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Abstract

Math reasoning is an active area of Large Lan-001
guage Model (LLM) research because it is a002
hallmark of artificial intelligence and has impli-003
cations in several domains, including math edu-004
cation. However, few works have explored how005
math reasoning is encoded within LLM parame-006
ters and if it is a skill that can be isolated within007
models. Doing so could allow targeted inter-008
vention to improve math performance without009
altering non-math behavior and foster under-010
standing of how models encode math reasoning.011
We introduce Math Neurosurgery (MathNeuro),012
a computationally efficient method we use to013
isolate math-specific parameters in LLMs us-014
ing only forward passes. MathNeuro builds015
on existing work by using weights and activa-016
tions to calculate parameter importance, but017
isolates math-specific parameters by filtering018
out those important for general language tasks.019
Through pruning parameters MathNeuro iden-020
tifies, we delete a LLM’s math reasoning abil-021
ity without significantly impacting its general022
language ability. Scaling the identified parame-023
ters by a small constant improves a pretrained024
or instruction-tuned LLM’s performance by 4-025
17% on GSM8K and 5-35% on MATH while026
leaving non-math behavior unaltered. Math-027
Neuro is also data efficient: most of its effec-028
tiveness holds when identifying math-specific029
parameters using a single sample. MathNeuro030
highlights the potential for future work to inter-031
vene on math-specific parameters.1032

1 Introduction033

Math reasoning, or solving math problems with034

logic, is an active area of LLM research because035

it represents artificial intelligence (e.g., Ahn et al.036

2024; Li et al. 2024b) and has implications in many037

domains, including math education (e.g, Christ038

et al. 2024; Wang et al. 2024) and automated the-039

orem proving (e.g., Song et al. 2024; Xin et al.040

1We will release experimental code upon publication.

2024). Yet few works have explored how LLMs 041

encode math reasoning abilities in their parametric 042

knowledge. Identifying math-specific parameters 043

could be beneficial for many reasons, including a) 044

targeting the right parameters to intervene on to 045

improve a model’s math reasoning ability as others 046

have done in other domains (e.g., Tang et al. 2024; 047

Suau et al. 2024), b) doing so without altering be- 048

havior on other tasks like these works have done in 049

their domains, and c) fostering knowledge of how 050

LLMs encode math reasoning. While some works 051

explore how different math concepts or terms are 052

stored or processed in model layers or neurons (e.g., 053

Hanna et al. 2023; Rai and Yao 2024; Stolfo et al. 054

2023), none have developed a method for isolating 055

parameters for math reasoning. 056

Outside of math reasoning, several works have 057

explored how to identify neurons or parameters 058

associated with particular knowledge or skills in 059

LLMs (Chang et al., 2024; Dai et al., 2022; Pan- 060

igrahi et al., 2023; Tang et al., 2024; Wang et al., 061

2022). While some methods are computationally 062

expensive because they use gradient information, 063

which may not be feasible for large models (e.g., 064

Panigrahi et al. 2023), others are easier to com- 065

pute because they rely on information obtained 066

through forward passes, particularly as captured 067

by activations (e.g., Tang et al. 2024). However, it 068

is unknown if these domain-specific methods for 069

single skill identification can effectively isolate a 070

broad concept like math reasoning, which may be 071

entangled with many other abilities within a LLM 072

(e.g., reading comprehension, general knowledge). 073

We conduct the first study of parameter impor- 074

tance in LLMs for math reasoning. We apply two 075

state-of-the-art (SOTA) gradient-free parameter im- 076

portance methods to math reasoning. We find one 077

of these methods, LAPE (Tang et al., 2024), consis- 078

tently fails to identify math-specific neurons across 079

models, while the other, Wanda (Sun et al., 2023), 080

identifies parameters important for math, but is un- 081
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able to isolate math-specific parameters because082

the parameters it identifies overlap significantly083

with those important for other tasks. To address084

these limitations of existing methods, we develop085

a new method called Math Neurosurgery (Math-086

Neuro) we use to isolate math-specific parameters.087

Building on Wanda, MathNeuro uses weights and088

activations to calculate parameter importance and089

achieve a context-aware representation of impor-090

tance. However, to isolate parameters important for091

math and not other abilities, MathNeuro filters out092

identified parameters that are found to be important093

for other general language understanding tasks.094

We provide evidence that MathNeuro effectively095

isolates math-specific parameters by evaluating it096

with five LLMs from 1-8B parameters. Pruning097

parameters identified by MathNeuro effectively098

deletes a model’s math reasoning ability. Despite099

destroying math reasoning, pruning these param-100

eters results in a performance drop on other, non-101

math tasks similar to the impact of random pa-102

rameter pruning. We also find that scaling up103

MathNeuro-identified parameters by a small uni-104

versal factor can boost both instruction-tuned and105

pre-trained LLMs’ GSM8K (Cobbe et al., 2021) or106

MATH (Hendrycks et al., 2021b) performance by 4-107

17% or 5-35% across models, respectively. We fur-108

ther show that our method is data efficient: Math-109

Neuro is almost as effective using only a single110

sample to calculate parameter importance. In addi-111

tion, we show MathNeuro consistently identifies a112

similar subset of parameters as math-specific across113

different sets of samples and that these parame-114

ters generalize across math reasoning tasks. We115

find math-specific parameters are located roughly116

evenly throughout a model’s decoder blocks, sug-117

gesting math reasoning is likely encoded through-118

out a model’s parameters rather than being concen-119

trated in a specific layer or layers.120

Our key contributions are as follows:121

• We design MathNeuro, a simple yet effective122

way to isolate LLM math reasoning by filter-123

ing out parameters important for other tasks.124

• We demonstrate the effectiveness of this125

method by showing that deleting parameters126

identified by MathNeuro destroys a model’s127

math performance and scaling them by a uni-128

versal factor can increase it by 4-35%.129

• We verify MathNeuro isolates math-specific130

parameters by showing pruning or scaling131

them does not significantly impact non-math132

performance more than random perturbation.133

2 Related Work 134

Skill and Knowledge Localization in LLMs 135

Several works have explored skill and knowledge 136

localization in language models, although none fo- 137

cus on math specifically (Bau et al., 2018; Chang 138

et al., 2024; Dalvi et al., 2018; Dai et al., 2022; 139

Dalvi et al., 2020; Gurnee et al., 2023; Kojima et al., 140

2024; Leng and Xiong, 2024; Panigrahi et al., 2023; 141

Radford et al., 2017; Suau et al., 2024; Sun et al., 142

2023; Tang et al., 2024; Wang et al., 2022; Xin 143

et al., 2019; Zhao et al., 2024). Many methods use 144

gradient information to calculate parameter impor- 145

tance, which is computationally infeasible for large 146

models (Dai et al., 2022; Leng and Xiong, 2024; 147

Panigrahi et al., 2023; Wang et al., 2022). However, 148

others are more lightweight and calculate parame- 149

ter importance using only forward passes, predomi- 150

nately through using information obtained through 151

activation values (Kojima et al., 2024; Suau et al., 152

2024; Sun et al., 2023; Tang et al., 2024; Zhao et al., 153

2024). While these methods may find parameters 154

important for the domains they study, it is unclear if 155

they could identify parameters important for math 156

reasoning, which could be distributed throughout a 157

model or interwoven with other important natural 158

language abilities given the task’s complexity. To 159

identify important parameters, MathNeuro builds 160

upon Wanda (Sun et al., 2023), a SOTA LLM prun- 161

ing method that prunes parameters unimportant for 162

a model’s output as measured by the smallest abso- 163

lute value of weights times activations. MathNeuro 164

inverts Wanda by identifying the most important 165

parameters for a task and isolates math-specific pa- 166

rameters by filtering out parameters important for 167

non-math, general language tasks. 168

Math Skill Localization in LLMs Some stud- 169

ies have explored how math knowledge is encoded 170

within LLMs (Hanna et al., 2023; Nikankin et al., 171

2024; Rai and Yao, 2024; Stolfo et al., 2023; Zhang 172

et al., 2024; Zhu et al., 2025). These works focus 173

on how and where particular math concepts and 174

key phrases such as addition and subtraction are 175

processed by LLMs. While these findings are in- 176

sightful, they do not identify parameters critical for 177

a model’s overall math performance but rather ones 178

relating to processing different math concepts. 179

3 Methods 180

We propose MathNeuro, a parameter identification 181

method that calculates importance using only for- 182

ward passes. First, we separately identify LLM 183
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Figure 1: Overview of MathNeuro. First, we sum weights times activations over N samples for math and non-math
inputs, finding the top-K parameters for each input type. Next, we find math-specific parameters by filtering out
parameters important for non-math inputs.

