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ABSTRACT

Understanding the inner workings of neural embeddings, particularly in models
such as BERT, remains a challenge because of their high-dimensional and opaque
nature. This paper proposes a framework for uncovering the specific dimensions of
vector embeddings that encode distinct linguistic properties (LPs). We introduce
the Linguistically Distinct Sentence Pairs (LDSP-10) dataset, which isolates ten
key linguistic features such as synonymy, negation, tense, and quantity. Using this
dataset, we analyze BERT embeddings with various statistical methods, including
the Wilcoxon signed-rank test, mutual information, and recursive feature elimina-
tion, to identify the most influential dimensions for each LP. We introduce a new
metric, the Embedding Dimension Importance (EDI) score, which quantifies the
relevance of each embedding dimension to a LP. Our findings show that certain
properties, such as negation and polarity, are robustly encoded in specific dimen-
sions, while others, like synonymy, exhibit more complex patterns. This study
provides insights into the interpretability of embeddings, which can guide the de-
velopment of more transparent and optimized language models, with implications
for model bias mitigation and the responsible deployment of AI systems. 1

1 INTRODUCTION

Word embeddings are central to natural language processing (NLP), enabling machines to represent
and interpret text in continuous vector spaces. From early models like Word2Vec Mikolov et al.
(2013) and GloVe Pennington et al. (2014), to advanced models like GPT-2 Radford et al. (2019) and
BERT Devlin et al. (2019), embeddings have evolved to capture complex linguistic nuances. BERT,
in particular, leverages bidirectional transformers to generate contextualized word representations,
enhancing syntactic and semantic understanding Rogers et al. (2020).

Despite these advancements, embeddings are often seen as "black boxes," where the high-dimensional
nature of the spaces they occupy makes interpretation difficult Belinkov & Glass (2019). The field of
interpretable embeddings seeks to address these challenges by making the dimensions of embeddings
more transparent and meaningful Faruqui et al. (2015a); Incitti et al. (2023); Snidaro et al. (2019).
However, most systems still rely on popular embedding models like GPT, BERT, Word2Vec, and
GloVe, which prioritize performance over interpretability Cao (2024); Lipton (2017).

Our research introduces a generalizable framework for identifying specific embedding dimensions in
models like BERT and GPT-2 that encode distinct LPs. This work responds to the growing need for
interpretable models, especially for tasks like bias mitigation Bolukbasi et al. (2016); Mehrabi et al.
(2021), task-specific optimization Guyon & Elisseeff (2003); Voita et al. (2019), and more system
controllability Bau et al. (2019).

We present the LDSP-10 dataset, which consists of sentence pairs isolating nine LPs, designed to
probe embedding spaces and identify the dimensions most influential for each property. We analyze
these sentence pairs using statistical tests, mutual information, and feature selection methods. We
propose the Embedding Dimension Importance (EDI) score, which aggregates these analyses to
quantify the relevance of each dimension to specific LPs.

1Code will be released upon publication.
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Figure 1: Dimensions of BERT embeddings that encode the most information about each LP.
Relevance is determined by Embedding Dimension Importance (EDI) scores above 0.8, a threshold
chosen in relation to the general EDI score distribution.

Control Synonym Quantity Tense Intensifier Voice Definiteness Factuality Polarity Negation
BERT 0.5033 0.7033 0.95 0.94 0.9867 0.9667 0.8967 0.9833 0.9700 0.9333
GPT-2 0.57 0.6267 0.9733 0.9567 0.9367 0.9867 0.9433 0.9667 0.9533 0.93

MP-Net 0.54 0.5267 0.9533 0.93 0.8733 0.86 0.8567 0.9667 0.9533 0.9367

Table 1: Evaluation 1 (§ 5.2) accuracy for different LPs across BERT, GPT-2, and MP-Net. A
simple logistic classifier is able to perform at these levels of accuracy on the highest EDI subset of
dimensions of embeddings from each of these models.

This paper makes three contributions. First, is the introduction of the LDSP-10 dataset, consisting of
sentence pairs that isolate nine LPs. Second is a generalizable framework and quantifiable metric
(EDI score) for identifying influential embedding dimensions, applicable to different models and
linguistic features. Third is a comprehensive analysis of BERT, GPT-2, and MPNet embeddings,
revealing key dimensions related to each LP.

2 RELATED WORKS

Research on interpretable embeddings can be divided into two categories: interpretable embed-
dings and representation analysis. The former focuses on designing models that naturally produce
interpretable representations, while the latter involves post-hoc analysis to uncover how existing
embeddings encode human-interpretable features.

2.1 INTERPRETABLE EMBEDDINGS

Several approaches have been proposed to create interpretable word embeddings. Early efforts
like Murphy et al. (2012) used matrix factorization techniques to generate sparse, interpretable
embeddings. Faruqui et al. (2015b) introduced Sparse Overcomplete Word Vectors (SPOWV), which
used a dictionary learning framework for more interpretable, sparse embeddings. Other methods,
such as Guillot et al. (2023) and Subramanian et al. (2018), explored how sparsification techniques
could disentangle properties within embeddings, making them more interpretable.

Approaches to embedding interpretability also involve aligning dimensions with human-
understandable concepts. For instance, Panigrahi et al. (2019) used Latent Dirichlet Allocation
(LDA) to produce embeddings where each dimension corresponds to a specific word sense, and
Benara et al. (2024) employed LLM-powered yes/no question-answering techniques to generate
interpretable embeddings. Despite these innovations, popular models like Word2Vec, GloVe, and
BERT remain dominant in NLP but often lack inherent interpretability. As a result, methods for
post-hoc analysis are needed to interpret these embeddings.
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2.2 REPRESENTATION ANALYSIS

Representation analysis focuses on understanding how knowledge is structured within embeddings
and how individual neurons contribute to encoding specific properties Sajjad et al. (2022). Senel
et al. (2017) demonstrated how individual dimensions correspond to specific semantic properties,
and Zhu et al. (2018) emphasized the value of sentence-level embeddings in capturing nuanced
semantic properties. Research has also explored the linguistic features encoded within embeddings.
Conneau et al. (2018) developed a set of ten probing tasks that evaluate how sentence embeddings
capture various linguistic features, such as syntactic structures and semantic roles. Adi et al. (2017)
complemented this work by proposing classification tasks that reveal the effectiveness of sentence
embeddings in encoding attributes like sentence length and word order.

Recent research has analyzed individual neurons in embedding spaces, often using methods like
neuron-ranking, where a probe is used to rank neurons based on their relevance to a specific linguistic
feature Dalvi et al. (2019); Durrani et al. (2020); Torroba Hennigen et al. (2020). Antverg & Belinkov
(2022) analyzed these methods, separating representational importance from functional utility and
introducing interventions to evaluate whether encoded information is actively utilized.

Property Sentence Pair

Control They sound excited.
The farmer has 20 sheep.

Synonym The music was calming.
The music was soothing.

