL-based reconstruction (Antun et al., 2020). One such
hardware-related issue is electromagnetic spikes from the gradient power fluctuation or inadequate
room shielding, resulting in impulse noise in k-space, which manifest as herringbone artifacts in
image domain (Stadler et al., 2007; Jin et al., 2017). When the impulse intensities are high, these
artifacts are visible even in fully-sampled data. However, lower intensity impulses may adversely
affect DL reconstruction. For the first time, we show this using a sparse and bounded attack model.

Understanding broader perturbations. Adversarial perturbations and mitigation algorithms, like
ours, are critical to understand the robustness of DL reconstruction models in important scenarios,
such as performance for rare pathologies (Muckley et al., 2021). However, these physiological
changes are much harder to model and simulate, unlike adversarial attacks, which provide insights
into worst-case stability. Finally, we note that our mitigation algorithm is also applicable to unrolled
networks in general, and may have applications in broader computational imaging scenarios.

3 PROPOSED METHOD FOR TRAINING-FREE MITIGATION OF ADVERSARIAL
ATTACKS IN PD-DL MRI

3.1 ATTACK PROPAGATION IN SIMULATED K-SPACE

The idea behind our mitigation strategy stems from cyclic measurement consistency with synthe-
sized undersampling patterns, which has been previously used to improve calibration/training of
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MRI reconstruction models (Zhao & Hu, 2008; Kim et al., 2023; Tachella et al., 2022; Zhang &
Akçakaya, 2024; Zhang et al., 2024). For reconstruction purposes, a well-trained model should
generalize to undersampling patterns with similar distributions as the acquisition one (Knoll et al.,
2020a). To this end, let {∆n} be undersampling patterns drawn from a similar distribution as Ω,
including same acceleration rate, similar underlying distribution, e.g. variable density random, and
same number of central lines. Further let

x̃Ω = f(zΩ,EΩ;θ) (7)

be the reconstruction of the acquired data. We simulate new measurements ỹ∆i
from x̃ using the

encoding operator E∆n
with the same coil sensitivity profiles as EΩ, and let z∆i

= EH
∆i

ỹ∆i
be the

corresponding zerofilled image. Then the subsequent reconstruction

x̃∆i
= f(z∆i

,E∆i
;θ) (8)

should be similar to x̃Ω. In particular, we evaluate the similarity over the acquired k-space locations,
Ω, as we will discuss in Section 3.2. However, if there is an attack on the acquired lines, either
generated directly in k-space or in image domain as discussed in Section 2.2, then this consistency
with synthesized measurements are no longer expected to hold, as illustrated in Fig. 1a.

This can be understood in terms of what the PD-DL network does during reconstruction as it alter-
nates between DF and regularization. The DF operation will ensure that the network is consistent
with the input measurements, yΩ, or equivalently the zerofilled image, zΩ. If there is no adversarial
attack, we expect the output of a well-trained PD-DL network to be consistent with these measure-
ments, while also showing no sudden changes in k-space (Knoll et al., 2020a). On the other hand, if
there is an attack, the output will still be consistent with the measurements, as the attack is designed
to be a small perturbation on yΩ or zΩ, and thus the small changes on these lines will be imper-
ceptible. Instead, the attack will affect all the other k-space locations ΩC , the complement of the
acquired index set, leading to major changes in these lines for the output of the PD-DL network, as
depicted in Fig. 1a. Thus, when we resample a new set of indices ∆i that includes lines from ΩC ,
under attack the next level reconstruction x̃∆i

will no longer be consistent with the original k-space
data yΩ, as measured through ||yΩ−EΩx̃∆i

||2. The distortion in the k-space will further propagate
as we synthesize more levels of data and reconstruct these, if there is an adversarial attack. The
following theorem further confirms this intuition:

Theorem 1. Let yΩ and ỹΩ = yΩ+w be the clean and perturbed measurements, respectively, and
let x and x̃ denote the corresponding outputs of the PD-DL network. Then

∥EΩ(x̃− x)∥2 ≤ C∥w∥2, (9)

where C is a function of the smallest and largest singular values of EΩ and EΩC , a constant char-
acterizing the high-frequency energy of the smooth coil sensitivity maps, the learned DF penalty
parameter in MoDL, the number of unrolls, and the Lipschitz constant of the proximal network.

Proof and details on the constants, are given in Appendix G. Since ∥x̃ − x∥22 = ∥EΩ(x̃ − x)∥22 +
∥EΩC (x̃−x)∥22, the theorem implies the residual error on the complementary set ΩC must be large.

This description of the attack propagation suggests a methodology for detecting such attacks; how-
ever, this is not the focus of this paper. As discussed in Appendix D.4, mitigation can be applied on
all inputs, regardless of whether they have been attacked, as the algorithm does not degrade the re-
construction if the input is unperturbed. Thus, to keep the exposition clearer, we focus on mitigation
for the reminder of the paper, and a threshold-based detection scheme is discussed in Appendix C.

3.2 ATTACK MITIGATION WITH CYCLIC CONSISTENCY

Based on the characterization of the attack propagation, we next introduce our proposed training-
free mitigation strategy. We note that adversarial attacks of Section 2.2 all aim to create a small
perturbation within a ball around the original input. Here the size of the ball specifies the attack
strength, the particular algorithm specifies how the attack is generated within the given ball, and the
attack domain/norm specifies the type of ℓp ball and whether it is in k-space or image domain.

Succinctly, our mitigation approach aims to reverse the attack generation process, by searching
within a small ball around the perturbed input to find a clear input. The objective function for this
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task uses the aforementioned idea of cyclic measurement consistency, and is given as

arg min
r′:||r′||p≤ϵ

E∆

[∥∥∥(EH
Ω )†(zΩ + r′)−EΩf

(
EH

∆

(
E∆f(zΩ + r′,EΩ;θ) + ñ

)
,E∆;θ

)∥∥∥
2

]
, (10)

where r′ is a small “corrective” perturbation and zΩ+r′ corresponds to the mitigated/corrected input.
The first term, (EH

Ω )†(zΩ+r′) is the minimum ℓ2 k-space solution that maps to this zerofilled image
(Zhang et al., 2021). The second term is the corresponding k-space values at the acquired indices Ω
after two stages of cyclic reconstruction. Note a small noise term, ñ, is added to the synthesized data
to maintain similar signal-to-noise-ratio (Zhang et al., 2024; Knoll et al., 2019). The expectation is
taken over undersampling patterns ∆ with a similar distribution to the original pattern Ω.

The objective function is solved using a reverse PGD approach, as detailed in Algorithm 1. Note
the algorithm performs the expectation in Eq. (10) over K sampling pattern {∆k}Kk=1. Notably, our
reverse PGD performs a gradient descent instead of the ascent in PGD (Mkadry et al., 2018), and
includes a projection on to the ϵ ball to ensure the solution remains within the desired neighborhood.