parameters important for a math task and a non-184

math, general language task using samples for each185

task. Next, MathNeuro isolates math-specific pa-186

rameters by taking the subset that are important for187

the math task but not for the non-math task. While188

MathNeuro may work for other, non-math tasks,189

we study math specifically. We describe the prob-190

lem setup and our method in more detail below.191

3.1 Preliminaries192

Identifying parameters important for math reason-193

ing in LLMs is beneficial because it is a critical AI194

capability, is understudied in interpretability work,195

has implications in several domains, and thus is an196

interesting test domain. However, this is nontrivial197

given that math reasoning not only involves direct198

computation, but also natural language reasoning.199

Thus, it may be difficult to distinguish parameters200

important only for math reasoning from those im-201

portant for general language. Indeed, other work202

has found significant overlap between parameters203

important for different tasks (Tang et al., 2024).204

3.2 Identifying Top Parameters205

We identify important parameters for a given task206

using the absolute value of weights times activa-207

tions for an input, providing a context-aware rep-208

resentation of importance. We produce a score 𝑆𝑖 𝑗209

for weight 𝑗 in neuron 𝑖 within a weight matrix:210

𝑆𝑖 𝑗 = |𝑊𝑖 𝑗 | · ∥𝑋 𝑗 ∥2211

where 𝑊𝑖 𝑗 represents the weight, | · | is absolute212

value, and ∥𝑋 𝑗 ∥2 is the ℓ2 norm of the 𝑗-th feature213

aggregated across input tokens to normalize the in-214

put 𝑋 , or activation values. We identify parameters215

with the largest scores as the most important for a216

task. We consider both weights and activations as217

elements of parameter importance because small218

but highly activated weights can be highly influen- 219

tial, while large but lightly activated weights may 220

be less influential (Sun et al., 2023). 221

3.3 Isolating Math-specific Parameters 222

While naively identifying the parameters with the 223

highest absolute value of weights times activations 224

may find parameters important for a given task, it 225

may not isolate the parameters important for that 226

task only, as discussed above. Thus, we calculate 227

parameter importance for other unrelated tasks and 228

use the disjoint set between these sets of parameters 229

as the ones that are math-specific, which is the 230

critical innovation of MathNeuro. To do this, we 231

separately sum2 the absolute value of weights times 232

activations for each parameter in attention and MLP 233

layers across 𝑁 samples from a math dataset and 234

an unrelated natural language task dataset. We 235

focus on attention and MLP layers because recent 236

work has found that knowledge and skills are often 237

distributed in these two model components (Wei 238

et al., 2024; Yin et al., 2024). We compute scores 239

for each parameter over math and non-math inputs: 240

𝑆math
𝑖 𝑗 =

𝑁∑︁
𝑘=1

|𝑊𝑖 𝑗 | · ∥𝑋 𝑗𝑘 ∥2 for 𝑋 ∈ Dmath 241

242

𝑆non-math
𝑖 𝑗 =

𝑁∑︁
𝑘=1

|𝑊𝑖 𝑗 | · ∥𝑋 𝑗𝑘 ∥2 for 𝑋 ∈ Dnon-math 243

Then, we separately identify the top K% of param- 244

eters with the highest score for each task in each 245

layer. Lastly, we take the subset of parameters most 246

important for the math task that are not in the set of 247

parameters most important for the unrelated task, 248

or 𝑇𝑚𝑎𝑡ℎ = TopK𝑚𝑎𝑡ℎ \ TopK𝑛𝑜𝑛−𝑚𝑎𝑡ℎ. 249

2This summation is akin to gradient-based identification
methods summing gradients over inputs (e.g., Das et al. 2023).
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4 Experiments250

We next validate if MathNeuro successfully identi-251

fies math-specific parameters. We compare against252

SOTA alternatives and a simple baseline in two set-253

tings: 1) pruning parameters identified as important254

for math and 2) scaling these parameters. Pruning255

or scaling task-specific parameters is equivalent to256

the approach recent work has taken to deactivate or257

more highly activate neurons identified as language258

or knowledge specific (Kojima et al., 2024; Suau259

et al., 2024; Tang et al., 2024; Zhao et al., 2024), re-260

spectively, but intervenes on the weight rather than261

activation level. We show the impact of each inter-262

vention on both math and non-math performance263

across five LLMs ranging from 1-8B parameters.264

We perform parameter identification experiments265

using 500 samples and a single sample.266

4.1 Experimental Setup267

Models We evaluate five LLMs of varying sizes:268

Phi 1.5 (1B) (Li et al., 2023), Llama 3.2 1B Instruc-269

tion Tuned (IT) (MetaAI, 2024b), Gemma 2 2B270

IT (Team et al., 2024), Llama 3.2 3B IT (MetaAI,271

2024b), and Llama 3.1 8B IT (MetaAI, 2024a). We272

display results for Llama 3.2 1B IT below and re-273

port results for the other models in Appendices A,274

B, C, and D, which follow similar trends to those275

discussed below. We focus on instruction tuned276

models to evaluate if MathNeuro can successfully277

identify math-specific parameters in models that278

a) perform well at math given their size and b) are279

trained for a range of tasks, which means it may be280

more difficult to identify math-specific parameters.281

Phi 1.5 serves as a baseline for if MathNeuro works282

for a pretrained, non-IT model.283

Datasets For identifying math-specific parame-284

ters, we use the popular and high-quality GSM8K285

(Cobbe et al., 2021) and MATH (Hendrycks et al.,286

2021b) datasets. We calculate parameter impor-287

tance using the GSM8K or MATH training split288

and evaluate the impact of each method on the289

GSM8K or MATH test split. We report GSM8K re-290

sults below and MATH results in Appendix F given291

the GSM8K results replicate for the MATH dataset.292

Following prior work (Agarwal et al., 2024; Brown293

et al., 2024; Lee et al., 2024; Li et al., 2024a), we294

subset the GSM8K test split to the same 200 ran-295

dom samples for every model for experimental ef-296

ficiency. For identifying parameters important for297

non-math tasks and measuring performance drops298

after eliminating math-specific parameters, we fol-299

low recent work that assesses catastrophic forget- 300

ting in LLMs (Luo et al., 2024) by using RACE 301

(Lai et al., 2017) for measuring reading compre- 302

hension and MMLU (Hendrycks et al., 2021a) for 303

measuring general knowledge. These datasets are 304

general language understanding tasks that are dif- 305

ferent from math reasoning. While MMLU con- 306

tains some math-related questions, it assesses a 307

variety of knowledge that, in aggregate, is mostly 308

not math-specific. We conduct all evaluations using 309

the Eleuther AI LM Evaluation Harness (Gao et al., 310

2024) and use an 8-shot chain-of-thought (CoT) 311

prompting format for GSM8K, as is standard. 312

Baselines We compare MathNeuro to three iden- 313

tification methods computed using forward passes: 314

(a) Wanda (Sun et al., 2023): We calculate pa- 315

rameter importance for math inputs and choose the 316

top K% of parameters without filtering out those 317

important for other unrelated tasks. 318

(b) Language Activation Probability Entropy 319

(LAPE) (Tang et al., 2024): LAPE finds language- 320

specific neurons by thresholding activation proba- 321

bilities as calculated by samples for each language 322

under consideration. We use GSM8K, MMLU, and 323

RACE for calculating task-specific neurons using 324

this method. Using LAPE allows us to determine 325

if existing activation-only parameter identification 326

methods can isolate math-specific parameters. 327

(c) Random Parameter Identification: As a san- 328

ity check, we randomly select the same number of 329

parameters as those identified by MathNeuro when 330

using MMLU or RACE as Dnon-math. 331

4.2 Pruning Top Math Parameters 332

To test if the four parameter identification meth- 333

ods (MathNeuro and three baselines) identify pa- 334

rameters important for math reasoning, we iden- 335

tify important parameters using each method for 336

each model and prune them (set them to 0). We 337

then compare each model’s GSM8K, RACE, and 338

MMLU accuracy to their own unedited perfor- 339

mance. We do this five times for each model with 340

different random subsets of 500 samples from each 341

dataset to identify the average performance of each 342

method. We identify the top .01, .1, .5, 1, 2.5, 5, 10 343

and 15% of parameters for each comparison and 344

report the parameter proportion with the best per- 345

formance. Appendix A explores how parameter 346

proportion impacts GSM8K performance; notably, 347

this hyperparameter does not impact performance 348

for the comparison methods Wanda or LAPE. 349
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Figure 2: Effect of pruning identified parameters on math and non-math performance for Llama 3.2 1B IT with
TopK𝑚𝑎𝑡ℎ = TopK𝑛𝑜𝑛−𝑚𝑎𝑡ℎ = 15%. Ideal methods fall in the top left of the plot. MMLU and RACE denote the
dataset used as Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point.