Quantity I ate two cookies.
I ate several cookies.

Tense The river flows swiftly.
The river flowed swiftly.

Intensifier The task is easy.
The task is surprisingly easy .

Voice The team won the game.
The game was won by the team.

Definiteness The bird flew away.
A bird flew away .

Factuality The car is red.
The car could be red.

Polarity She passed the exam.
She failed the exam.

Negation The project is successful.
The project is not successful.

Table 2: Sample linguistically distinct sentence
pairs (LDSPs) from each of the LPs tested in this
study. LDSP-10 dataset contains 1000 sentence
pairs per LP. Control LDSPs are randomly chosen
from the dataset, intended to be unrelated, as a
baseline for our analysis.

Building on this foundation, Durrani et al.
(2024) introduced Linguistic Correlation Analy-
sis (LCA), which identifies salient neurons that
encode specific linguistic features. Their find-
ings indicated redundancy in information en-
coding across neurons, enhancing robustness in
representation learning. Similarly, Gurnee et al.
(2023) proposed sparse probing methods to ad-
dress polysemanticity, illustrating how features
are distributed across neurons in transformer
models. Additionally, Torroba Hennigen et al.
(2020) presented intrinsic probing, introducing
a Gaussian framework to identify dimensions
encoding LPs. We Together, these findings sug-
gest that linguistic attributes are often encoded
in focal dimensions, providing insights into how
different models represent linguistic knowledge.

Our work builds on these ideas by using the
LDSP-10 dataset to isolate linguistic features,
which provides a focused method for assessing
how embedding dimensions capture these prop-
erties. We move beyond traditional probing and
neuron-ranking techniques to offer a more tar-
geted examination of embedding interpretabil-
ity.

3 LINGUISTICALLY DISTINCT SENTENCE PAIRS (LDSP-10) DATASET

We curated a dataset of 1000 LDSPs for each of the 10 LPs we wanted to investigate. The dataset
was generated using Google’s gemini-1.5-flash model API. This model was selected due to its
reliability and cost-efficiency while being able to produce consistent outputs across a variety of
linguistic contexts. The model was prompted with a set of reference LDSPs as well as a description
of the LP to ensure a high-quality outputs. These outputs were generated in batches of 100 LDSPs at
a time. To ensure reproducibility and transparency, the detailed prompts used to generate the dataset
are provided in Appendix A. These prompts included explicit examples of each LP, along with clear
instructions tailored to the gemini-1.5-flash API to encourage outputs adhering to the desired
properties.

During the dataset creation process, the order of the sentences in the LDSP was not always consistent
with the intended property distinction. We made modifications to the prompt to explicitly enforce
the correct ordering. This adjustment ensured that the generated outputs reliably aligned with our
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expectations. Manual validation was conducted to assess the quality of the generated data. The
evaluation revealed that more than 99% of the sampled sentence pairs adhered to the minimal
distinctions expected for their LP. The system exhibited a low rate of syntactic or content biases,
with errors occurring primarily in cases involving more complex distinctions, such as polarity and
factuality.

The LPs tested were chosen to explore various semantic and syntactic relationships. We generated
LDSPs for definiteness, factuality, intensifier, negation, polarity, quantity, synonym, and tense. In
addition, we generated a control group, which contains sentence pairs of completely unrelated
sentences. This is used to compare to the LDSPs and contextualize our observed results. Example
LDSPs can be found in Table 2, with more detailed definitions found in Appendix B. For more
information about the dataset generation pipeline, please refer to Appendix A.

4 DIMENSION-WISE EMBEDDING ANALYSIS

4.1 WILCOXON SIGNED-RANK TEST

The Wilcoxon signed-rank test is employed in our analysis to assess whether there exists a significant
difference in embedding dimensions across paired sentence representations. This non-parametric
test is particularly useful when the data does not conform to the normality assumptions required by
parametric tests such as the paired t-test. Given that sentence embeddings often exhibit complex,
non-Gaussian distributions, the Wilcoxon test provides a robust approach to evaluating the statistical
significance of differences in embedding dimensions.

Formally, let X1, X2 ∈ Rd be the embedding representations of two paired sentences. We define the
difference vector as:

D = X1 −X2, (1)

where D = {d1, d2, ..., dd} contains the differences for each embedding dimension. The null
hypothesis for the Wilcoxon test is given by:

H0 : median(D) = 0, (2)

which posits that there is no significant shift in the embedding dimensions between the two sentence
representations.

The test proceeds by ranking the absolute values of the nonzero differences, assigning ranks Ri to
each |di|. The Wilcoxon test statistic W is computed as the sum of ranks corresponding to positive
differences:

W =
∑
di>0

Ri. (3)

The significance of W is then assessed using either critical values from the Wilcoxon distribution or
by computing a p-value.

We employ the Wilcoxon test in our framework to analyze whether certain dimensions of the
embeddings exhibit systematic shifts between sentence pairs. Overall, the Wilcoxon signed-rank
test provides a rigorous statistical method for validating the role of embedding dimensions in
differentiating sentence pairs, ensuring that our conclusions are drawn from statistically significant
evidence rather than random variations.

4.2 MUTUAL INFORMATION (MI)

To further investigate the relationship between embedding dimensions and each LP and inspired
by Pimentel et al. (2020), we employed mutual information (MI) analysis. Mutual information is a
measure of the mutual dependence between two variables, quantifying the amount of information
obtained about one variable by observing the other Zeng (2015).

For discrete random variables X and Y , the mutual information MI(X;Y ) is defined as:

MI(X;Y ) =
∑
x∈X

∑
y∈Y

PXY (x, y) log
PXY (x, y)

PX(x)PY (y)
,

4
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where PXY (x, y) is the joint probability distribution of X and Y , and PX(x) and PY (y) are the
marginal probability distributions of X and Y , respectively. In our context:

• X represents the values of a particular embedding dimension.
• Y represents S1 (0) or S2 (1).

To apply mutual information analysis, we discretize the embedding dimensions using quantile-based
binning with 10 bins. This number was selected as a balance between the preservation of information
content and the avoidance of excessive complexity in the estimation of the MI score and is a common
practice in similar analyses Steuer et al. (2002).

4.3 RECURSIVE FEATURE ELIMINATION

We initially examined each embedding dimension’s predictive capability with simple logistic re-
gression. Unlike more flexible techniques, logistic regression imposes a linear decision boundary,
which was unable to capture the complex patterns defining most linguistic contrasts within the
generated embeddings. To capture these relationships, we applied Recursive Feature Elimination
(RFE) using scikit-learn’s implementation with logistic regression as the base estimator Zeng
et al. (2009). Embedding pairs were split into their constituent parts, with sentence1 embeddings
labeled as class 0 and sentence2 embeddings as class 1, enabling a binary classification setup to
highlight dimensions that distinguish the two positions. The RFE procedure iteratively trained a
model, assigned importance weights to features, and removed the least important ones until the top
20 features remained.

