Under review as a conference paper at ICLR 2026

Q-LEARNING WITH ADJOINT MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Q-learning with Adjoint Matching (QAM), a novel TD-based reinforce-
ment learning (RL) algorithm that tackles a long-standing challenge in continuous-
action RL: efficient optimization of an expressive diffusion or flow-matching policy
with respect to a parameterized value function (i.e., the critic Q4(s, a)). Effective
optimization requires exploiting the first-order information of the critic (i.e., the
action gradient, V,Q4(s, a)), but it is challenging to do so for flow or diffusion
policies because direct gradient-based optimization via backpropagation through
their multi-step denoising process is numerically unstable. Existing methods work
around this either by only using the value and discarding the gradient information,
or by relying on approximations that sacrifice policy expressivity or bias the learned
policy. QAM sidesteps both of these challenges by leveraging adjoint matching, a
recently proposed technique in generative modeling, which transforms the critic’s
action gradient to form a step-wise objective function that is free from unstable
backpropagation, while providing an unbiased, expressive policy at the optimum.
Combined with temporal-difference (TD) backup for critic learning, QAM con-
sistently outperforms prior approaches across challenging, sparse reward tasks in
both offline and offline-to-online RL settings.

1 INTRODUCTION

Aggregated (5 domains)

Intermediate Denoised

Noi: E
olses Noisy Actions Actions 1.00 =0— QAM (ours)
FBRAC
Prior a DSRL
Flow Policy ﬂ 0.75 - FQL
(- s) z~N cGaL
Critic's)
Action Gradient 0.50 4 REdIt
V. OG5, a) »eee . FAWAC
" INEASN : IFQL
: RLPD
Fine-tuned . 0.25-
Flow Policy c/’/o/o/-
a(-]s) :
(|] L,;\m(e) : 0.00-€ i ; :
zn~ !/V residual pol\cyn Fine-tune via 0.0 0.5 1.0 1.5
my(- | 8) Adjoint Matching Training Steps (x 106)

Figure 1: QAM: Q-learning with Adjoint Matching. Lefi: QAM uses adjoint matching objective (Domingo-
Enrich et al., 2025) that leverages the critic’s action gradient directly to fine-tune a residual flow policy such
that the combined policy, 7 converges to the optimal prior-constrained policy: 7(- | s) oc ma(- | 5)e@).
Right: Aggregated performance of QAM compared to prior methods for offline and offline-to-online RL over 5
OGBench domains. The gray area (first 1M steps) is the offline training and the white area (subsequent S00K
steps) is the online training.

A long-standing tension in continuous-action reinforcement learning (RL) especially in the
offline/offline-to-online setting is between policy expressivity and optimization tractability with re-
spect to a critic (i.e., Q(s, a)). Simple policies, such as single-step Gaussian policies, are easy to
train, since they can directly leverage the critic’s action gradient (i.e., V,Q(s, a)) via the reparame-
terization trick (Haarnoja et al., 2018). This optimization tractability, however, often comes at the

Under review as a conference paper at ICLR 2026

cost of expressivity. Some of the most expressive policy classes today, such as flow policies, generate
actions through a multi-step denoising process. While this allows flow policies to represent complex,
multi-modal action distributions, leveraging the action gradient requires backpropagation through the
entire denoising process, which often leads to instability (Park et al., 2025). Prior work has therefore
resorted to either (1) discarding the critic’s action gradient entirely and only using its value (Ren
et al., 2024; Zhang et al., 2025; McAllister et al., 2025), or (2) distilling expressive, multi-step flow
policies into one-step noise-conditioned approximations (Park et al., 2025). The former sacrifices
learning efficiency and often under-performs methods that use the critic’s action gradient (Park et al.,
2024b; 2025), while the latter compromises expressivity. This raises a question: can we somehow
keep the full expressivity of flow policies while incorporating the critic’s action gradient directly into
the denoising process without backpropagation instability?

One might be tempted to directly apply the critic’s action gradient to intermediate noisy actions
within the denoising process, as in diffusion classifier guidance (with the critic function being the
classifier) (Dhariwal & Nichol, 2021). Intuitively, this blends two generative process together: one
that generates a behavior action distribution, and another that hill-climbs the critic to maximize
action value. While this approach bypasses the backpropagation instability and retains full policy
expressivity, it relies on the assumption that the critic’s gradient at a noisy action is a good proxy for
its gradient at the corresponding denoised action. In practice, this assumption often breaks down:
when the offline dataset has limited action coverage, the critic is well-trained only on a narrow
distribution of noiseless actions, rendering its gradients unreliable for intermediate noisy actions that
are out of distribution. As what we will show in our experiments, methods that use the gradients at
intermediate noisy actions underperform (CGQL in Section 5, Figure 3).

We propose Q-learning with Adjoint Matching (QAM), a novel RL algorithm that leverages adjoint
matching (Domingo-Enrich et al., 2025), a recently developed technique in generative modeling, to
effectively use the critic’s action gradient for training flow policies to maximize returns subject to
a prior constraint (e.g., behavior or entropy constraint) (Figure 1). In general, such a constrained
optimization problem on a flow model can be formulated as a stochastic optimal control (SOC)
objective, which can be solved by using the continuous adjoint method (Pontryagin et al., 1962).
However, this standard formulation has the same loss landscape as directly backpropagating through
the SOC objective, causing instability. Instead, we leverage a modified objective from Domingo-
Enrich et al. (2025) that admits the same optimal solution, but does not suffer from the instability
challenge. At a high level, the critic’s gradient at noiseless actions is directly transformed by a flow
model constructed from the prior, independent from the possibly ill-conditioned flow model that
is being optimized, to construct unbiased gradient estimates for optimizing the state-conditioned
velocity field at intermediate denoising steps. This allows the flow policy’s velocity field to align
directly with the optimal state-conditioned velocity field implied by the critic and the prior, without
direct and potentially unstable backpropagation, while preserving the full expressivity of multi-step
flow models. By combining this policy extraction procedure with a standard temporal-difference
(TD) backup for critic learning, QAM enables the flow policy to efficiently converge to the optimal
policy subject to the prior constraint. In contrast, approximation methods that rely on the critic’s
gradients at noisy intermediate actions lack such convergence guarantees.

