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Abstract

Nearest neighbors (NN) have traditionally been used both for making final
decisions—such as in Support Vector Machines or k-NN classifiers—and for
providing users with explanations of a model’s decisions. In this paper, we in-
troduce a novel set of nearest neighbors to enhance the predictions of a frozen,
pretrained image classifier C, thereby integrating performance improvement with
explainability. We leverage an image comparator S that (1) compares the input
image with NN images from the top-K most probable classes given by C; and (2)
uses the similarity scores from S to weight and refine the confidence scores of C.

Our method not only consistently improves fine-grained image classification ac-
curacy of C on datasets such as CUB-(Birds)-200, Cars-196, and Dogs-120 but
also enhances the human interpretability of the model’s decisions. Through human
studies conducted on CUB-200 and Dogs-120 datasets, we demonstrate that pre-
senting users with relevant examples from multiple probable classes help users gain
better insight into the model’s reasoning process, which improves their decision
accuracy compared to prior methods that visualize only the top-1 class training
examples [16} 17, 21].

1 Introduction

k-nearest neighbors (NNs) are traditionally considered explainable classifiers by design [18]]. Yet, only
recent human studies have found concrete evidence that showing the NNs to humans improves their
decision-making accuracy [3}16L[7, 9, [10} 14} 16, [17], even more effectively than feature attribution
maps [[15]] in the image domain [12}[16]. These studies typically presented users with the input image,
a model’s top-1 prediction, and the training NNs from the top-1 class. However, examples from the
top-1 class are not always beneficial to users.

One such setting where top-1 NNs can actually hurt human decision-making accuracy is in fine-
grained image classification. When users are asked to accept or reject the model’s decision—a
distinction task, as shown in Fig. Eka), examples from the top-1 class easily fooled users into
incorrectly accepting wrong predictions at an excessively high rate—81.5% on CUB-200; Table A6
in Taesiri et al. [21]]. This is because NNs from the top-1 class often looked deceivingly similar to the
input (e.g., input Elegant vs. Caspian; Fig.[I).
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Figure 1: Given an input image x and a black-box, pretrained classifier C that predicts the label
for x, prior work (a) often shows only the NNs from the top-1 predicted class as explanations for
the decision, which often fools humans into accepting incorrect Al recommendations (here, Caspian
Tern) due to the similarity between the input and top-1 class examples. Instead, including extra
nearest neighbors (b) from top-2 to top-K classes improves not only human accuracy on this binary
distinction task but also AI’s accuracy on fine-grained image classification problems (see Fig. |Z[)

Instead of focusing on top-1 examples, we propose to diversely sample the NN examples from
the top-K predicted, most-probable classes to more fully represent the query and better inform
users to make decisions. That is, we propose Probable-Class Nearest Neighbors (PCNN), a novel
explanation type consisting of K nearest training-set images, where each image is taken from a class
among the top-K’ classes, as illustrated in Fig.[T[b). We show that PCNN not only improves human
decisions on the distinction task over showing top-1 examples but can also be leveraged to improve
Al-alone accuracy by re-ranking the predicted labels of a pretrained, frozen classifier C (Fig.[2).

Assumptions As is the case for many real-world applications, we assume that there exists a
pretrained, black-box classifier C, e.g., a foundation model [2], responsible for a large amount of
information processing in the pipeline. Due to computation and algorithm constraints, C may not be
easily re-trained to achieve better accuracy. Therefore, like Bansal et al. [1]], we assume that C is
frozen—humans or other models would interact with C to make final decisions (Fig. [T).

To leverage PCNN for re-ranking C’s predicted labels, we train an image comparator S, which is
a binary classifier that compares the input image with each PCNN example and outputs a sigmoid
value that is used to weight the original confidence scores of C (Fig.[Z). Then, C and S together
form a C x S model that outperforms C alone.

Our experiments on 10 different classifiers C across 3 fine-grained classification tasks for bird, car,
and dog species reveal

* Our C x S consistently improves upon the original C accuracy on all three domains:
CUB-200, Cars-196, and Dogs-120 (Sec. [3.1).

* In human studies with 60 participants on CUB-200 and 32 on Dogs-120, we find that PCNN
explanations significantly help users calibrate their reliance on Al predictions, resulting
in substantial accuracy improvements on the distinction task. Specifically, user accuracy
increased by nearly 10 percentage points on CUB-200 (from 54.55% to 64.58%) and by over
5 percentage points on Dogs-120 (from 63.55% to 69.21%) when using PCNN explanations,
compared to showing only top-1 class examples (Sec. [3.2).