Algorithm 1 Attack Mitigation

Require: ϵ, α, zpertΩ ,EΩ, {E∆k
}Kk=1, f(·, ·;θ) ▷ Inputs

Ensure: Clean version of zpertΩ ▷ Mitigate attack on input
1: z̃Ω = zpertΩ
2: repeat
3: Loss = 0
4: for k = 1 to K do
5: ỹΩ = (EH

Ω )†z̃Ω
6: ˜̃yΩ = EΩf

(
EH

∆k
(E∆k

f(z̃Ω,EΩ;θ) + ñ),E∆k
;θ

)
7: lossk = ∥ỹΩ − ˜̃yΩ∥2 ▷ Eq. 10
8: Loss = Loss + lossk
9: end for

10: grad = 1
K∇z̃Ω

Loss
11: z̃Ω = z̃Ω − α · sgn(grad)
12: z̃Ω = clipzpert

Ω ,ϵ(z̃Ω) ▷ Projection to ϵ ball
13: until Converge

Finally, this algorithm uses the
strength of the attack, but it is practi-
cally beneficial to mitigate the attack
without it, as this will not always be
available to the end user. In this blind
setup, we additionally optimize its in-
put parameters ϵ and α jointly with
Eq. (10) in an iterative manner. First,
we decrease ϵ with a linear scheduler
for a fixed α, starting from a large ball
until convergence. Subsequently, we
fix ϵ and decrease α similarly. The
alternating process can be repeated,
though in practice, one stage is suf-
ficient. Finally, for blind mitigation,
we always use ℓ∞ ball, even for ℓ2
attacks in k-space discussed in Ap-
pendix E, as it contains the ℓ2 ball of
the same radius.

Figure 2: Representative reconstruction results for Cor-PD knee, and Ax-FLAIR brain MRI Datasets
at R = 4. The attack inputs lead to severe disruption in the baseline MoDL reconstruction. Adver-
sarial training improves these, albeit suffering from blurriness. SMUG fails to eliminate the attack.
The proposed strategy reduces the artifacts and maintains sharpness. Furthermore it can be com-
bined with the other strategies for further gains (last two columns).
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3.3 MITIGATION PERFORMANCE ON ADAPTIVE ATTACKS

Recent works suggest that a good performance on iterative optimization-based attacks may not be a
good indicator of robustness, as the class of adaptive attacks can jointly deceive the baseline (recon-
struction) network and bypass the defense once the attacker is aware of the defense strategy (Carlini
& Wagner, 2017). Consequently, they have become the standard when evaluating defenses (Tramer
et al., 2020). To generate adaptive attacks, our mitigation in Algorithm 1 needs to be incorporated
into the attack generation objective Eq. (3). To simplify the notation, we define our mitigation
function based on Eq. (10) as

g(zΩ) ≜ min
r′:||r′||p≤ϵ

E∆

[∥∥∥(EH
Ω )†(zΩ + r′)−EΩf

(
EH

∆

(
E∆f(zΩ + r′,EΩ;θ) + ñ

)
,E∆;θ

)∥∥∥
2

]
which leads to the adaptive attack generation objective:

arg max
r:||r||p≤ϵ

L
(
f(zΩ + r,EΩ;θ), f(zΩ,EΩ;θ)

)
+ λ g(zΩ + r), (11)

where the first term finds a perturbation that fools the baseline, as in Eq. (3), while the second term
integrates our mitigation. Thus, maximizing Eq. (11) leads to a perturbation r that not only misleads
the baseline reconstruction, but also maximizes the mitigation loss, resulting in an adaptive attack.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets. Multi-coil coronal proton density (Cor-PD) knee and axial FLAIR (Ax-FLAIR) brain
MRI from fastMRI database (Knoll et al., 2020b), respectively with 15 and 20 coils, were used.
Retrospective equispaced undersampling was applied at acceleration R = 4 to the fully-sampled
data with 24 central auto-calibrated signal (ACS) lines.

Baseline Network. The PD-DL network used in this study was a modified version of MoDL
(Aggarwal et al., 2019), unrolled for 10 steps, where a ResNet regularizer was used (Yaman et al.,
2022b). Further details about the architecture and training are provided in Appendix A. All compar-
ison methods were implemented using this MoDL network to ensure a fair comparison, except for
the results on the applicability of our method to different PD-DL networks.

Attack Generation Details. PGD (Mkadry et al., 2018) was used to generate the attacks in an un-
supervised manner, as detailed earlier for a realistic setup. Additional results with supervised attacks
and FGSM are provided in Appendix D.5 and D.6, respectively, and lead to the same conclusions.
Complex images were employed to generate the attack and gradients, and MSE loss was used.

Comparison Methods. We compared our mitigation approach with existing robust training meth-
ods, including adversarial training (Jia et al., 2022; Raj et al., 2020) and Smooth Unrolling
(SMUG) (Liang et al., 2023). Adversarial training was implemented using Eq. (4) (Jia et al., 2022),
while results using Eq. (5) (Raj et al., 2020) is provided in Appendix D.3. Further implementation
details for all methods are provided in Appendix A.

Figure 3: Performance across different attack strengths. Both Adversarial Training and SMUG fail
to perform well against attack strengths they were not trained on. In contrast, the proposed training-
free mitigation shows good performance across perturbation levels.

7
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Cyclic Consistency Details. The synthesized masks {∆k} were generated by shifting the equis-
paced undersampling patterns by one line while preserving the ACS lines (Zhang et al., 2024). In
this setting, the number of synthesized masks is R− 1.

Adaptive Attack Details. Direct optimization of Eq. (11) requires the solution of a long compu-
tation graph and multiple nested iterations of neural networks. However, this may induce gradient
obfuscation, leading to a false sense of defense security Athalye et al. (2018). Thus, we followed
the gradient computation strategy of (Chen et al., 2023), by unrolling g(·) in Eq. (11) first (Yang
et al., 2022), and then backpropagating through the whole objective. Hence, we let gT (·) be the T -
step unrolled version of g(·), and report performance for different T . Additional information about
checkpointing for large T , tuning of λ and noise precalculation for ñ are provided in Appendix F.

4.2 ATTACK MITIGATION RESULTS

Performance Across Datasets. We first study our approach and the comparison methods on knee
and brain MRI datasets at R = 4. Fig. 2 shows that baseline PD-DL (MoDL) has substantial
artifacts under attack. SMUG improves these but still suffers from noticeable artifacts. AT re-
solves the artifacts, albeit with blurring. Our proposed approach successfully mitigates the attacks

Table 1: SSIM/PSNR on all test slices.

Dataset Metric SMUG Adversarial
Training (AT)

Proposed Method +
MoDL / SMUG / AT

Cor-PD PSNR 28.22 33.99 35.14 / 34.85 / 36.57
SSIM 0.79 0.92 0.92 / 0.92 / 0.94

Ax-FLAIR PSNR 29.67 34.03 36.41 / 34.67 / 35.63
SSIM 0.84 0.91 0.95 / 0.92 / 0.94

without any retraining, while main-
taining sharpness. We note our
method can also be combined with
SMUG and AT to further improve
performance. Tab. 1 summarizes the
quantitative metrics for all test slices,
consistent with visual observations.

Performance Across Attack Strengths and Blind Mitigation. We next test the meth-
ods across different attack strengths, ϵ ∈ {0.01, 0.02}. Fig. 3 shows the results for both
attack strengths using the robust training methods trained with ϵ = 0.01 and proposed mit-
igation. As in Fig. 2, SMUG has artifacts at ϵ = 0.01, which gets worse at ϵ = 0.02.
Similarly, AT struggles at ϵ = 0.02, since it was trained at ϵ = 0.01, leading to visible
artifacts (arrows). On the other hand, our training-free mitigation is successful at both ϵ.