Our main contribution is a novel TD-based RL algorithm that leverages adjoint matching to perform
policy extraction effectively on a critic function. Unlikely prior Q-learning methods with flow-
matching that rely on approximations or throwing away the action gradient of the critic altogether,
our algorithm directly uses the gradient to form an objective that at convergence recovers the
optimal behavior-regularized policy. We conduct a comprehensive empirical study comparing policy
extraction methods for flow/diffusion policies, including recent approaches and new baselines, and
show that QAM consistently achieves strong performance across both offline RL and offline-to-online
RL benchmarks.

2 RELATED WORK

RL with diffusion and flow policies. Diffusion and flow policies have been explored in both policy
gradient methods (Ren et al., 2024) and actor-critic methods (Fang et al., 2025; Kang et al., 2023;
Chen et al., 2024c;a; Lu et al., 2023b; Ding et al., 2024b; Wang et al., 2023; He et al., 2023a; Ding
& Jin, 2024; Ada et al., 2024; Zhang et al., 2024; Hansen-Estruch et al., 2023). The key challenge

Under review as a conference paper at ICLR 2026

of leveraging diffusion/flow policies in TD-based RL methods is to optimize these policies against
the critic function (i.e., Q(s, a)). Prior work can be largely put into three categories based on how
the value function is used: 1) post-processing approaches, where the action distribution from a base
diffusion/flow policy is refined with rejection sampling based on the critic value (Hansen-Estruch
et al., 2023; Mark et al., 2024; Li et al., 2025; Dong et al., 2025), or using additional gradient steps to
hill climb the critic (Mark et al., 2024) (i.e., a; < a; + V,Q(s, a)). These approaches often reliably
improve the quality of extracted policy but at the expense of additional computation during evaluation
or even training (i.e., if a similar rejection sampling procedure is used for computing the value backup
target (Li et al., 2025; Dong et al., 2025)). Alternatively, one may train a residual policy that modifies
a base behavior policy in either the noise space (Singh et al., 2020; Wagenmaker et al., 2025) or in
the action space directly (Yuan et al., 2024; Dong et al., 2025) 2) DDPG-based approaches perform
direct backpropagation through both the critic and the policy (Wang et al., 2023; He et al., 2023b;
Ding & Jin, 2023; Zhang et al., 2024; Park et al., 2025; Espinosa-Dice et al., 2025; Chen et al., 2025).
While this is the most-straightforward implementation-wise, it requires backpropagation through the
diffusion/flow policy’s denoising process which has been observed to be unstable Park et al. (2025),
or instead learns a distilled policy (Ding & Jin, 2023; Chen et al., 2024b; Park et al., 2025; Espinosa-
Dice et al., 2025; Chen et al., 2025), in the expense of policy expressivity. 3) intermediate fine-
tuning approaches, which our method also belongs to, mitigate the need of the stability/expressivity
trade-off in DDPG-base approaches by leveraging the critic to construct an objective that provides
direct step-wise supervision to the intermediate denoising process (Psenka et al., 2023; Fang et al.,
2025; Ding et al., 2024a; Li et al., 2024b; Frans et al., 2025; Zhang et al., 2025; Ma et al., 2025;
Koirala & Fleming, 2025). While these approaches remove the need for backpropagation through
the denoising process completely, the challenge lies in carefully crafting the step-wise objective that
does not introduce additional biases and learning instability.Compared to prior methods that either
rely on approximations (Lu et al., 2023a; Fang et al., 2025) that do not provide theoretical guarantees
(see more discussions in Appendix A) or directly throwing away the critic’s action gradient (and
use its value instead) (Ding et al., 2024a; Zhang et al., 2025; Ma et al., 2025; Koirala & Fleming,
2025), we leverage adjoint matching (Domingo-Enrich et al., 2025) which allows us to use the critic’s
action gradient directly to construct an direct step-wise objective for our flow policy that recovers the
optimal prior regularized policy at the optimum of the objective.

Offline-to-online reinforcement learning methods focus on leveraging offline RL to first pretrain
on an offline dataset, and then use the pretrained policy and value function(s) as initialization to
accelerate online RL (Xie et al., 2021; Song et al., 2023; Lee et al., 2022; Agarwal et al., 2022; Zhang
et al., 2023; Zheng et al., 2023; Ball et al., 2023; Nakamoto et al., 2024; Li et al., 2024a; Wilcoxson
et al., 2024; Zhou et al., 2025). While it is possible to skip the offline pre-training phase altogether
and use online RL methods directly by treating the offline dataset as additional off-policy data that
is pre-loaded into the replay buffer (Lee et al., 2022; Song et al., 2023; Ball et al., 2023), it is often
more convenient to directly use the same offline RL objective for both offline pre-training and online
fine-tuning (Kostrikov et al., 2021; Fujimoto & Gu, 2021; Tarasov et al., 2023; Park et al., 2025)
directly. Our method also operates in this regime where the same RL objective is used for both offline
pre-training and online fine-tuning. While we focus on evaluating our method in the offline-to-online
RL setting, the idea of using adjoint matching to train an expressive flow policy can be applied to
other settings such as online RL.