The dataset was divided into training (80%) and testing (20%) sets with a fixed random seed to ensure
consistency. RFE was initialized with a logistic regression classifier (max 1000 iterations), and the
selected 20 features were used to train a final logistic regression model. The model’s performance
was evaluated on the test set using accuracy as the metric.

4.4 EDI SCORE CALCULATION

To quantify the contribution of of each embedding dimension to a LP, we introduce the Embedding
Dimension Importance (EDI) Score, which is computed for each dimension d and each LP lp as
follows:

EDId,lp = w1 · − log pd,lp + w2 ·Md,lp + w3 ·Rd,lp

where pd,lp is the p-value obtained from the Wilcoxon signed-rank test results. Md,lp is the mutual
information score. Rd,lp is the absolute value of the logistic regression weights after the recursive
feature elimination if d remains in the reduced feature set for LP lp; otherwise, Rd,lp = 0. pd,lp,
Md,lp, Rd,lp are min-max scaled before the EDI score weighted to calculation to enforce EDI scores
to be ∈ [0, 1]. Lastly, w1 = 0.6, w2 = 0.2, and w3 = 0.2. Wilcoxon’s test was weighted the most
heavily, as it calculates the statistical significance of the differences observed, which our testing
showed was a strong predictor of dimension importance.

5 EVALUATION

5.1 LINGUISTIC PROPERTY CLASSIFIER

To verify the feasibility of using sentence pairs, we calculated embedding difference vectors Di =
emb(S1i)− emb(S2i) and evaluated them as predictors of LP. To this end, we trained an LP classifier
that assigns any given embedding difference vector to one of the tested LPs. The primary goal of this
classifier is to assess how well different LPs can be separated in the embedding space. The model
was trained using an 80-20 training-test split on the entire LDSP-10 dataset.

5.2 EDI SCORE EVALUATION

To systematically assess the effectiveness of EDI scores, we implement a structured evaluation
framework consisting of a baseline test and three evaluations experiments. For more details on the
algorithms for each evaluation method, refer to Appendix C.
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(a) Distribution of dimension 0
of control LDSPs for S1 and S2.
For control, all dimensions had
equivalent Wilcoxon p-values, so
dimension 0 represents the most
and least significant p-value.

(b) Distribution of dimensions
544 (top) and 489 (bottom), low-
est and highest p-values respec-
tively, of negation LDSPs for S1

and S2. There is a discernible
shift to the right in dimension 544,
for sentences that are negated.

(c) Distribution of dimensions
445 (top) and 489 (bottom), low-
est and highest p-values respec-
tively, of intensifier LDSPs for
S1 and S2. Intensified sentences
have values in dimension 445 that
tend to be lower, as seen by the
distributional shift to the left.

Figure 2: BERT embedding distributions for control, negation, and intensifier.

For the baseline, we train a logistic regression classifier on the full set of embedding dimensions.
Given a binary classification task for each LP, the classifier is trained to distinguish between the two
sentences in the LDSP using all available embedding dimensions, serving as an upper bound against
which subsequent evaluations are compared.

Evaluation 1 explores how dimensions with high EDI scores replicate the performance of the
full-dimensional classifier. We first rank all dimensions by their EDI score in descending order.
Starting with the highest-ranked dimension, we train a logistic regression classifier, as in the baseline
evaluation, but only with this single feature. We iteratively add the next highest-ranked dimension,
retraining the classifier and evaluating the test accuracy until we reach at least 95% of the baseline
accuracy.

Evaluation 2 verifies that dimensions with low EDI scores do not encode information relevant to
the LP. We identify the 100 lowest-ranked dimensions and train a logistic classifier to distinguish
between the two sentences using only those dimensions. We record the accuracy on a test dataset to
determine whether it remains close to random chance, as expected, to ensure that these dimensions
lack significance in encoding the LP.

Evaluation 3 examines cross-property generalization, exploring whether high-EDI-score dimensions
for one LP are specialized rather than broadly informative across different properties. We use the
highest-ranked EDI score dimensions of other properties to predict the current property. We expect
the performance of this classifier to be generally lower than the baseline and the high EDI Score
accuracy.

6 RESULTS

In this section, we focus on BERT embeddings as a case study for applying our framework. We
focus on showing visualizations for control, negation, and intensifier, but all other LPs and related
tables/plots can be found in Appendix . The results for GPT-2 and MPNet were similar, and can be
reviewed in detail in Appendix E and Appendix F.

6.1 CONTROL AND SYNONYM

The control LDSPs consists of completely unrelated sentence pairs. As expected, the results show
that there are no significant dimensions in BERT embeddings that encode any relationships. Figure 4
illustrates very little agreement the Wilcoxon signed-rank test, RFE, and mutual information. The
Wilcoxon test p-values show no dimensions with significant differences in their means, as shown in
Figure 2a. The maximum EDI score of 0.3683 is the lowest of all other properties. The embeddings
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Figure 3: Combined analysis graphs for negation and intensifier. Circled bars represent dimensions
that all three tests agree to be highly important. Similar to Figure 4.

of the two sentences are expected to be far in embedding space because of their unrelated nature,
which aligns with these observed results.

Despite having sentences that were very close or equivalent in meaning, the results of the analysis for
the synonym LDSPs were very close to the completely unrelated sentences of control. The Wilcoxon
test shows no significant dimensions that encode meaningful differences between the sentences. The
maximum EDI score of 0.8751 is followed by a steep drop-off.

6.2 NEGATION AND POLARITY

Figure 4: Combined analysis graph for control:
shows the top 25 important dimensions selected
by each of the three methods in § 4. Bar height
represents mutual information (MI); bars above
the dashed line are in the top 25 MI scores. Blue
bars signify the lowest Wilcoxon test p-values.
Green triangles indicate a dimension that was se-
lected by recursive feature elimination (RFE) with
num_features set to 25. In the case for control,
all dimensions had equivalent Wilcoxon p-values,
so the first 25 are selected.

The negation LDSPs showed very strong results,
with 13 dimensions with an EDI score of 0.8
or above. The maximum EDI score of 0.9987
for dimensions 544 is one of the strongest out
of any LP. Figure 3 illustrates this, with high
agreement between the Wilcoxon signed-rank
test, RFE, and mutual information test results.
Figure 2b highlights the distributional shift in
some dimensions, which compared to the con-
trol highlights a discernible, binary relationship
in the data.

Polarity is very similar to negation and had simi-
larly strong results. With a maximum EDI score
of 0.9977 for dimension 431, and over 20 dimen-
sions with EDI scores over 0.8, it was also one
of the strongest relationships that we observed.
The singular switch to an antonym in the sen-
tence completely reverses the meaning of the
sentence, explaining the strong binary relation-
ship between the sentences.

