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Abstract

Spatial transcriptomics reveals gene expression patterns within tissue context, enabling pre-
cision oncology applications such as treatment response prediction, but its high cost and
technical complexity limit clinical adoption. Predicting spatial gene expression (biomark-
ers) from routine histopathology images offers a practical alternative, yet current vision
foundation models (VFMs) in pathology based on Vision Transformer (ViT) backbones
perform below clinical standards. Given that VFMs are already trained on millions of di-
verse whole slide images, we hypothesize that architectural innovations beyond ViTs may
better capture the low-frequency, subtle morphological patterns correlating with molecu-
lar phenotypes. By demonstrating that state space models initialized with negative real
eigenvalues exhibit strong low-frequency bias, we introduce MVyynyiq, a hybrid backbone
architecture combining state space models (SSMs) with ViT. We compare five other dif-
ferent backbone architectures for pathology VFMs, all pretrained on identical colorectal
cancer datasets using the DINOv2 self-supervised learning method. We evaluate all pre-
trained models using both random split and leave-one-study-out (LOSO) settings of the
same biomarker dataset. In LOSO evaluation, MVynriq achieves 57% higher correlation
than the best-performing ViT and shows 43% smaller performance degradation compared
to random split in gene expression prediction, demonstrating superior performance and
robustness, respectively. Furthermore, MVyypriqa shows equal or better downstream per-
formance in classification, patch retrieval, and survival prediction tasks compared to that
of ViT, showing its promise as a next-generation pathology VFM backbone. Our code is
publicly available at: https://github.com/deepnoid-ai/MVHybrid.
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1 Introduction

Spatial transcriptomics (ST) technologies (Stahl et al., 2016) have emerged as a powerful
tool for understanding tissue biology by preserving both single-cell transcriptome and spa-
tial context, which addresses key limitations of bulk RNA sequencing and single-cell RNA
sequencing. This spatial resolution is particularly valuable in precision oncology research,
where ST data can reveal complex patterns of tumors that can further improve patient
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outcomes in the clinic—for example, through treatment response prediction and tumor mi-
croenvironment analysis (Elhanani et al., 2023; Hwang et al., 2022; Arora et al., 2023).
However, the clinical adoption of ST remains limited by high costs, technical complexity,
and the need for specialized tissue processing that disrupts standard pathology workflows
(Zhang et al., 2022; Jin et al., 2024; Pentimalli et al., 2025). These barriers have motivated
the development of deep learning approaches to predict spatial gene expression patterns
directly (Xie et al., 2023; Zeng et al., 2021; He et al., 2020) from routine hematoxylin and
eosin (H&E) stained whole slide images (WSI), which are already integral and commonly
used in clinical diagnosis.

With the recent release of large-scale public ST-H&E WSI paired datasets (Jaume et al.,
2024; Chen et al., 2024a) and the introduction of vision foundation models (VFMs) in
histopathology (Chen et al., 2024b; Zimmermann et al., 2024; Xu et al., 2024; Saillard
et al., 2024), biomarker prediction models (Zhu et al., 2025; Wang et al., 2024; Chung et al.,
2024) use these pretrained VFMs in their training methods as they have captured diverse
morphological features that correlate well with underlying molecular phenotypes. Indeed,
through large-scale pretraining of Vision Transformers (ViT) (Dosovitskiy et al., 2021) using
the DINOv2 (Oquab et al., 2023) self-supervised learning (SSL) method, these state-of-the-
art VFMs have saturated multiple validation benchmarks in cancer subtype classification
and detection (Campanella et al., 2025; kaiko.ai et al., 2024; Zhang et al., 2025) by showing
clinical-level performance. However, Jaume et al. (2024) introduced HEST-Benchmark, a
paired ST-H&E data across multiple cancer subtypes, which showed that current VFMs
perform below clinical-grade in biomarker prediction via gene expression regression from
patch embeddings. Campanella et al. (2025) and Zhang et al. (2025) also show similar
results, meaning that biomarker prediction now serves as both a practical application and
a rigorous benchmark for evaluating the representation power of these VFMs.

Furthermore, de Jong et al. (2025) and Komen et al. (2024) show that pathology VFMs
are unrobust and vulnerable to batch effects as they favor learning site (hospital)-specific
features over true biological features. Given that these VFMs are pretrained on millions of
diverse WSIs, we propose that the unrobustness may not be entirely due to data diversity
itself, but partly due to the ViT backbone architecture of the VFMs. Likewise, Mao et al.
(2025) revealed that WSIs, compared to natural images, contain much larger portions of
high frequency features. While VFM downstream tasks like tumor detection and classifica-
tion are mostly based on identifying human detectable high frequency features like tumor
boundaries, biomarker prediction (ex. predicting expression of HER2) is inherently more
difficult as it requires models to capture low-frequency features that are beyond human
perception—the complex relationship between tissue morphology and underlying molecular
states must be captured. Therefore, building on the work of Yu et al. (2025), which shows
that state space models (SSMs) exhibit strong low-frequency bias, we design an SSM with
an even stronger low-frequency bias and integrate it with ViT layers to form a hybrid state
space-ViT model backbone, named MVyy1,iq, to replace ViT as the backbone in VFMs.

