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Abstract

Grammatical Error Correction (GEC) enhances001
language proficiency and promotes effective002
communication, but research has primarily cen-003
tered around English. We propose a simple ap-004
proach to multilingual and low-resource GEC005
by exploring the potential of multilingual ma-006
chine translation (MT) models for error correc-007
tion. We show that MT models are not only008
capable of error correction out-of-the-box, but009
that they can also be fine-tuned to even better010
correction quality. Results show the effective-011
ness of this approach, with our multilingual012
model outperforming similar-sized mT5-based013
models and even competing favourably with014
larger models.015

1 Introduction016

Grammatical Error Correction (GEC) systems are017

a vital link between expert language use and clear018

communication, enhancing writing skills and lan-019

guage learning. However, GEC research has pri-020

marily focused on the English language with much021

less coverage for other languages, resulting in022

English-oriented methodologies and data scarcity023

for other languages. This highlights the need to024

diversify GEC research, ensuring that the benefits025

of these systems extend to all languages for a more026

inclusive global linguistic landscape.027

In the evolving multilingual and non-English028

Grammar Error Correction (GEC) landscape, two029

recent notable keywords have risen: the utiliza-030

tion of synthetic data (Náplava and Straka, 2019;031

Náplava et al., 2022) and the integration of pre-032

trained models, particularly the mT5 model (Xue033

et al., 2021; Rothe et al., 2021). The use of mT5034

extends to correcting grammar in various specific035

languages, including Ukrainian, Icelandic, and036

Lithuanian (Palma Gomez et al., 2023; Ingólfsdóttir037

et al., 2023; Stankevičius and Lukoševičius, 2022),038

and serves as an inspiration for other multilingual039

research (Kementchedjhieva and Søgaard, 2023).040

However, achieving substantial performance en- 041

hancements beyond training basic Transformer 042

models necessitates further adjustments, such as 043

the incorporation of high-quality synthetic data, 044

additional information, or the utilization of signifi- 045

cantly larger models. 046

We demonstrate that building upon similarly 047

sized multilingual machine translation (MT) mod- 048

els is more effective than fine-tuning mT5 (Ke- 049

mentchedjhieva and Søgaard, 2023). Previous stud- 050

ies have shown the value of information obtained 051

through machine translation as data or additional 052

hypothesis (Kementchedjhieva and Søgaard, 2023; 053

Palma Gomez et al., 2023; Lichtarge et al., 2019). 054

We revisit the concept of utilizing zero-shot trans- 055

lation for error correction (Korotkova et al., 2019), 056

developing the idea further. 057

We demonstrate that massively multilingual MT 058

models can function as multilingual GEC mod- 059

els, and can be substantially improved further via 060

fine-tuning to error correction data. This approach 061

underscores the potential of multilingual MT mod- 062

els as an even simpler yet effective GEC system, 063

allowing for the integration of standard practices in 064

GEC research. In doing so, we highlight that mul- 065

tilingual MT models acquire valuable information 066

for grammatical error correction and it is possible 067

to leverage this knowledge during training. 068

In our work, we experiment with four languages: 069

English, German, and Czech for comparative pur- 070

poses with other multilingual studies, plus Esto- 071

nian, an underexplored language in terms of error 072

correction with a similarly limited publicly avail- 073

able dataset. As a result, our model achieves higher 074

scores than work based on similar-sized mT5 mod- 075

els and performs competitively with even signifi- 076

cantly larger models. 077

Since large language models have recently 078

showed good performance in several NLP tasks via 079

prompting, we also assess GPT-4’s performance 080

on the GEC task for the four included languages 081
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for comparison. While more sophisticated prompts082