6.3 INTENSIFIER

Adding a word to increase the emphasis of a
verb changes the meaning of the sentence to a
lesser degree than a complete reversal, so the
results of the intensifier LDSPs reflect a slightly weaker relationship than negation. There are fewer
dimensions with multiple test agreement, as shown in Figure 3, as well as a slighter distributional
shift, as shown by the most significant p-value Wilcoxon test results (Figure 2c). With a maximum
EDI score of 0.8911, the encoding is relatively weaker, but noticeable.

6.4 OTHER LINGUISTIC PROPERTIES

Largely syntactical changes, such as those observed in definiteness, led to strong EDI scores as well.
Definiteness had the highest dimensional EDI score, with dimension 180 receiving a score of 1.0. A
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simple switch from a definite to an indefinite article is a distinct change in structure. As articles are
present in most English sentences, a singular dimension with a perfect EDI score is expected.

Voice, another syntactical property, had pairs of sentences with shuffled word orders and verb changes.
The results show that this is encoded in relatively few dimensions, with only 3 dimensions scoring
above 0.9.

The quantity LDSPs involve changes in the syntax and semantics. Similar to the intensifier results,
the EDI scores at large were relatively lower for these properties, but still much stronger than the
control.

Tense represented a large semantic change, as well as a structural one in the conjugation of verbs.
Although the maximum EDI score of 0.9405 was not as high as other properties, 18 embeddings
scored above 0.8, indicating an encoding of this property over many dimensions.

For more details and visualizations of all properties, refer to Appendix D.

6.5 EVALUATION RESULTS

Figure 5: Confusion matrix for the LP classifier
(§ 5.1). All LPs, except control and synonym,
are accurately classified by the model. Control’s
randomness ensures that its different vectors con-
tain no consistent separability, similarly with syn-
onym’s unordered pairings.

The LP classifier achieved a test accuracy of
0.863 with a confusion matrix as shown in
Figure 5, demonstrating that the embedding
difference vectors contain sufficient separable
information to distinguish between different
LPs. Moreover, the strong performance of the
classifier supports the validity of our pairwise
minimal-perturbation approach, indicating that
small controlled changes in sentence pairs ef-
fectively capture linguistic distinctions in the
embedding space.

In the high EDI score evaluation, we observed
that across most LPs, only less than 12 of the
highest-ranked dimensions were required to re-
cover at least 95% of the baseline classifier’s
accuracy, with some properties (i.e. factuality)
requiring as few as four dimensions. This indi-
cates that the information necessary for classify-
ing each LP is concentrated in a relatively small
subset of embedding dimensions. Conversely,
the low EDI score evaluation confirmed that di-
mensions with low scores contribute minimally
to classification performance. Even when using
the 100 lowest-ranked dimensions, the resulting
classifier performed consistently worse than classifiers using much fewer (4-38) of the highest-ranked
dimensions (Figures 6a, 6b). This demonstrates the EDI score’s validity as a measure of whether a
given dimension encodes information relevant to an LP.

Finally, the cross-property evaluation demonstrated that using the top-ranked dimensions from another
LP generally resulted in lower classification performance compared to using the high-EDI dimensions
of the target property, showing that the EDI score effectively identifies dimensions that encode
information specific to each LP. Interestingly, we found that certain properties with conceptual
similarities performed best for each other. For example, in the polarity classification task, the top
EDI dimensions from negation achieved the highest accuracy among all cross-property evaluations,
reaching 0.895 (Figure 6a). This result aligns with the intuition that negative sentiment—typically
represented by the second sentence in polarity pairs—is often expressed through negation, reinforcing
the semantic connection between these LPs.

8
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(a) Eight dimensions were enough to achieve near-
baseline accuracy. The top-performing cross prop-
erty is negation, which contains semantic similari-
ties to polarity.

(b) Incrementally added 19 high-EDI dimensions
until the classifier reached near-baseline perfor-
mance. Low-EDI performance (red dashed line)
was nearly half.

Figure 6: Evaluation plots for polarity and intensifier. Green dashed line marks the baseline
performance threshold, the grey dashed line is the performance of the top EDI dimensions on control,
and the red dashed line is the performance of the lowest 100 EDI dimensions. The blue line tracks
the test accuracy of the classifier as we increased the number of top EDI-scored dimensions.

7 DISCUSSION

The results of this study provide a clear demonstration of the ability to disentangle specific LPs
within high-dimensional embeddings. Our analysis shows that certain LPs are robustly encoded
in distinct embedding dimensions, as evidenced by high Embedding Dimension Importance (EDI)
scores and agreement across multiple analytical methods. These methods were chosen after rigorous
experimentation, where principal component analysis, simple logistic regression, and other methods
were rejected due to their inability to capture the nuanced, non-linear information encoded in these
embeddings. Negation yielded one of the the highest maximum EDI scores and a significant number
of dimensions with high interpretability. This supports the notion that negation is a well-structured
and salient linguistic feature in BERT embeddings.

In contrast, some properties exhibited minimal evidence of dimension-specific encoding, which
we hypothesize to be due to a lack of a binary or clear-cut way of encoding these relationships.
Synonymy showed low maximum EDI scores and inconsistent results across the Wilcoxon Signed-
Rank Test, Mutual Information, and Recursive Feature Elimination. Synonym pairs in our dataset
could be permuted without affecting the consistency of the data, and 0-1 labels for our classifiers and
mutual information were meaningless; therefore, our methods are unable to extract the dimensional
distribution of synonym encodings.

In summary, this study underscores the heterogeneous nature of linguistic encoding in BERT embed-
dings, with some properties exhibiting clear, interpretable patterns while others remain elusive. The
proposed EDI score and analytical framework provide valuable tools for advancing the interpretability
of embeddings, with implications for bias mitigation, model optimization, and the broader goal of
responsible AI deployment.

8 LIMITATIONS

While our study provides insight into the interpretability of embedding dimensions, it is constrained
primarily due to data availability. Generating high-quality LDSPs with LLM-based tools is difficult,
as ensuring diversity, minimal redundancy, and high linguistic quality becomes significantly more
difficult with more data generated. Overly simplistic, repetitive outputs are difficult to avoid, despite
careful prompt engineering.
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A DATASET GENERATION PIPELINE

Figure 7 illustrates the procedure used to generate the LDSP-10 dataset. The batch procedure of
generating 100 pairs of sentences at a time was crucial in minimizing API costs while also getting
high-quality generations that would be useful for our experiments. The prompt template used can be
seen in Figure 8.

B LINGUISTIC PROPERTY DEFINITIONS

We tested LDSPs for the following linguistic properties:

• Definiteness involves the use of definite or indefinite articles within a sentence, such as the
compared to a, respectively.

• Factuality refers to the degree of truth implied by the structure of the sentence.

• Intensifier refers to the degree of emphasis present within a sentence.

• Negation occurs when a not is added to a sentence, negating the meaning.

• Polarity this is similar to a negation, and occurs when an antonym is added, reversing the
meaning of the sentence completely.

• Quantity a switch from an exact number used to numerate the items to a grouping word.