Figures 2, 9, 10, 11 and 12 show results from350

this experiment. An ideal method would fall in the351

top left of these plots, meaning math performance352

(GSM8K) is deleted while non-math performance353

(RACE and MMLU) is maintained. As seen in the354

figures, MathNeuro and Wanda eliminate math per-355

formance across models, while LAPE is unable to356

identify parameters important for math. However,357

while Wanda also destroys each model’s ability358

to perform non-math tasks, MathNeuro effectively359

isolates math-specific parameters across models, as360

shown in non-math performance decreases that are361

similar to the effect of random pruning.362

4.3 Scaling Top Math Parameters363

We next evaluate performance when more highly364

activating math-specific parameters by scaling the365

weights by a universal factor. For smaller mod-366

els, we find the scalar 1.1 works best, while for367

larger models (Llama 3.1 8B IT), a smaller factor368

(1.01) works better. While we leave a rigorous369

study of this hyperparameter to future work due to370

its computational expense, see Appendix H for our371

experimentation with scale factors. As in Section372

4.2, we scale the parameters each method identifies373

based on 500 random samples from each relevant374

dataset and repeat the process five times, reporting375

the parameter proportion that performs best.376

Figures 3, 14, 15, 16, and 17 display results377

from this experiment. An ideal method would fall378

in the top right of these plots, meaning GSM8K379

accuracy increases while non-math performance380

is maintained. As shown in these figures, scaling381

parameters identified by MathNeuro results in a382

GSM8K performance increase of 4-17% across383

models, while scaling Wanda-identified parameters384

tends to either harm or slightly improve perfor-385

mance. As with pruning, LAPE has no effect for 386

most models except for increasing GSM8K perfor- 387

mance for Gemma 2 2B IT. Scaling random param- 388

eters can help for some models, although the effect 389

is not consistent across models. Each parameter 390

identification method does not harm performance 391

on RACE or MMLU, suggesting scaling’s impact 392

tends to be localized to math performance. 393

4.4 MathNeuro with a Single Sample 394

If a method can identify math-specific parameters 395

using a single sample, then it could inform math 396

interventions for settings where data are limited 397

such as for assessing a specific math operation or 398

topic. To test this with MathNeuro and the base- 399

lines, we conduct experiments to identify parame- 400

ters based on a single math and non-math input. We 401

then prune or scale parameters identified by each 402

method and run each experiment five times using 403

different random samples from each dataset. As 404

shown in Figures 4, 18, 19, 20 and 21, MathNeuro 405

performs best at isolating math-specific parame- 406

ters when pruning using a single sample, as shown 407

in lower drops in non-math performance relative 408

to Wanda. However, these performance drops are 409

larger than when using more samples, suggesting 410

additional samples help MathNeuro more effec- 411

tively isolate math-specific parameters. 412

As shown in Figures 5, 22, 23, 24, and 25, we see 413

similar or smaller, but still meaningful, boosts in 414

GSM8K accuracy when scaling parameters Math- 415

Neuro identifies using one math and non-math sam- 416

ple. While random scaling sometimes helps as 417

observed in Section 4.3, the effect is again not 418

consistent across models. In some cases, LAPE 419

and Wanda increase GSM8K accuracy, though the 420

effects are not consistent across models. For all 421
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Figure 3: Effect of scaling identified parameters by 1.1 on math and non-math performance for Llama 3.2 1B IT
with TopK𝑚𝑎𝑡ℎ = TopK𝑛𝑜𝑛−𝑚𝑎𝑡ℎ = 5%. Ideal methods fall in the top right of the plot. MMLU and RACE denote
the dataset used as Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point.

methods, there is no meaningful performance drop422

in MMLU or RACE accuracy, suggesting scaling’s423

impact on non-math performance is still minor.424

4.5 MathNeuro Parameter Consistency,425

Number, Location and Qualitative Impact426

Next, we conduct experiments to explore if Math-427

Neuro identifies the same set of parameters as math-428

specific across different random subsets of math429

and non-math data and the number and location430

of these parameters. We report results for these431

experiments in the sections below using RACE as432

the non-math dataset and equivalent results for us-433

ing MMLU as the non-math dataset in Appendix I.434

We also conduct a qualitative evaluation of model435

outputs after pruning or scaling parameters Math-436

Neuro identifies to explore how math and non-math437

outputs are affected by the method. All experi-438

ments are conducted using Llama 3.2 1B IT.439

Consistency of Math-specific Parameters We440

next explore if MathNeuro consistently identifies441

the same parameters as math-specific across dif-442

ferent random subsets from a math and non-math443

dataset. This allows us to identify if math reasoning444

is in fact reliably concentrated in a subset of model445

parameters like the experiments above suggest. We446

first identify math-specific parameters using Math-447

Neuro on two different random subsets from a math448

and non-math dataset. Next, we calculate the per-449

centage overlap between the parameters identified450

in both subsets. We do this five times for differ-451

ent sample sizes (1, 10, 100, 500, and 1,000) and452

for calculating different proportions of top parame-453

ters from each dataset. This allows us to construct454

confidence intervals and see how parameter identi-455

fication consistency varies when calculating based456

on different sample sizes and top parameter propor- 457

tions. As shown in Figure 6 and Appendix I, with 458

100 or more samples, roughly 95% or more of the 459

parameters MathNeuro identifies overlap between 460

two random subsets regardless of the proportion 461

of top parameters calculated, which shows that the 462

method is able to consistently identify the most im- 463

portant parameters for math performance and that 464

these parameters are largely invariant with regard 465

to the subset of data used to calculate them. 466

Number and Location of Math-specific Param- 467

eters We next examine the proportion of param- 468

eters MathNeuro identifies as math-specific. We 469

first identify math-specific parameters using ran- 470

dom subsets from each dataset. Next, we calculate 471

the percentage of the top K% of parameters that 472

are identified as math-specific using those subsets. 473

We repeat this five times for different sample sizes 474

and top K%s to construct confidence intervals. 475

As shown in Figure 7 and Appendix I, while 476

the most parameters are identified as math-specific 477

when calculating importance with one sample due 478

to randomness, the amount of math-specific param- 479

eters identified by MathNeuro generally increases 480

with the number of samples considered for all pro- 481

portions of top parameters calculated. The rela- 482

tively high amount of overlap in top parameters be- 483

tween tasks displayed in these figures is likely why 484

MathNeuro performs better than existing parameter 485

identification methods that do not filter out param- 486

eters important for other tasks. The percentage of 487

math-specific parameters in the top K% of param- 488

eters declines as the proportion of top parameters 489

calculated increases because as this proportion in- 490

creases, more of the model’s top parameters are 491

considered. These top parameters are likely more 492
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Figure 4: Effect of pruning identified parameters on math and non-math performance for Llama 3.2 1B IT with
TopK𝑚𝑎𝑡ℎ = TopK𝑛𝑜𝑛−𝑚𝑎𝑡ℎ = 10% based on one sample. Ideal methods fall in the top left of the plot. MMLU and
RACE denote the dataset used as Dnon-math. Horizontal/vertical lines show each point’s 95% confidence intervals.
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Figure 5: Effect of scaling identified parameters by 1.1 on math and non-math performance for Llama 3.2 1B IT
with TopK𝑚𝑎𝑡ℎ = TopK𝑛𝑜𝑛−𝑚𝑎𝑡ℎ = 2.5% based on one sample. Ideal methods fall in the top right. MMLU and
RACE denote the dataset used as Dnon-math. Horizontal/vertical lines show each point’s 95% confidence intervals.
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Figure 6: Consistency of math-specific parameters iden-
tified by MathNeuro for Llama 3.2 1B IT when identi-
fying using GSM8K compared to RACE.

task-invariant than those found when considering a493

smaller percentage of the model’s top parameters.494

To explore where math-specific parameters are495

located within a model, we sum the number of496

parameters MathNeuro identifies in each decoder497

block for Llama 3.2 1B IT. To do this, we calculate498

the top 15% of parameters, which is the parameter499

proportion for which MathNeuro performs best for500

this model. As shown in Figure 8 and Appendix501
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Figure 7: Percentage of top parameters that are math-
specific as identified by MathNeuro for Llama 3.2 1B
IT when identifying using GSM8K compared to RACE.