MVHybria consists of a SSM called MambaVision (MV) (Hatamizadeh and Kautz, 2025)
in the first half of its layers and a ViT in the second half to learn more useful low-frequency
biological features for biomarker prediction. We used DINOv2 to pretrain MVyyiq and
five other SSM and ViT models on publicly available colorectal cancer (CRC) datasets.
While Nasiri-Sarvi et al. (2024) already showed the potential of SSMs by self-supervised
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pretraining of Vision Mamba (ViM) (Zhu et al., 2024) to outperform ViT, it was only
evaluated on a simple downstream classification task based on a single dataset and also
did not consider other SSM backbone architectures. Therefore, our contributions are: 1.
MVybria shows superior biomarker prediction and robustness ability compared to other
models like ViT when evaluated on validation splits stratified by study sources. 2. MVypriq
also shows better performance in other tasks like classification, patch retrieval, and survival
prediction, further showing its potential to be a strong candidate for future pathology VFM
pretraining. 3. To this date, this work serves as the first paper in pathology VFMs where
numerous VFM backbones are both pretrained and evaluated on the identical dataset.

1.1 Preliminary: State Space Models

Structured State Space Models (SSMs) represent a sequence-to-sequence transformation
through a linear time-invariant (LTI) dynamical system. The continuous-time formulation
is given by:

da;lit) — Ax(t) + Bu(t) (1)
y(t) = Cx(t) + Du(t) (2)

where A € CV*N B e CN*1 ¢ € C*VN, and D € C are learnable parameters, with
N being the state dimension. The state matrix A governs the system’s dynamics and
frequency characteristics through the state evolution shown in equation (1)—its eigenvalues
determine which frequencies are preserved or attenuated in the state evolution. To analyze
the frequency response of SSMs, we derive the transfer function G(is) (with s representing
frequency) by applying the Laplace transform to equations (1) and (2) with s = iw for
frequency analysis. Solving for the state X (s) = (sI — A)~'BU(s) from the transformed
state equation and substituting into the output equation yields:

Glis)=ClisI —A)'B+D=> -9 1D (3)

where a; are the eigenvalues of A and ¢; = (CB); are the residues from partial fraction
decomposition. Each term isc_jaj acts as a first-order low-pass filter whose cutoff frequency
and behavior depend critically on the eigenvalue a;.

Frequency Bias in SSMs. Yu et al. (2025) established that SSMs exhibit an inherent
frequency bias, where the transfer function G(is) has greater total variation in low-frequency
regions than high-frequency regions. For a diagonal matrix A = diag(aq,...,ay) with
eigenvalues a; = v; + iw; where v; < 0 (for stability), the frequency bias is quantified by

the total variation V,?(G), which measures how much the transfer function changes over the
dG(is)

frequency interval [a, b]:
b
e - [ <

SSM Variants. Mamba (Gu and Dao, 2023) introduces selective parameters that be-
come input-dependent, enabling dynamic state adjustment. ViM modifies Mamba to process
sequences bidirectionally, and SIMBA (Patro and Agneeswaran, 2024) adds EinFFT channel

ds (4)
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mixing layers to the Mamba sequence mixing layers for additional numerical stability during
training. MV replaces the causal convolution layers in Mamba with regular convolutional
layers and adds additional regular convolutional layers in the skip connection layer of the
SSM block for enhanced visual processing capabilities. Hydra (Hwang et al., 2024) also re-
places causal convolutional layers with regular convolutional layers but uses quasiseparable
matrices (instead of Mamba’s semiseparable) for natural bidirectional modeling.

Enhanced Low-Frequency Bias of Negative Real Eigenvalues. The Mamba
variants MambaVision, ViM, and Hydra all use negative real eigenvalues a; = —|\;| where
Aj > 0. This choice provides enhanced low-frequency bias compared to complex eigenvalues.
To understand why, recall that lower total variation at high frequencies means the system
preserves low frequencies while suppressing high frequencies more effectively.

For complex eigenvalues a; = v; + iw;, Yu et al. (2025) shows that the high-frequency
total variation is bounded by:

o el
V(G <Y — (5)

where wy represents a high-frequency threshold. This bound arises from evaluating the
integral of |2 ZS)] from wy to oo (detailed derivation is in Appendices A.1 and A.2).

For negatlve real eigenvalues a; = —|\;|, the high-frequency behavior can be approxi-
mated as (detailed derivation is in Appendix A.3):

|C]|
Z SOV o

Here, wy represents a high-frequency threshold. For large wy, this approximation shows
that V3°(G) ~ O(1/wp), which decays faster than the complex eigenvalue case where
Vol(G) ~ O(1/(wo — wj)). This faster decay indicates less variation (wi0 < woiwj) at
high frequencies and thus even stronger low-frequency bias. The key advantage is that neg-
ative real eigenvalues create a uniform frequency cutoff around |s| ~ max(|);|) (detailed
description and analysis are in Appendix A.4), whereas complex eigenvalues have cutoffs

distributed across different frequencies |wj]|.

2 Methods

We first detail the architecture of MVyy,iq and the architecture of other models followed
by a description of experiments and datasets used.