Diffusion and flow-matching with guidance. Diffusion and flow-matching models have been used
for generating data with different modalities ranging from images (Rombach et al., 2022), videos (Ho
et al., 2022), and text (Lou et al., 2023). In most applications, the generative models trained on large-
scale unlabeled data do not provide high-quality samples when conditioned on some context (e.g.,
language description), and a common practice is to augment the sampling process with classifier
guidance/classifier-free guidance (Dhariwal & Nichol, 2021; Ho & Salimans, 2022), with the goal of
aligning the sampling distribution better with the posterior distribution conditioned on the context.
However, most of the guidance methods suffer from a bias problem that is tricky to tackle, stemming
from the fact that simply adding or interpolating two diffusion/flow-matching sampling processes
(i.e., v1 (-, 1) + v2(-, t) for flow or log p} + log p? for diffusion) does not lead to the correct composite
distribution (i.e., o< 71 79) distribution in general (Du et al., 2023; Bradley & Nakkiran, 2024). One
solution is to use Langevin dynamics sampling approaches (Song & Ermon, 2019) where only the
score function for the noise-free distribution is required, but they have been known to under-perform
diffusion/flow models due to the challenge of accurately estimating the score functions in low-density
regions (Song & Ermon, 2020). Since then, a line of work has proposed solutions to generate

Under review as a conference paper at ICLR 2026

the correct composite distribution. Du et al. (2023), Phillips et al. (2024), Thornton et al. (2025),
Singhal et al. (2025) and Skreta et al. (2025) propose to use Sequential Monte Carlo (SMC) that uses
resampling procedures to leverage additional test-time compute to correct such bias. Rather than
correcting the distribution at test-time, Domingo-Enrich et al. (2025) and Havens et al. (2025) take a
different perspective by formulating it as a stochastic optimal control (SOC) objective that can be
efficiently optimized as a fine-tuning process while providing guarantee that the model converges to
the correct distribution at the optimum. The flow/diffusion policy optimization problem in actor-critic
RL methods shares a similarity to the aforementioned classifier/classifier-free guidance problem in
generative modeling literature where the critic function serves as the guidance to the generative policy
model. This allows our method builds directly on top of the algorithm developed by Domingo-Enrich
et al. (2025) while enjoying the guarantee that our policy converges to the optimal prior regularized
solution (i.e., m x w3 exp(Q(s, a))).

3 PRELIMINARIES

Reinforcement learning and problem setup. We consider a Markov Decision Process (MDP),
M = (S, A, P,v,R, i), where S is the state space, A = R4 (4 € Z%) is the action space,
P: 8 x A — Ag is the transition function, y € [0, 1) is the discount factor, R : S x R4 — R is the
reward function, and p € A 4 is the initial state distribution. We have access to a dataset D consisting
of a set of transitions {(s;, a;, s;,ri)}ﬂ, where s’ ~ P(- | s,a) and r = R(s,a). Our first goal
(offline RL) is to learn a policy g : S — A from D that maximizes its expected discounted return,

Nre = Esowu,st+1~P(-|st,at),at~7r(-\st) [Z FYtR(Stvat)‘| . (1)
t=0

The second goal (offline-to-online RL) is to fine-tune the offline pre-trained policy 7y by continuously
interacting with the MDP through trajectory episodes with a task/environment dependent maximum
episode length of H (i.e., the maximum number of time steps before the agent is reset to 1). The
central challenge of offline-to-online RL is to maximally leverage the behavior prior 74 in D to learn
as sample-efficiently as possible online.

Flow-matching generative model. A flow model uses a time-variant velocity field v : R? x [0, 1] —
R? to estimate the marginal distribution of a denoising process from noise, Xo = N(0, 1), to data,
X1 = D, at each intermediate time ¢ € [0, 1]:

X;=(1-t)Xo+tX;. 2)
In particular, the flow model approximates the intermediate X; via an ordinary differential equation
(ODE) starting from the noise: X° = N
dX; = v(X,, t)dt. 3)
Flow models are typically trained with a flow matching objective (Liu et al., 2022):
L (0) = Eis0,1],00~N 01 ~p [[06((1 = t)zg + tz1,) — 21 + 20][3] “

where any optimal velocity field, vy, results in X, where its marginal distribution p, (x;) exactly
recovers the marginal distribution of the original denoising process Xy, pp(x;), foreach ¢ € [0, 1] (lip,
2024). Furthermore, one may use the Fokker-Planck equations to construct a family of stochastic
differential equations (SDE) that admits the same marginals as well:

R . 2¢ R
dXt = <’U(Xt7t) + ﬁ (’U(Xt,t) +Xt/t)) dt+0tdBt (5)
with B; being a Brownian motion and o; > 0 being any noise schedule.
Adjoint matching is a technique developed by Domingo-Enrich et al. (2025) with the goal of
modifying a base flow generative model vg such that it generates the following filt distribution:

p*(x1) o< pg(r)er V) (6)

Under review as a conference paper at ICLR 2026

where r : R? — R is any tilt function that up-weights or down-weights the probability of each
example in the domain R?. Domingo-Enrich et al. (2025) uses a marginal-preserving SDE with a

‘memoryless’ noise schedule (i.e., X and X are independent), o; = /2(1 — t) /t:
dX' = (2v(Xy,t) — X /t)dt +/2(1 — t)/td B, (7)

because solving the following stochastic optimal control equation (with X sampling from the joint
distribution defined by the SDE in Equation (7)),

1
1
£(0) = Bx—x, | [(Gl0(Xit) = 0s (X0l) + 7(x)| ®)
0
gives the correct marginal tilt distribution for X!:

p(X1) o pg(X1)e X, ©)
Let the adjoint state be the gradient of the tilt function applied at the denoised X7 :

1
g(X,t) =Vyx, [/ lvg(Xpr, ') — vp(Xy, t)||5dt +r(X1)] , (10)
t

which satisfies the following ODE:
dg(X,t) = —g(X, 1) "V, [205(X,1) — Xe/t] + Vix,llve(Xe, t) — vs(Xe, 0)[3)/(207)dt (11)

with the boundary condition a(X,1) = —Vx, r(X1). We can compute the adjoint states by stepping
through the reverse ODE (which can be effcieintly computed with the Jacobian-vector product (JVP)
in most modern deep learning frameworks). Then, it can be shown that it equivalently optimizes the
‘basic’ adjoint matching objective below:

1
Lpam(9) = Ex [/ 2000,) = v5(Xe, 1)) J + 009X, 1) 3t | - (12)
0

The optimal vy coincides with the optimal solution in the original SOC equation (Equation (8)),
which gives the correct marginal distribution of X! as a result. However, the objective is equivalent
to the objective used in the continuous adjoint method (Pontryagin et al., 1962) with its gradient
equivalent to that of backpropagation through the denoising process.