• Synonym both sentences have the same meaning, with one word being replaced by one of its
synonyms.

• Tense one sentence is constructed in the present tense, while the other is in the past tense.
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Figure 7: LDSP generation pipeline with Google’s gemini-1.5-flash model API.
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prompt_template = """

You are generating a dataset of Linguistically Distinct Sentence Pairs (LDSPs).
Each LDSP will differ in one key linguistic property while maintaining the same
overall meaning.

Below are some examples of LDSPs

Linguistic Property: negation
LDSP: ('The box is on the counter', 'The box is not on the counter')

Linguistic Property: tense
LDSP: ('The box is on the counter', 'The box was on the counter')

You will generate {num_ldsps} distinct LDSPs of various topics, 100 at a time.

You will generate them as two columns of a CSV. One column for first sentence of
the LDSP, and the other column for the second.
Each row is a new LDSP, so you will generate {num_ldsps} rows in total.

Generate no other text. Vary the sentence structure.

The property for which you will be generating LDSPs will be {linguistic_property}.

Property Description: {property_description}

An example LDSP for this property is
{example_ldsp}

Generate the first 100 LDSPs.

"""

Figure 8: The prompt template used to generate LDSPs with the gemini-1.5-flash model API.
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C EVALUATION ALGORITHMS

To systematically assess the efficacy of EDI (Embedding Dimension Importance) scores, we conduct
a structured evaluation using logistic regression classifiers. Our evaluation consists of three key
evaluation algorithms:

Algorithm 1 Evaluation 1: High EDI Score

Require: Ranked dimensions D = {d1, d2, ..., d768} sorted by descending EDI score
Ensure: Accuracy curve Ak as a function of dimensions used

1: Initialize k ← 1, Ak ← 0
2: while Ak < 0.95Abaseline do
3: Select top k dimensions: Xk = X[:, D1:k]
4: Train logistic regression on Xk

5: Compute test accuracy Ak ← Evaluate(θ,Xtest, ytest)
6: k ← k + 1
7: end while
8: return Ak

Algorithm 2 Evaluation 2: Low EDI Score

Require: Ranked dimensions D = {d1, d2, ..., d768} sorted by ascending EDI score
Ensure: Test accuracy Alow using lowest-EDI dimensions

1: Select bottom k = 100 dimensions: Xlow = X[:, D1:100]
2: Train logistic regression on Xlow
3: Compute test accuracy Alow ← Evaluate(θ,Xtest, ytest)
4: return Alow

Algorithm 3 Evaluation 3: Cross-Property

Require: Current property P0 dataset (X, y), set of other properties P = {P1, P2, ..., P9}, where
each Pi has ranked EDI dimensions DPi

Ensure: Accuracy scores {AP1
, AP2

, ..., AP9
}

1: for each property P ∈ P do
2: Retrieve top k = 25 dimensions from P : D1:25

P

3: Extract these dimensions from current data: XP
train = Xtrain[:, D

1:25
P ]

4: Train logistic regression on XP
train

5: Compute test accuracy AP ← Evaluate(θ,XP
test, ytest)

6: end for
7: return {AP }P∈P

These evaluations provide a comprehensive understanding of how EDI scores relate to classification
accuracy, ensuring that high EDI dimensions contain useful linguistic information while low EDI
dimensions do not. The cross-property evaluation further confirms that high-EDI dimensions are
specialized rather than general indicators of LPs.

D ADDITIONAL LINGUISTIC PROPERTY RESULTS FOR BERT EMBEDDINGS

D.1 CONTROL

Table 3 highlights the top 10 EDI scores for the control. The baseline evaluation results for control
showed an accuracy of 0.5200, close to random chance. The Low EDI score test yielded an accuracy
of 0.4575. The High EDI score test demonstrated quick improvements, achieving 95% of baseline
accuracy with a single dimension, as the baseline accuracy was low, as illustrated in Figure 9. The
greatest cross-property accuracy was achieved by voice, at 0.5325.
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Dimension EDI Score
209 0.3683
526 0.2639
578 0.2434
235 0.2342
186 0.2315
515 0.2196
724 0.2167
760 0.2000
327 0.1958
551 0.1913

Table 3: Top 10 BERT EDI scores for the Control.

Figure 9: Evaluation plot for control. The blue dot indicates that with just 1 high-EDI dimension, the
classifier was able to achieve performance better than the baseline. However, in the case of control,
all the accuracies are near 0.5 (random-choice accuracy), as expected.

D.2 DEFINITENESS

Definiteness had some of the strongest results out of any LP. Figure 10 highlight the difference
between the most prominent dimensions for this property. Table 4 highlights the top 10 EDI scores,
while Figure 12 illustrates the high level of agreement between our various tests.

The baseline evaluation results for definitenessshowed an accuracy of 0.9450. The Low EDI score
test yielded an accuracy of 0.5425, very close to random chance. The High EDI score test was able
to achieve 95% of baseline accuracy with 25 dimensions, as illustrated in Figure 11. The greatest
cross-property accuracy was achieved by intensifier, at 0.8425.

D.3 FACTUALITY

Factuality had strong results. Figure 13 highlights the stark difference between the most prominent
dimensions encoding this property. Table 5 highlights the top 10 EDI scores, while Figure 15
illustrates the high level of agreement between our various tests.

Dimension EDI Score
180 1.0000
123 0.8824
319 0.8819
385 0.8639
109 0.8155
497 0.7974
683 0.7948
172 0.7926
430 0.7907
286 0.7862

Table 4: Top 10 BERT EDI scores for Definiteness.
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Figure 10: BERT Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Definiteness.

Figure 11: High EDI score evaluation results for BERT Embeddings of definiteness.

The baseline evaluation results for factuality showed an accuracy of 0.9975. The Low EDI score
test yielded an accuracy of 0.5975, approximately random. The High EDI score test demonstrated
very quick improvements, achieving 95% of baseline accuracy with 4 dimensions, as illustrated in
Figure 14. The greatest cross-property accuracy was achieved by tense, at 0.9650.

D.4 INTENSIFIER

Table 6 highlights the top 10 EDI scores for intensifier. The baseline evaluation results for intensifier
showed an accuracy of 0.9925. The Low EDI score test yielded an accuracy of 0.5150, close to
random chance. The High EDI score test demonstrated incremental improvements, achieving 95%

Dimension EDI Score
577 0.9740
43 0.9386

210 0.9249
745 0.8954
539 0.8887
387 0.8869
60 0.8727
16 0.8617
54 0.8609
97 0.8538

Table 5: Top 10 BERT EDI scores for Factuality.
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Figure 12: BERT Mutual Information of Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Definiteness

Figure 13: BERT Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Factuality.

of baseline accuracy with 19 dimensions, as illustrated in Figure 6b. The greatest cross-property
accuracy was achieved by quantity, at 0.8550.