2.1 Architecture of Pretrained Models

Figure 1 shows the architecture of our derived model, MVyypriq. This is a hybrid model
because the first half (12 layers) of the model consists of a MV block (sequence mixing
layer) and an EinFFT block (channel mixing layer) and the second half (12 layers) con-
tain ViT layers. Since the original MV implementation consists of hierarchical backbones,
we modify the backbone to be isotropic to make it suitable for DINOv2 pretraining. The
architecture of other pretrained models is detailed in Table 1, where each model contains
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Figure 1: Architecture of MVyypriq showing the hybrid state space-ViT blocks with inter-
leaved sequence and channel mixing layers. Sequence mixing layers are in red and
channel mixing layers are in blue.

different combinations of sequence and channel mixing layers. All models have an equal em-
bedding dimension of 384 and follow the default ”Small” configuration. ViTio and ViTgy,
are included to be the original ViT-Small baseline (12 layers) and a one-to-one comparison
with other models (24 layers), respectively. Furthermore, it was empirically found that
all Mamba-based sequence mixers are incompatible with MLP channel mixers due to un-
stable pretraining (possibly due to positive real eigenvalues) in DINOv2, and therefore we
use EinFFT channel mixing blocks instead of Multi-layer Perceptron (MLP) for increased
pretraining stability as reported in Patro and Agneeswaran (2024) (more details about pre-
trained models are in Appendix B). After pretraining these models, the teacher is used as a
pretrained encoder to generate meaningful feature embeddings when processing input WSI
patches during inference.

ViMEginrrr Hydraginrrr  ViTi2 ViTo4 Hydrapybrid MVHybrid
Sequence Mixer ViM Hydra Attention Attention Hydra&Attention MV&Attention
Channel Mixer EinFFT EinFFT MLP MLP EinFFT&MLP EinFFT&MLP

Table 1: Pretrained Models and Their Components. The naming convention is sequence
mixer followed by a subscript of the channel mixer.

2.2 Datasets and Experiments

For all experiments, we used publicly available histopathology datasets from CRC Hema-
toxylin & Eosin (H&E) WSIs. All WSI-based datasets followed the identical preprocessing
method of background removal and morphological closings (Lu et al., 2021) to patch the
WSI into 256 x 256 image resolution patches that only contain relevant tissue. All other
patch-based evaluation datasets were resized to 256 x 256. For pretraining all of the models
in Table 1, we used the same CRC pretraining dataset curated by randomly selecting WSIs
in a class-stratified (normal, benign, malignant) manner from the HunCRC (Armin Pataki
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et al., 2022) and IMP-CRS-2024 (Neto et al., 2024) dataset. Full details of pretraining data
curation and experiments are in Appendix C.1.

Biomarker Prediction. For evaluating the models on biomarker prediction, we used
the paired ST-H&E data from HEST, which contain a mix of 10X (10x Genomics, 2025)
Visium, VisiumHD, and Xenium data. We use Jaume et al. (2024)’s official k-fold cross-
validation (CV) split from HEST-Benchmark, but combine the HEST-COAD and READ
dataset in a patient stratified manner. For the gene set of HEST-Benchmark, we use
the given top 50 highly variable genes (HVG) and their normalized expressions. HEST-
Benchmark only contains eight samples from four patients, so we curate another "HEST-
Extended” dataset that consists of 54 samples from eight study sources that are not part
of HEST-Benchmark, further extracted from the HEST dataset. HEST-Extended data are
used for training in two different ways: 1) Random 10-fold CV where all data is randomly
split between train and test regardless of study source, 2) LOSO (Leave-One-Study-Out)
where samples from one study are left as a test set and all other samples are used in train-
ing. Observing each of the pretrained model’s performance and its drop between random
and LOSO signifies the overall quality and the robustness of each model’s embeddings, re-
spectively. For the gene set of HEST-Extended, we extract top 200 HVGs using the same
process as Jaume et al. (2024), but also extract top 200 high mean HVGs (HMHVGs) sim-
ilar to Zhu et al. (2025) which show high mean expression as well. HVGs capture genes
with high expression variance across samples regardless of their baseline levels, identifying
biological heterogeneity and functional diversity, while HMHVGs select genes that are both
abundantly expressed and highly variable, revealing how core biological processes are dif-
ferentially regulated across tissue regions. We ensure to only include genes that are present
in all samples so that all patches have a paired gene expression value.

HEST-Benchmark and HEST-Extended are both evaluated by training a downstream
Ridge regression model on the extracted patch embeddings from each pretrained model to
predict the gene expression values of the HVG and HMHVG sets. The trained regression
model is then evaluated by inferring the gene expression of the patches from the test set.
The ground truth value is then compared to the predicted gene expression via the following
metrics: Pearson correlation coefficient (PCC) (for top-10 and all genes), mean absolute
error (MAE), and mean squared error (MSE). Full details of data curation and experi-
ments for biomarker prediction and for other downstream tasks like classification, survival
prediction and patch retrieval are in Appendix C.2 and C.3, respectively.

3 Results and Discussion

We first show evaluation results for biomarker prediction, and briefly mention key results for
other downstream tasks. We use Ridge regression as the sole downstream evaluation model
for biomarker prediction to maintain evaluation consistency with the classification setting of
VFMs, such as linear probing. Ridge regression serves as a simple yet effective method to as-
sess the quality of the extracted embeddings—specifically their linear separability—without
the confounding effects of more complex regression models. Our results demonstrate that
MViybria exhibits superior biomarker prediction ability and robustness compared to all
other models including ViT. HEST-Benchmark results (Table 2) show MViyiiq achieves
the highest correlations (PCC, PCC-10) and lowest errors (MAE, MSE) across all mod-
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Model PCC PCC-10 MAE MSE

ViMEginFpFT 0.397+0.065 0.685+0.069 1.896+0.332 5.956+1.985
HydraginFpT 0.40440.064 0.692+0.067 1.879+40.270 5.7814+1.674
ViT12 0.41540.055 0.72040.097 1.807+0.355 5.39242.064
ViTo4 0.36510.042 0.664+0.080 1.869+0.285 5.82241.834
Hydrapybrid 0.41540.069 0.688+0.082 1.824+0.386 5.618+2.157
MVHybrid 0.460+0.082  0.7474+0.082 1.74840.265 5.011+1.478