2 Methods

2.1 Datasets and pretrained classifiers C

We train and test our method on three standard fine-grained image classification datasets of birds,
cars, and dogs. To study the generalization of our findings, we test a total of 10 classifiers C (4 bird,
3 car, and 3 dog classifiers) of varying architectures and top-1 performance.

'Code and data are available at https://github.com/anguyen8/nearest-neighbor-XAT
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Figure 2: C x S re-ranking algorithm: From each class among the top-K predicted classes by C, we
find the nearest neighbor nn to the query x and compute a sigmoid similarity score S(x,nn), which
weights the original C(z) probabilities to re-rank the labels.

CUB-200 (CUB-200-2011) [23]] has 200 bird species, with 5,994 images for training and 5,794 for
testing. We test four different classifiers: a ResNet-50 pretrained on iNaturalist [22] and finetuned on
CUB-200 (85.83% accuracy) by [21]]; and three ImageNet-pretrained ResNets (18, 34, and 50 layers)
finetuned on CUB-200 with 60.22%, 62.81%, and 62.98% accuracy, respectively.

Cars-196 (Stanford Cars) includes 196 distinct classes, with 8,144 images for training and 8,041
for testing. We use ResNet-18, ResNet-34, and ResNet-50, all pretrained on ImageNet and then
finetuned on Cars-196. Their top-1 accuracy scores are 86.17%, 82.99%, and 89.73%, respectively.

Dogs-120 (Stanford Dogs) has a total 120 of dog breeds, with 12,000 images for training and
8,580 images for testing. We test three models: ResNet-18, ResNet-34, and ResNet-50, all pretrained
on ImageNet and then finetuned on Dogs-120, achieving top-1 accuracy of 78.75%, 82.58%, and
85.82%.

2.2 Re-ranking using both image comparator S and classifier C

PCNN is a set of K nearest-neighbor images to the query. Each of PCNN examples is taken from
one training-set class among the top-K predicted classes by C (see Fig. 2). We empirically test
K ={1,2,3,5,10,15} and find K = 10 to be optimal for the top-1 classification accuracy.

The distance metric for finding nearest neighbors per class is L (using faiss framework) [8] at the
average pooling of the last conv features of C.

Re-ranking algorithm Given a well-trained comparator S and the PCNN, we repeat the following
for each class among the top-K classes: Multiply each original confidence score in C(z) by a
corresponding score S(x,nn) where nn is the nearest neighbor from a corresponding predicted class
(see Fig.[2). Based on the newly weighted scores C(z) x S(z,nn), we re-rank the top-K labels.

2.3 Training image comparator S

Network architecture Our image comparator S follows closely the design of the CrossViT [4]],
which takes in a pair of images (see Fig. ). The image patch embeddings are initialized with
convolutional features from a pretrained convolutional network.

Objective function We aim to train S to separate image pairs taken in the same class from those
pairs where images are from two different classes. As standard in contrastive learning [3]], we first
construct a set of positive pairs and a set of negative pairs from the training set, and then train S using
a binary sigmoid cross-entropy loss. Note that training the comparator also finetunes the pretrained
conv layers f, which are part of the comparator model (Fig. [3).

Sampling positive and negative pairs For each training-set example x, we construct a set of
positive pairs {(z, nn,)} and negative pairs {(z,nn_)} (Fig.H). To find nearest images, we use the
distance metric described in Sec.

positive pairs We take () nearest images nn, to the query = from the same class of x (e.g., Elegant
Tern in Fig. [).



|:| Patch token
O cLs token

Figure 3: Our comparator takes
in a pair of images (x,nn) and
outputs a sigmoid score s =
S(x,nn) € [0,1] indicating
whether two images belong to the
same class. L, M, and N are the
depths of the respective blocks.
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Figure 4: For each training-set image =, we sample () near-
est images from the groundtruth class of x to form () positive
pairs {(z, nni)}gl. To sample @) hard, negative pairs: Per non-
groundtruth class among the top-@) predicted classes from C(x),
we take the nearest image to the input. Here, when the groundtruth
label (Elegant Tern) is among the top-@) labels, there would be only
@ - 1 negative pairs.

negative pairs One can also take nn_ nearest images from the random non-groundtruth classes.
However, in the preliminary experiments, we find that taking nn_ from a random class (e.g., among
200 bird classes) produces “easy” negative pairs (z, nn_), i.e., images are often too visually different,
not strongly encouraging S to learn to focus on subtle differences between fine-grained species as
effectively as our “hard” negatives sampling.