may lead to improved results, results shown by083

GPT-4 are worse than state-of-the-art GEC results,084

and our best results also surpass its performance.085

Thus, our main contributions are:086

• Demonstrating the applicability of massively087

multilingual models as multilingual Grammar088

Error Correction (GEC) systems.089

• Experimental results of tuning the multilin-090

gual MT models with error correction data,091

parallel translation data and combinations of092

both kinds of data.093

• Achieving superior results compared to mod-094

els of similar size based on widely used mT5.095

• Presenting the initial F0.5-scores for Estonian,096

German, and Czech using GPT-4 and updating097

scores for English.098

2 Related work099

The connection between Grammatical Error Cor-100

rection (GEC) and Machine Translation (MT) has101

been significant since Junczys-Dowmunt et al.102

(2018) demonstrated an innovative approach, treat-103

ing GEC as a low-resource MT task by translating104

from erroneous text to corrected text. This work105

marked the first successful implementation of neu-106

ral methods in GEC and subsequently led the field107

to predominantly employ single-direction MT mod-108

els for GEC, which has spread to other pre-trained109

models like T5 (Rothe et al., 2021), as mentioned110

in the introduction.111

These methods require a substantial amount of112

data, leading to the necessity to generate synthetic113

data and the proposal of various enhancements.114

Grundkiewicz et al. (2019) introduced a simple re-115

verse spell-checker idea that has been widely used116

(Flachs et al., 2021; Náplava and Straka, 2019).117

Other methods include using POS tags (Flachs118

et al., 2021), Wikipedia edits, or noisy corpora119

(Lichtarge et al., 2019). Another MT-related ap-120

proach involves using data translated into a pivot121

language and back (Palma Gomez et al., 2023;122

Lichtarge et al., 2019).123

In the state-of-the-art English GEC, a different124

paradigm emerged, with the use of sequence tag-125

ging rather than sequence generation. This ap-126

proach, initially introduced by Omelianchuk et al.127

(2020), employs various transformer encoders for128

tagging errors within sentences and then replaces129

these parts with corrections. While this approach 130

has proven effective for English, attempts to apply 131

it to other languages have yielded less impressive 132

results compared to sequence generation methods 133

(Syvokon and Romanyshyn, 2023). 134

Lately several massively multilingual machine 135

translation models have been released, including 136

m2m100 (Fan et al., 2021), NLLB (NLLB_Team 137

et al., 2022) and MADLAD-400 (Kudugunta et al., 138

2023). In our experiments we make heavy use of 139

the NLLB models. 140

Finally, most recently, large language models 141

have shown capability to correct errors via prompt- 142

ing (Loem et al., 2023; Fang et al., 2023; Coyne 143

et al., 2023). Reported results mostly fall behind 144

GEC-specific approaches. 145

3 Methodology 146

Our methodology is centred around exploiting the 147

zero-shot translation capabilities of multilingual 148

translation models applied to the GEC task. We 149

also explore fine-tuning the translation models 150

on parallel data, synthetic error data and human- 151

annotated error correction data yielding improved 152

performance. Finally, we explore the combination 153

of parallel and error correction data, showing that 154

the benefits of both tasks (translation and error cor- 155

rection) can be combined. 156

3.1 Grammatical Error Correction via 157

Zero-shot Translation 158

We rely on the multilingual machine translation 159

models’ ability to produce zero-shot translation. As 160

exemplified by Johnson et al. (2017), these models 161

can translate between language pairs that have not 162

been seen during training. This quality becomes 163

relevant in the GEC context when we apply the 164

model to monolingual “translation” (for example, 165

English to English), (Korotkova et al., 2019). 166

Work by Korotkova et al. (2019) underscores the 167

capability of monolingual zero-shot translation to 168

rectify grammatical errors, albeit with unnecessary 169

changes. These adjustments are often attributed to 170

the models having learned to translate, which can 171

cause a lack of preserving the source text’s precise 172

linguistic nuances or vocabulary. At the same time, 173

the zero-shot corrections yield a higher recall, as 174

they do not limit themselves with the errors that are 175

present in the directly annotated correction data. 176

Based on the idea of Korotkova et al. (2019) we 177

avoid training translation models from scratch and 178
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use pre-trained multilingual models. Using mul-179