Table 2: HEST-Benchmark Results.

els. PCC measures how well the regression model captures the linear relationship between
predicted and actual gene expression values, while MAE/MSE quantify the magnitude of
prediction errors in absolute terms—excelling in both demonstrates that MVyy1,iq generates
superior embeddings that accurately predict both relative expression patterns and actual
expression values. HEST-Extended results (Tables 3 and 4) show that in LOSO evalua-
tion, MVyypiq ranks first across both gene sets with PCC scores of 0.138 (HVG) and 0.212
(HMHVG), outperforming the best-performing ViT by 42% (HVG) and 71% (HMHVG). In
addition, MViyprig is the most robust model as it achieves the lowest PCC decrease (35.5%
HVG, 46.0% HMHVG) and PCC-10 decrease, and the lowest MSE (48.2% HVG, 29.7%
HMHVG) and MAE (25.9% HVG, 10.2% HMHVG) increase, suggesting MVpyhriq captures
more biological features than site-specific features. This superior performance and robust-
ness is only partly due to MVpyiiq’s bias toward lower frequencies, as other Mamba-based
models achieve lower performance. Therefore, MV’s vision-specific design of including reg-
ular convolution layers in both SSM and skip connection paths seems to help more than
the bidirectional processing from Hydra as Hydrapyriq shows inferior results. Also, the
hybrid nature of MV, seems to allow MV and ViT layers to capture fundamentally dif-
ferent features, as pure SSM-based models like ViMgi,rrr and Hydraginprr exhibit weaker
performance. Interestingly, while HMHVGs show higher correlation values than HVGs,

Metric Eval ViMginrrr  Hydraginrpr ViTi2 ViTag Hydrapybrid MV Hybrid
Random 0.15440.119 0.21840.130 0.210+£0.146 0.176+£0.115 0.19140.104 0.21440.122
PCC LOSO 0.08340.086 0.116£0.097 0.097+£0.108 0.089+£0.091 0.09440.080 0.1384+0.102
Decrease (%) 46.4 46.8 53.7 49.5 51.1 35.5
Random 0.526+0.135 0.570+0.136 0.555+0.143 0.540+0.134 0.540+0.137 0.56440.129
PCC-10 LOSO 0.31440.132 0.334+0.152 0.34940.174 0.337+0.123 0.33540.143 0.386+0.175
Decrease (%) 40.3 41.5 37.2 37.6 38.0 31.5
Random 0.63440.333 0.600£0.288 0.593+£0.240 0.6122£0.300 0.59440.274 0.59440.283
MSE LOSO 1.10740.803 1.03640.717 1.00310.642 0.975£0.741 0.95440.666 0.8814+0.671
Increase (%) 74.6 72.8 69.2 59.2 60.6 48.2
Random 0.4954+0.133 0.491+40.121 0.488+0.101 0.488+0.120 0.486+0.113 0.488+0.120
MAE LOSO 0.706+0.319 0.686+0.297 0.674+0.265 0.644+40.299 0.648+0.277 0.61440.281
Increase (%) 42.5 39.7 38.1 31.9 33.4 25.9

Table 3: HEST-Extended HVG (n = 200) Results: Random vs LOSO

they exhibit higher MAE/MSE values across all models. This arises because HVGs have
high variance but low mean expression, resulting in smaller errors despite lower correlations
while HMHVGs have high mean expression values as well, leading to larger errors even when
correlations are stronger. This highlights that both metrics are necessary—correlation cap-
tures the model’s ability to predict relative expression patterns, while MAE/MSE reflect
prediction accuracy in absolute expression units. MVyyy,riq shows equal or slightly better
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Metric Eval ViMEinFFT HydraginrrT ViTpo ViToy HydraHybrid Mvabrid
Random 0.30940.179 0.40040.184 0.373£0.212 0.33440.167 0.367£0.155 0.393+0.162
PCC LOSO 0.12440.183 0.154+40.144 0.110+£0.203 0.124+40.179 0.12240.148 0.21240.166
Decrease (%) 59.8 61.6 70.6 62.8 66.7 46.0
Random 0.570+0.129 0.625+0.128 0.605+0.142 0.583+0.117 0.603£0.119 0.620+0.116
PCC-10 LOSO 0.356+0.171 0.378+0.164 0.377+0.182 0.394+0.146 0.357£0.169 0.454+0.168
Decrease (%) 37.5 39.5 37.6 32.5 40.8 26.8
Random 4.837+1.758 4.555+1.487 4.581+1.344 4.707£1.638 4.542+41.409 4.542+41.454
MSE LOSO 8.060+5.736 7.065+5.057 7.123+5.225 6.865+5.078 6.72744.382 5.889+4.161
Increase (%) 66.7 55.1 55.5 45.9 48.1 29.7
Random 1.806+0.373 1.77840.346 1.780+0.293 1.78940.346 1.77240.324 1.776+0.337
MAE LOSO 2.290+1.098 2.164+0.950 2.174+0.923 2.098+0.986 2.102+0.904 1.95740.853
Increase (%) 26.8 21.7 22.1 17.2 18.6 10.2

Table 4: HEST-Extended HMHVG (n = 200) Results: Random vs LOSO

performance in three different downstream tasks: classification, patch retrieval, and survival
prediction (detailed results and discussion are in Appendix D). We believe that this is also
due to MV’s favorable design (regular convolution), hybrid ViT (attention is proven for
its strong representations), and its low-frequency bias—shown in the eigenvalue distribu-
tion analysis in Figure 2 of Appendix E. Figure 2 shows that all pretrained Mamba variants
maintain negative real eigenvalues, with MVyy1,5i4’s broader eigenvalue distribution creating
cascaded low-pass filters with diverse cutoff frequencies (at w. = |A;|), which according to
the theoretical analysis in Section 1.1 provides progressively stronger attenuation at higher
frequencies while preserving a richer set of low-frequency features.