Instead, Domingo-Enrich et al. (2025) derive the ‘lean’ adjoint state where all the terms in the adjoint
state that are zero at the optimum are removed from the state. The ‘lean’ adjoint state satisfies the
following ODE:

dg(X,t) = (X, 1) "V, 2vs(Xy, t) — X¢/t] dt, (13)
with the same boundary condition (X, 1) = -V x,7(X3).

Note that computing the ‘lean’ adjoint state only requires the base flow model vg(Xy,t) and no
longer needs to use vg(X¢, t) as needed in either the basic adjoint matching objective (Equation (12))
or naive backpropagation through the denoising process. The resulting adjoint matching objective is

1
Lam(0) =Ex {/ 12(vg(X¢,t) — vg(Xe,t)) /oy + o g(X, t)||3dt| , (14)
0

where again X is sampled from the marginal preserving SDE in Equation (7). Because the terms
omitted in the ‘lean’ adjoint state are zero at the optimum, and thus do not change optimal solution
for vg. Thus, the optimal solution for the adjoint matching gives the correct tilt distribution.

4 Q-LEARNING WITH ADJOINT MATCHING (QAM)

In this section, we describe in details how our method leverages adjoint matching to directly align the
flow policy to prior regularized optimal policy without suffering from backpropagation instability.

To start with, we first define the optimal policy that we want to learn as the solution of the best policy
the under the standard KL behavior constraint:

argmax, B, r(5[Q(s,a)] s.t. Dxr(ms || 7) < e(s). (15)

Under review as a conference paper at ICLR 2026

or equivalently, for an appropriate 7(s),
(- | 5) o (- | 5)eT(IPe(3) (16)

where 7 : S — RT is the inverse temperature coefficient that controls the strength of the behavior
constraint at each state.

We approximate the behavior policy using a flow-matching behavior policy, v : S x R4 x [0,1] —
R4 that is optimized with the standard flow-matching objective:

LFM(B) = E(s,a)wD,uN[O,l],sz [va(s, (1 - u)z + uz, t) —a+ Z”g] (17)

We then parameterize our approximation of the optimal policy as a sum of the behavior flow model
vg and a residual flow model vp : S x R4 x [0, 1] — R# and solve the following SOC equation:

1
L(0) = Esp,qu [/ lve (s, a®, t)||3 + 7(s)Qg(s,a")dul , (18)
0
where a" is defined by the following ‘memoryless’ SDE (e.g., a® is independent from a'):

da® = (2ug(s,a™, u) + 2vg(s,a",u) —a"/u)du + +/2(1 — u) /udB,. (19)

Similarly to the derivation by Domingo-Enrich et al. (2025), the memoryless property allows us to
directly conclude that the SOC equation has the optimum at

mo(- | 8) oc ma(- | 5)em(Qs(s:@) (20)
where mg(- | s) and mg(- | s) are the corresponding action distributions defined by vy + vg and vg.

However, directly solving the SOC equation involves backpropagation through time that introduces
additional stability. To circumvent this issue, we use the adjoint matching objective proposed by
Domingo-Enrich et al. (2025) (Equation (14)) to construct a similar objective for policy optimization
in our case:

1
Lam(0) = Egup {ary., [/ 1206 (s, a®, u) /oy + 0, G"||3du (21)
0

where g“ is the ‘lean’ adjoint state defined by a reverse ODE constructed from a* defined by the
forward SDE:

dg" = —§" " Vau [205(s, a*, u) — a*/u] du. (22)

Unlike the original SOC objective (Equation (18)) from which calculating the gradient requires
backpropagating through an SDE, which suffers from stability challenges, the adjoint matching
objective is constructed without backpropagation. Instead, it uses the behavior velocity field vg to
calculate the ‘lean’ adjoint states {g"},, through a series of JVPs for every SDE trajectory {a"},,
which are then used to form a squared loss in the adjoint matching objective. Mathematically,
backpropagation can also be interpreted as calculating the adjoint states through a series of JVPs, with
the key distinction that the JVPs are computed under the flow model that is being optimized (i.e., vg +
vg). This is an important distinction because for direct backpropagation, any ill-conditioned action
gradient in vy (i.e., V,v0(s, a, t)) would compound over the entire denoising process, contributing to
the ‘ill-condition-ness’ of the overall gradient to the parameter ¢, which can in turn destabilize the
whole optimization process. In contrast, in adjoint matching, action gradient of vy has no contribution
to the overall gradient to 6, which allows the optimization to be much more stable.

Finally, we combine the policy optimization with the standard critic learning objective in TD-based
RL algorithms:

L(¢) = Eg a5 rnp [(Q(s,a) =7 —vQg(s",a")] , a' - ODE(u(s, -, Y,a° ~ N) (23)

where v(s, -,) = vg(s,-,-) + vg(s,+,-) is the summation of the behavior velocity field and the
residual velocity field and ¢ is the exponential moving average of ¢ with a time-constant of A = 0.005
(i.e., diy1 < (1 — N); + \¢; for each training step 7).

Practical considerations. In practice, following Domingo-Enrich et al. (2025), we solve both the
SDE and the reverse ODE with discrete approximation and a fixed step size of h = 1/T", where T is

Under review as a conference paper at ICLR 2026

Algorithm 1 Learning procedure in QAM.