tilingual MT for GEC inherently gives us a base180

multilingual GEC system without further modifica-181

tions. In order to focus on a narrower selection of182

languages we fine-tune the massively multilingual183

models with parallel data for the 4 languages of184

interest and evaluate the effect of fine-tuning. This185

strategy shows fruitful, especially in combination186

with error correction data, described in the next187

subsection.188

3.2 Error Correction Data189

In our approach, we introduce monolingual error190

correction data to multilingual Machine Transla-191

tion (MT) models by fine-tuning the models with192

new monolingual translation directions. This tech-193

nique aligns with the initial proposal by Junczys-194

Dowmunt et al. (2018), which involves training the195

model to translate from erroneous text to correct196

text. This can be achieved either through the use197

of grammatical error correction examples but also198

allows the incorporation of synthetic data.199

However, when fine-tuning multilingual MT200

models with new data, their performance in other201

languages or domains often deteriorates due to202

catastrophic forgetting. This is likely particu-203

larly noticeable when fine-tuning large multilingual204

models exclusively with monolingual translation205

pairs. In such cases, translation quality, including206

zero-shot performance, may decrease significantly,207

leading to the loss of valuable information learned208

during translation training. To address this, we ex-209

periment with combining translation and synthetic210

error data for fine-tuning the model.211

Thus, we introduce monolingual data, including212

synthetic and error correction data, in three distinct213

ways to assess the impact of synthetic pre-training214

and the inclusion of translation data:215

1. Solely fine-tuning with GEC corpora.216

2. Fine-tuning initially with monolingual syn-217

thetic data, followed by GEC corpora.218

3. Fine-tuning initially with a mixture of mono-219

lingual synthetic and parallel translation ex-220

amples, followed by GEC corpora.221

In addition, we investigate the influence of dif-222

ferent monolingual synthetic and parallel transla-223

tion data ratios, aiming to understand their impact224

on model performance. This approach allows us225

to discern the relative benefits of each data type.226

Simultaneously, we explore how the multilingual 227

aspect of our model affects its performance when 228

trained with synthetic data in a single language 229

or across all 4 languages and how monolingual or 230

multilingual GEC tuning impacts the performance. 231

4 Experimental Setup 232

This section presents an overview of our experi- 233

mental setup, covering data sources, models, and 234

evaluation metrics, providing insights into the tech- 235

nical details of our work. 236

4.1 Data 237

We are utilizing three different types of data 238

sources: monolingual text for generating a syn- 239

thetic corpus, parallel machine translation corpora 240

for mixed pretraining, and grammatical error cor- 241

rection examples for fine-tuning. 242

Our monolingual text data is primarily derived 243

from NewsCrawl, which consists of text extracted 244

from online newspapers (Kocmi et al., 2022). We 245

randomly sample six million sentences from the 246

latest data available. For synthetic error genera- 247

tion, we are using the same method proposed by 248

Grundkiewicz et al. (2019), with the modifications 249

and frequencies proposed by Náplava and Straka 250

(2019). For Estonian, we use probabilities 0.6 for 251

replacement, 0.15 for insertion and deletion, 0.05 252

for swap, derived from the training corpus. 253

For our parallel machine translation data, we 254

merge two distinct sources: the Europarl corpus, 255

which features parallel sentences from European 256

Parliament Proceedings (Tiedemann, 2012), and 257

the OpenSubtitles corpus (Lison and Tiedemann, 258

2016). This combination yields a dataset of two 259

million sentences for each language pair, maintain- 260

ing a balance between formal and informal text. 261

When it comes to grammatical error correction 262

(GEC) examples, for English, we focus on two spe- 263

cific datasets. The first dataset is associated with 264

the BEA Shared Task 2019 (Bryant et al., 2019). 265

This particular dataset’s training set comprises lan- 266

guage learners’ text sourced from the Write & Im- 267

prove (W&I) corpus (Yannakoudakis et al., 2018). 268

Additionally, for English, we also make use of the 269

FCE corpus (Yannakoudakis et al., 2011). 270

For Estonian, our source of GEC examples is a 271

language learners’ corpus (UT-L2) (Rummo and 272

Praakli, 2017) that Korotkova et al. (2019) used 273

for testing1. In the case of German, we rely on the 274

1https://github.com/TartuNLP/estgec/tree/main/Tartu_L2_corpus
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Corpus Lang Train
W&I+LOCNESS EN 34,308

FCE EN 28,350
UT-L2 ET 8,935

FM DE 19,237
GECCC CS 66,673

Table 1: Size of grammatical error correction data used
for training.