Figure 4: Proposed mitigation approach is readily applicable to
various PD-DL networks for MRI reconstruction.

This is expected, since no
matter how big the ϵ ball is,
our mitigation explores the
corresponding vicinity of the
perturbed sample to optimize
Eq. (10). Further quantitative
results are in Appendix D.1.
Implementation details and
results on blind mitigation
without knowledge of attack
type/strength are in Appendix E.

Performance Across Different
PD-DL Networks. Next, we
hypothesize that our method is
agnostic to the PD-DL architec-
ture. To test this hypothesis, we
perform our mitigation approach
for different unrolled networks,
including XPDNet (Ramzi et al.,
2020), Recurrent Inference Ma-
chine (Lønning et al., 2019), E2E-VarNet (Sriram et al., 2020), and Recurrent-VarNet (Yiasemis
et al., 2022b). The implementation details are discussed in Appendix A.1. Fig. 4 depicts represen-
tative images for clear and perturbed inputs, and our proposed cyclic mitigation results. Overall, all
networks show artifacts for perturbed inputs, while our proposed cyclic mitigation algorithm works
well on all of them to reduce these artifacts. Further quantitative metrics for these networks are in
Appendix D.2.
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Figure 5: Mitigation of a herringbone (ℓ0) perturbation.

Performance Against Herringbone
Artifacts. Next, we assess the miti-
gation algorithm against an ℓ0 attack,
simulating small spikes in k-space,
which may occur due to hardware is-
sues (Stadler et al., 2007). Fig. 5
shows how a few small spikes can
lead to instabilities in MoDL, similar
to herringbone artifacts. Our mitiga-
tion effectively removes these. Fur-
ther implementation details and quantitative results are provided in the Appendix B.

Table 2: PSNR for adaptive attacks on 75 Cor-PD
slices. Parentheses in the last column indicate the mean
iteration for convergence of the iterative algorithm.

Attack Type #Unrolls
(T)

Baseline
Reconstruction

Unrolled
Algorithm 1

Iterative
Algorithm 1

Non-adaptive N/A 16.16 N/A 34.69

Adaptive 10 19.23 29.47 34.34 (119 iters)
Adaptive 25 19.32 32.79 34.16 (111 iters)
Adaptive 50 19.96 33.39 34.14 (105 iters)
Adaptive 100 21.02 33.78 34.01 (100 iters)

Performance Against Adaptive Attacks.
Tab. 2 shows the performance of our miti-
gation algorithm for adaptive attacks with
T ∈ {10, 25, 50, 100} unrolls. Due to
the high computational cost of generating
adaptive attacks for T = 100, we ran the
adaptive attack mitigation on a subset of
75 Cor-PD slices, which is why the non-
adaptive attack results have lower PSNR
than the full test set in Tab. 1. For mitigation of adaptive attacks, we ran both an unrolled version
(used to generate the adaptive attack) and an iterative version (ran until convergence) of Algorithm 1.
Average number of iterations for the latter are reported in paranthesis in the last column. Further vi-
sual examples are in Appendix F. We observe the following: 1) Baseline reconstructions have higher
PSNR under adaptive attacks than non-adaptive attacks, as adaptive attacks balance two terms, re-
ducing its focus on purely destroying the reconstruction. This effect increases as T increases, as
expected. 2) For few number of unrolls, adaptive attack degrades performance if mitigated with the
unrolled version. For T < 50, the unrolled mitigation struggles (∼ 5dB degradation for T = 10)
with the adaptive attack designed for matched number of unrolls. 3) Our mitigation readily resolves
adaptive attacks if run until convergence. For large T ≥ 50, unrolled mitigation also largely resolves
adaptive attacks. 4) Even though adaptive attacks with large T lead to a weaker baseline attack, they
degrade our mitigation more, even though the overall degradation is slight even at T = 100 (.68dB).

These observations all align with the physics-driven design of the mitigation: The PD-DL recon-
struction network ends with data fidelity, i.e. the network output is consistent with (perturbed) yΩ.
Since the attack is a tiny perturbation on data at Ω, it will cause misestimation of lines in ΩC instead
(as in Fig. 1a and Theorem 1). Our method synthesizes new measurements at ∆ from the latter, and
uses it to perform a second reconstruction, which are mapped to Ω and checked for consistency with
yΩ. Thus, the only way the mitigation can be fooled is if this cyclic consistency is satisfied, which
in turn indicates that the intermediate recon on ΩC is good, effectively mitigating the attack.

4.3 ABLATION STUDY

We perform an ablation study on how many levels of reconstructions are needed for mitigation. In
this case, multiple steps of reconstructions and data synthesis can be used to update the loss function
in Eq. (10). Results, given in Appendix H, show that enforcing cyclic consistency with multiple
levels degrades performance and requires more computational resources. Hence, using 2-cyclic
reconstruction stages is the best choice from both performance and computational perspectives.

5 CONCLUSIONS

In this study, we proposed a method to mitigate small imperceptible adversarial input perturbations
on DL MRI reconstructions, without requiring any retraining. We showed our method is robust
across different datasets, networks, attack strengths/types, including the practical herringbone attack.
Our method can be combined with existing robust training methods to further enhance their perfor-
mance. Additionally, our technique can be performed in a blind manner without attack-specific
information, such as attack strength or type. Finally, owing to its physics-based design, our method
is robust to adaptive attacks, which have emerged as the recent standard for robustness evaluation.
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A IMPLEMENTATION DETAILS

A.1 PD-DL NETWORK DETAILS

MoDL implementation is based on (Aggarwal et al., 2019), unrolling variable splitting with
quadratic penalty algorithm (Fessler, 2020) for 10 steps. The proximal operator for the regularizer
is implemented with a ResNet (Yaman et al., 2020; Hosseini et al., 2020; Demirel et al., 2023b), and
data fidelity term is implemented using conjugate gradient, itself unrolled for 10 iterations (Aggar-
wal et al., 2019). The ResNet comprises input and output convolutional layers, along with 15 resid-
ual blocks. Each residual block has a skip connection and two convolutional blocks with a rectified
linear unit in between. At the end of each residual block, there is a constant scaling layer (Timofte
et al., 2017), and the weights are shared among different blocks (Aggarwal et al., 2019).

XPDNet implementation is based on (Yiasemis et al., 2022a) and follows (Ramzi et al., 2020),
which unrolls the primal dual hybrid gradient (PDHG) algorithm (Chambolle & Pock, 2011) for 10
steps. Each step contains k-space and image correction in sequence, where form the data fidelity and
regularizer respectively. XPDNet applies the undersampling mask on the subtraction of the interme-
diate k-space with original measurements in k-space correction step. Image correction/regularizer
is implemented using multi-scale wavelet CNN (MWCNN) (Liu et al., 2019) followed by a con-
volutional layer. Inspired by PDNet (Adler & Öktem, 2018), it uses a modified version of PDHG
to utilize a number of optimization parameters instead of just using the previous block’s output. 5
primal and 1 dual variables are used during the unrolling process, and the weights are not shared
across the blocks.

