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ABSTRACT

Credit assignment problems, for example policy evaluation in RL, often require
bootstrapping prediction errors through preceding states or maintaining tempo-
rally extended memory traces; solutions which are unfavourable or implausible
for biological networks of neurons. We propose theta sequences – chains of neu-
ral activity during theta oscillations in the hippocampus, thought to represent rapid
playthroughs of awake behaviour – as a solution. By analysing and simulating a
model for theta sequences we show they compress behaviour such that existing
but short O(10) ms neuronal memory traces are effectively extended allowing for
bootstrap-free credit assignment without long memory traces, equivalent to the
use of eligibility traces in TD(λ).

1 INTRODUCTION

When one decodes position, xE , from the hippocampus (HPC) of a rodent it sweeps from behind
to in front of the true position, xT , once every theta cycle (a strong 5-10 Hz neural oscillation).
So-called “theta sequences” (Foster & Wilson, 2007) don’t make sense if the only goal of HPC is
to accurately encode self-location at all times, they likely service some other objective (Drieu &
Zugaro, 2019). Building off a body of literature linking fast hippocampal phenomena to learning
and RL (Mehta et al., 2000; Bono et al., 2021; George et al., 2022b), here we demonstrate that theta
sequences accelerate learning analagous to how eligibility traces (ETs) accelerate policy evaluation
in RL.

Policy evaluation with temporal difference (TD) learning permits two kinds of solutions: prediction
errors can be bootstrapped through preceeding states one-by-one (TD(0)) or temporally extended
ETs can be maintained so credit can be assigned to states directly (Monte-Carlo, aka. TD(1)). These
approaches are unified by the TD(λ) algorithm (Sutton, 1988) (Appx. A).

Learning with long ETs, TD(λ > 0), is typically faster, and therefore desirable, but biologically im-
plausible since individual neurons have no trivial way to maintain ETs over timescales significantly
longer than the membrane time constant O(10−50) ms. Perhaps theta sequences provide a solution
to this problem: starting behind and moving in front of the animal rapidly within each cycle, the
series of states observed within a sequence is an exact temporal compression of the states encoun-
tered on behavioural timescales (Fig. 1a). In this regime the short neuronal ETs are magnified by
the same compression factor and long ETs are indirectly achieved (Appx. C).

We derive the relationship between TD(λ) and theta sequences and empirically test it on a simple
policy evaluation task (Fig. 1b) by comparing artificial agents implementing TD(λ) with varing λ’s
(Fig. 1c) to biological agents with short eligibility traces, TD(λ ≈ 0), undergoing theta sequences
of varying velocity (Fig. 1d).

2 RESULTS

Temporal difference learning using bioplausibly short ETs, τz = 10 ms, on theta sequences is
algorithmically equivalent to learning with long ETs τ eff

z without theta sequences (see Appendix).
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The effective compression is given by the ratio of the sequence velocity to the true agent velocity

τ eff
z =

|ẋE |
|ẋT |

τz. (1)

Agents move at a constant velocity of vT = 10 cm s−1 around a 2 m track upon which a small
reward is located, whilst learning the value function (Fig. 1b). Increasing theta sequence velocity
accelerates learning for the biological agent similar to how increasing the ET timescale accelerates
learning for the artificial agent (Fig. 1cd, top panel). When sequence velocity is low, learning
resembles heavily bootstrapped TD(0) with the value function slowly creeping back from the reward
site over time. When sequence velocity is high, learning resembles TD(1) with credit appropriately
assigned to all states simulataneously (Fig. 1cd, bottom panel). Biologically realistic sequence
velocities (2 - 10 ms−1 (Wikenheiser & Redish, 2015)) match the range in our model where there is
a sharp change from TD(0)-like to TD(1)-like learning regimes.

Small errors can be observed in biological learning (Fig. 1d doesn’t converge to 1 for slower se-
quence speeds) due to, we suspect, ‘loop effects’ (Appx. D) occuring when the sequence discon-
tinuously resets once per theta cycle. These loop effect are not catastrophic for learning. Despite
these effects we actually find learning on theta sequences is overall less noisy (compare value es-
timates in Fig. 1c and d) probably because, where the artifical agent can visit a location once per
lap, theta sequences can traverse a location multiple times, smoothing learning. Learning with very
fast sequences outpaces the artifical equivalent, probably because a single sweep (the very first) can
explore the entire environment whereas the sequence-less artifical agent must wait until at least one
lap for it to have observed all states. In reality sweeps this fast are not observed in the brain.
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Figure 1: a Theta sequences: xE(t) (encoded position), sweeps from behind to infront of xT (t)
(true position), compressing spatial inputs therefore indirectly extending memory traces. b A policy
evaluation task on a periodic 1D track. The value function is approximated as a linear sum of
Gaussian basis features. c An artificial agent learns with TD(λ). (Top) Learning curves showing
R2 between true and estimated value functions for increasingly long eligibility traces (increasing λ).
(Bottom) Evolution of the value estimate over learning for two opposing regimes: short eligibility
traces (lots of bootstrapping) and long eligibility traces (no/little bootstrapping) d As in panel c
but a biological agent with short eligibility traces 10 ms learns with theta sequences of increasing
velocity. Sequence velocities are chosen to match eligibility timescales in panel c according to our
simple theory.