Input: (s,a,s’,r): off-policy transition tuple, vg: behavior velocity field, vg residual velocity
field, Q4: critic function.
v(s,) < vo(s,-,) +va(s, ")

a={a’a" -, a'} < SDE.n(v(s,-, ")) > Memoryless SDE (Equation (24))
gt + —Clip[tV 1 Qy(s,a")]c. > Computing the critic’s action gradient
g%, g", -+, gt 7" « LeanAdj,,, (vs(s, -,), 3", a) > Lean adjoint states (Equation (25))

Optimize 6 w.r.t L(0) = 3" [|2ve(s,a", u)/oy + au§“||§ > Adjoint matching (Equation (21))
a’ < ODE(v(s,-, "),z ~N(0,14))

Optimize ¢ w.r.t L(¢) = (Qy(s,a) —r —vQ4(s',a))?

Output: vg, Q4

the number of discretization steps. In particular, with a® ~ A and 2% ~ N, Vu € {0, h,--- (T—1)h},
the forward SDE process is approximated by

ath @™ b (20g(s, a%, u) + 205(s, a%, u) — a®Ju) + /2h(1 — u) Juz®. (24)

We set the boundary condition as §' = —Clip[7V 41 Q4 (s, a')] ., where we use a state independent
inverse temperature coefficient 7 to modulate the influence of the prior 73 and we additionally clip
the magnitude of the action gradient element-wise by ¢ for numerical stability. The backward adjoint
state calculation process is then approximated by

G GY b JVP(Vau (208(s, a¥, u) — a®/u), %), (25)

with JVP(V, f(y),z) = 27V, f(y) being the Jacobian-vector product and it can be practically
implemented by carrying the ‘gradient’ = with backpropagation through f. For the critic, we use an

ensemble of K = 10 critic functions ¢!, - - - , ¢’ and use the pessimistic target value backup with a

coefficient of p = 0.5 (Ghasemipour et al., 2022). The loss function for each ¢?, j € {1,2,--- K} 1is
; = ~ 2

L(QSJ) = (Q¢j (8, Cl) -—r=7 [Qmean(sla Cl/) - sttd(S/a Cl/)]) s (26)

where Qmean(sla al) = % Zk Q(Ek (Slv al)7 Qstd(8/7 CL/) = \/Zk(Q(Z)’C (Sla a/) - Qmean(sla a/))Q’
and o’ is the action sampled from the combined flow model: v(s’,-,-) = vg(s, -,) + vg(s, -,). For
all our experiments, we do not use a separate training process for vg and instead training it at the
same to as vg and Q) 4, following Park et al. (2025); Li et al. (2025), using the standard flow-matching
objective described in Equation (17). For all our loss functions, the transition tuple (s, a, s’,r) is
drawn from D uniformly. During offline training, D is the offline data. During online fine-tuning, D
is combination of the offline and online replay buffer data without any re-weighting.

5 EXPERIMENTS

We conduct experiments to evaluate the effectiveness of our method on a range of long-horizon,
sparse-reward domains and compare it against a set of representative baselines.

Domains and datasets. We consider five domains from OGBench (Park et al., 2024a), cube-double,
cube-triple, cube-quadruple, antmaze-large, antmaze-giant. For antmaze-*, we use
the default navigate datasets. For cube-*, we use the default play datasets except for
cube-quadruple where we use a large 100M-size dataset, following Li et al. (2025). All of these
domains require the RL agent to solve long-horizon tasks from diverse offline behavior data that
can only be accurately captured by expressive policies like flow/diffusion policies. Furthermore, the
harder domains (Figure 2) are difficult to solve from offline data alone, making these benchmarks
great for evaluating the online fine-tuning effectiveness of our approach. In addition, for all cube-*
domains, we follow Li et al. (2025) to learn action chunking policies with an action chunk size of
h = 5. Action chunking policies output high-dimensional actions that exhibits a much more complex
behavior distribution, where the policy extraction becomes critical. Since our approach primarily fo-
cuses on the policy extraction aspect, these domains make an ideal testbed us to compare our method
to prior work. See Appendix B for more details on these domains.

Comparisons. To provide a comprehensive empirical evaluation of our method, we carefully select
8 representative, strong baselines that can be roughly categorized into the following 5 categories

Under review as a conference paper at ICLR 2026

Figure 2: OGBench domains. In this paper, we primarily focus on evaluating our method on some of the
hardest domains on OGBench (Park et al., 2024a). cube-{triple, quadruplel} (left) requires a robot arm to
manipulate up to 3/4 cubes from an initial arrangement to a goal arrangement. antmaze-giant (right) requires
an ant robot agent to navigate from one location to another location. All of these domains are long-horizon by
design and are difficult to solve from offline data alone. The offline dataset in these domains contain diverse multi-
modal behaviors that can only be accurately captured by expressive generative models like flow/diffusion policies.

Task IFQL FAWAC CGQL FEdit FQL DSRL FBRAC QAM (Ours)
antmaze-large 15600 10617 2501300 T36ass) 89is6.92) 00,2 76[70,83) 7243 94]
antmaze-giant 00,01 0r0.01 410,191 0r0.0 0r0.01 070,01 010,01 90,15
cube-double 121516 00,0 4135460 27116300 4941560 49140,60 00,01 8477 91

€
cube-triple 010.0) 0j0.0] 010,01 0.0 010,01 00,01 010,01 2(0,4]
]

cube-quadruple-100M 00,0 010.0] 010,01 00,0 10'0.321 0j0,2) 010,01 39[27.57'

Table 1: Offline RL at 1M training steps. Our method (QAM) outperforms prior methods cube-double, and
achieves non-trivial success rate on both antmaze-giant and cube-triple which none of the prior method
could achieve. We report the means and the 95% bootstrapped confidence intervals are computed over 4 seeds.