RIM implementation based on (Yiasemis et al., 2022a) as described in (Lønning et al., 2019) unrolls
the objective for 16 time steps, where each utilizes a recurrent time step. Each time step takes the
previous reconstruction, hidden states and the gradient of negative log-likelihood (as data fidelity
term) and outputs the incremental step in image domain to take using a gated recurrent units (GRU)
structure (Cho, 2014), where it utilizes depth 1 and 128 hidden channels. Parameters are shared
across different recurrent blocks.

E2E-VarNet uses the publicly available implementation (Sriram et al., 2020), and like variational
networks, implements an unrolled network to solve the regularized least squares objective using
gradient descent. The algorithm is unrolled for 12 steps. Each step combines data fidelity with
a regularizer. Data fidelity term applies the undersampling mask after subtraction of intermediate
k-space from the measurements, while learned regularizer is implemented via U-Net (Zhou et al.,
2018), where it uses 4 number of pull layers and 18 number of output channels after first convolution
layer. Weights are not shared across blocks.

Recurrent VarNet uses the publicly available implementation (Yiasemis et al., 2022b) estimates a
least squares variational problem by unrolling with gradient descent for 8 steps. Each iteration is
a variational block, comprising data fidelity and regularizer terms. Data fidelity term calculates the
difference between current level k-space and the measurements on undersampling locations, where
regulizer utilizes gated recurrent units (GRU) structure (Cakır et al., 2017). Each unroll block uses
4 of these GRUs with 128 number of hidden channels for regularizer. Parameters are not shared
across different blocks (Yiasemis et al., 2022b).

As described in the main text, all methods were retrained on the respective datasets with supervised
learning for maximal performance. Unsupervised training that only use undersampled data (Ya-
man et al., 2020; 2022a; Akçakaya et al., 2022) can also be used, though this typically does not
outperform supervised learning.

A.2 COMPARISON METHODS AND ALGORITHMIC DETAILS

SMUG (Liang et al., 2023) trains the same PD-DL network we used for MoDL using smoothing
via Eq. (6). Smoothing is implemented using 10 Monte-Carlo samples (Liang et al., 2023), with a
noise level of 0.01, where data is normalized in image domain.

Adversarial Training (AT) method also uses the same network structure as MoDL. Here, each
adversarial sample is generated with 10 iterations of PGD (Mkadry et al., 2018) with ϵ = 0.01 and
α = ϵ/5. Data are normalized to [0, 1] in image domain.
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B HERRINGBONE ARTIFACT DETAILS

Herringbone artifacts can arise from several factors, including electromagnetic spikes by gradient
coils, fluctuating in power supply, and RF pulse dependencies (Stadler et al., 2007). These factors
introduce impulse-like spikes in the k-space, and if their intensities are high enough, they mani-
fest as herringbone-like artifacts across the entire image, even for fully-sampled acquisitions (Jin
et al., 2017). Here, we hypothesized that DL-based reconstruction of undersampled datasets may
be affected by such spikes even if the intensities are not visibly apparent in the zerofilled images
or in fully-sampled datasets. The standard spike modeling for herringbone artifacts uses a sum of
impulses, as follows:

ỹΩ = yΩ +

D∑
j=1

ξjδij , (12)

where δij is a delta/impulse on the ith
j index (i.e. the canonical basis vector eij ), ξj is the strength

of the spike on the ith
j index, and D is the number of spikes. Thus, we use the same model and use

a sparse and bounded adversarial attack for DL-based reconstructions. In particular, we randomly
select the locations of {ij}Dj=1 with heavier sampling in low-frequencies to highlight the traditional
herringbone-type artifacts visibly. While selecting the high-frequency locations is also feasible, the
resulting artifacts appear less sinusoidal. Let whb =

∑D
j=1 ξjδij with unknown spike strength ξj ,

we optimize:

arg max
whb:||whb||∞≤ϵ

L
(
f(EH

Ω (yΩ +whb),EΩ;θ), f(E
H
Ω yΩ,EΩ;θ)

)
. (13)

This was solved using PGD (Mkadry et al., 2018) with 10 iterations, D = 25, and ϵ = 0.06·max(yΩ),
ensuring that the resulting zerofilled image remained visibly identical to the clean zerofilled image.

C ATTACK DETECTION USING SIMULATED K-SPACE

The description of the attack propagation suggests a methodology for detecting these attacks. Noting
that the process is best understood in terms of consistency with acquired data in k-space, we perform
detection in k-space instead of attempting to understand the differences between subsequent recon-
struction in image domain, which is not clearly characterized. In particular, we define two stages of
k-space errors in terms of yΩ for x̃Ω and x̃∆i

, which were defined in Eq. (7)-Eq. (8) as follows:

ζ1 =
||yΩ −EΩx̃Ω||2
||yΩ||2

, ζ2 =
||yΩ −EΩx̃∆i

||2
||yΩ||2

. (14)

Figure 6: Propagation of the attack in Fig. 1a mo-
tivates tracking the normalized ℓ2 error on sam-
pled k-space locations after reconstruction; a large
change in this error indicates an attack.

From the previous description ζ1 is expected to
be small with or without attack. However, ζ2
is expected to be much larger under the attack,
while it should be almost at the same level as
ζ1 without an attack. Thus, we check the dif-
ference between these two normalized errors,
ζ2 − ζ1, and detect an attack if it is greater than
a dataset-dependent threshold. The process is
depicted in Fig. 6, and summarized in Algo-
rithm 2. Fig. 7 shows how ζ2 − ζ1 changes
for knee and brain datasets for both PGD and
FGSM attacks on normalized zerofilled images
for ϵ ∈ {0.01, 0.02}. It is clear that cases with
an attack vs. non-perturbed inputs are sepa-
rated by a dataset-dependent threshold. Note
that given the sensitivity of PD-DL networks to
SNR and acceleration rate changes, this dataset
dependence is not surprising (Knoll et al., 2019), and can be evaluated offline for a given trained
model.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D QUANTITATIVE RESULTS AND REPRESENTATIVE EXAMPLES

Algorithm 2 Attack Detection

Require: zΩ,EΩ,E∆, f(·, ·;θ), τ ▷ Input parameters
Ensure: True or False, presence of attack ▷ Output

1: x̃Ω ← f(zΩ,EΩ;θ)
2: y∆i ← E∆x̃Ω + ñ
3: x̃∆ ← f(EH

∆y∆,E∆;θ)

4: ζ1 = ||yΩ−EΩx̃Ω||2
||yΩ||2

5: ζ2 = ||yΩ−EΩx̃∆||2
||yΩ||2

6: If ζ2 − ζ1 ≥ τ True, else False

Due to space constraints, the figures
and results in the main text focused
on ℓ∞ attacks generated with unsu-
pervised PGD (Mkadry et al., 2018),
as mentioned in Section 4.1. This
section provides the corresponding
results on related attack types men-
tioned in Section 4.2.

D.1 HIGHER
ATTACK STRENGTHS

Figure 7: Attack detection for different datasets. ζ2 − ζ1
for different attack types are clearly separated from the no
attack case. For stronger attack, ϵ = 0.02, ζ2 − ζ1 is more
easily distinguishable. The violin plots show the median and
[25,75] percentile in darker colors for easier visualization.

Tab. 3 summarizes the quantitative
population metrics for different at-
tack strengths, ϵ, complementing the
representative examples shown in
Fig. 3 of Section 3.2. These quanti-
tative results align with the visual ob-
servations.