3 CONCLUSIONS

Theta sequences provide a viable mechanism by which biological networks of neurons can perform
long-term credit assigment without resorting to slow bootstrapping nor maintaining implausible long
memory traces. Increasing sequence velocity is equivalent to increasing λ – using longer ETs – in
TD(λ). Interestingly, in the brain theta power correlates with environmental uncertainty (Cavanagh
et al., 2011) as well as periods of learning (Joensen et al., 2023) and sequence velocity depends on
an animal’s proximity to reward (Wikenheiser & Redish, 2015); based on the results shown here we
conjecture that top-down processes may actively control theta sequence speeds in order to accelerate
or slow down learning depending on local conditions.
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4 CODE

Code reproducing results in this paper can be found at https://github.com/
TomGeorge1234/ThetaSequencesAreEligibilityTraces
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A POLICY EVALUATION

In our model an agent at position xT (t) moves at a constant speed, ẋT (t) = vT = 10 cm s−1 from
left to right around a periodic 1D track of circumference 2 m. A small reward density, R(x), is
centred at the far end of the track (Fig. 1b). The goal of the agent is the learn the value function for
the current policy, defined as the discounted integral of future reward

V π(x) =

∫ ∞
t

e−
t′−t
τ R(x(t′))dt′ | x(t) = x (2)

over a discount time horizon τ = 4 s. This is done using a linear approximation, a weighted sum of
independent features

V̂ π(x) =
∑
i

wiφi(x) ≈ V π(x). (3)

Famously, this problem can be solved with a temporal difference learning rule

ẇi(t) = ηδ(t)zi(t) (4)

where δ(t) is the (temporally continuous) TD error

δ(t) = R(t) +
dV̂ π(t)

dt
− V̂ (t)

τ
(5)

and zi(t) is the eligibility trace of the ith feature

zi(t) =

∫ t

−∞
e
t′−t
τz φi(x(t

′))dt′. (6)

where τz ∈ [0, τ ] is the decay time scale of the eligibility trace.

The basis features are a set of 200 small Gaussian receptive fields (σ = 2 cm, 95.45% firing field
therefore measures 4σ = 8 cm), roughly analagous to place cells (O’Keefe & Dostrovsky, 1971)
in the hippocampal formation, even spaced at 1 cm intervals along the track. Their small size
means each features overlaps with approximately only its nearest meighbours. The reward density
is another equally sized Gaussian at 1.95 m along the track.

We choose this simple policy evaluation task because it admits an analytical solution for V π(x).
Since the policy is non-stochastic one can simply evaluate the integral in eqn. (2) accounting for the
circular boundary conditions and compare this to the value estimate learnt by agents using temporal
difference learning.

All simulations (agent trajectory, theta sweeps, neural activities and policy evaluation) were pro-
duced using the RatInABox simulation package (George et al., 2022a).

A.1 RELATION TO DISCRETE RL AND TD(λ)

It is more common to see the temporally-discrete formulation of policy evaluation with TD learning
(nb. for a full discussion/derivation of continuous RL see Doya (2000)), summarised by

V π(st) =

∞∑
t′=t

γt
′−tR(st′) (7)

zt =

t∑
t′=−∞

(λγ)t−t
′
R(st′), (8)

where t is now a discrete integer state index. γ, the ‘discount factor’ determines over how many
future states the agent cares about reward and can be compare this to τ , the temporally continuous
‘discount time horizon’, determining how long (as a unit of time) into the future the agent cares
about reward. λ controls the decay-rate of the eligibility trace from λ = 0 (heavily bootstrapped
regime) to λ = 1 (direct credit assignment, aka. online Monte-Carlo). This discrete formulation
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is equivalent to the continuous one we use here in the integral limit of short timesteps where the
following relationships become apparent

γ = e−
dt
τ (9)

γλ = e−
dt
τz . (10)

Enabling us to link to two extremes of TD(λ) as

TD(0)⇔ τz = 0 (11)
TD(1)⇔ τz = τ. (12)

TD(0) (full-bootstrapping regime) occurs when the eligibility trace timescale falls to zero and TD(1)
(Monte-carlo style learning) equates to when the eligibilty trace timescale matches the discount time
horizon.

B THE ARTIFICIAL AGENT

The artificial agent learns according to the above TD learning rules and policy described in appendix
A for a variety of eligibility trace timescales summarised in table 1:

τz/s 4 2 1 0.5 0.25 0.125
τ/s 4 4 4 4 4 4
ηopt 0.4 0.5 0.6 0.8 1.1 1.3

Table 1: Learning parameters for the artificial agents.