Sampling using classifier C First, we observe that pretrained classifiers C often have a very high
top-10 accuracy (e.g., 98.64% on CUB-200 for ResNet-50) and therefore tend to place species
visually similar to the ground-truth class among the top-() labels. Therefore, we leverage the
predictions C(x) of the classifier C on x to sample hard negatives. That is, we sample () nn_ nearest
images to the query. Yet, each nn_ is from a class among the top-(@) predicted labels for z, i.e., from
the C(z). As illustrated in Fig. |4—_1|, if the groundtruth class appears in the top-Q labels, we exclude
that corresponding negative pair, arriving at () — 1 negative pairs. In this case, we will remove one
positive pair to make the data balance. In sum, if the groundtruth class is in the top-@ labels, we
will produce @ positive and ) — 1 negative pairs. Otherwise, we would produce () positive and ()
negative pairs. Empirically, we try @ € {3,5,10,15} and find @ = 10 to yield the best comparator
based on its test-set binary-classification accuracy.

3 Results

In this section, we demonstrate that PCNN examples enhance both Al and human accuracy. First, we
use PCNN examples to train an image comparator S, which improves classifier C’s predictions via
the re-ranking algorithm in Sec.[2.2] Second, when shown PCNN examples, human users increase
their accuracy in distinguishing correct from incorrect predictions for both CUB-200 and Dogs-120.

3.1 C x S re-ranking consistently outperforms classifier C

Here, we aim to test how our re-ranking algorithm (Sec. [2.2)) improves upon the original classifiers C.

Experiment For each of the 10 classifiers listed in Sec. we train a corresponding comparator S
(following the procedure described in Sec.[2.3) and form a C x S model.

Results Our C x S models outperform classifiers C consistently across all three architectures
(ResNet-18, ResNet-34, and ResNet-50) and all three datasets (see Tab. [T). The largest gains on
CUB-200, Cars-196, and Dogs-120 are +11.78, +3.03, and +1.04 percentage points (pp), respectively.



Table 1: On all three ResNet (RN) architectures and three datasets, our C x S consistently improves
the top-1 classification accuracy (%) over the original classifiers C (e.g., by +11.48 on CUB-200) and
also a baseline re-ranking C — S (which uses only S scores in re-ranking). “Pretraining” column
specifies the datasets that C models were pretrained (before fine-tuning on the target dataset).

Classifier architecture ResNet-18 (a) ResNet-34 (b) ResNet-50 (¢)
Dataset | Pretraining C C->S | CxS C C—->S | CxS C C->S CxS
CUB-200 iNaturalist n/a n/a n/a n/a n/a n/a 85.83 87.72 88.59 (+2.76)

ImageNet | 60.22 | 66.78 | 71.09 (+10.87) | 62.81 | 71.92 | 7459 (+11.78) | 62.98 | 71.63 | 74.46 (+11.48)
Cars-196 | ImageNet | 86.17 | 85.70 | 88.27 (+2.10) | 82.99 | 83.57 | 86.02(+3.03) | 89.73 | 89.90 91.06 (+1.33)
Dogs-120 | ImageNet | 78.75 | 75.34 | 79.58 (+0.83) | 82.58 | 80.82 | 83.62(+1.04) | 85.82 | 83.39 86.31 (+0.49)

A trend is that when the original classifier C is weaker, our re-ranking often yields a larger gain.
Intuitively, a weaker classifier’s predictions benefit more from revising based on extra evidence
(PCNN) and an external model (comparator S). Yet, on CUB-200, we also improve upon the best
model (iNaturalist-pretrained ResNet-50) by +2.76 (85.83% — 88.59%). Note that while the gains on
Dogs-120 are modest (Tab.[T)), dog images are the noisiest among the three tested image types, and
therefore the small but consistent gains on Dogs-120 are valuable.

3.2 PCNN improves human accuracy in predicting AI misclassifications on bird images

Given the effectiveness of PCNN examples for Als, we are motivated to test them on human users.
Specifically, we compare user accuracy in the distinction task [12] (i.e., telling whether a given
classifier C is correct or not) when presented with top-1 class examples as in prior work [16]
compared to when presented with PCNN (Fig.[6h vs. b).