Falko-Merlin (FM) dataset (Boyd, 2018). Lastly,275

for Czech, we use the recent Grammar Error Cor-276

rection Corpus for Czech (GECCC) (Náplava et al.,277

2022) because it is the latest and most diverse. The278

specifics regarding the number of sentences em-279

ployed from each dataset can be found in Table280

1.281

4.2 Models282

We fine-tune the No Language Left Behind (NLLB)283

models (NLLB_Team et al., 2022) in our experi-284

ments. These models are among the latest mas-285

sively multilingual models, encompassing 202 lan-286

guages and demonstrating strong overall perfor-287

mance. We conduct all our experiments using288

two variants: NLLB 600M-distilled, the small-289

est version and NLLB 1.3B-distilled, the slightly290

larger model. These models are distilled from291

the 54-billion-parameter Mixture-of-Experts model292

(NLLB_Team et al., 2022). All data is also prepro-293

cessed using the NLLB normaliser and Sentence-294

Piece (Kudo and Richardson, 2018).295

For fine-tuning, we employ the Fairseq toolkit296

(Ott et al., 2019). When fine-tuning from the NLLB297

model, we initialize the process with a starting298

learning rate of 1× 10−7 with inverse square root299

scheduler, perform 4000 warmup updates to the300

learning rate 5× 10−4, using a batch size of 4096301

tokens on a single GPU (AMD MI250x), with an302

update frequency of one. We are using Adam op-303

timizer (Kingma and Ba, 2015). In the case of304

models already trained with synthetic or mixed305

data, we continue training with the error examples,306

maintaining the state of the learning rate scheduler.307

We train two sets of models. For exploring the308

incorporation of synthetic data, we train models in-309

volving 1.5M sentences per language for 150k up-310

dates. We train the final models with 6M sentences311

per language and train the models for 600k updates312

for multilingual synthetic training and 150k for313

monolingual. We perform all GEC fine-tuning for314

25 epochs and pick the best epoch checkpoint based315

on the development set using GEC scores specified 316

in the next section. However, it has been found that 317

mixing GEC data with synthetic while fine-tuning 318

helps, our initial experiments suggested otherwise. 319

It needs further investigation, but for now, we opted 320

for exclusively fine-tuning with GEC data. 321

For comparison, we also measure the perfor- 322

mance of GPT-4 (OpenAI, 2023) using the prompt 323

by Coyne et al. (2023). See Appendix A for the 324

exact prompts and other details. 325

4.3 Evaluation 326

We employ two distinct scorers and evaluate our 327

models using six test sets. For the English language, 328

which offers a multitude of corpora and test sets, 329

we selected two test sets and corresponding scor- 330

ers officially paired together. We use the not pub- 331

licly open W&I+LOCNESS test set (Bryant et al., 332

2019), along with the ERRANT scorer (Bryant 333

et al., 2017). Additionally, we utilize the combina- 334

tion of the CoNLL-2014 dataset (Ng et al., 2014) 335

and the MaxMatch (M2) scorer (Dahlmeier and Ng, 336

2012) for the same reason. 337

The evaluation of the Estonian language presents 338

a unique challenge. The only previous work that 339

includes Estonian done by Korotkova et al. (2019) 340

relied on the entire UT-L2 corpus (Rummo and 341

Praakli, 2017) for evaluation. This poses difficul- 342

ties for direct comparisons since we also intend to 343

use the corpus for training. We opted to use the 344

entire corpus for training and dedicate the anno- 345

tated Estonian learner language corpus (Est-L2)2 346

for evaluation with modified MaxMatch scorer3, 347

which considers special annotations from the Est- 348

L2 corpus concerning word order mistakes. 349

For German and Czech, we use standard test 350

sets and the out-of-the-box M2 scorer. Specifically, 351

for German, we use the Falko-Merlin (FM) corpus 352

(Boyd, 2018) and the older AKCES corpus (Ná- 353

plava and Straka, 2019), which most other works 354

have used. Additionally, we employ the newer and 355

more extensive GECCC test set (Náplava et al., 356

2022) for Czech. 357

For evaluation, we tokenized the text using 358

SpaCy4 in the standard configuration for English 359

and German and Stanza for Estonian and Czech 360

(Qi et al., 2020). 361

2https://github.com/tlu-dt-nlp/m2-corpus/
3https://github.com/TartuNLP/estgec/tree/main/

M2_scorer_est
4https://spacy.io/api/tokenizer
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Figure 1: Precision, recall and F0.5-score for models trained with only synthetic, only translation or mixed data
evaluated on English W&I+OCNESS and Czech GECCC development sets. Models are trained with 1.5M sentences
per language.