D.2 QUANTITATIVE METRICS
FOR DIFFERENT NETWORKS

Tab. 4 shows that the quantitative
metrics for the proposed attack miti-
gation strategy improve substantially
compared to the attack for all un-
rolled networks, aligning with the ob-
servations in Fig. 4.

D.3 DIFFERENT ADVERSARIAL
TRAINING METHODS

This subsection provides an alterna-
tive implementation of the adversar-
ial training based on Eq. (5) with λ =
1 to balance the perturbed and clean
input, instead of Eq. (4) that was provided in the main text as a comparison. Results in Tab. 5 show
that the version in the main text outperforms the alternative version provided here.

D.4 MITIGATION PERFORMANCE ON NON-PERTURBED DATA

Table 3: Different attack strengths: Quantitative met-
rics on all test slices of Cor-PD.

ϵ Metric SMUG Adversarial
Training (AT)

Proposed Method +
MoDL / SMUG / AT

0.01
PSNR 28.22 33.99 35.14/34.85/36.57
SSIM 0.79 0.92 0.92/0.92/0.94

0.02
PSNR 21.86 30.91 33.25/32.97/33.42
SSIM 0.61 0.88 0.91/0.91/0.93

Hence, the mitigation does not degrade the
quality of the clean inputs, and does not in-
cur large computational costs, as it effec-
tively converges in a single iteration. Vi-
sual examples of this process are depicted
in Fig. 8. As discussed in Section 3.1,
Algorithm 1 does not compromise the re-
construction quality if the input is unper-
turbed. This is because, with an unperturbed input image in Eq. (10), the intermediate reconstruction
remains consistent with the measurements. As a result, the objective value remains close to zero and
stays near that level until the end, indicating the mitigation starts from an almost optimal point of
the objective function.

D.5 SUPERVISED ATTACKS
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Figure 8: Performance of mitigation algorithm on non-perturbed data. The mitigation effectively
converges in one iteration. As shown, the algorithm maintains the quality of the clean input.

Table 4: Quantitative metrics for different unrolled networks.

Network Metric With Attack After Proposed Mitigation

XPDNet PSNR 25.49 29.43
SSIM 0.67 0.80

RIM PSNR 19.63 34.81
SSIM 0.39 0.90

E2E-VarNet PSNR 24.24 29.52
SSIM 0.59 0.84

Recurrent VarNet PSNR 22.27 29.24
SSIM 0.52 0.84

Table 5: Comparison of adversarial training approaches.

Method Metric With Attack

AT with Eq. (4) PSNR 33.99
SSIM 0.92

AT with Eq. (5) PSNR 33.61
SSIM 0.91

AT with Eq. (4) + Proposed Method PSNR 36.17
SSIM 0.94

AT with Eq. (5) + Proposed Method PSNR 36.91
SSIM 0.94

While Section 4.1 and 4.2 fo-
cused on unsupervised attacks
due to practicality, here we pro-
vide additional experiments with
supervised attacks, even though
they are not realistic for MRI
reconstruction systems. Tab. 6
shows that the proposed method
is equally efficient in mitigating
supervised attacks.

D.6 FGSM ATTACK

In Section 4.1, we used the PGD
method for attack generation due
to the more severe nature of the
attacks. Here, we provide ad-
ditional experiments with FGSM
attacks (Goodfellow et al., 2015).
Tab. 7 show results using SMUG, adversarial training and our method with FGSM attacks with
ϵ = 0.01. Corresponding visual examples are depicted in Fig. 9, showing that all methods perform
better under FGSM compared to PGD attacks.

D.7 ℓ2 ATTACKS IN K-SPACE Table 6: Mitigation with supervised vs. unsupervised at-
tacks.

Attack Method Metric Proposed Method

Unsupervised Attack PSNR 32.44
SSIM 0.91

Supervised Attack PSNR 32.55
SSIM 0.91

Table 7: FGSM attack: Quantitative metrics on all test slices
of Ax-FLAIR.

Metric SMUG Adversarial
Training (AT)

Proposed Method +
MoDL / SMUG / AT

PSNR 36.24 35.61 36.24 / 35.13 / 36.06
SSIM 0.93 0.93 0.93 / 0.92 / 0.93

ℓ2 attacks have been used in k-space
due to the large variation in inten-
sities in the Fourier domain (Raj
et al., 2020). To complement the
ℓ∞ attacks in image domain that was
provided in the main text, here we
provide results for ℓ2 attacks in k-
space, generated using PGD (Mkadry
et al., 2018) for 5 iterations, with
ϵ = 0.05 · ||yΩ||2 and α = ϵ

5 .
Fig. 10 depicts representative re-

Figure 9: Performance of different methods under FGSM attack.
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constructions with ℓ2 attacks in k-space using baseline MoDL, adversarial training and our
proposed mitigation. Tab. 8 shows comparison of adversarial training and the proposed
method on Cor-PD datasets, highlighting the efficacy of our method in this setup as well.
We also emphasize that the ℓ∞ image domain attacks are easily converted to attacks in k-
space, which are non-zero only on indices specified by Ω, as described in Section 2.2.

D.8 NON-UNIFORM UNDERSAMPLING PATTERNS

Figure 10: Representative reconstructions under
ℓ2 attack on measurements with ϵ = 0.05 · ∥yΩ∥2
using MoDL, adversarial training, and our pro-
posed method.

While the main text focused on uniform under-
sampling, which is considered to be a harder
problem (Hammernik et al., 2018; Yaman et al.,
2020), here we describe results with random
undersampling, generated with a variable den-
sity Gaussian pattern (Aggarwal et al., 2019).

All networks were retrained for such undersam-
pling patterns. The attack generation and our
mitigation algorithms were applied without any
changes, as described in the main text. Fig. 11
shows representative examples for different methods, highlighting that our method readily extends
to non-uniform undersampling patterns. Tab. 9 summarizes the quantitative metrics for this case,
showing that the proposed mitigation improves upon MoDL or adversarial training alone.

E BLIND MITIGATION

Table 8: Mitigation results for ℓ2 attacks in k-
space.

Method Metric ℓ2 Attack

Adversarial Training PSNR 33.37
SSIM 0.88

Proposed Method + MoDL PSNR 34.21
SSIM 0.89

This section shows that in addition to not need-
ing any retraining for mitigation, our approach
does not require precise information about how
the attack is generated. Fig. 12 shows how
the reconstruction improves as we use linear
schedulers to find the optimum (ϵ, α) values.
Top row shows the tuning of ϵ while we keep
the step size α constant. After the cyclic loss in Eq. (10) stops decreasing, we fix this ϵ̃ for
the projection ball. The bottom row shows the effect of decreasing α for this ϵ̃ value, from
right to left. For this purpose, our linear scheduler for ϵ starts from 0.04 and decreases by
0.01 each step until the cyclic loss stabilizes. Then, step size α starts from a large value of
ϵ and gradually decreases, ending at ϵ/3.5 until the cyclic loss shows no further improvement.

Table 9: Attacks on non-uniform undersampling.