I, the number of math-specific parameters Math- 502

Neuro identifies is relatively consistent across de- 503

coder blocks when using either RACE or MMLU 504

for parameter identification. This suggests that 505

models encode math reasoning by distributing the 506

capability throughout their parametric knowledge 507

rather than concentrating it in a few layers. The 508
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Figure 8: Distribution of math-specific parameters iden-
tified by MathNeuro for Llama 3.2 1B IT when identi-
fying using GSM8K compared to RACE.

parameters identified in these figures correspond to509

just 1.51% and 1.84% of the model’s overall param-510

eters when calculating parameter importance based511

on MMLU and RACE, respectively, despite being512

responsible for nearly all of its math performance.513

Qualitative Analysis To verify model outputs514

are still coherent after pruning or scaling, we con-515

duct a qualitative analysis of outputs before and af-516

ter pruning or scaling parameters MathNeuro iden-517

tifies. As shown in Tables 1, 3, and 4, only the518

output for answering a GSM8K question becomes519

incoherent after pruning math-specific parameters.520

Before pruning, the model correctly solves the521

GSM8K problem; after pruning, it fails to gen-522

erate an effective CoT. The pruned model effec-523

tively responds to RACE questions, although it gets524

the question wrong before and after pruning. The525

pruned model generates coherent output to MMLU526

questions, though it gets the answer right when527

using RACE as Dnon-math and wrong when using528

MMLU as Dnon-math. These findings confirm our529

quantitative findings showing the model can still530

perform non-math tasks after pruning math-specific531

parameters, although it experiences a performance532

drop similar to that obtained from random prun-533

ing. As shown in Tables 2, 3, and 5, the scaled534

model’s outputs for RACE and MMLU questions535

remain mostly unmodified, while it correctly solves536

a GSM8K question after scaling based on MMLU537

as Dnon-math that it solved incorrectly before scal-538

ing. These findings parallel our quantitative find-539

ings that math reasoning increases post-scaling540

while non-math performance remains unchanged.541

4.6 Impact of MathNeuro on Unseen Tasks542

To explore if math-specific parameters MathNeuro543

identifies are consistently important across unseen544

math tasks and unimportant for unseen general lan- 545

guage or non-math reasoning tasks, we repeat the 546

pruning experiments reported in Section 4.2 us- 547

ing GSM8K as the math dataset and MMLU or 548

RACE as the non-math dataset and evaluate the 549

pruned model on 8 unseen tasks (see Appendix 550

E for implementation details). Unseen tasks in- 551

clude 5 that are non-math reasoning or general 552

language tasks (HellaSwag, MuTual, PIQA, Wiki- 553

Text, and WinoGrande) (Zellers et al., 2019; Cui 554

et al., 2020; Bisk et al., 2020; Merity et al., 2016; 555

Sakaguchi et al., 2021) and 3 that are math tasks, 556

both in domain (EGSM; Christ et al. 2024) and 557

out of domain (MATH, MATHQA) (Hendrycks 558

et al., 2021b; Amini et al., 2019). The figures in 559

Appendix E display this experiment’s results where 560

the Wanda baseline represents the lowest possi- 561

ble bound on performance for a task given that it 562

deletes all of a model’s top parameters. Across 563

models, pruning parameters identified by Math- 564

Neuro effectively deletes math performance on 565

both in domain and out of domain tasks while 566

mostly maintaining performance on general lan- 567

guage and non-math reasoning tasks. These find- 568

ings expand those discussed in Section 4.2 by show- 569

ing that math-specific parameters MathNeuro iden- 570

tifies are universally important across math reason- 571

ing tasks and unimportant across non-math tasks 572

regardless of the math dataset used for identifica- 573

tion. This generalizability across math tasks allays 574

concerns that parameters identified in one dataset 575

are really targeted towards characteristics of that 576

dataset and, instead, shows MathNeuro isolates pa- 577

rameters important for math reasoning broadly. 578

5 Conclusion 579

Although math reasoning is an active area of LLM 580

research, few works have explored how it is en- 581

coded within LLM parameters and if it is a skill 582

that can be isolated within a model. We introduce 583

MathNeuro, a forward-only identification method 584

we use to isolate math-specific parameters in LLMs. 585

Through comprehensive experiments, we demon- 586

strate MathNeuro’s effectiveness by showing prun- 587

ing or scaling the parameters it identifies can delete 588

or reinforce a LLM’s math reasoning ability, respec- 589

tively, despite its simplicity and ease of calculation. 590

Future work should build on this method by devel- 591

oping interventions for math-specific parameters 592

that improve a model’s performance on mathemati- 593

cal reasoning without catastrophic forgetting. 594
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Limitations595

While we comprehensively evaluate MathNeuro596

using several math and non-math datasets used in597

other works and focus our evaluations on math rea-598

soning specifically, there are many other natural599

language and mathematical reasoning tasks mod-600

els could be evaluated on. Future work should601

consider extending MathNeuro to these additional602

tasks and explore if MathNeuro can isolate param-603

eters important for non-math tasks. While we used604

five recent models for our experiments, future work605

should also include additional models, especially606

those of larger sizes (>8B). Additionally, due to607

computational expense, we were unable to conduct608

a full hyperparameter sweep for an optimal uni-609

versal scaling factor for parameters identified by610

MathNeuro, though the rough grid search we report611

in Appendix H highlights that larger scale factors612

tend to work better for smaller models and smaller613

scale factors tend to work better for larger models.614

Ethics Statement615

All data used in this paper come from open-access616

datasets and, therefore, should not contain any pri-617

vate sensitive information.618
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A GSM8K Pruning Results937

Figures 9, 10, 11 and 12 show the results for prun-938

ing parameters identified by each method for Phi939

1.5, Gemma 2 2B IT, Llama 3.2 3B IT, and Llama940

3.1 8B IT, respectively. As shown in these figures,941

the results for each model closely mirror those dis-942

cussed in Section 4.2, where MathNeuro performs943

the best at isolating math-specific parameters as944

shown by destroying GSM8K performance while945

having low drops in MMLU and RACE perfor-946

mance that are similar to the impact of pruning947

random model parameters.948

Figure 13 shows the impact of parameter pro-949

portion on GSM8K performance when pruning950

parameters identified by each method for Llama951

3.2 1B IT. As shown in the figure, GSM8K per-952

formance declines with increasing proportion of953

parameters considered when using MathNeuro un-954

til the parameter proportion reaches .05, at which955

point the effectiveness of the method levels off.956

GSM8K performance begins to increase after the957

top 10% of parameters are considered due to the958

top 15% of model parameters being more invariant959

across tasks, as shown in Section 4.5. For com-960

parison methods, Wanda deletes math performance961

regardless of parameter proportion, LAPE actually962

increases performance, and pruning random param-963

eters tends to hurt performance as the proportion of964

top parameters considered increases, which is ex-965

pected. The other four models show similar trends966

when considering different proportions of top pa-967

rameters.968

B GSM8K Scaling Results969

Figures 14, 15, 16 and 17 show the results for970

scaling parameters identified by each method for971

Phi 1.5, Gemma 2 2B IT, Llama 3.2 3B IT, and972

Llama 3.1 8B IT, respectively. As shown in these973

figures, the results for each model closely mirror974

those discussed in Section 4.3, where scaling pa-975

rameters identified by MathNeuro consistently in-976

creases GSM8K performance by 3-6 percentage977

points across models, representing a 4-17% overall978

increase in math performance depending on the979

model.980

C One Sample GSM8K Pruning Results 981

Figures 18, 19, 20 and 21 show the results for 982

pruning parameters identified by each method for 983

Phi 1.5, Gemma 2 2B IT, Llama 3.2 3B IT, and 984

Llama 3.1 8B IT, respectively, when calculating 985

parameter importance based on a single sample. 986

As shown in these figures, the results for each 987

model closely mirror those discussed in Section 988

4.4, where MathNeuro still performs the best at 989

isolating math-specific parameters as shown by de- 990

stroying GSM8K performance while having lower 991

drops in MMLU and RACE performance than 992

Wanda. However, as reported in Section 4.4, these 993

results suggest additional samples help the method 994

more effectively isolate math-specific parameters 995

because the non-math drops in performance are 996

larger than those shown in Appendix A, where we 997

used 500 samples to calculate parameter impor- 998

tance. 999

D One Sample GSM8K Scaling Results 1000

Figures 22, 23, 24 and 25 show the results for scal- 1001

ing parameters identified by each method for Phi 1002

1.5, Gemma 2 2B IT, Llama 3.2 3B IT, and Llama 1003

3.1 8B IT, respectively, when calculating param- 1004

eter importance based on one sample. As shown 1005

in these figures, the results for each model closely 1006

mirror those discussed in Section 4.4, where scal- 1007

ing parameters identified by MathNeuro using a 1008

single sample consistently increases GSM8K per- 1009

formance across models. These increases are either 1010

similar to those reported in Appendix B, or smaller 1011

but still meaningful. For some models, the compar- 1012

ison methods can increase GSM8K performance 1013

when calculating parameter importance based off a 1014

single sample, but MathNeuro is the only method 1015

for which a meaningful positive increase is consis- 1016

tent across models. 1017

E Impact of MathNeuro on Unseen 1018

Downstream Tasks 1019

As discussed in Section 4.6, Figures 26, 27, 28, 29, 1020

and 30 display the results for evaluating unseen 1021

task performance after pruning parameters identi- 1022

fied by MathNeuro using GSM8K as Dmath and 1023

MMLU or Race as Dnon-math. In these figures, Mu- 1024

Tual performance is unimpaired regardless of the 1025

parameter identification method used, suggesting 1026

that performance on this task is consistently equal 1027

to random guessing regardless of which parame- 1028

ters are pruned. All tasks are implemented using 1029
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Figure 9: Effect of pruning identified parameters on math and non-math performance for Phi 1.5 based on calculating
the top 5% of parameters. Ideal methods should fall in the top left of the plot. MMLU and RACE denote that a
point was calculated using MMLU or RACE, respectively, as Dnon-math. Horizontal and vertical lines represent 95%
confidence intervals for each point on the plot.
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Figure 10: Effect of pruning identified parameters on math and non-math performance for Gemma 2 2B IT based
on calculating the top 5% of parameters. Ideal methods should fall in the top left of the plot. MMLU and RACE
denote that a point was calculated using MMLU or RACE, respectively, as Dnon-math. Horizontal and vertical lines
represent 95% confidence intervals for each point on the plot.