— (1) DDPG-based: FBRAC (Park et al., 2025) (backpropagation through flow denoising step
directly), FQL (1-step distillation) (Park et al., 2025); (2) Using critic’s value only: FAWAC (Park
et al., 2025) (AWAC (Nair et al., 2020) with flow policy); (3) Using critic’s action gradient with
approximations: CGQL (a novel baseline that is based on classifier guidance); (4) Post-processing-
based: DSRL (Wagenmaker et al., 2025), FEdit (low + Gaussian edit policy from Dong et al. (2025)),
and IFQL (flow counterpart of IDQL (Hansen-Estruch et al., 2023)); (5) Gaussian: RLPD (Ball et al.,
2023). Among them, RLPD does not employ any behavior constraint, so we directly train them from
scratch online with 50/50 offline/online sampling (i.e., half of the training batch comes from offline and
half of the training batch comes from the online replay buffer). To make the comparison fair, we use
K = 10 critic networks, pessimistic value backup with p = 0.5, no best-of-N sampling (i.e., N = 1)
for both our method and all our baselines except for [FQL where best-of-N is used for policy extraction.
We refer the reader to Appendix C for detailed description and implementation detail for each of the
baselines. We also include the domain-specific hyperparameters for each baseline in Appendix D.

6 RESULTS

In this section, we present our experimental results to answer the following three questions:
(Q1) How effective is our method for offline RL?

Table | reports the offline RL performance across five different domains. QAM performs on par or
better than all prior methods. In particular, QAM is able to achieve non-trivial success rates on both
cube-triple and antmaze-giant offline (not achievable by any prior methods).

(Q2) How effective is our method for offline-to-online fine-tuning?

Next, we evaluate QAM’s ability to online fine-tune from its offline RL initialization. Figure 3 shows
the sample efficiency curve (with x-axis being the number of environment steps) where QAM either
performs on par or outperforms all baselines. In particular, on cube-triple, none of the baselines
other than FQL is able to achieve non-zero success rate throughout online training.

(Q3) How sensitive is our method to hyperparameters?

Under review as a conference paper at ICLR 2026

—0— QAM FBRAC DSRL FQL CGQL FEdit FAWAC IFQL RLPD
antmaze-large antmaze-giant cube-double cube-triple cube-quadruple-100M

o 1.00- 1 fo/o-—O—O—O—O 1 b

5

& 0.75- 4 4 4 4

? 0.50 - . . . —

Q

O 0.25- - - - 1

>

Y 0.00- - - - -

0‘.0 0‘.1 012 013 014 015 0.‘0 0.‘1 0.‘2 O‘.3 0‘.4 0‘.5 010 011 012 013 0.‘4 0.‘5 0‘.0 0‘.1 012 013 014 015 0.‘0 0.‘1 0.‘2 O‘.3 0‘.4 0‘.5
Environment Steps (x10°)
Figure 3: QAM online fine-tunes more effectively than prior methods. Our method (QAM) performs on

par of outperforms prior methods. On cube-triple, QAM solves the task in around 200K-300K environment
steps whereas none of the baselines other than FQL is able to achieve non-zero success rate.

Temperature Coefficient (1) Action Gradient Clipping (c) Flow Steps (T)
1.00 - 1.00 - 1.00 -
]
T 0.75- 0.75 - 0.75 -
So. . .
(%]
n 0.50 - - 0.50 - 0.50 -
Q Tx3 T=20
S 0.25- -0 /3 0.25 - w/o clipping, c=e (25 - =0-T=3
n =0— T (ours) =0— w/ clipping (ours) =0— T=10 (ours)
0.00 -€ : : . 0.00-€ : : .~ 0.00-€ 7 7 i
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

Training Steps (x10°)

Figure 4: Sensitivity analysis. We report the success rate aggregated over three domains: antmaze-large,
cube-double and cube-quadruple. Action gradient clipping (c): this parameter controls the clipping range of
the action gradient, 7V ,Q(s, a). The clipped gradient is then used as the boundary/initial condition for the lean
adjoint calculation (Equation (25)); Temperature coefficient (T): this parameter controls how strong the prior is,
where a higher 7 leads to a weaker prior and a lower 7 leads to a stronger prior; Flow steps ('T'): this parameter
indicates the number of numerical integration steps that we use for the flow model. Gray: offline; White: online.

Finally, we perform a sensitivity analysis for three main hyperparameters in our method with the result
reported in Figure 4. The first parameter, 7, is the most important hyperparameter that controls how
closely/conservative the learned policy should be following the behavior policy. Different parameter
value directly contributes to the difference in performance. The second parameter, ¢, is mainly for
numerical stability. In practice, the ‘lean’ adjoint state computed in the adjoint matching objective
can blow up in value if the initial boundary condition (i.e., the action gradient of the critic) is too
large. Clipping the boundary condition often leads to better learning stability. Finally, the number of
flow steps also affects the performance. Having too few steps often destroys the expressivity of flow
policy entirely. Setting 7' > 10 (e.g., T = 20) does not lead to better performance.

7 DISCUSSION

We present Q-learning with Adjoint Matching (QAM), a novel TD-based RL method that effectively
leverages the critic’s action gradient to extract an optimal prior-constrained policy while circumventing
common limitations of prior approaches (e.g., approximations that do not guarantee to converge
to the desired optimal solution, learning instability, or reduced expressivity from distillation). Our
empirical results suggest that QAM is an effective policy extraction method in both the offline RL
setting and the offline-to-online RL setting, performing on par or better than prior methods. There are
still practical challenges associated with QAM. While QAM’s effectiveness can be largely attributed
to how well it is able to leverage the critic’s action gradient, this can be a double-edge sword—for
cases where the critic function is ill-conditioned, it could lead to optimization stability issue. Gradient
clipping (as done in our method) can alleviate this issue, but a more principled method that combines
both value and gradient information could further improve robustness and performance. Another
possible extension is to apply QAM in real-world robotic settings with action chunking policies.
Our initial success (especially in the manipulation domains where we also leverage action chunking
policies) may suggest that our method might work more effectively in complex real-world scenarios.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We include our source code as part of the supplementary materials (including installation instructions
and example scripts for running our method and all our baselines). We describe our evaluation
domains in Appendix B, hyperparameters in Appendix D, and implementation details for each of our
baselines in Appendix C.