Metric MoDL Adversarial
Training (AT)

Proposed Method +
MoDL / AT

PSNR 22.30 32.22 31.82 / 34.12
SSIM 0.62 0.89 0.87 / 0.92

As mentioned in the main text, since the ℓ∞ ball
contains the ℓ2 ball of the same radius, and not-
ing the unitary nature of the Fourier transform
in regards to ℓ2 attack strengths in k-space ver-
sus image domain, we always use the ℓ∞ ball
for blind mitigation. Furthermore, we provide
results for using blind mitigation with ℓ2 attacks in k-space.

Figure 11: Representative reconstructions for non-uniform undersampling reconstructions using
MoDL, adversarial training, and our proposed method under adversarial attacks.
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Figure 12: Blind mitigation process of finding the
optimum (ϵ, α) parameters and corresponding re-
sults. Top row shows ϵ optimization for a fixed
α, while the bottom row shows α optimization for
the optimum ϵ. This joint optimization leads to a
1.15dB gain over the initial estimate.

Fig. 13 depicts example reconstructions with ℓ2
attacks in k-space using baseline MoDL and
our blind mitigation approach. Tab. 10 com-
pares our blind mitigation approach to our mit-
igation strategy with known attack type and
level, showing that blind mitigation performs
on-par with the latter for both ℓ2 attacks in k-
space and ℓ∞ attacks in image domain.

F FURTHER
DETAILS ON ADAPTIVE ATTACKS

This section contains more information about
adaptive attack generation and visual examples.
As discused earlier, strong performance against
iterative optimization-based attacks is not nec-
essarily a good indicator of robustness and must be evaluated under adaptive attacks (Qiu et al.,
2020; Guo et al., 2017; Prakash et al., 2018; Xie et al., 2017; Buckman et al., 2018). As mentioned
in the main text, to generate the adaptive attack we unroll Algorithm 1 for T iterations. The mem-
ory requirements of larger T was handled by checkpointing (Chen et al., 2023; Kassis et al., 2024).
Furthermore, the presence of ñ in Eq. (10) may suggest stochasticity in the system (Kassis et al.,
2024). However, ñ is pre-calculated for a given input in our mitigation algorithm, and held constant
throughout the mitigation. To make the adaptive attack as strong as possible, we pass this informa-
tion about ñ to the adaptive attack as well, thus letting it have oracle knowledge about it. Finally,
for maximal performance of the attack, we first tuned λ in Eq. (11) empirically, then generated
the adaptive attacks for T ∈ {10, 25, 50, 100}. Details on tuning of λ and verification of gradient
obfuscation avoidance in our adaptive attacks are detailed below.

F.1 HYPERPARAMETER TUNING FOR ADAPTIVE ATTACKS

Figure 13: Representative reconstructions under
ℓ2 attack using MoDL and our proposed blind mit-
igation.

The parameter λ in eq. (11) balances the two
terms involved in the adaptive attack gener-
ation. A higher λ produces a perturbation
with more focus on bypassing the defense strat-
egy, while potentially not generating a strong
enough attack for the baseline. Conversely, a
small λ may not lead to sufficient adaptivity
in the attack generation. To this end, we com-
puted the population-average PSNRs of the re-
construction after the iterative mitigation algo-
rithm on a subset of Cor-PD for various λ val-
ues for T ∈ {10, 25}, as shown in Tab. 11.
These results show that λ = 5 leads to the most destructive attack against our mitigation algorithm,
and was subsequently used for adaptive attack generation in Section 4.2.

F.2 VERIFICATION OF GRADIENT OBFUSCATION AVOIDANCE

Table 10: Blind mitigation for ℓ2 (k-space, ϵ = 0.05·||yΩ||2)
and ℓ∞ (image domain, ϵ = 0.01) attacks on Cor-PD.

Attack Method Metric Proposed Method
(ℓ∞ attack)

Proposed Method
(ℓ2 attack)

Knowing the Attack PSNR 35.14 34.21
SSIM 0.92 0.89

Blind Mitigation PSNR 34.72 33.73
SSIM 0.92 0.88

While our adaptive attack imple-
ments the exact gradient to avoid
gradient obfuscation (including shat-
tered, stochastic, and vanishing gra-
dients (Athalye et al., 2018)), there
are some methods to verify that
gradients are indeed not obfus-
cated (Athalye et al., 2018). In par-
ticular, we tested two well-established key criteria: 1) One-step attacks should not outperform
iterative-based ones, and 2) Increasing the perturbation bound (i.e. ϵ) should lead to a greater dis-
ruption. Tab. 12 summarizes these two criteria, showing PSNRs of the iterative mitigation algorithm
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Figure 14: Representative examples of the mitigation algorithm outputs for adaptive attacks. The
number of unrolls T ∈ {10, 25, 50, 100} specified for each adaptive attack on the top. The top row is
the baseline reconstruction, where the non-adaptive attack shows more artifacts than adaptive ones,
as expected. The second row shows the mitigation outputs using the unrolled version of Algorithm 1,
where the number of unrolls are matched between the adaptive attack generation and mitigation. At
smaller T values, the unrolled mitigation suffers from performance degradation. Finally, the last row
shows the results of the iterative mitigation algorithm on the adaptive attacks. Iterative mitigation,
when run until convergence, resolves the attacks, albeit with a slight degradation for high T values.
This is consistent with its physics-based design, showing its robustness to adaptive attacks.

output. These demonstrate that a single-step attack cannot surpass the iterative-based ones in terms
of attack success, and similarly, increasing the perturbation bound leads to more severe degradation
with PGD. These sanity checks align with the fact that we used the exact gradient through the steps
described in Section 4.1, validating that gradient obfuscation did not happen in our implementation.

F.3 VISUALIZATION OF ADAPTIVE ATTACKS AND MITIGATION

Table 11: Fine-tuning the λ parameter in Eq. (11)
across T ∈ {10, 25}.

Unrolls λ = 1 λ = 2 λ = 3 λ = 5 λ = 10
T = 10 34.51 34.48 34.41 34.34 34.66
T = 25 34.41 34.36 34.40 34.16 34.47

Table 12: Checking gradient obfuscation on the
Cor-PD dataset over T ∈ {10, 25}.

T
PGD

(ϵ = 0.01)
PGD

(ϵ = 0.02)
FGSM

(ϵ = 0.01)
10 34.34 33.11 35.17
25 34.16 32.77 35.01

Representative examples showing the perfor-
mance of the mitigation algorithm for differ-
ent adaptive attacks generated using Eq. (11)
with the unrolled version of g(·) for T ∈
{10, 25, 50, 100} are provided in Fig. 14. The
first row shows the results of the baseline recon-
struction under both non-adaptive and adaptive
attacks for various T . Consistent with Tab. 2, as
T increases for the adaptive attack, the baseline
deterioration becomes less substantial. The sec-
ond row shows the performance of the mitiga-
tion algorithm when it is unrolled for the same
number of T as in the adaptive attack genera-
tion. In this case, for lower T , the unrolled mitigation has performance degradation, as expected.
Finally, the final row shows results of the iterative mitigation algorithm run until convergence. In all
cases, the iterative mitigation algorithm successfully recovers a clean image, owing to its physics-
based nature, as discussed in Section 4.2. However, we note that though adaptive attacks have milder
effect on the baseline with increasing T , they do deteriorate the iterative mitigation albeit slightly as
a function of increasing T .
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G PROOF OF THEOREM 1

The standard proof techniques for unrolled networks (Liang et al., 2023; Pramanik et al., 2023)
performs an error propagation analysis through the layers of the network in image domain. However,
this is insufficient in our case, as it does not capture differences between the behavior of the k-space
in Ω and ΩC . Thus, here we present a different analysis approach.