their default implementation in the Eleuther AI LM1030

Evaluation Harness (Gao et al., 2024). For MATH,1031

we use Eleuther’s implementation of the 4-shot1032

CoT Minerva prompt and for EGSM we use a fork1033

of the Eleuther AI LM Evaluation Harness where1034

we implemented the task using GSM8K’s 8-shot1035

CoT prompt given they are both grade school math1036

datasets. For all tasks except MATH and EGSM,1037

we run evaluations using the full testing split for1038

each task given they are in multiple-choice format.1039

For MATH and EGSM, which require long-form re-1040

sponses, we follow our other experiments by using1041

the same set of random samples from each dataset1042

for experimental efficiency. For MATH, we use1043

700 samples and for EGSM we use 100 due to its1044

smaller size.1045

F MathNeuro Using the MATH Dataset 1046

F.1 MATH Pruning Experiments 1047

We replicate our GSM8K pruning experiments us- 1048

ing MATH as the math dataset and MMLU or 1049

RACE as the non-math dataset. Similar to our 1050

approach with GSM8K, we subset the MATH test- 1051

ing split to the same 700 random samples for each 1052

model and experimental run for experimental ef- 1053

ficiency. As with our other experiments, we use 1054

the Eleuther AI LM Evaluation Harness (Gao et al., 1055

2024) for implementing the MATH evaluations, us- 1056

ing their default implementation of the Minerva 1057

MATH prompt with 4-shot CoT examples. For 1058

each model, we use the exact same hyperparame- 1059

ters as those reported for the pruning experiments 1060

in Section 4.2 and Appendix A. As shown in Fig- 1061

ures 31, 32, 33, 34, and 35, our GSM8K pruning 1062

results replicate when using MATH as the math 1063
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Figure 11: Effect of pruning identified parameters on math and non-math performance for Llama 3.2 3B IT based
on calculating the top 2.5% (left) and 1% (right) of parameters. Ideal methods should fall in the top left of the plot.
MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively, as Dnon-math. Horizontal
and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 12: Effect of pruning identified parameters on math and non-math performance for Llama 3.1 8B IT based
on calculating the top 1% of parameters. Ideal methods should fall in the top left of the plot. MMLU and RACE
denote that a point was calculated using MMLU or RACE, respectively, as Dnon-math. Horizontal and vertical lines
represent 95% confidence intervals for each point on the plot.

dataset, as pruning math-specific parameters Math-1064

Neuro identifies effectively deletes MATH perfor-1065

mance while leaving MMLU and RACE perfor-1066

mance largely unaltered. These results buttress1067

those reported in Section 4.6 by showing that Math-1068

Neuro’s effectiveness in isolating math-specific pa-1069

rameters holds when using a different math dataset.1070

Using the same hyperparameters, we also repli-1071

cate our one sample pruning experiments using1072

MATH as Dmath. Results are shown in Figures1073

36, 37, 38, 39, and 40, where MathNeuro still per-1074

forms best at isolating math-specific parameters1075

when using a single MATH sample for parameter1076

identification.1077

F.2 MATH Scaling Experiments1078

We also replicate our GSM8K scaling experiments1079

using MATH as the math dataset and MMLU or1080

RACE as the non-math dataset. Similar to our1081

MATH pruning experiments, we subset the MATH 1082

testing split to the same random samples for each 1083

model and experimental run for experimental ef- 1084

ficiency and implement the MATH task with the 1085

same prompting approach described above. We use 1086

a smaller sample of the MATH testing split (350 1087

samples) for our scaling experiments given that 1088

we conduct the rough grid search for an optimal 1089

scaling factor and parameter proportion described 1090

in Appendix H and Section 4.3, respectively, and 1091

using a larger set of samples would be computation- 1092

ally prohibitive. As shown in Figures 41, 42, 43, 1093

44, and 45, our GSM8K scaling results replicate 1094

when using MATH as the math dataset, as scal- 1095

ing math-specific parameters MathNeuro identifies 1096

boosts MATH performance by a small but mean- 1097

ingful amount while leaving MMLU and RACE 1098

performance unchanged. These increases in per- 1099

formance correspond to increasing baseline MATH 1100
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Figure 13: Impact of parameter proportion on GSM8K performance for pruning parameters identified by each
method for Llama 3.2 1B IT when considering the top .01, .1, .5, 1, 2.5, 5, 10 and 15% of parameters.

performance by 5-35% depending on the model.1101

These results show that scaling parameters iden-1102

tified using MathNeuro boosts math performance1103

even when using different math datasets.1104

Using the same scaling factors and conducting a1105

small grid search for the optimal parameter propor-1106

tion like we did in Section 4.4, we also replicate our1107

one sample scaling experiments using MATH as1108

Dmath. Results are shown in Figures 46, 47, 48, 49,1109

and 50, where scaling MathNeuro-identified param-1110

eters using a single MATH sample for parameter1111

identification still results in a small but meaningful1112

boost in MATH performance while leaving non-1113

math performance unaltered.1114

G Sample Outputs1115

Tables 1, 2, 3, 4, and 5 display sample outputs from1116

Llama 3.2 1B IT before and after pruning or scaling1117

parameters identified by MathNeuro. The tables1118

display outputs for a GSM8K, RACE, or MMLU1119

question.1120

H Scaling Factor Grid Search1121

Because an exhaustive grid search for the optimal1122

scaling factor for MathNeuro would be computa-1123

tionally prohibitive, we used a rough bisection grid1124

search to find a factor that worked best for each1125

model for the GSM8K and MATH scaling exper- 1126

iments. For each model, we tried three scaling 1127

factors based on initial experiments that showed 1128

scale factors above 1.1 were too large: 1.01, 1.05, 1129

and 1.075. For GSM8K, for smaller models (Phi 1130

1.5, Gemma 2 2B IT, Llama 3.2 1B IT, and Llama 1131

3.2 3B IT), 1.075 worked best or tied with 1.05, 1132

while for Llama 3.1 8B IT, a larger model, 1.01 1133

worked best. For the smaller models, we next tried 1134

scale factors between 1.075 and 1.05 (1.0625) and 1135

between 1.075 and the maximum scale factor we 1136

saw improved results based on initial experiments 1137

(1.1), finding that 1.1 worked best for all models 1138

except for Llama 3.2 1B IT, where 1.1 tied with the 1139

results of 1.075. For GSM8K for Llama 3.1 8B IT, 1140

we next tried a scale factor between 1.05 and the 1141

minimum scale factor we used (1.025), finding that 1142

1.01 still worked best. Each scale factor considered 1143

increased performance across models for GSM8K. 1144

For MATH, for small models, 1.01 or 1.05 1145

worked best, while for Llama 3.1 8B IT, 1.01 1146

worked best. For the smaller models, we next tried 1147

a scale factor between 1.01 and 1.05 (1.025), find- 1148

ing that 1.025 worked best for Llama 3.2 1B IT, 1149

Phi 1.5, and Llama 3.2 3B IT, and that 1.05 worked 1150

best for Gemma 2 2B IT. For MATH, scale factors 1151

beyond 1.05 either did not improve performance 1152

or harmed performance, suggesting a smaller scale 1153
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Figure 14: Effect of scaling identified parameters by 1.1 on math and non-math performance for Phi 1.5 based on
calculating the top .1% (left) and .01% (right) of parameters. Ideal methods should fall in the top right of the plot.
MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively, as Dnon-math. Horizontal
and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 15: Effect of scaling identified parameters by 1.1 on math and non-math performance for Gemma 2 2B IT
based on calculating the top 5% of parameters. Ideal methods should fall in the top right of the plot. MMLU and
RACE denote that a point was calculated using MMLU or RACE, respectively, as Dnon-math. Horizontal and vertical
lines represent 95% confidence intervals for each point on the plot.