4 Conclusion

With the broad distribution of negative real eigenvalues resulting in low-frequency bias
of MV layers in MVpyypriq combined with its vision-centric and hybrid ViT design, we
show that MViyy,iq outperforms ViTs in biomarker prediction performance and robustness
when pretrained and evaluated on the same dataset. We show that tailoring the backbone
architecture of pathology VFMs is effective, especially as current VFMs are shown to be
unrobust despite being trained on large-scale WSI datasets. We empirically show that
biomarker prediction performance is partly correlated with the backbone’s bias for low-
frequency features. We leave performing ablation studies for each sequence and channel
mixers of MVyypiq to analyze how individual modifications impact performance to future
work. Furthermore, more extensive validation on public and clinical paired ST-H&E data
is needed. Despite these limitations, MV yyiriq’s superior performance in the critical task of
biomarker prediction and competitive or better performance across other downstream tasks
positions it as a compelling architecture for future pathology VFMs.
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Appendix A. Derivation of Enhanced Low-Frequency Bias for Negative
Real Eigenvalues

In this appendix, we summarize the derivation of Yu et al. (2025) in A.1 and A.2 first to
show in A.3 that the same derivation can be applied to prove that negative real eigenvalues
have an even stronger bias for low-frequency. A.4 analyzes the low-frequency bias of complex
and negative real eigenvalues and how they differ.

A.1 Total Variation of Transfer Function

Starting from the continuous-time SSM equations (1) and (2), we derive the transfer function
G(is) as shown in equation (3). While practical implementations use discretized forms with
discretization step A, where A = exp(AA), the frequency analysis remains valid as the
discretization preserves the eigenvalue structure of A.

The total variation of the transfer function G(is) over a frequency interval [a, b] quantifies
the cumulative change in the frequency response as shown in Equation (4) of the main text:

o= [

Given the transfer function in partial fraction form:

dG(is)
ds

ds (7)

N .
Glis) = Y — oD (8)

J=1

The derivative with respect to frequency s is:

dG(is) <~ —ic;
ds Jz; (is —aj)? 9)

A.2 Case 1: Complex Eigenvalues

For complex eigenvalues, we summarize Yu et al. (2025)’s derivation as below to compare
with negative real eigenvalues (shown in A.3 below). For complex eigenvalues a; = v; + iw;
where v; < 0 (stability condition):

N

dcil(sw) - — (s — ;]Zc—j iw;)? (10)
j=1
The magnitude of the denominator is:
lis — aj| = |is —vj —iw;| = v?-—l—(s—wj)Q (11)
Therefore: N
dG(is Cj
Eak 2 e -
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For high frequencies where s > max(|w;|), the dominant term is (s — w;)?,

The high-frequency total variation is:

Z ’CJ|
s—wj

N
o 1
V@) =Sl | ds
D=2l Gy
N 00
=Skl |50
= s—wj |,
N
:Z <]
j:lwoiw]’

This gives us the bound (assuming wy > max(|w;|) for convergence):

Z |CJ|
|wj _W0’

A.3 Case 2: Negative Real Eigenvalues

For negative real eigenvalues a; = —|\;| where A\; > 0:
lis — aj| = |is + [Aj|| = \/|\j]2 + 2
This yields:
N
‘ Z oyl
2 + 52)
st (JN[*+ s

The high-frequency total variation becomes:

Z’C-”/ |)\ |2+82

Step-by-Step Derivation: Using the standard integral identity

1 1
———dx = — arctan +C
a? + x2 a

/OO ¥d i [arctan (8” h
wo |Aj|2 + 52 ’/\ ’)‘]| wo
1
= — [W — arctan <w0>]
YT A
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For high frequencies where wg > |\;|, we use the large-z approximation:

™

1
arctan(z) ~ — — — forz > 1 (24)
x
Letting = = ﬁ, we have:
J
wo T Al
arctan | — | = — — —— 25
(Rn)=5-% (2)
Substituting into the integral:
o 1 1 [77 < wo >]
————ds=— |- —arctan | — (26)
/wo |Aj[* + 52 Al 12 Al
1 s ™ |>\J|
X— |-z —— 27
A1 [2 (2 wo (27)
ISV, o9

This shows that for wp > |);|, the integral decays as 1/wy.

High-Frequency Approximation: The arctangent approximation shows O(1/wq)
decay. We derive a refined approximation capturing |A;|’s role.

Starting from the exact integral derived above:

o0 1 1 [n wo )]
7d8 = —— | — — arctan _ 29
/wo e T Iy [2 (M (29)

For high frequencies where wy > |\;|, we can analyze the asymptotic behavior. Using

the expansion arctan(z) ~ % — 2 + O(1/23) for large x:

> 1 I DV |
/wo |)\j|2 +82 |/\j wo wo ( )

A more insightful approximation that captures both the asymptotic behavior and the
transition region is:

& 1 1
wo ‘)\]’ +s \ ’)\]| +w0
This approximation is particularly useful because:

1. For wo > |\j]: —L___ ~ L recovering the correct asymptotic behavior

VINRHwg e’

2. For wy ~ |Aj]: It captures the transition where the eigenvalue |\;| significantly affects
the response

3. The form ——~—— represents the magnitude response of a first-order low-pass filter
VX [24wg

with cutoff at ||
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Therefore, the high-frequency total variation can be approximated as:

|CJ|
Z VI A+ wg 32

This approximation reveals that each negative real eigenvalue |);| acts as a low-pass
filter with cutoff frequency w. = |A;|, and the overall frequency response is determined by
the superposition of these filters.