REFERENCES
Flow matching guide and code. arXiv preprint arXiv:2412.06264, 2024.

Suzan Ece Ada, Erhan Oztop, and Emre Ugur. Diffusion policies for out-of-distribution generalization
in offline reinforcement learning. /IEEE Robotics and Automation Letters (RA-L), 9:3116-3123,
2024.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Reincarnating reinforcement learning: Reusing prior computation to accelerate progress. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 28955-28971. Curran Associates, Inc., 2022.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data. In International Conference on Machine Learning, pp. 1577-1594. PMLR, 2023.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang.
JAX: composable transformations of Python+NumPy programs, 2018. URL http://github.
com/jax-ml/jax.

Arwen Bradley and Preetum Nakkiran. Classifier-free guidance is a predictor-corrector. arXiv
preprint arXiv:2408.09000, 2024.

Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy optimization
through diffusion behavior. In International Conference on Learning Representations (ICLR),
2024a.

Tianyi Chen, Haitong Ma, Na Li, Kai Wang, and Bo Dai. One-step flow policy mirror descent. arXiv
preprint arXiv:2507.23675, 2025.

Tianyu Chen, Zhendong Wang, and Mingyuan Zhou. Diffusion policies creating a trust region for
offline reinforcement learning. Advances in Neural Information Processing Systems, 37:50098—
50125, 2024b.

Tianyu Chen, Zhendong Wang, and Mingyuan Zhou. Diffusion policies creating a trust region for
offline reinforcement learning. In Neural Information Processing Systems (NeurlPS), 2024c.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780-8794, 2021.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and Ye Shi.
Diffusion-based reinforcement learning via q-weighted variational policy optimization. Advances
in Neural Information Processing Systems, 37:53945-53968, 2024a.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and Ye Shi.
Diffusion-based reinforcement learning via q-weighted variational policy optimization. In Neural
Information Processing Systems (NeurlPS), 2024b.

Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement
learning. arXiv preprint arXiv:2309.16984, 2023.

Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement
learning. In International Conference on Learning Representations (ICLR), 2024.

10

http://github.com/jax-ml/jax
http://github.com/jax-ml/jax

Under review as a conference paper at ICLR 2026

Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky T. Q. Chen. Adjoint matching:
Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=xQBRrtQM8u.

Perry Dong, Qiyang Li, Dorsa Sadigh, and Chelsea Finn. Expo: Stable reinforcement learning with
expressive policies. arXiv preprint arXiv:2507.07986, 2025.

Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus, Jascha
Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle: Composi-
tional generation with energy-based diffusion models and mcme. In International conference on
machine learning, pp. 8489-8510. PMLR, 2023.

Nicolas Espinosa-Dice, Yiyi Zhang, Yiding Chen, Bradley Guo, Owen Oertell, Gokul Swamy, Kiante
Brantley, and Wen Sun. Scaling offline 1l via efficient and expressive shortcut models. arXiv
preprint arXiv:2505.22866, 2025.

Linjiajie Fang, Ruoxue Liu, Jing Zhang, Wenjia Wang, and Bingyi Jing. Diffusion actor-critic:
Formulating constrained policy iteration as diffusion noise regression for offline reinforcement
learning. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=1dVkAO09Km.

Kevin Frans, Seohong Park, Pieter Abbeel, and Sergey Levine. Diffusion guidance is a controllable
policy improvement operator. arXiv preprint arXiv:2505.23458, 2025.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

Kamyar Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic? estimating
uncertainties for offline RL through ensembles, and why their independence matters. Advances in
Neural Information Processing Systems, 35:18267-18281, 2022.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
IDQL: Implicit Q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Aaron Havens, Benjamin Kurt Miller, Bing Yan, Carles Domingo-Enrich, Anuroop Sriram, Brandon
Wood, Daniel Levine, Bin Hu, Brandon Amos, Brian Karrer, et al. Adjoint sampling: Highly
scalable diffusion samplers via adjoint matching. arXiv preprint arXiv:2504.11713, 2025.

Longxiang He, Li Shen, Linrui Zhang, Junbo Tan, and Xueqgian Wang. Diffcps: Diffusion model
based constrained policy search for offline reinforcement learning. ArXiv, abs/2310.05333, 2023a.

Longxiang He, Li Shen, Linrui Zhang, Junbo Tan, and Xueqian Wang. Diffcps: Diffusion model based
constrained policy search for offline reinforcement learning. arXiv preprint arXiv:2310.05333,
2023b.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J Fleet.
Video diffusion models. Advances in neural information processing systems, 35:8633-8646, 2022.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning. In Neural Information Processing Systems (NeurIPS), 2023.

Prajwal Koirala and Cody Fleming. Flow-based single-step completion for efficient and expressive
policy learning. arXiv preprint arXiv:2506.21427, 2025.

11

https://openreview.net/forum?id=xQBRrtQM8u
https://openreview.net/forum?id=xQBRrtQM8u
https://openreview.net/forum?id=ldVkAO09Km

Under review as a conference paper at ICLR 2026

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit Q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic Q-ensemble. In Conference on Robot
Learning, pp. 1702-1712. PMLR, 2022.

Qiyang Li, Jason Zhang, Dibya Ghosh, Amy Zhang, and Sergey Levine. Accelerating exploration
with unlabeled prior data. Advances in Neural Information Processing Systems, 36, 2024a.