factor is more optimal for this task. However, scale1154

factors between 1.01 and 1.05 improved MATH1155

performance across models. The results of this grid1156

search for Llama 3.2 1B for GSM8K are displayed1157

in Figure 51.1158

I Number and Location of Math-specific1159

Parameters Using MMLU as Dnon-math1160

Figures 52, 53, and 54 show the consistency of1161

math-specific parameters, percentage of top pa-1162

rameters that are math-specific, and distribution of1163

math-specific parameters identified by MathNeuro1164

using MMLU as the non-math dataset, respectively,1165

based on the experiments described in Section 4.5.1166

1167

16



0.64 0.66 0.68 0.70
GSM8K CoT Accuracy

0.39

0.40

0.41

0.42

0.43

0.44

0.45

R
A

C
E

 A
cc

ur
ac

y

0.64 0.66 0.68 0.70
GSM8K CoT Accuracy

0.58

0.59

0.60

0.61

0.62

M
M

LU
 A

cc
ur

ac
y

Method
Base Model
LAPE
Wanda
Random- MMLU
Random- RACE
MathNeuro (ours)- MMLU
MathNeuro (ours)- RACE

Figure 16: Effect of scaling identified parameters by 1.1 on math and non-math performance for Llama 3.2 3B IT
based on calculating the top 5% of parameters. Ideal methods should fall in the top right of the plot. MMLU and
RACE denote that a point was calculated using MMLU or RACE, respectively, as Dnon-math. Horizontal and vertical
lines represent 95% confidence intervals for each point on the plot.
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Figure 17: Effect of scaling identified parameters by 1.01 on math and non-math performance for Llama 3.1 8B IT
based on calculating the top .5% of parameters. Ideal methods should fall in the top right of the plot. MMLU and
RACE denote that a point was calculated using MMLU or RACE, respectively, as Dnon-math. Horizontal and vertical
lines represent 95% confidence intervals for each point on the plot.
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Figure 18: Effect of pruning identified parameters on math and non-math performance for Phi 1.5 for calculating
the top .5% of parameters based on one sample. Ideal methods should fall in the top left of the plot. MMLU and
RACE denote that a point was calculated using MMLU or RACE, respectively, as Dnon-math. Horizontal and vertical
lines represent 95% confidence intervals for each point on the plot.
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Figure 19: Effect of pruning identified parameters on math and non-math performance for Gemma 2 2B IT for
calculating the top 2.5% of parameters based on one sample. Ideal methods should fall in the top left of the plot.
MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively, as Dnon-math. Horizontal
and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 20: Effect of pruning identified parameters on math and non-math performance for Llama 3.2 3B IT for
calculating the top 10% of parameters based on one sample. Ideal methods should fall in the top left of the plot.
MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively, as Dnon-math. Horizontal
and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 21: Effect of pruning identified parameters on math and non-math performance for Llama 3.1 8B IT for
calculating the top 5% of parameters based on one sample. Ideal methods should fall in the top left of the plot.
MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively, as Dnon-math. Horizontal
and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 22: Effect of scaling identified parameters by 1.1 on math and non-math performance for Phi 1.5 for
calculating the top .1% of parameters based on one sample. Ideal methods should fall in the top right of the plot.
MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively, as Dnon-math. Horizontal
and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 23: Effect of scaling identified parameters by 1.1 on math and non-math performance for Gemma 2 2B
IT for calculating the top 2.5% of parameters based on one sample. Ideal methods should fall in the top right of
the plot. MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively, as Dnon-math.
Horizontal and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 24: Effect of scaling identified parameters by 1.1 on math and non-math performance for Llama 3.2 3B
IT for calculating the top 5% of parameters based on one sample. Ideal methods should fall in the top right of
the plot. MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively, as Dnon-math.
Horizontal and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 25: Effect of scaling identified parameters by 1.01 on math and non-math performance for Llama 3.1 8B
IT for calculating the top 1% of parameters based on one sample. Ideal methods should fall in the top right of
the plot. MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively, as Dnon-math.
Horizontal and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 26: Effect of pruning identified parameters on performance for unseen math and non-math tasks for Llama
3.2 1B IT when using GSM8K as Dmath and MMLU or Race as Dnon-math. Ideal methods for the first two rows of
figures should fall in the top left of the plot, while ideal methods for the last two rows of figures should fall in the
bottom left of the plot. Wanda results are not pictured in the Wikitext figures because PPL increased dramatically
when using this method. MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively,
as Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 27: Effect of pruning identified parameters on performance for unseen math and non-math tasks for Phi
1.5 when using GSM8K as Dmath and MMLU or Race as Dnon-math. Ideal methods for the first two rows of figures
should fall in the top left of the plot, while ideal methods for the last two rows of figures should fall in the bottom
left of the plot. Wanda results are not pictured in the Wikitext figures because PPL increased dramatically when
using this method. MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively, as
Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 28: Effect of pruning identified parameters on performance for unseen math and non-math tasks for Gemma
2 2B IT when using GSM8K as Dmath and MMLU or Race as Dnon-math. Ideal methods for the first two rows of
figures should fall in the top left of the plot, while ideal methods for the last two rows of figures should fall in the
bottom left of the plot. Wanda results are not pictured in the Wikitext figures because PPL increased dramatically
when using this method. MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively,
as Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 29: Effect of pruning identified parameters on performance for unseen math and non-math tasks for Llama
3.2 3B IT when using GSM8K as Dmath and MMLU or Race as Dnon-math. Ideal methods for the first two rows of
figures should fall in the top left of the plot, while ideal methods for the last two rows of figures should fall in the
bottom left of the plot. Wanda results are not pictured in the Wikitext figures because PPL increased dramatically
when using this method. MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively,
as Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 30: Effect of pruning identified parameters on performance for unseen math and non-math tasks for Llama
3.1 8B IT when using GSM8K as Dmath and MMLU or Race as Dnon-math. Ideal methods for the first two rows of
figures should fall in the top left of the plot, while ideal methods for the last two rows of figures should fall in the
bottom left of the plot. Wanda results are not pictured in the Wikitext figures because PPL increased dramatically
when using this method. MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively,
as Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 31: Effect of pruning identified parameters on math and non-math performance for Llama 3.2 1B IT based
on calculating the top 15% of parameters using the MATH dataset as Dmath. Ideal methods should fall in the top left
of the plot. MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively, as Dnon-math.
Horizontal and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 32: Effect of pruning identified parameters on math and non-math performance for Phi 1.5 based on
calculating the top 5% of parameters using the MATH dataset as Dmath. Ideal methods should fall in the top left of
the plot. MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively, as Dnon-math.
Horizontal and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 33: Effect of pruning identified parameters on math and non-math performance for Gemma 2 2B IT based
on calculating the top 5% of parameters using the MATH dataset as Dmath. Ideal methods should fall in the top left
of the plot. MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively, as Dnon-math.
Horizontal and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 34: Effect of pruning identified parameters on math and non-math performance for Llama 3.2 3B IT based
on calculating the top 2.5% (left) and 1% (right) of parameters using the MATH dataset as Dmath. Ideal methods
should fall in the top left of the plot. MMLU and RACE denote that a point was calculated using MMLU or RACE,
respectively, as Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point on the
plot.
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Figure 35: Effect of pruning identified parameters on math and non-math performance for Llama 3.1 8B IT based
on calculating the top 1% of parameters using the MATH dataset as Dmath. Ideal methods should fall in the top left
of the plot. MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively, as Dnon-math.
Horizontal and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 36: Effect of pruning identified parameters on math and non-math performance for Llama 3.2 1B IT based
on calculating the top 15% of parameters using the MATH dataset as Dmath based on one sample. Ideal methods
should fall in the top left of the plot. MMLU and RACE denote that a point was calculated using MMLU or RACE,
respectively, as Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point on the
plot.
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Figure 37: Effect of pruning identified parameters on math and non-math performance for Phi 1.5 based on
calculating the top 5% of parameters using the MATH dataset as Dmath based on one sample. Ideal methods
should fall in the top left of the plot. MMLU and RACE denote that a point was calculated using MMLU or RACE,
respectively, as Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point on the
plot.