EN ET DE CS
NLLB (zero-shot) 39.82 39.72 51.6 44.04

NLLB + 1-lang GEC 64.78 51.24 70.9 64.44
NLLB + 4-lang GEC 66.29 51.89 70.01 63.19

NLLB + 1-lang synthetic + 1-lang GEC 66.12 60.58 72.63 68.08
NLLb + 4-lang synthetic + 1-lang GEC 66.60 58.76 72.89 67.35
NLLb + 4-lang synthetic + 4-lang GEC 66.81 59.64 73.32 66.63
NLLB + 4-lang mixed + 1-lang GEC 66.70 60.05 73.72 67.14
NLLB + 4-lang mixed + 4-lang GEC 67.35 60.69 73.94 66.32

Table 2: Comparison of F0.5-scores for models trained using various synthetic and GEC training strategies. The test
sets are W&I+LOCNESS for English, Est-L2 for Estonian, FM for German, and GECCC for Czech. Models are
trained with 6M sentences per language for around 2.5 epochs

5 Results362

We first describe the results of our experiments363

related to mixing data during pre-training, then364

show how different data and pre-training affect365

the model’s behaviour and, lastly, we benchmark366

our models with comparable and state-of-the-art367

research solutions and GPT-4 performance.368

5.1 Pre-training Scenarios369

When training the NLLB model using only syn-370

thetic monolingual data in four different languages,371

we observe a significant increase in precision. How-372

ever, this improvement in precision comes at the373

cost of reduced recall, which rapidly drops (see374

Figure 1). Interestingly, the recall starts to slowly375

recover after the initial drop.376

Continuing training with translation data exclu-377

sively results in relatively stable precision and re-378

call. There is a slight increase in recall for Czech379

but a decrease for English. This could be due to380

the balanced nature of the data, with proportionally 381

less English and more Czech compared to NLLB 382

training. 383

When we combine translation data and mono- 384

lingual synthetic examples, we achieve precision 385

and recall values that fall between the two previ- 386

ous scenarios. While precision is not as high as in 387

the monolingual synthetic scenario, recall remains 388

higher. Based on F0.5-scores, for these languages, 389

a ratio of 75% monolingual synthetic data and 25% 390

parallel data seems to yield the best results out of 391

the three mixed, only synthetic and only parallel 392

translation data, except for Estonian, where using 393

more parallel data leads to better results (see the 394

Appendix B for more details). 395

Moreover, it seems that overall Estonian and 396

Czech benefit more from longer training, while 397

German and especially English improve at a slower 398

pace after rather short training, which indicates that 399

the languages have different optimal pre-training 400

durations. 401
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W&I+LOCNESS CoNLL-2014
P R F0.5 P R F0.5

GPT-4 (zero-shot) 56.68 71.57 59.14 61.96 59.82 61.52
Coyne et al. (2023) GPT-4 2-shot - - 52.79 - - -
Loem et al. (2023) GPT-3 16-shot - - 57.41 - - 57.06

Náplava and Straka (2019) - - 69.00 - - 63.40
Rothe et al. (2021) xxl+cLANG8 - - 75.88 - - 68.75

Omelianchuk et al. (2020) 79.4 57.2 73.7 78.2 41.5 66.5
Qorib et al. (2022) 86.6 60.9 79.9 81.48 43.78 69.51

Rothe et al. (2021) base - - 60.2 - - 54.10
Rothe et al. (2021) xxl - - 69.83 - - 65.65
NLLB 600M-distilled 37.05 56.82 39.82 48.7 49.15 48.79
NLLB 1.3B-distilled 40.28 57.68 42.87 51.8 49.04 51.22

NLLB 600M-distilled + 4-lang GEC 66.99 63.66 66.29 66.29 50.68 62.45
NLLB 1.3B-distilled + 4-lang GEC 67.41 66.89 67.31 66.07 54.28 63.32

NLLB 600M-distilled + mixed + 4-lang GEC 67.84 65.43 67.35 67.14 51.8 63.39
NLLB 1.3B-distilled + mixed + 4-lang GEC 70.04 67.09 69.43 68.8 54.08 65.25

Table 3: Main results for the English language calculated with ERRANT scorer for W&I+LOCNESS and MaxMatch
for CoNLL. Work by Rothe et al. (2021) is multilingual, except for the version trained with cLANG8. Works by
Omelianchuk et al. (2020); Qorib et al. (2022) represent other top methods, and Náplava and Straka (2019) uses
Transformer pre-trained with synthetic and fine-tuned with GEC data. GPT-4 scores are calculated in mid-October.