A.4 Comparison and Enhanced Low-Frequency Bias

The key insight emerges from comparing the decay rates:

e Complex eigenvalues: V3°(G) ~ > el (linear decay)

J wo—wj

» Negative real eigenvalues: V57 (G) ~ 3, % (uniform decay)

For large wyq:
1 1

— < ——— for any finite w; < wy (33)
wo wWo — Wy
This demonstrates that negative real eigenvalues provide:

1
wo—w;

1. Faster high-frequency decay: The wio decay is uniformly faster than

2. Uniform frequency response: All eigenvalues contribute equally to the decay,
creating a smooth roll-off

3. Sharp cutoff characteristic: With \; = [1,2,3,...,N] , the system acts as a
cascade of low-pass filters with cutoffs at integer frequencies

The magnitude response for negative real eigenvalues:

|G(iw)| =

N el .
Z G {Z il if w < min(|A;]) (34)

\
< iw + [ A > % if w > max(|A;])

This creates a uniform -20 dB/decade roll-off beyond the maximum eigenvalue, effec-
tively implementing a higher-order low-pass filter ideal for preserving low-frequency biolog-
ical patterns while suppressing high-frequency noise in pathology images.

The specific initialization schemes employed by our models further enhance this effect:

e MambaVision/ViM (\; = [1,2,3,..., N]): Creates cascaded low-pass filters with
cutoff frequencies at w, = 1,2, 3, ..., N, resulting in progressively stronger attenuation
at higher frequencies.

e Hydra (\; =[1,1,...,1]): Creates N identical low-pass filters with cutoff at w, = 1,
providing consistent attenuation across all channels.

This initialization scheme impacts the eigenvalue profiles of the pretrained models, which
is shown in Figure 2 of Appendix E.
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Appendix B. Descriptions of All Pretrained Models

In this appendix, we include the detailed descriptions of all pretrained models listed in Table
1. Table 5 below provides comprehensive details about all models used in our experiments,
including their architectural components, computational requirements, and performance
characteristics.

Model Sequence Mixer Channel Mixer # Params GFLOPs (256) GFLOPs (512) Throughput (256) Throughput (512) Ratio
(M) (img/s) (img/s)
ViMginrrr ViM EinFFT 29.0 8.1 32.3 502 115 4.365
Hydragmeer  Hydra EinFFT 28.2 8.1 32.4 494 114 4.333
ViTio Attention MLP 21.7 6.2 31.8 3,346 435 7.692
ViTyy Attention MLP 43.0 12.2 63.3 1,694 219 7.735
Hydragybia ~ Hydra/Attention EinFFT/MLP 35.5 10.2 47.8 775 138 5.616
MVuypsia  MV/Attention EinFFT/MLP 30.9 8.4 33.4 1,119 231 4.844

Table 5: Table of All Pretrained Models and their Efficiency Profiles. The naming conven-
tion follows sequence mixer followed by channel mixer in subscript. Hybrid signifies
a hybrid model where the second half of the model is a vanilla ViT. Throughput is
measured on a NVIDIA RTX 4090 GPU, in images per second (img/s). 256 and
512 signify 256 x 256 and 512 x 512 patch size.

We first choose to train ViMgi,rrr for a baseline Mamba performance and train MV yyprid
to follow MV’s performance. Then, we make the same modifications to Hydra that we made
for MVypriq to train Hydragyhriq and Hydraginprr. As shown in the number of parameters
and GFLOPs above, all pure Mamba and hybrid models have a lower number of parameters
and GFLOPs compared to ViTgs. While ViTy4 has higher throughput, MVyy,iq is a close
second and is highest of all other models. Furthermore, MVyy1,iq enjoys favorable scaling
properties as the throughput ratio is near-linear compared to that of ViT. It also beats
ViTy4 in throughput for image sizes of 512 x 512 (231 vs 219 img/s), showing its potential
for application in larger image sizes as it has higher throughput with lower GFLOPs and
number of parameters. Since MVyypriq is a mix of MV and ViT, it is impressive that the
scaling remains near-linear.

Appendix C. Details of Dataset and Experiments

In this appendix, we detail the data curation and experiments for pretraining in C.1, data
curation and experiments for biomarker prediction evaluation in C.2, and data curation and
experiments for all other evaluation tasks (classification, patch retrieval, survival prediction)
in C.3.

C.1 Pretraining Data Curation and Experiments

For data curation for the pretraining dataset, we first downloaded the HunCRC and IMP-
CRS-2024 datasets that contain 200 and 5,333 WSIs, respectively. Both contain three classes
of normal, benign, and malignant and are scanned at 40x magnification. 25 and 15 WSIs
were randomly selected in a class-stratified manner from IMP-CRS-2024 and HunCRC,
respectively. After preprocessing, a total of 756,000 tissue patches were used to pretrain
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all the models via DINOv2 for 200 epochs using a learning rate of 2.5e-3 and batch size of
1,536. The pretraining dataset is not used for evaluation, and it is made sure that there are
no overlaps between the training and evaluation datasets.