0.00 0.05 0.10 0.15
MATH Accuracy

0.25

0.30

0.35

0.40

0.45

R
A

C
E

 A
cc

ur
ac

y

0.00 0.05 0.10 0.15
MATH Accuracy

0.3

0.4

0.5

M
M

LU
 A

cc
ur

ac
y

Method
Base Model
LAPE
Wanda
Random- MMLU
Random- RACE
MathNeuro (ours)- MMLU
MathNeuro (ours)- RACE

Figure 38: Effect of pruning identified parameters on math and non-math performance for Gemma 2 2B IT based
on calculating the top 5% of parameters using the MATH dataset as Dmath based on one sample. Ideal methods
should fall in the top left of the plot. MMLU and RACE denote that a point was calculated using MMLU or RACE,
respectively, as Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point on the
plot.
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Figure 39: Effect of pruning identified parameters on math and non-math performance for Llama 3.2 3B IT based
on calculating the top 2.5% (left) and 1% (right) of parameters using the MATH dataset as Dmath based on one
sample. Ideal methods should fall in the top left of the plot. MMLU and RACE denote that a point was calculated
using MMLU or RACE, respectively, as Dnon-math. Horizontal and vertical lines represent 95% confidence intervals
for each point on the plot.
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Figure 40: Effect of pruning identified parameters on math and non-math performance for Llama 3.1 8B IT based
on calculating the top 1% of parameters using the MATH dataset as Dmath based on one sample. Ideal methods
should fall in the top left of the plot. MMLU and RACE denote that a point was calculated using MMLU or RACE,
respectively, as Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point on the
plot.
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Figure 41: Effect of scaling identified parameters by 1.025 on math and non-math performance for Llama 3.2 1B IT
based on calculating the top .5% of parameters using the MATH dataset as Dmath. Ideal methods should fall in the
top right of the plot. MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively, as
Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 42: Effect of scaling identified parameters by 1.025 on math and non-math performance for Phi 1.5 based
on calculating the top 15% of parameters using the MATH dataset as Dmath. Ideal methods should fall in the top
right of the plot. MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively, as
Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 43: Effect of scaling identified parameters by 1.05 on math and non-math performance for Gemma 2 2B IT
based on calculating the top .5% of parameters using the MATH dataset as Dmath. Ideal methods should fall in the
top right of the plot. MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively, as
Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 44: Effect of scaling identified parameters by 1.025 on math and non-math performance for Llama 3.2 3B IT
based on calculating the top 10% of parameters using the MATH dataset as Dmath. Ideal methods should fall in the
top right of the plot. MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively, as
Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 45: Effect of scaling identified parameters by 1.01 on math and non-math performance for Llama 3.1 8B IT
based on calculating the top 2.5% of parameters using the MATH dataset as Dmath. Ideal methods should fall in the
top right of the plot. MMLU and RACE denote that a point was calculated using MMLU or RACE, respectively, as
Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point on the plot.
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Figure 46: Effect of scaling identified parameters by 1.025 on math and non-math performance for Llama 3.2 1B
IT based on calculating the top .5% of parameters using the MATH dataset as Dmath based on one sample. Ideal
methods should fall in the top right of the plot. MMLU and RACE denote that a point was calculated using MMLU
or RACE, respectively, as Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point
on the plot.
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Figure 47: Effect of scaling identified parameters by 1.025 on math and non-math performance for Phi 1.5 based
on calculating the top 10% of parameters using the MATH dataset as Dmath based on one sample. Ideal methods
should fall in the top right of the plot. MMLU and RACE denote that a point was calculated using MMLU or RACE,
respectively, as Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point on the
plot.
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Figure 48: Effect of scaling identified parameters by 1.05 on math and non-math performance for Gemma 2 2B
IT based on calculating the top 1% of parameters using the MATH dataset as Dmath based on one sample. Ideal
methods should fall in the top right of the plot. MMLU and RACE denote that a point was calculated using MMLU
or RACE, respectively, as Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point
on the plot.
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Figure 49: Effect of scaling identified parameters by 1.025 on math and non-math performance for Llama 3.2 3B IT
based on calculating the top .01% of parameters using the MATH dataset as Dmath based on one sample. Ideal
methods should fall in the top right of the plot. MMLU and RACE denote that a point was calculated using MMLU
or RACE, respectively, as Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point
on the plot.
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Figure 50: Effect of scaling identified parameters by 1.01 on math and non-math performance for Llama 3.1 8B
IT based on calculating the top 10% of parameters using the MATH dataset as Dmath based on one sample. Ideal
methods should fall in the top right of the plot. MMLU and RACE denote that a point was calculated using MMLU
or RACE, respectively, as Dnon-math. Horizontal and vertical lines represent 95% confidence intervals for each point
on the plot.
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Figure 51: Impact of MathNeuro scale factor on GSM8K performance for Llama 3.2 1B IT.
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Question
Betty is saving money for a new wallet which costs
$100. Betty has only half of the money she needs.
Her parents decided to give her $15 for that pur-
pose, and her grandparents twice as much as her
parents. How much more money does Betty need
to buy the wallet?

Response Before Pruning (correct)
Let’s think step by step. Betty has half of the money
she needs, which is 100/2 =50. She received $15
from her parents, so now she has $50 + $15 = $65.
Her grandparents gave her twice as much as her
parents, which is 2 x $15 = $30. Now she has $65
+ $30 = $95. The wallet costs $100, so Betty needs
$100 - $95 = $5 more to buy the wallet.

Response After Pruning Based on RACE as
Dnon-math (incorrect)
Let’s think step by step. First, let’s determine the
total amount needed to buy the wallet. $100 is
the total amount needed to buy the wallet. Betty’s
parents gave her $15. Her grandparents gave her
$2 as a gift. Betty’s grandparents gave her $15 as a
gift. Betty’s parents gave her $15 as a gift. Betty’s
grandparents gave her $15 as a gift. Betty’s parents
gave her $15 as a gift. Betty’s grandparents gave
her $15 as a gift. Betty’s grandparents gave her
$15 as a gift. Betty’s grandparents gave her $15 as
a gift. Betty’s grandparents gave her $15 as a gift.
Betty’s grandparents gave her $15 as a gift. Betty’s
grandparents gave her $15

Response After Pruning Based on MMLU as
Dnon-math (incorrect)
A: Let’s think step by step. Betty needs $100 to buy
the wallet. Her parents gave her $15 for that pur-
pose, and her grandparents gave her $15 twice as
much as her parents. This is a 50-50 split. Betty’s
grandparents gave her $15 twice as much as her
parents, which is $15. Therefore, Betty’s grand-
parents gave her $15 twice as much as her parents.
B: Let’s think step by step. Betty’s grandparents
gave her $15 twice as much as her parents. This
is a 50-50 split. Betty’s grandparents gave her $15
twice as much as her parents. Therefore, Betty’s
grandparents gave her $15 twice as much as her
parents. C: Let’s think step by step. Betty’s

Table 1: Responses to a GSM8K question before and
after pruning parameters identified by MathNeuro for
Llama 3 1B IT.

Question
The profit from a business transaction is shared
among 2 business partners, Mike and Johnson in
the ratio 2:5 respectively. If Johnson got $2500,
how much will Mike have after spending some of
his share on a shirt that costs $200?

Response Before Scaling (incorrect)
Let’s think step by step. Mike’s share of the profit
is 2 parts, and Johnson’s share is 5 parts. The total
number of parts is 2 + 5 = 7. Johnson’s share of
the profit is 5/7 of the total profit. If Johnson got
$2500, then Mike’s share of the profit is 2/7 of the
total profit. If Mike spent $200 on a shirt, then he
will have $200 + (2/7) of the profit. The profit is
7/7 of the total profit, so Mike’s share of the profit
is 2/7 of 7/7, which is 2/7. Mike’s share of the
profit is $200 + (2/7) of the profit, which is $200 +
(2/7)(7/7) = $200 + 2 = $202. The answer is $202.

Response After Scaling Based on RACE as
Dnon-math (incorrect)
Let’s think step by step. Mike’s share of the profit
is 2 parts, and Johnson’s share is 5 parts. The total
number of parts is 2 + 5 = 7. Johnson’s share is 5/7
of the total profit. Therefore, Mike’s share is 2/7
of the total profit. Mike’s share is 2/7 × $2500 =
$142.86. Mike will have $142.86 after spending
$200 on a shirt.

Response After Scaling Based on MMLU as
Dnon-math (correct)
Let’s think step by step. Mike’s share of the profit
is 2 parts, and Johnson’s share is 5 parts. The total
number of parts is 2 + 5 = 7. Johnson’s share is
5/7 of the total profit. If Johnson got $2500, then
Mike’s share is 2/7 of the total profit. If Mike
spent $200 on a shirt, how much profit will he have
left? To find Mike’s profit, we need to find the total
profit first. We can set up the following proportion:
2/7 = 2500/$x, where x is the total profit. Cross-
multiplying, we get 2x = 2500(7). Dividing both
sides by 2, we get x = 3500. Now that we know
the total profit, we can find Mike’s profit: Mike’s
share is 2/7 of the total profit, so Mike’s profit
is 2/7(3500) = 1000. Finally, we can find out how
much profit Mike will have left after spending $200
on a shirt: Mike’s profit - $200 = $800. The answer
is $800.