D.5 NEGATION

Table 7 highlights the top 10 EDI scores for negation. The baseline evaluation results for negation
showed an accuracy of 0.9925. The Low EDI score test yielded an accuracy of 0.5800, close to
random chance. The High EDI score test demonstrated incremental improvements, achieving 95%
of baseline accuracy with 11 dimensions, as illustrated in Figure 16. The greatest cross-property
accuracy was achieved by tense, at 0.9100.

Dimension EDI Score
686 0.8911
663 0.8832
139 0.8805
605 0.8790
269 0.8650
441 0.8612
144 0.8535
692 0.8468
445 0.8385
442 0.8221

Table 6: Top 10 BERT EDI scores for Intensifier.
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Figure 14: High EDI score evaluation results for BERT Embeddings of factuality.

Figure 15: Mutual Information of Embedding Dimensions overlaid with Wilcoxon test and RFE
results for Factuality

D.6 POLARITY

Polarity, as it is similar to negation, had extremely strong results. Figure 17 highlights the differences
between the most prominent dimensions encoding this property. Table 8 highlights the top 10 EDI
scores, while Figure 18 illustrates the extremely high level of agreement between our various tests.

The baseline evaluation results for polarity showed an accuracy of 0.9775. The Low EDI score
test yielded an accuracy of 0.5575, close to random chance. The High EDI score test demonstrated
incremental improvements, achieving 95% of baseline accuracy with 8 dimensions, as illustrated in
Figure 6a. The greatest cross-property accuracy was achieved by negation, at 0.8950.

D.7 QUANTITY

Quantity had more moderate results compared to polarity and negation. Figure 19 highlights the
difference between the most prominent dimensions encoding this property. Table 9 highlights the top
10 EDI scores, while Figure 21 illustrates the moderate level of agreement the tests.

Dimension EDI Score
544 0.9987
251 0.9277
171 0.9236
451 0.9101
737 0.8891
281 0.8812
96 0.8624

692 0.8512
85 0.8501

642 0.8461

Table 7: Top 10 BERT EDI scores for Negation.
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Figure 16: High EDI score evaluation results for BERT Embeddings of Negation.

Dimension EDI Score
431 0.9947
623 0.9867
500 0.9675
461 0.9200
96 0.9063

505 0.8910
594 0.8745
407 0.8492
397 0.8459
613 0.8445

Table 8: Top 10 BERT EDI scores for Polarity.

The baseline evaluation results for quantity showed an accuracy of 1.0000. The Low EDI score test
yielded an accuracy of 0.6425. The High EDI score test demonstrated incremental improvements,
achieving 95% of baseline accuracy with 9 dimensions, as illustrated in Figure 20. The greatest
cross-property accuracy was achieved by intensifier, at 0.9025.

D.8 SYNONYM

Table 10 highlights the top 10 EDI scores for synonym. Figure 22 highlights the differences between
the most prominent dimensions that encode this property.

The baseline evaluation results for synonym showed an accuracy of 0.7400. The Low EDI score test
yielded an accuracy of 0.4625, slightly above random chance. The High EDI score test demonstrated
very slow improvements, achieving 95% of baseline accuracy with 392 dimensions, as illustrated in
Figure 23. The greatest cross-property accuracy was achieved by quantity, at 0.6175.

Dimension EDI Score
463 0.9316
457 0.9155
390 0.9050
243 0.8866
192 0.8777
735 0.8545
489 0.8525
67 0.8430

304 0.8384
723 0.8217

Table 9: Top 10 BERT EDI scores for Quantity.
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Figure 17: BERT Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Polarity.

Figure 18: Mutual Information of BERT Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Polarity

D.9 TENSE

Tense had moderate results. Figure 24 highlights the differences between the most prominent
dimensions encoding this property. Table 11 highlights the top 10 EDI scores, while Figure 27
illustrates the level of agreement the tests.

The baseline evaluation results for tense showed an accuracy of 0.9975. The Low EDI score test
yielded an accuracy of 0.4625, close to random chance. The High EDI score test demonstrated
incremental improvements, achieving 95% of baseline accuracy with 11 dimensions, as illustrated in
Figure 25. The greatest cross-property accuracy was achieved by control, at 0.9150.

Dimension EDI Score
676 0.8751
203 0.7744
701 0.6916
654 0.6897
463 0.6889
544 0.6602
91 0.6598

437 0.6557
446 0.6543
487 0.6415

Table 10: Top 10 BERT EDI scores for Synonym.
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Figure 19: BERT Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Quantity.

Figure 20: High EDI score evaluation results for BERT Embeddings of quantity.

D.10 VOICE

Voice had relatively few dimensions with very high EDI scores. Figure 26 highlights the differences
between the most prominent dimensions encoding this property. Table 12 highlights the top 10 EDI
scores, while Figure 29 illustrates the level of agreement the tests.

The baseline evaluation results for voice showed an accuracy of 1.0000. The Low EDI score test
yielded an accuracy of 0.5200, close to random chance. The High EDI score test demonstrated
incremental improvements, achieving 95% of baseline accuracy with 30 dimensions, as illustrated in
Figure 28. The greatest cross-property accuracy was achieved by definiteness, at 0.8400.

Dimension EDI Score
641 0.9405
586 0.9369
335 0.9162
38 0.9113

684 0.8977
522 0.8908
470 0.8880
548 0.8821

4 0.8812
653 0.8627

Table 11: Top 10 BERT EDI scores for Tense.
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Figure 21: Mutual Information of BERT Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Quantity

Figure 22: BERT Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Synonym.

E GPT-2

This section will contain the visualizations of the results for GPT-2 embeddings. Full detailed results,
including full EDI scores as well as additional visualization, will be available on GitHub upon
publication.

E.1 LINGUISTIC PROPERTY CLASSIFIER

The results from the Linguistic Property Classifier for GPT-2 embeddings is shown in Figure 30.

Dimension EDI Score
653 0.9722
523 0.9552
766 0.9376
27 0.8875

111 0.8783
286 0.8586
222 0.8437
693 0.8404
16 0.8182
95 0.8113

Table 12: Top 10 BERT EDI scores for Voice.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 23: High EDI score evaluation results for BERT Embeddings of synonym.

Figure 24: BERT Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Tense.

E.2 CONTROL

Figure 31 highlights the difference between the most prominent dimensions encoding this property.
Figure 33 illustrates the level of agreement between the tests.

The baseline evaluation results for control showed an accuracy of 0.4725, close to chance. The
Low EDI score test yielded an accuracy of 0.4400. The High EDI score test demonstrated strong
performance, achieving 95% of baseline accuracy with just a single dimension, as the baseline
accuracy was close to random chance, as illustrated in Figure 32. The highest cross-property accuracy
was achieved by voice, at 0.5450.

E.3 DEFINITENESS

Figure 34 highlights the difference between the most prominent dimensions encoding this property.
Figure 36 illustrates the level of agreement between the tests.