5.2 Fine-tuning with error correction402

examples403

When analysing the F0.5-scores of our NLLB404

600M-distilled models, it becomes evident that pre-405

training with synthetic data substantially enhances406

performance, and the choice of training data type407

exerts a notable impact on the model’s effective-408

ness across various languages (refer to Table 2).409

A consistent trend emerges: for all languages ex-410

cept Czech, the most favorable results are achieved411

when the initial training phase combines mono-412

lingual synthetic data with parallel translation ex-413

amples, followed by subsequent multilingual fine-414

tuning with GEC data.415

The results further highlight the distinct behavior416

of the Czech language under multilingual training417

conditions. Despite having the largest and most418

diverse training corpus, Czech tends to experience419

adverse effects from multilingual training across420

all scenarios. In contrast, English, with a training421

corpus of comparable size, consistently benefits422

from multilingual training. The case of German,423

which possesses a smaller GEC corpus, also reveals424

improved performance with multilingual training.425

However, Estonian, despite a smaller corpus, does426

not display a clear preference for multilingual train-427

ing. Interestingly, languages that lean less towards428

multilinguality, such as Estonian and Czech, ex-429

hibit more substantial performance gains from syn- 430

thetic data compared to using only GEC exam- 431

ples. This suggests that high-resource languages in 432

the context of MT derive substantial benefits from 433

multilinguality, while the size of the GEC corpus 434

appears to have a lesser influence on the overall 435

outcome. Additionally, languages less prominently 436

represented in the MT model require additional 437

support from synthetic data, though this may be 438

negatively impacted by the inclusion of multilin- 439

gual data. 440

5.3 Final results 441

In this section, we will give the final results for all 442

languages in the context of other works. 443

For English, when we compare our best models 444

to the mT5-based model, which has received simi- 445

lar training in error correction, is multilingual and 446

has a comparable number of parameters, we out- 447

perform it simply by fine-tuning our NLLB 600M- 448

distilled model with GEC data in four languages, 449

as highlighted in Table 3. Additional training with 450

synthetic data increases the performance further. 451

Our 1.3B-distilled model achieves results nearly as 452

high as the model based on mT5 xxl, which has ten 453

times more parameters. 454

We also recalculated scores for English with 455

GPT-4 (OpenAI, 2023), utilizing the same prompt 456

that Coyne et al. (2023) employed, albeit without 457
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Est-L2
P R F0.5

GPT-4 (zero-shot) 72.74 44.72 64.64
NLLB 600M-distilled (zero-shot) 40.44 37.09 39.72
NLLB 1.3B-distilled (zero-shot) 43.55 41.32 43.09

NLLB 600M-distilled + 4-lang GEC 57.83 36.77 51.89
NLLB 1.3B-distilled + 4-lang GEC 60.85 44.73 56.75

NLLB 600M-distilled + mixed + 4-lang GEC 66.57 44.85 60.69
NLLB 1.3B-distilled + mixed + 4-lang GEC 69.78 50.58 64.85

Table 4: Main results for the Estonian language calculated using MaxMatch scorer. GPT-4 scores were calculated in
mid-October.

Falko-Merlin
P R F0.5

GPT-4 (zero-shot) 67.75 68.46 67.89
Náplava and Straka (2019) (210 param) 78.21 59.94 73.71

Rothe et al. (2021) base - - 69.21
Rothe et al. (2021) xxl - - 75.96

Kementchedjhieva and Søgaard (2023) base 76.0 61.5 72.6
Kementchedjhieva and Søgaard (2023) large 76.4 64.3 73.6

NLLB 600M-distilled (zero-shot) 40.44 37.09 39.72
NLLB 1.3B-distilled (zero-shot) 43.66 41.52 43.22

NLLB 600M-distilled + 4-lang GEC 72.3 62.12 70.01
NLLB 1.3B-distilled + 4-lang GEC 74.05 65.74 72.22

NLLB 600M-distilled + mixed + 4-lang GEC 76.76 64.46 73.94
NLLB 1.3B-distilled + mixed + 4-lang GEC 77.65 67.0 75.26

Table 5: Main results for the German language calculated using MaxMatch scorer. Work by Náplava and Straka
(2019) uses a Transformer model with synthetic pre-training and fine-tuning with GEC corpus. Rothe et al. (2021);
Kementchedjhieva and Søgaard (2023) models are multilingual and based on mT5 model. GPT-4 scores are
calculated in mid-October.