Table 2: Responses to a GSM8K question before and
after scaling parameters identified by MathNeuro for
Llama 3 1B IT.
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Prompt
Read this passage and answer the multiple choice question below it.
A newspaper reporter’s job can be very interesting. He meets all types of people and lives quite a busy
life. He is for news all the time,then after several years he may get a desk job,and life becomes a bit more
settled. Let’s look at his work a little more closely. In a day he may have to interview the prime minister
of a foreign country, and the next day he may be writing about a football match. Sometimes he may be so
busy that he hardly has any time to sleep. And at other times he may go on for days looking out for news
materials yet return empty–handed.
In the beginning, a reporter has to cover a very wide field. After the early years he becomes more
specialized in his work. For example, he may finaliy be asked to write only on court cases or politics or
sports. Some reporters may become so specialized that they are asked only to write on a special thing:
horse racing, for example. In most newspaper houses there is at least one special racing correspondent.
Some newspapers have book reviews. Their job is delightful. They read the latest book and then write
reviews on the ones they like. Then there are those who write on fdms, so they get to see them even before
they are shown in the cinema. How lucky, you would say! A reporter’s job can also be very dangerous. If
there is a flood or a riot they may get hurt or even be killed. Three years ago there was a reporter whose
camera was destroyed by a group of men, because they were angry with him for taking their picture.
Dangerous or not, one thing is certain, and that is, their job is never dull!
Question: Reporters who write on films are said to be lucky because they [blank].
Answer choices: [’can write anything they like’, ’can see more film stars’, ’can pay less than other people’,
’can see the fdms before most people see them in the cinema’]

Response Before Interventions (incorrect)
Answer: ’can see more film stars’

Response After Pruning Based on RACE as Dnon-math (incorrect)
Answer: ’can see more film stars’

Response After Pruning Based on MMLU as Dnon-math (incorrect)
Answer: A. ’can write anything they like’

Response After Scaling Based on RACE as Dnon-math (incorrect)
Answer: A

Response After Scaling Based on MMLU as Dnon-math (incorrect)
Answer: A

Table 3: Responses to a RACE question before and after pruning or scaling parameters identified by MathNeuro for
Llama 3 1B IT.
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Figure 52: Consistency of math-specific parameters
identified by MathNeuro for Llama 3.2 1B IT when
identifying using GSM8K compared to MMLU.
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Figure 53: Percentage of top parameters that are math-
specific as identified by MathNeuro for Llama 3.2 1B IT
when identifying using GSM8K compared to MMLU.
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Figure 54: Distribution of math-specific parameters
identified by MathNeuro for Llama 3.2 1B IT when
identifying using GSM8K compared to MMLU.
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Prompt
Question: A 30-year-old nulliparous female presents to the office with the complaint of mood changes.
She says that for the past several months she has been anxious, hyperactive, and unable to sleep 3 to 4
days prior to the onset of menses. She further reports that on the day her menses begins she becomes
acutely depressed, anorectic, irritable, and lethargic. She has no psychiatric history. Physical examination
findings are normal. She and her husband have been trying to conceive for over 2 years. History reveals
a tuboplasty approximately 1 year ago to correct a closed fallopian tube. The most likely diagnosis is
Answer choices: [’adjustment disorder with depressed mood’, ’bipolar I disorder, mixed’, ’cyclothymic
personality’, ’generalized anxiety disorder’]

Response Before Pruning (correct; hit max number of output tokens)
Answer: A
Explanation: The patient’s symptoms of mood changes, anxiety, hyperactivity, inability to sleep, acute
depression, anorexia, irritability, and lethargy, particularly in the context of her history of tuboplasty, are
characteristic of adjustment disorder with depressed mood. The patient’s anxiety, hyperactivity, and acute
depression in the premenstrual phase of her cycle are also consistent with this diagnosis. The mixed
presentation of mood changes is also consistent with this diagnosis, as bipolar I disorder, mixed type
typically involves a combination of manic and depressive episodes. Cyclothymic personality disorder is
characterized by periods of hypomania and depression that last for at least 2 years. Generalized anxiety
disorder is characterized by excessive worry and

Response After Pruning Based on RACE as Dnon-math (correct)
Answer: ’adjustment disorder with depressed mood’
The most likely diagnosis is adjustment disorder with depressed mood. This is a condition where the
person’s symptoms of depression are triggered by a stressful event, but the symptoms are not severe enough
to meet the criteria for a major depressive disorder. The symptoms of depression are typically present
for at least two days, are persistent, and are severe enough to cause significant distress or impairment in
social or work functioning. The diagnosis of adjustment disorder with depressed mood is typically made
based on the criteria outlined in the DSM-IV. The symptoms of depression in adjustment disorder with
depressed mood include: 1. Depressed mood 2. Loss of interest in activities 3. Insomnia or hypersomnia
4. Fatigue

Response After Pruning Based on MMLU as Dnon-math (incorrect; hit max number of output tokens)
Answer: B
Explanation: A 30-year-old nulliparous female presenting with mood changes is a classic presentation for
bipolar disorder, particularly in the early stages. The patient’s symptoms of irritability, lethargy, and an
acute depression during menses are classic for a manic episode. The history of tuboplasty is a significant
clue that points towards a bipolar disorder, especially given the rapid onset of symptoms and the pattern of
episodes. The patient’s past history of depression and the fact that she and her husband have been trying
to conceive for over 2 years suggests a pattern of mood instability and possibly a depressive episode. The
most likely diagnosis is bipolar I disorder, mixed. The symptoms of mood changes, irritability, lethargy,
and

Table 4: Responses to a MMLU question before and after pruning parameters identified by MathNeuro for Llama 3
1B IT.
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Prompt
Question: A 30-year-old nulliparous female presents to the office with the complaint of mood changes.
She says that for the past several months she has been anxious, hyperactive, and unable to sleep 3 to 4
days prior to the onset of menses. She further reports that on the day her menses begins she becomes
acutely depressed, anorectic, irritable, and lethargic. She has no psychiatric history. Physical examination
findings are normal. She and her husband have been trying to conceive for over 2 years. History reveals
a tuboplasty approximately 1 year ago to correct a closed fallopian tube. The most likely diagnosis is
Answer choices: [’adjustment disorder with depressed mood’, ’bipolar I disorder, mixed’, ’cyclothymic
personality’, ’generalized anxiety disorder’]

Response Before Scaling (correct; hit max number of output tokens)
Answer: A
Explanation: The patient’s symptoms of mood changes, anxiety, hyperactivity, inability to sleep, acute
depression, anorexia, irritability, and lethargy, particularly in the context of her history of tuboplasty, are
characteristic of adjustment disorder with depressed mood. The patient’s anxiety, hyperactivity, and acute
depression in the premenstrual phase of her cycle are also consistent with this diagnosis. The mixed
presentation of mood changes is also consistent with this diagnosis, as bipolar I disorder, mixed type
typically involves a combination of manic and depressive episodes. Cyclothymic personality disorder is
characterized by periods of hypomania and depression that last for at least 2 years. Generalized anxiety
disorder is characterized by excessive worry and

Response After Scaling Based on RACE as Dnon-math (correct; hit max number of output tokens)
Answer: A
Explanation: The patient’s symptoms of mood changes (anxiety, hyperactivity, irritability, lethargy) and
the physical symptoms (anorexia) of anorexia nervosa, which are typically seen in the context of hormonal
fluctuations, are consistent with this diagnosis. The physical symptoms of anorexia nervosa are also
consistent with the tubal surgery. The patient’s symptoms do not meet the criteria for a manic episode
(i.e., she is not hyperactive or irritable for more than one week), and her symptoms do not meet the criteria
for a depressive episode (i.e., she is not depressed for more than two weeks). The patient’s age and the
fact that she is trying to conceive do not support

Response After Scaling Based on MMLU as Dnon-math (correct; hit max number of output tokens)
Answer: A
Explanation: The patient’s symptoms of mood changes, anxiety, hyperactivity, and sleep disturbances,
particularly in the context of her menstrual cycle, are characteristic of premenstrual syndrome (PMS). The
patient’s history of tuboplasty and the timing of her symptoms suggest that she may be experiencing a
cyclical pattern of mood changes, which is a hallmark of bipolar I disorder. The patient’s symptoms are
also consistent with a diagnosis of adjustment disorder with depressed mood, which is a type of mood
disorder that occurs in response to a significant life stressor. The patient’s symptoms are not consistent
with cyclothymic personality or generalized anxiety disorder, which do not typically present with such a
cyclical pattern of mood changes. The best answer

Table 5: Responses to a MMLU question before and after scaling parameters identified by MathNeuro for Llama 3
1B IT.

38


	Introduction
	Related Work
	Methods
	Preliminaries
	Identifying Top Parameters
	Isolating Math-specific Parameters

	Experiments
	Experimental Setup
	Pruning Top Math Parameters
	Scaling Top Math Parameters
	MathNeuro with a Single Sample
	MathNeuro Parameter Consistency, Number, Location and Qualitative Impact
	Impact of MathNeuro on Unseen Tasks

	Conclusion
	GSM8K Pruning Results
	GSM8K Scaling Results
	One Sample GSM8K Pruning Results
	One Sample GSM8K Scaling Results
	Impact of MathNeuro on Unseen Downstream Tasks
	MathNeuro Using the MATH Dataset
	MATH Pruning Experiments
	MATH Scaling Experiments

	Sample Outputs
	Scaling Factor Grid Search
	Number and Location of Math-specific Parameters Using MMLU as Dnon-math 