C.2 Data Curation and Experiments for Biomarker Prediction Evaluation

For data curation and experiments for biomarker prediction evaluation, below are the de-
scriptions for HEST-Benchmark and HEST-Extended, which are both part of the HEST-1k
dataset, but curated differently and contain no overlaps.

HEST-Benchmark: HEST as a total contains 1,229 paired spatial transcriptomics
(ST) and WSIs from 26 organs. We only utilize colon and rectum benchmark datasets,
consisting of eight WSI-ST pairs from four patients. From that, we use the given top 50
most variable gene expression values and train a Ridge regression model to predict the
gene expressions by only using the extracted feature embeddings from the models. We use
patient-wise cross-validation, resulting in 4-folds of train/test split with a 3:1 split. Pearson
correlation is used as an evaluation metric.

HEST-Extended: We use all the HEST data that is not part of HEST-Benchmark to
collect a total of 56 samples from COAD, READ, and COADREAD categories, where these
56 samples come from 8 different study sources. Two samples were eliminated because their
number of genes were significantly less than the other samples, preventing the calculation
of HVGs and HMHVGs (gene overlap must be calculated for all samples first) to leave 54
samples. As mentioned in the main text, a random 10-fold CV and an 8-fold LOSO dataset
was curated. Top 200 HVGs were first measured with the highly variable genes function
of scanpy (Wolf et al., 2018) with loglp normalization. HMHVGs were then calculated by
listing all genes with high mean in one list, and listing the HVGs in another list and finding
the overlaps with one another to form top 200 HMHVGs.

C.3 Data Curation and Experiments for All Other Evaluation Tasks

For all other downstream evaluation tasks, below is the description of the dataset curation
and the experiments performed. Recall that all of these downstream evaluation tasks, like
biomarker prediction, are all trained on the extracted patch embeddings of the pretrained
VFEMs. If not specifically mentioned below, the default given train-test split was used.

TCGA-CRC-MSI (Binary classification): This dataset contains a total of 535
WSIs from The Cancer Genome Atlas (The Cancer Genome Atlas Research Network, 2006).
Only WSIs with microsatellite instability (MSI) information were used, which were cu-
rated by filtering the TCGA-COAD and TCGA-READ datasets by their MSI Mantis Score
(Kautto et al., 2017) on cBioPortal (Cerami et al., 2012). Filtering by the default threshold
of < 0.4 and > 0.6 returned 468 MSS (microsatellite stable) and 67 MSI-high WSIs, respec-
tively. Due to this class imbalance, we created ten different balanced folds with MSI-high
fixed, and randomly sampling an equal number of MSS cases. A Clustering-constrained
Attention Multiple Instance Learning (CLAM) model was trained for 200 epochs and Area
Under the Receiver Operating Characteristic (AUROC) and mean accuracy (mAcc) were
used as evaluation metrics.

MHIST (Wei et al., 2021) (Binary classification): This dataset consists of 3,152
patch images sized 224 x 224 at 5x magnification. The binary classes are hyperplastic
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polyps (HP) and sessile serrated adenomas (SSA). A logistic regression model was trained
for linear probing, evaluated on AUROC and balanced accuracy. The K-nearest neighbor
(KNN) framework was used to cluster the feature embeddings for KNN probing (K = 20) and
few-shot (SimpleShot) (Wang et al., 2019) framework was utilized to evaluate the model’s
feature representations. K = 4 samples for each class were used to generate a class prototype
and all other samples are tested via nearest L2 distance (n = 1000). Both unsupervised
models were evaluated using weighted F1 (WF1) and balanced accuracy (BAcc).

UniToPatho (Barbano et al., 2021) (6-class classification): This dataset com-
prises 9,536 patch images at 20x magnification for polyp classification and adenoma grading.
Only the subset containing 8,669 images of size 1,812 x 1,812 pixels was used. The exact
same downstream training and evaluation metrics were utilized as that of MHIST.

NCT-CRC-100K (Kather et al., 2018) (9-class zero-shot patch retrieval): This
dataset includes 100,000 patch images from nine tissue classes at 20x magnification. The
models were evaluated with zero-shot patch retrieval where test embeddings query against
training embeddings. Features were normalized and searched using FAISS IndexFlatl.2
(Douze et al., 2024). Performance was measured with accuracy: Acc@QK (K €{1,3,5}) and
MVAcc@5 (Majority voting accuracy). The former considers retrieval successful if any of
top-K patches match the query label, the latter requires the query to align with the majority
vote from the top-5 retrieved patches.

TCGA-CRC (Survival prediction): This dataset is identical to TCGA-CRC-MSI
but is unfiltered. We follow the default 5-fold train-test split of PANTHER (Song et al.,
2024) and train a survival prediction model by utilizing extracted feature embeddings to
train an unsupervised Gaussian Mixture Model (GMM). This is a prototype-based learning
method that is more sensitive to the feature embeddings compared to supervised models.
Commonly used concordance metric (c-index) was used for evaluation.

Appendix D. Results for Other Tasks: Classification, Patch Retrieval,
and Survival Prediction

In this appendix, we include the results of three classification tasks, patch retrieval, and
survival prediction in Tables 6 and 7 below.

The results in Table 6 show the models’ performance on the three different classification
tasks. Notably, MVyy,iq outperforms both ViTs across all metrics and achieves the best
performance in all metrics except for three, where it is a close second. MVyy,iq excels at
classifying MSI/MSS biomarkers, which is a hallmark prognostic biomarker in CRC. Unlike
most classification evaluation tasks which are morphology-based, MSI and MSS status are
molecular-based and cannot be clearly distinguished via morphology in WSIs. We believe
that MVpynrida’s superior performance over both ViTs on molecular tasks is also particularly
due to its low-frequency bias as Hydrapyrig also shows high performance.