The baseline evaluation results for definiteness showed an accuracy of 0.9575. The Low EDI score
test yielded an accuracy of 0.5000. The High EDI score test demonstrated strong performance,
achieving 95% of baseline accuracy with just a single dimension, as illustrated in Figure 35. The
highest cross-property accuracy was achieved by intensifier, at 0.9400, followed closely by factuality
(0.9325) and synonym (0.9275).

E.4 FACTUALITY

Figure 37 highlights the difference between the most prominent dimensions encoding this property.
Figure 39 illustrates the level of agreement between the tests.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 25: High EDI score evaluation results for BERT Embeddings of tense.

Figure 26: BERT Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Voice.

The baseline evaluation results for factuality showed an accuracy of 1.0000. The Low EDI score test
yielded an accuracy of 0.6800. The High EDI score test demonstrated strong performance, achieving
95% of baseline accuracy with just a single dimension, as illustrated in Figure 38. The highest
cross-property accuracy was achieved by negation, at 0.9975.

E.5 INTENSIFIER

Figure 40 highlights the difference between the most prominent dimensions encoding this property.
Figure 42 illustrates the level of agreement between the tests.

The baseline evaluation results for intensifier showed an accuracy of 1.0000. The Low EDI score test
yielded an accuracy of 0.5825. The High EDI score test demonstrated steady improvement, reaching
95% of baseline accuracy with 4 dimensions, as illustrated in Figure 41. The highest cross-property
accuracy was achieved by definiteness, at 0.9600.

E.6 NEGATION

Figure 43 highlights the difference between the most prominent dimensions encoding this property.
Figure 45 illustrates the level of agreement between the tests.

The baseline evaluation results for negation showed an accuracy of 0.9850. The Low EDI score test
yielded an accuracy of 0.5450. The High EDI score test demonstrated steady improvement, reaching
95% of baseline accuracy with 6 dimensions, as illustrated in Figure 44. The highest cross-property
accuracy was achieved by intensifier, at 0.9475.
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Figure 27: Mutual Information of BERT Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Tense

Figure 28: High EDI score evaluation results for BERT Embeddings of voice.

E.7 POLARITY

Figure 46 highlights the difference between the most prominent dimensions encoding this property.
Figure 48 illustrates the level of agreement between the tests.

The baseline evaluation results for polarity showed an accuracy of 0.9975. The Low EDI score test
yielded an accuracy of 0.4700. The High EDI score test demonstrated slow improvement, reaching
95% of baseline accuracy with 28 dimensions, as illustrated in Figure 47. The highest cross-property
accuracy was achieved by quantity, at 0.8300.

E.8 QUANTITY

Figure 49 highlights the difference between the most prominent dimensions encoding this property.
Figure 51 illustrates the level of agreement between the tests.

The baseline evaluation results for quantity showed an accuracy of 0.9975. The Low EDI score test
yielded an accuracy of 0.6875. The High EDI score test demonstrated steady improvement, reaching
95% of baseline accuracy with 8 dimensions, as illustrated in Figure 50. The highest cross-property
accuracy was achieved by polarity, at 0.9300.

E.9 SYNONYM

Figure 52 highlights the difference between the most prominent dimensions encoding this property.
Figure 54 illustrates the level of agreement between the tests.

The baseline evaluation results for synonym showed an accuracy of 0.6300. The Low EDI score test
yielded an accuracy of 0.3575. The High EDI score test demonstrated gradual improvement, reaching
95% of baseline accuracy with 26 dimensions, as illustrated in Figure 53. The highest cross-property
accuracy was achieved by intensifier at 0.5350.
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Figure 29: Mutual Information of BERT Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Voice

Figure 30: Linguistic Property Classifier results for GPT-2.

E.10 TENSE

Figure 55 highlights the difference between the most prominent dimensions encoding this property.
Figure 57 illustrates the level of agreement between the tests.

The baseline evaluation results for tense showed an accuracy of 0.9950. The Low EDI score test
yielded an accuracy of 0.4500. The High EDI score test demonstrated slow improvement, reaching
95% of baseline accuracy with 76 dimensions, as illustrated in Figure 56. The highest cross-property
accuracy was observed with definiteness at 0.7525.

E.11 VOICE

Figure 58 highlights the difference between the most prominent dimensions encoding this property.
Figure 60 illustrates the level of agreement between the tests.

The baseline evaluation results for voice showed an accuracy of 1.0000. The Low EDI score
test yielded an accuracy of 0.5325, around random chance. The High EDI score test demonstrated
significant improvement, reaching 95% of baseline accuracy with just a single dimension, as illustrated
in Figure 59. The highest cross-property accuracy was observed with intensifier at 0.9900.
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Figure 31: GPT-2 Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Control.

Figure 32: High EDI score evaluation results for GPT-2 Embeddings of Control.

F MPNET

This section will contain the visualizations of the results for MPNet embeddings. Full detailed
results, including full EDI scores as well as additional visualization, will be available on GitHub
upon publication.

F.1 LINGUISTIC PROPERTY CLASSIFIER

The results from the Linguistic Property Classifier for MPNet embeddings is shown in Figure 61.

F.2 CONTROL

Figure 62 highlights the difference between the most prominent dimensions encoding this property.
Figure 64 illustrates the level of agreement between the tests.

The baseline evaluation results for control showed an accuracy of 0.4800, which is close to random
chance. The Low EDI score test yielded an accuracy of 0.4125. The High EDI score test demonstrated
weak performance, achieving 95% of baseline accuracy with just a single dimension, but that is
because the baseline accuracy was super close to chance, as illustrated in Figure 63. The highest
cross-property accuracy was achieved by tense, at 0.5175.

F.3 DEFINITENESS

Figure 65 highlights the difference between the most prominent dimensions encoding this property.
Figure 67 illustrates the level of agreement between the tests.
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Figure 33: Mutual Information of GPT-2 Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Control.

Figure 34: GPT-2 Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Definiteness.

The baseline evaluation results for definiteness showed an accuracy of 0.9000. The Low EDI score
test yielded an accuracy of 0.4000. The High EDI score test demonstrated strong performance,
achieving 95% of baseline accuracy with just a single dimension, as illustrated in Figure 66. The
highest cross-property accuracy was achieved by intensifier, at 0.6750.

F.4 FACTUALITY

Figure 68 highlights the difference between the most prominent dimensions encoding this property.
Figure 70 illustrates the level of agreement between the tests.

The baseline evaluation results for factuality showed an accuracy of 0.9975. The Low EDI score test
yielded an accuracy of 0.4825. The High EDI score test demonstrated steady performance, achieving
95% of baseline accuracy with 16 dimensions, as illustrated in Figure 69. The highest cross-property
accuracy was achieved by quantity, at 0.8875.

F.5 INTENSIFIER

Figure 71 highlights the difference between the most prominent dimensions encoding this property.
Figure 73 illustrates the level of agreement between the tests.