We first present some basic notation and assumptions about multi-coil forward operator, EΩ ∈
CM×N (Pruessmann et al., 1999; Lustig & Pauly, 2010; Uecker et al., 2014):

EΩ =


FΩS1

FΩS2

...
FΩSnc

 , (15)

where FΩ is a partial Fourier operator1, Sk ≜ diag(sk) are diagonal matrices corresponding to the
sensitivity map of the kth coil and nc is the number of coils. Note that, by design, coil sensitivity
maps satisfy

∑
k SkS

H
k = I (Uecker et al., 2014; Demirel et al., 2023a). We also define EΩC ∈

CN ·nc−M×N in an analogous manner. Finally, we note that Sk are smooth/low-frequency due to the
physics of the MR acquisition (Pruessmann et al., 1999; Uecker et al., 2014), which will be defined
more concretely below.
Lemma 1.1. Let Sk = diag(sk) be smooth, defined as containing most of their energy in L low-
frequency coefficients in the Fourier domain, i.e.

∑
l/∈[−L/2,L/2−1] |(Fsk)l|2 < ζ, and assume Ω

contains the ACS region with frequencies [−L,L− 1] Then

||EΩE
H
ΩC ||2 < c1

√
ζ + c2ζ

fo constants c1 = 2nc, c2 = nc/
√
N.

Proof. First note that in the single coil case, where nc = 1 and S1 = I, i.e. EΩ = FΩ and
EΩC = FΩC , we trivially have FΩF

H
ΩC = 0 by the orthonormality of the rows of the discrete

Fourier matrix. We will build on this intuition using the smoothness of Sk along the way. To this
end, note

EΩE
H
ΩC =


FΩS1

FΩS2

...
FΩSnc

 [
SH
1 FH

ΩC SH
2 FH

ΩC . . . SH
nc
FH

ΩC

]
(16)

has a block structure with (p, q)th block Bpq given by

Bpq = FΩSpS
H
q FH

ΩC .

Note by block Frobenius inequality

||EΩE
H
ΩC ||22 ≤

∑
p,q

||Bpq||22 (17)

Next, we will consider the norm of the (p, q)th block:

FΩSpS
H
q FH

ΩC = PΩ

(
FSpS

H
q FH

)︸ ︷︷ ︸
≜Cpq

PH
ΩC ,

where Cpq implements a circulant matrix implementing a circular convolution operation with kernel

bpq = F(sp ⊙ s̄q) =
1√
N

Fsp︸︷︷︸
ap

⊛ Fs̄q︸︷︷︸
āq

.

1We will use F ∈ CN×N to denote the full discrete Fourier transform matrix. This allows us to equivalently
define FΩ ≜ PΩF, where PΩ is a binary mask specifying the sampling pattern Ω.
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Here ·̄ denotes elementwise complex conjugation, ⊙ denotes the elementwise Hadamard product
and ⊛ denotes circular convolution. Now note

||Bpq||2 ≤ ||Cpq||2 = max
j
|(bpq)j | = max

j

∣∣∣ 1√
N

∑
l

ap,laq,l−j

∣∣∣
To calculate this last term, we decompose ap and aq into their low-frequency (between
[−L/2, L/2− 1]) and the remaining high-frequency components, noting ||ahigh

k ||22 ≤ ζ. Then

(bpq)j =
1√
N

[
(alow

p ⊛ alow
q )j + (alow

p ⊛ ahigh
q )j + (ahigh

p ⊛ alow
q )j + (ahigh

p ⊛ ahigh
q )j

]
.

Using Cauchy-Schwarz inequality:

|(alow
p ⊛ ahigh

q )j | ≤ ||alow
p ||2||ahigh

q ||2 <
√
ζN.

Similarly for the two high-frequency terms:

|(ahigh
p ⊛ ahigh

q )j | ≤ ||ahigh
p ||2||ahigh

q ||2 < ζ.

Finally the convolution of the two low-frequency terms are supported between [−L,L−1]. Since all
these frequencies are in Ω, then these vanish for the values picked up in Bpq by the corresponding
masks, leading to

||Bpq||2 < 2
√
ζ + ζ/

√
N.

Combining this with Eq. (17) yields

||EΩE
H
ΩC ||2 < nc(2

√
ζ + ζ/

√
N). (18)

Corollary 1.1. Under the same conditions, we have ||EΩc ||2 < ncζ/
√
N.

This corollary is helpful in establishing

||EΩx||22 = ||x||22 − ||EΩCx||22 =⇒ ||x||2 ≤
||EΩx||2√
1− ||EΩC ||22

, (19)

for ncζ <
√
N . Note trivially ||EΩc ||2 ≤ 1 by the properties of the discrete Fourier transform and

since
∑

k SKSH
K = I. We also note in our experiments nc ≤ 20, while

√
N ≥ 320.

Lemma 1.2. EΩ(E
H
ΩEΩ + µI)−1 = (µI+EΩE

H
Ω )−1EΩ

Proof. By Woodbury’s matrix identity, we have

(EH
ΩEΩ + µI)−1 =

I

µ
− I

µ
EH

Ω (µI+EΩE
H
Ω )−1EΩ (20)

Then

EΩ(E
H
ΩEΩ + µI)−1 =

EΩ

µ
− EΩE

H
Ω

µ
(µI+EΩE

H
Ω )−1EΩ

=
(µI+EΩE

H
Ω

µ
− EΩE

H
Ω

µ

)
(µI+EΩE

H
Ω )−1EΩ

= (µI+EΩE
H
Ω )−1EΩ

Proof of Theorem 1. We will next do our error propagation analysis. We will use x = EH
ΩEΩx+

EH
ΩCEΩCx to decompose the contributions from Ω and ΩC frequencies. Note the former are always

brought back close to the measurements due to the presence of DF units, while the latter does not
follow this behavior. Let x(k) and z(k) denote the DF unit output and the proximal operator output
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of the kth unroll of the PD-DL network for the clean input yΩ. Similarly x̃(k) and z̃(k) denote the
DF unit output and the proximal operator output of the kth unroll of the PD-DL network for the
perturbed input yΩ +w. Analogously, we will define y

(k)
Ω = EΩx

(k) and ỹ
(k)
Ω = EΩx̃

(k). We will
also use singular value decompositions for EΩ = UΣΩV

H and EΩC = U′ΣΩCV′H . Finally, we
will denote the largest and smallest singular values of EΩ by σΩ

max and σΩ
min respectively, and those

of EΩC by σΩC

max and σΩC

min analogously. With these in place, we have:∥∥∥(ỹ(k)
Ω − y

(k)
Ω )

∥∥∥
2
=

∥∥∥EΩ(x̃
(k) − x(k))

∥∥∥
2

=
∥∥∥EΩ

(
EH

ΩEΩ + µI
)−1[

(EH
Ω ỹΩ + µz̃(k))− (EH

Ω yΩ + µz(k))
]∥∥∥

2

=
∥∥∥EΩ

(
EH

ΩEΩ + µI
)−1[

EH
Ωw + µ(z̃(k) − z(k))