Note the inclusion of two extremes: TD(1) (τz = τ = 4) and TD(∼0) (τz = 0.125 ≈ 0). In
order to be sure that small learning rates was not bottlenecking learning we optimised η for each
experiment by way of hyperparameter sweep (optimal value shown in table). When comparing the
value estimate V̂ π(x) to the analytic value function V π(x) we use the coefficient of determination

R2(V π, V̂ π) = 1−
∑
x(V̂

π(x)− V π(x))2∑
x(V

π(x)− 〈V π(x)〉x)
(13)

where the value estimate is first normalised to have the same maximum as V π(x) so, strictly, we are
only comparing the shapes of the curves in Fig. 1cd (bottom panels).

The agent is allowed to explore and learn for a total of 640 s, exactly 32 laps, or until such a point
that R2(V π, V̂ π) has been above 0.99 for a the entire previous lap, whichever comes first. Agents
start from a random initial position xT (0) ∼ U(0 m, 2 m). Plots/error bars show the average/std
over 50 such experiments in the case of the artifical agent and 10 in the case of the biological agent.

C THE BIOLOGICAL AGENT

The biological agent differs from the artificial agent in two ways:

• Short eligibility traces: τz is fixed to a 0.01 s to emulate the biological contraint that
neuronal memory times are short O(10) ms.
• Theta sequences: The firing rate of the features and the reward density are determined by

the encoded position of the agent xE(t), not the true position xT (t). xE(t) sweeps from
behind to in front of xT (t) in each theta cycle as described below.

Theta is modelled as a background oscillation of frequency νθ = 1/Tθ = 5 Hz with a phase (used
later) defined as

φθ(t) =
t

Tθ
mod 1 (14)

During the middle fraction, β = 0.75 of each theta cycle xE(t) traverses symetrically from behind
to in front of the agents true position at a speed of vE = vT + vS where vS is the speed of xE(t)
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in the reference frame of the true position. Outside there is no registered position and all firing rates
are zero. Formulaically this can be stated as

xE(t) =

{
xT (t) + (φθ − 0.5)TθvS , if 1−β

2 < φθ(t) ≤ 1+β
2

None, otherwise
(15)

which determines the neural firing rates used for learning φi(xE(t)) and R(xE(t)) where
φi(None) = R(None) := 0

This brings us to the core hypothesis of this paper: Since theta sequences traverse space faster
than the real agent, the neural trajectory traverses the features faster than the real agent,
compressing them. This compression means short eligibility traces, though remaining short,
have more bang for their buck, effectively extending them. The compression factor is

κ :
vE
vT

=⇒ τ eff
z = κτz. (16)

Additionally, the same compression effect applies to the discount time horizon, τ , such that, in
uncompressed time coordinates it will have effectively increased,

τ eff = κτ. (17)

so in order to learn a value function with (effective) discount time horizon of τ = 4 s, τ must be
decreased accordingly.

vE/ms
−1 40 20 10 5 2.5 1.25

κ 400 200 100 50 25 12.5
τz/s 0.01 0.01 0.01 0.01 0.01 0.01
τ / s 0.01 0.02 0.04 0.08 0.16 0.32
ηopt 8 8 2 2 2 0.75
τ eff 4 4 4 4 4 4
τ eff
z /s 4 2 1 0.5 0.25 0.125

Table 2: Learning parameters for the biological agents, Fig. 1d and their artificial equivalents.

Table 2 show the sweep velocities for six agents tested. These are carefully selected to match –
according to our theory – the eligibility trace timescales of the six artifical agents. Hence the final
two rows show the ‘effective’ behaviour, i.e. if the theory is correct, which artificial agent (no theta
sequences and any choice of τz) would this be equivalent to.

Learning only occurs within sequences ( 1−β2 < φθ(t) ≤ 1+β
2 ). Outside this range (when there is

no relevant data to learn from) learning is turned off (η = 0) reminiscent of the observation that
hippocampal plasticity (LTP) oscillates significantly within each theta cycle (Hasselmo & Stern,
2014).

D LOOP EFFECTS

The results shown in Fig. 1d for the biological agent don’t precisely converge to the value function
for the slower sequences. We propose this may be due to ‘loop-effects’. At the end of each theta
cycle the sequence resets by discontinuously jumping back to a location behind the agent, Fig. 1a.
This discontinuity could induce errors to grow within the value estimate: whereas the neural activity
during the sequence can be seen as a sped-up replica of the true state trajectory, this discontinuity
does not reflect any real transition statistics.

It is notable, therefore, that performance decay isn’t catastrophic (all biological agents learn reason-
able estimates of the value function) and is less pronounced for faster sequences, perhaps because
the states at either end are further apart and interfere less. It is possible (but not tested) that the
fraction of the cycle where there is no sweep (1 − β) allows existing short ETs to decay to zero
essentially “forgetting” the jump transition and ameliorating the problem.
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