Caspian Tern Caspian Tern Caspian Tern

Bz

YES NO

Caspian Tern Caspian Tern

(a) top-1

Caspian Tern Elegant Tern Common Tern California Gull Heermann Gull

(b) PCNN

YES NO

Figure 5: In both experiments, humans are asked whether the input image is Caspian Tern given
that input, a model prediction, and either top-1 class examples (top) or PCNN explanations (bottom).
When given only examples from the top-1 class, humans tend to accept the prediction, not knowing
there are other very visually similar birds. Yet, the top-5 classes provide humans with a broader
context which leads to better accuracy (64.58% vs. 54.55%; Sec.[3.2). We provide the interfaces here
for public access:(bird and dogs).

Experiment We randomly sample 300 correctly classified and 300 misclassified images by the C x
S model from the CUB-200 test set and similarly sample images from the Dogs-120 test set. From
our institution, we recruit 33 lay users for the test with top-1 class examples and 27 users for the
PCNN test on CUB-200, and 17 users for the top-1 test and 15 users for the PCNN test on Dogs-120.
Per test, each participant is given 30 images, one at a time, and asked to predict (Yes or No) whether
the top-1 predicted label is correct given the explanations (Fig.[5). To align with prior work, we
choose K =5 when implementing PCNN, i.e., we only show nearest examples from top-K (where
K = 5) classes to keep the explanations readable to users.

Results We find that PCNN offers contrastive evidence for users to distinguish closely similar
species, leading to better accuracy. That is, showing only examples from the top-1 class leads users
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Figure 6: Users often accept when top-1 class neighbors are presented, leading to high accuracy when
the Al is correct and extremely poor accuracy when Al is wrong. PCNN mitigates this limitation of
the top-1 examples by providing contrastive evidence.

to overly trust model predictions, rejecting only 22.28% (CUB-200) and 34.49% (Dogs-120) of the
cases where the model misclassifies. In contrast, PCNN users correctly reject 49.31% (CUB-200) and
53.51% (Dogs-120) of model misclassifications (Fig.[6). Because users are given more contrastive
information to make decisions, they tend to doubt model recommendations more often, resulting in
lower accuracy when the model is actually correct (79.78% vs. 90.99% on CUB-200; 82.46% vs.
88.97% on Dogs-120).

Yet, on average, compared to showing only examples from the top-1 class in prior works [16} 17, 21]],
PCNN improves user accuracy by a large margin of nearly 10 points on CUB-200 (54.55% — 64.58%)
and over 5 points on Dogs-120 (63.55% — 69.21%).

In search of optimal nearest-neighbor explanations for Al-assisted decision-making in image
classification From the results, we further analyze the trade-offs introduced by PCNN in user
decision-making. While PCNN significantly enhances users’ ability to identify Al errors, it also
highlights a nuanced challenge: managing the balance between trust in correct predictions and
skepticism of incorrect ones. On CUB-200, PCNN users reject nearly twice as many misclassifications
as those shown only top-1 class examples, reflecting its effectiveness in reducing over-reliance on
AT [19} 20]. However, this comes at the expense of lower user accuracy on correct predictions. A
similar trend is observed on Dogs-120.

These findings emphasize the need for adaptive NN explanation strategies. Rather than statically
presenting top-1 or top-K examples, tailoring explanations based on the correctness of Al predictions
could optimize user performance. For instance, showing more similar examples when the model is
correct could reinforce user trust, while providing diverse, contrastive examples when the model is
incorrect could help users better detect errors. This adaptive approach holds promise for improving
human-AlI collaboration across classification tasks.

4 Discussion and Conclusion

In this work, we propose PCNN, a novel explanation consisting of /& images taken from the top- K
predicted classes to more fully represent the query. We show that PCNN can be leveraged to improve
the accuracy of fine-grained image classifiers without having to re-train them, which is increasingly
a common scenario in this foundation model era [2]. We also find that showing PCNN also helps
humans improve their decision-making accuracy compared to showing only top-1 class examples,
which is a common practice in the literature. An important aspect to consider is that while PCNN
provides a comprehensive explanation by presenting multiple probable-class examples, it is crucial to
ensure this does not reduce user confidence to a degree that negatively affects decision-making.
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