Furthermore, MVyyi,iq shows superior performance on the MHIST and UniToPatho
datasets (morphology-based classification tasks), outperforming both ViTs , signifying that
its unique design is also effective in creating strong representations of tissue morphology.
This is confirmed in the linear and KNN probing performance, as it directly measures
the representation quality of the extracted embeddings (linear probing evaluates linear
separability while KNN probing evaluates the clusters in an unsupervised and nonparametric
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Dataset Method Metric ViMEginrrT Hydraginrrr ViTo ViTyy Hydrauyh,id MVHuybrid

AUC 0.730+£0.089  0.77240.103  0.706+0.116 0.746+0.134 0.76340.103 0.76540.090
mAcc 0.66840.072 0.70740.098 0.6574+0.139 0.696+0.086 0.7184+0.102 0.750+0.073

TCGA-CRC-MSI CLAM

. . AUC 0.793 0.837 0.831 0.804 0.855 0.863
Linear Probing
BAcc 0.689 0.720 0.713 0.705 0.758 0.768
. WF1 0.648 0.687 0.700 0.667 0.699 0.743
MHIST KNN Probing
BAcc 0.605 0.643 0.664 0.624 0.656 0.703

WF1 0.53520.056 0.560£0.051 0.55340.058 0.5424+0.057 0.56240.047 0.57510.062
BAcc 0.54340.042 0.573+0.046 0.57840.054 0.56040.051 0.57840.049 0.59540.058

Few-shot

R i mAUC 0.791 0.806 0.801 0.789 0.802 0.820
Linear Probing
BAcc 0.396 0.416 0.416 0.403 0.405 0.463
) . WF1 0.426 0.451 0.438 0.434 0.435 0.444
UniToPatho KNN Probing
BAcc 0.328 0.334 0.333 0.365 0.329 0.373
Few-shot WF1 0.290 + 0.047 0.310 = 0.050 0.306 + 0.053 0.319 £ 0.058 0.299 + 0.048  0.310 + 0.051
BAce  0.306 + 0.038 0.316 £ 0.039 0.321 + 0.047  0.325 £+ 0.051  0.308 + 0.037 0.333 £ 0.042
Table 6: Classification Results
Dataset Metric ViMginrpT Hydraginrprr ViTo ViToy Hydl'aﬁybrid MVHybrid
Recall@1 0.762 0.763 0.674 0.648 0.774 0.789
Recall@3 0.870 0.847 0.783 0.763 0.877 0.880
NCT-CRC-100K
Recall@b 0.898 0.880 0.825 0.808 0.907 0.911
MVAcc@b 0.810 0.780 0.714 0.693 0.808 0.825
TCGA-CRC Mean c-index 0.601+0.056 0.67740.074 0.623+0.081 0.620+0.132 0.6514+0.071 0.6584+0.076

Table 7: Patch Retrieval and Survival Prediction Results

way). Few-shot learning, which is also unsupervised and nonparametric, creates a class
prototype for each class using K samples and performs nearest centroid classification for
the rest of the dataset for testing. MViyypiq’s compelling performance shows its robustness
to unseen datasets within the same dataset distribution. MVyy,iq’s strong performance in
UniToPatho (3x magnification after resizing) also shows its robustness to low magnification
images as well.

The results in Table 7 exhibit the models’ performance on patch retrieval and biomarker
or survival prediction. WSI retrieval is clinically important in diagnosis and medical re-
search. While different, patch retrieval still can be viewed as a subproblem that addresses
similar technical challenges. In zero-shot patch retrieval, MVyyy,iq shows its superior abil-
ity to find visually similar images as it outperforms both ViTs on all four metrics. Lastly,
survival prediction is also important in the clinic for cancer prognostics and is a unique
task because it can’t be classified into a morphological or molecular-based task as multiple
features of the image can contribute to survival prediction. In survival prediction, MVypriq
also outperforms both ViTs.

Overall, while we report that MVpypiq outperforms ViTs in almost all metrics and
tasks, we remain conservative as the performance differences are quite marginal compared
to biomarker prediction differences. This is why we mention that MVyyy,iq is equal or
slightly better than ViTs.
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Appendix E. Eigenvalue Analysis of Pretrained Models

To empirically verify the theoretical analysis, we analyzed the eigenvalues of the four state
space/hybrid models. Figure 2 shows the eigenvalue distributions for all four models.
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Figure 2: Eigenvalue distributions for pretrained state space models. All models maintain
strictly negative eigenvalues through the A = — exp(Ajoe) parameterization, con-
firming the enhanced low-frequency bias ideal for biomarker prediction tasks.

As shown in Figure 2, all four state space models maintain strictly negative real eigen-
values through the A = — exp(Ajog) parameterization, confirming the theoretical analysis in
Section 1.1. MVyypriq exhibits the broadest eigenvalue distribution among all models, span-
ning a wider range of negative values. This broader distribution creates cascaded low-pass
filters with diverse cutoff frequencies at w. = |);|, enabling progressively stronger atten-
uation of high-frequency components while preserving a richer spectrum of low-frequency
features. This broader distribution is most likely due to different initialization schemes,
as shown in Appendix A.4. This eigenvalue profile correlates with MVyypriq’s superior
biomarker prediction performance, as the enhanced low-frequency bias captures subtle mor-
phological patterns associated with molecular phenotypes that are critical for accurate gene
expression prediction.
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