presenting examples, which they noted enhances458

performance. Our results show a substantial im-459

provement.460

For Estonian, the only other work we can com-461

pare us to is GPT-4. GPT-4 shows a similar F0.5-462

score to our best model but exhibits notably lower463

recall and higher precision. However, it outper-464

forms our model when compared to zero-shot trans-465

lation, as illustrated in Table 4.466

For German, we achieve near state-of-the-art467

results. Only an mT5-based model that is ten times468

larger than our model manages to achieve a slightly469

higher F0.5-score, as indicated in Table 5.470

When comparing our NLLB 600M-distilled471

model, fine-tuned exclusively with GEC data, to the472

base model from Rothe et al. (2021), our only GEC473

fine-tuned model surpasses their work, similar to474

English. However, Kementchedjhieva and Søgaard475

(2023) utilized pre-training with cleaned Lang-8476

data, containing 114K sentence pairs (Rothe et al., 477

2021), and gained an additional performance boost 478

from roundtrip translation. Although their work 479

achieved higher scores compared to our model 480

fine-tuned with GEC data alone, when we incor- 481

porate pre-training, our 600M-distilled model out- 482

performs theirs. The same trend is observed in 483

the comparison between mT5 large and our 1.3B- 484

distilled model. Our model even surpasses their XL 485

model, which is almost 3 times larger. 486

For Czech, we lack directly comparable multi- 487

lingual models. Our approach uses the latest and 488

slightly larger corpus GECCC, which is more di- 489

verse and includes more data, particularly in the 490

informal web domain. This makes it challenging to 491

assess how it affects performance on the AKCES 492

test set. Nevertheless, our best models outperform 493

similarly-sized multilingual models from previous 494

studies (see Table 6). 495

7



GECCC AKCES
P R F0.5 P R F0.5

GPT-4 (zero-shot) 72.74 44.72 64.64 76.73 71.9 75.72
Náplava and Straka (2019) (210M param) - - - 83.75 68.48 80.17

Náplava et al. (2022) (210M param) - - 72.96 - - -
Rothe et al. (2021) base - - - - - 71.88
Rothe et al. (2021) xxl - - - - - 83.15

Kementchedjhieva and Søgaard (2023) base - - - 79.4 65.0 76.0
Kementchedjhieva and Søgaard (2023) large - - - 81.9 70.5 79.3

Kementchedjhieva and Søgaard (2023) xl - - - 82.0 70.8 79.5
NLLB 600M-distilled (zero-shot) 43.7 45.43 44.04 39.54 51.76 41.5
NLLB 1.3B-distilled (zero-shot) 45.79 49.25 46.44 42.6 56.2 44.76

NLLB 600M-distilled + 4-lang GEC 65.33 55.88 63.19 77.02 69.17 75.31
NLLB 1.3B-distilled + 4-lang GEC 68.45 58.33 66.16 77.92 72.32 76.73

NLLB 600M-distilled + mixed + 4-lang GEC 68.9 57.67 66.32 79.94 70.94 77.96
NLLB 1.3B-distilled + mixed + 4-lang GEC 71.19 60.71 68.81 81.69 74.8 80.21

Table 6: Main results for the Czech language calculated using MaxMatch, works by Náplava et al. (2022); Náplava
and Straka (2019) are Czech-specific Transformer models pre-trained with synthetic data and fine-tuned with GEC
corpus, models by Rothe et al. (2021); Kementchedjhieva and Søgaard (2023) are multilingual and based on mT5
model. GPT-4 scores are calculated in mid-October.