The baseline evaluation results for intensifier showed an accuracy of 0.9000. The Low EDI score test
yielded an accuracy of 0.4200. The High EDI score test demonstrated slow performance, achieving
95% of baseline accuracy with 347 dimensions, as illustrated in Figure 72. The highest cross-property
accuracy was achieved by quantity, at 0.6825.
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Figure 35: High EDI score evaluation results for GPT-2 Embeddings of Definiteness.

Figure 36: Mutual Information of GPT-2 Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Definiteness.

F.6 NEGATION

Figure 74 highlights the difference between the most prominent dimensions encoding this property.
Figure 76 illustrates the level of agreement between the tests.

The baseline evaluation results for negation showed an accuracy of 0.9750. The Low EDI score test
yielded an accuracy of 0.6025. The High EDI score test demonstrated steady improvement, reaching
95% of baseline accuracy with 26 dimensions, as illustrated in Figure 75. The highest cross-property
accuracy was achieved by factuality, at 0.8900.

F.7 POLARITY

Figure 77 highlights the difference between the most prominent dimensions encoding this property.
Figure 79 illustrates the level of agreement between the tests.

The baseline evaluation results for polarity showed an accuracy of 0.9850. The Low EDI score test
yielded an accuracy of 0.6900. The High EDI score test demonstrated fast improvement, reaching
95% of baseline accuracy with 6 dimensions, as illustrated in Figure 78. The highest cross-property
accuracy was achieved by negation, at 0.9575.

F.8 QUANTITY

Figure 80 highlights the difference between the most prominent dimensions encoding this property.
Figure 82 illustrates the level of agreement between the tests.

The baseline evaluation results for quantity showed an accuracy of 0.9950. The Low EDI score test
yielded an accuracy of 0.5025. The High EDI score test demonstrated steady improvement, reaching
95% of baseline accuracy with 20 dimensions, as illustrated in Figure 81. The highest cross-property
accuracy was achieved by negation and polarity, at 0.8525.
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Figure 37: GPT-2 Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Factuality.

Figure 38: High EDI score evaluation results for GPT-2 Embeddings of Factuality.

F.9 SYNONYM

Figure 83 highlights the difference between the most prominent dimensions encoding this property.
Figure 85 illustrates the level of agreement between the tests.

The baseline evaluation results for synonym showed an accuracy of 0.6025. The Low EDI score test
yielded an accuracy of 0.4225. The High EDI score test demonstrated quick improvement, reaching
95% of baseline accuracy with 7 dimensions, as illustrated in Figure 84. The highest cross-property
accuracy was achieved by tense at 0.5650.

F.10 TENSE

Figure 86 highlights the difference between the most prominent dimensions encoding this property.
Figure 88 illustrates the level of agreement between the tests.

The baseline evaluation results for tense showed an accuracy of 0.9925. The Low EDI score test
yielded an accuracy of 0.5200. The High EDI score test demonstrated gradual improvement, reaching
95% of baseline accuracy with 17 dimensions, as illustrated in Figure 87. The highest cross-property
accuracy was observed with quantity at 0.8425.

F.11 VOICE

Figure 89 highlights the difference between the most prominent dimensions encoding this property.
Figure 91 illustrates the level of agreement between the tests.

The baseline evaluation results for voice showed an accuracy of .9175. The Low EDI score test
yielded an accuracy of 0.3875. The High EDI score test demonstrated slow improvement, reaching
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Figure 39: Mutual Information of GPT-2 Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Factuality.

Figure 40: GPT-2 Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Intensifier.

95% of baseline accuracy with 263 dimensions, as illustrated in Figure 90. The highest cross-property
accuracy was observed with definiteness at 0.6225.
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Figure 41: High EDI score evaluation results for GPT-2 Embeddings of Intensifier.

Figure 42: Mutual Information of GPT-2 Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Intensifier.

Figure 43: GPT-2 Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Negation.

Figure 44: High EDI score evaluation results for GPT-2 Embeddings of Negation.
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Figure 45: Mutual Information of GPT-2 Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Negation.

Figure 46: GPT-2 Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Polarity.

Figure 47: High EDI score evaluation results for GPT-2 Embeddings of Polarity.
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Figure 48: Mutual Information of GPT-2 Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Polarity.

Figure 49: GPT-2 Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Quantity.

Figure 50: High EDI score evaluation results for GPT-2 Embeddings of quantity.
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Figure 51: Mutual Information of GPT-2 Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Quantity

Figure 52: GPT-2 Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Synonym.

Figure 53: High EDI score evaluation results for GPT-2 Embeddings of Synonym.
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Figure 54: Mutual Information of GPT-2 Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Synonym.

Figure 55: GPT-2 Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Tense.

Figure 56: High EDI score evaluation results for GPT-2 Embeddings of Tense.
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Figure 57: Mutual Information of GPT-2 Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Tense.

Figure 58: GPT-2 Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Voice.

Figure 59: High EDI score evaluation results for GPT-2 Embeddings of Voice.
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Figure 60: Mutual Information of GPT-2 Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Voice.

Figure 61: Linguistic Property Classifier results for MPNet.

Figure 62: MPNet Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Control.
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Figure 63: High EDI score evaluation results for MPNet Embeddings of Control.

Figure 64: Mutual Information of MPNet Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Control.

Figure 65: MPNet Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Definiteness.

Figure 66: High EDI score evaluation results for MPNet Embeddings of Definiteness.
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Figure 67: Mutual Information of MPNet Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Definiteness.

Figure 68: MPNet Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Factuality.

Figure 69: High EDI score evaluation results for MPNet Embeddings of Factuality.
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Figure 70: Mutual Information of MPNet Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Factuality.

Figure 71: MPNet Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Intensifier.

Figure 72: High EDI score evaluation results for MPNet Embeddings of Intensifier.
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Figure 73: Mutual Information of MPNet Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Intensifier.

Figure 74: MPNet Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Negation.

Figure 75: High EDI score evaluation results for MPNet Embeddings of Negation.
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Figure 76: Mutual Information of MPNet Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Negation.

Figure 77: MPNet Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Polarity.

Figure 78: High EDI score evaluation results for MPNet Embeddings of Polarity.
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Figure 79: Mutual Information of MPNet Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Polarity.

Figure 80: MPNet Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Quantity.

Figure 81: High EDI score evaluation results for MPNet Embeddings of quantity.
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Figure 82: Mutual Information of MPNet Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Quantity

Figure 83: MPNet Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Synonym.

Figure 84: High EDI score evaluation results for MPNet Embeddings of Synonym.
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Figure 85: Mutual Information of MPNet Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Synonym.

Figure 86: MPNet Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Tense.

Figure 87: High EDI score evaluation results for MPNet Embeddings of Tense.
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Figure 88: Mutual Information of MPNet Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Tense.
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Figure 89: MPNet Dimensional Embedding values for the Wilcoxon test results with the most
significant p-values for Voice.

Figure 90: High EDI score evaluation results for MPNet Embeddings of Voice.

Figure 91: Mutual Information of MPNet Embedding Dimensions overlaid with Wilcoxon test and
RFE results for Voice.
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