]∥∥∥
2

=
∥∥∥EΩ

(
EH

ΩEΩ + µI
)−1[

EH
Ωw + µEH

ΩEΩ(z̃
(k) − z(k))

]
+

EΩ

(
EH

ΩEΩ + µI
)−1[

µEH
ΩCEΩC (z̃(k) − z(k))

]∥∥∥
2

≤
∥∥∥EΩ

(
EH

ΩEΩ + µI
)−1[

EH
Ωw + µEH

ΩEΩ(z̃
(k) − z(k))

]∥∥∥
2
+∥∥∥EΩ

(
EH

ΩEΩ + µI
)−1[

µEH
ΩCEΩC (z̃(k) − z(k))

]∥∥∥
2
. (21)

Now we derive a bound for the second term, which characterizes the effect of EΩ on the contribu-
tions from EH

ΩCEΩC :∥∥∥EΩ

(
EH

ΩEΩ + µI
)−1[

µEH
ΩCEΩC (z̃(k) − z(k))

]∥∥∥
2

Lemma 1.2−−−−−−→ =
∥∥∥(µI+EΩE

H
Ω )−1EΩ

[
µEH

ΩCEΩC (z̃(k) − z(k))
]∥∥∥

2

≤ µ
∥∥∥(µI+EΩE

H
Ω )−1

∥∥∥
2

∥∥∥EΩE
H
ΩC

∥∥∥
2

∥∥∥EΩC (z̃(k) − z(k))
∥∥∥
2

≤ µ
∥∥(µI+UΣΩV

HVΣΩU
H)−1

∥∥
2

∥∥EΩE
H
ΩC

∥∥
2
∥EΩC∥2 m

∥∥∥x̃(k−1) − x(k−1)
∥∥∥
2

≤ µ
∥∥U(Σ2

Ω + µI)−1UH
∥∥
2
∥EΩE

H
ΩC∥2 ∥EΩC∥2 m∥x̃

(k−1) − x(k−1)∥2
Corollary 1.1−−−−−−−→ ≤ µ

∥∥(Σ2
Ω + µI)−1

∥∥
2
∥EΩE

H
ΩC∥2

m ∥EΩC∥2√
1− ∥EΩC∥22

∥ỹ(k−1)
Ω − y

(k−1)
Ω ∥2

≤ µ

µ+ (σΩ
min)

2
∥EΩE

H
ΩC∥2

mσΩC

max√
1− σΩC

max

∥ỹ(k−1)
Ω − y

(k−1)
Ω ∥2

Lemma 1.1−−−−−−→ ≤ µ

µ+ (σΩ
min)

2

(
2nc

√
ζ +

ζ√
N

)
mσΩC

max√
1− σΩC

max︸ ︷︷ ︸
αΩ

∥ỹ(k−1)
Ω − y

(k−1)
Ω ∥2 (22)

Next we consider the first term of Eq. (21), which characterizes the effect of EΩ on the contributions
from EH

ΩEΩ:∥∥∥EΩ

(
EH

ΩEΩ + µI
)−1[

EH
Ωw + µEH

ΩEΩ(z̃
(k) − z(k))

]∥∥∥
2

≤
∥∥∥EΩ

(
EH

ΩEΩ + µI
)−1

EH
Ωw

∥∥∥
2
+ µ

∥∥∥EΩ

(
EH

ΩEΩ + µI
)−1

EH
ΩEΩ(z̃

(k) − z(k))
∥∥∥
2

≤
∥∥∥EΩ

(
EH

ΩEΩ + µI
)−1

EH
Ωw

∥∥∥
2
+ µ

∥∥∥EΩ

(
EH

ΩEΩ + µI
)−1

EH
ΩEΩ

∥∥∥
2

∥∥∥(z̃(k) − z(k))
∥∥∥
2

≤
∥∥∥EΩ

(
EH

ΩEΩ + µI
)−1

EH
Ωw

∥∥∥
2
+ µ

∥∥∥EΩ

(
EH

ΩEΩ + µI
)−1

EH
ΩEΩ

∥∥∥
2
m
∥∥∥(x̃(k−1) − x(k−1))

∥∥∥
2
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≤
∥∥∥UΣΩV

H
(
VΣΩU

HUΣΩV
H + µI

)−1

VΣΩU
Hw

∥∥∥
2

+
∥∥∥UΣΩV

H
(
VΣΩU

HUΣΩV
H + µI

)−1

VΣΩU
HUΣΩV

H
∥∥∥
2
m
∥∥∥(x̃(k−1) − x(k−1))

∥∥∥
2

≤ ∥ΣΩ∥22∥(Σ2
Ω + µI)−1∥2∥w∥2 +

m∥ΣΩ∥32∥(Σ2
Ω + µI)−1∥2√

1− ||EΩC ||22

∥∥∥ỹ(k−1)
Ω − y

(k−1)
Ω

∥∥∥
2

≤ (σΩ
max)

2

(σΩ
min)

2 + µ︸ ︷︷ ︸
β

∥w∥2 +
m(σΩ

max)
3

(σΩ
min)

2 + µ
·

√
1

1− (σΩC

max)
2︸ ︷︷ ︸

αΩ

∥∥∥ỹ(k−1)
Ω − y

(k−1)
Ω

∥∥∥
2

(23)

Combining these with Eq. (21), the recursive relation across unrolls is given by:∥∥∥ỹ(k)
Ω − y

(k)
Ω

∥∥∥
2
≤ β||w||2 + (αΩ + αΩC )

∥∥∥ỹ(k−1)
Ω − y

(k−1)
Ω

∥∥∥
2

(24)

Evaluating the recursion through the K unrolls yields:

||EΩ(x̃− x)||2 =
∥∥ỹ(K)

Ω − y
(K)
Ω

∥∥
2
≤

(
β
1− (αΩ + αΩC )K

1− (αΩ + αΩC )
+ (αΩ + αΩC )K

)
∥w∥2 (25)

H ABLATION STUDY

As discussed in Section 4.3, we analyzed the number of reconstruction stages for mitigation. By
extending the number of reconstruction stages, we can reformulate this by updating the second term
in the loss function in Eq. (10) to include more reconstruction stages, for instance with 3 cyclic
stages instead of 2 given in Eq. (10):

arg min
r′:||r′||p≤ϵ

EΓE∆

[∥∥∥∥(EH
Ω )†(zΩ + r′)−

EΩf

(
EH

Γ

(
EΓf

(
EH

∆

(
E∆f(zΩ + r′,EΩ;θ) + ñ)

)
,E∆;θ

)
+ ñ,EΓ

)
;θ

)∥∥∥∥
2

]
. (26)

Figure 15: Ablation study on the number of stages for cyclic
measurement consistency. Two reconstruction levels (left)
outperform deeper variants (middle, right), as additional
stages overly rely on synthesized k-space data.

Empirically, in our implementation,
we carry out the expectation over
all possible permutations without re-
peating any patterns. As a result, the
error propagated to the last stage be-
comes larger, as we rely more on syn-
thesized data. In turn, this makes
the optimization process harder, de-
teriorating the results, as shown in
Fig. 15. Consequently, in addition to
these performance issues, the compu-
tation costs of adding more cyclic re-
construction is often impractical, leading to the conclusion that 2-cyclic stages as in Eq. (10) are
sufficient.
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