It is worth noting that our models struggled with496

the GECCC test set, primarily due to difficulties497

with web text, such as issues related to repeated498

punctuation marks. This data might not have been499

adequately represented during translation training500

or fine-tuning. We did not add any specific length501

penalty other than default settings but it could be502

useful to stop models from over-repeating symbols.503

6 Discussion504

Our tuned multilingual MT models consistently505

outperform mT5-based approaches. In addition to506

mT5-based works, our approach outperforms GPT-507

4 in a zero-shot setting for all the languages we508

tested, with a larger margin for English, German,509

and Czech and more comparable performance for510

Estonian. However, GPT-4, being a large general-511

purpose model, is not practical for real-time GEC512

due to its current quality, availability, and speed.513

Therefore, we have not explored few-shot prompts514

or fine-tuning options for ChatGPT at this time.515

Multilingual training presents both advantages516

and complexities. It demonstrates effectiveness for517

languages that are well-represented in the trans-518

lation model, while languages with limited repre-519

sentation may not experience such clear benefits.520

This disparity may be attributed to their weaker521

zero-shot performance, indicating that they have522

more to learn from synthetic data. To address this,523

a potential solution could involve more extensive 524

pre-training or initial training with select transla- 525

tion data. This approach may negatively impact 526

other languages, as indicated by decreasing En- 527

glish and German scores for zero-shot translation 528

with balanced translation training. 529

Our work focused on one MT system covering 530

approximately 200 languages as a starting point for 531

building a GEC system. Future research can ex- 532

plore different models and sizes, improve data bal- 533

ance during pre-training, use better synthetic data, 534

and refine fine-tuning strategies. A recent study, 535

MADLAD-400 (Kudugunta et al., 2023), has al- 536

ready covered twice as many languages, indicating 537

a promising direction for further investigation and 538

language coverage. 539

7 Conclusion 540

We propose a simple approach for a multilingual 541

GEC system, simplifying the creation of non- 542

English GEC solutions. Through the use of multi- 543

lingual machine translation models supplemented 544

with synthetic and error correction data, we have 545

presented an effective approach to enhancing GEC 546

performance. Our results reveal the superiority of 547

this method, with our multilingual model consis- 548

tently outperforming similar-sized models and even 549

competing with larger counterparts. 550
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8 Limitations551

While our research sheds light on the effectiveness552

of a single multilingual machine translation model553

for error correction across four languages and two554

model sizes, several limitations should be acknowl-555

edged. First, our findings primarily apply to the556

model configurations tested, and we can reasonably557

infer that larger models may yield enhanced perfor-558

mance. However, a comprehensive validation of559

this assumption is beyond the scope of our work560

and computational capacity.561

Furthermore, our study prioritizes specific lan-562

guages and settings, leaving room for expanded in-563

clusivity and validating the method with other lan-564

guages. Testing the model across a broader range565

of languages and fine-tuning configurations would566

provide a more comprehensive understanding of its567

utility and potential limitations.568

Additionally, our investigation does not encom-569

pass an exhaustive hyperparameter search and each570

experiment was executed only once. Conducting571

multiple runs could provide more robust and reli-572

able results. Also, our work does not encompass573

a detailed exploration of the impact of retaining a574

portion of pre-training data during GEC fine-tuning.575

These aspects present avenues for future research576

and further refinement of the model’s performance.577
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A GPT-4 Prompts842

We used the prompts found to be the best by (Coyne843

et al., 2023) and added the non-English language844

for clarification. The exact prompts used are the845

following:846

Reply with a corrected version847

of the input sentence with all848

grammatical and spelling errors849

fixed. If there are no errors,850

reply with a copy of the original851

sentence.852

853

Input sentence: {sentence}854

Corrected sentence:855

Reply with a corrected version856

of the input sentence in Estonian857

with all grammatical and spelling858

errors fixed. If there are no859

errors, reply with a copy of the860

original sentence.861

862

Estonian input sentence:863

{sentence}864

Corrected Estonian sentence:865

Reply with a corrected version866

of the input sentence in German867

with all grammatical and spelling868

errors fixed. If there are no869

errors, reply with a copy of the870

original sentence.871

872

German input sentence:873

{sentence}874

Corrected German sentence:875

Reply with a corrected version of876

the input sentence in Czech with877

all grammatical and spelling878

errors fixed. If there are no879

errors, reply with a copy of the880

original sentence.881

882

Czech input sentence: {sentence}883

Corrected Czech sentence:884

We added the unchanged sentence when the API885

responded with a content filter. It did not happen886

excessively but is still a notable disadvantage for887

the system reducing the quality of error correction.888

B Pre-training Experiment Extended 889

Figure 2 provides a visual representation of the 890

pre-training process for models across all four lan- 891

guages. It highlights how the model’s performance 892

changes when using different types of data: solely 893

synthetic data, translation training with selected 894

languages, or a combination of these data sources 895

while maintaining consistent sentence quantities 896

for each language. 897

The graph illustrates that, as pre-training pro- 898

gresses, English and German exhibit a plateau in 899

performance improvement, indicating that they do 900

not continue to advance rapidly. However, for Es- 901

tonian and Czech, there is a clear and continued 902

upward trajectory, indicating rapid improvement in 903

these languages. 904

Additionally, a noticeable spike in the F0.5-score 905

is observed for models trained with synthetic data 906

in German and English. This spike is marked by a 907

significant increase in precision, with recall not yet 908

showing a corresponding decrease. 909
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Figure 2: Precision, recall and F0.5-score for only synthetic, only parallel and mixed data with different ratios
for English W&I+OCNESS, Estonian Est-L2, German FM and Czech GECCC development sets measured with
ERRANT scorer for English and MaxMatch scorer for other languages. Models are trained with 1.5M sentences per
language for 150k updates with batch size 4096 tokens.
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