Qiyang Li, Zhiyuan Zhou, and Sergey Levine. Reinforcement learning with action chunking. arXiv
preprint arXiv:2507.07969, 2025.

Steven Li, Rickmer Krohn, Tao Chen, Anurag Ajay, Pulkit Agrawal, and Georgia Chalvatzaki.
Learning multimodal behaviors from scratch with diffusion policy gradient. Advances in Neural
Information Processing Systems, 37:38456-38479, 2024b.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In
International Conference on Machine Learning, pp. 22825-22855. PMLR, 2023a.

Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In
International Conference on Machine Learning (ICML), 2023b.

Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Efficient online reinforcement learning for
diffusion policy. arXiv preprint arXiv:2502.00361, 2025.

Max Sobol Mark, Tian Gao, Georgia Gabriela Sampaio, Mohan Kumar Srirama, Archit Sharma,
Chelsea Finn, and Aviral Kumar. Policy agnostic rl: Offline rl and online rl fine-tuning of any class
and backbone. arXiv preprint arXiv:2412.06685, 2024.

David McAllister, Songwei Ge, Brent Yi, Chung Min Kim, Ethan Weber, Hongsuk Choi, Haiwen
Feng, and Angjoo Kanazawa. Flow matching policy gradients. arXiv preprint arXiv:2507.21053,
2025.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-QL: Calibrated offline RL pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36, 2024.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl. ArXiv, 2024a.

Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main
bottleneck in offline RL? Advances in Neural Information Processing Systems, 37:79029-79056,
2024b.

Seohong Park, Qiyang Li, and Sergey Levine. Flow qg-learning. arXiv preprint arXiv:2502.02538,
2025.

Angus Phillips, Hai-Dang Dau, Michael John Hutchinson, Valentin De Bortoli, George Deligiannidis,
and Arnaud Doucet. Particle denoising diffusion sampler. arXiv preprint arXiv:2402.06320, 2024.

Lev Semenovich Pontryagin, V G Boltyanskii, R V Gamkrelidze, and E F Mishchenko. The
Mathematical Theory of Optimal Processes. Wiley, 1962.

12

Under review as a conference paper at ICLR 2026

Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model policy
from rewards via g-score matching. arXiv preprint arXiv:2312.11752, 2023.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar,
Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization.
arXiv preprint arXiv:2409.00588, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Parrot:
Data-driven behavioral priors for reinforcement learning. arXiv preprint arXiv:2011.10024, 2020.

Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
models. arXiv preprint arXiv:2501.06848, 2025.

Marta Skreta, Tara Akhound-Sadegh, Viktor Ohanesian, Roberto Bondesan, Aldn Aspuru-Guzik,
Arnaud Doucet, Rob Brekelmans, Alexander Tong, and Kirill Neklyudov. Feynman-kac correctors
in diffusion: Annealing, guidance, and product of experts. arXiv preprint arXiv:2503.02819, 2025.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438-12448, 2020.

Yuda Song, Yifei Zhou, Ayush Sekhari, Drew Bagnell, Akshay Krishnamurthy, and Wen Sun. Hybrid
RL: Using both offline and online data can make RL efficient. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
yyBis80iUuU.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the mini-
malist approach to offline reinforcement learning. In Thirty-seventh Conference on Neural Infor-
mation Processing Systems, 2023. URL https://openreview.net/forum?id=vqGWslLeEw.

James Thornton, Louis Béthune, Ruixiang Zhang, Arwen Bradley, Preetum Nakkiran, and Shuangfei
Zhai. Composition and control with distilled energy diffusion models and sequential monte carlo.
arXiv preprint arXiv:2502.12786, 2025.

Andrew Wagenmaker, Mitsuhiko Nakamoto, Yunchu Zhang, Seohong Park, Waleed Yagoub, Anusha
Nagabandi, Abhishek Gupta, and Sergey Levine. Steering your diffusion policy with latent space
reinforcement learning. arXiv preprint arXiv:2506.15799, 2025.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In International Conference on Learning Representations
(ICLR), 2023.

Max Wilcoxson, Qiyang Li, Kevin Frans, and Sergey Levine. Leveraging skills from unlabeled
prior data for efficient online exploration. In Arxiv, 2024. URL https://arxiv.org/abs/2410.
18076.

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridging
sample-efficient offline and online reinforcement learning. Advances in neural information pro-
cessing systems, 34:27395-27407, 2021.

Xiu Yuan, Tongzhou Mu, Stone Tao, Yunhao Fang, Mengke Zhang, and Hao Su. Policy decorator:
Model-agnostic online refinement for large policy model. arXiv preprint arXiv:2412.13630, 2024.

Haichao Zhang, Wei Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforce-
ment learning. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=-Y34L45JR6z.

13

https://openreview.net/forum?id=yyBis80iUuU
https://openreview.net/forum?id=yyBis80iUuU
https://openreview.net/forum?id=vqGWslLeEw
https://arxiv.org/abs/2410.18076
https://arxiv.org/abs/2410.18076
https://openreview.net/forum?id=-Y34L45JR6z

Under review as a conference paper at ICLR 2026

Ruoqi Zhang, Ziwei Luo, Jens Sjolund, Thomas B Schon, and Per Mattsson. Entropy-regularized
diffusion policy with Q-ensembles for offline reinforcement learning. In Neural Information
Processing Systems (NeurIPS), 2024.

Shiyuan Zhang, Weitong Zhang, and Quanquan Gu. Energy-weighted flow matching for offline
reinforcement learning. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=HAOoLUvuGI.

Han Zheng, Xufang Luo, Pengfei Wei, Xuan Song, Dongsheng Li, and Jing Jiang. Adaptive policy
learning for offline-to-online reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 11372-11380, 2023.

Zhiyuan Zhou, Andy Peng, Qiyang Li, Sergey Levine, and Aviral Kumar. Efficient online reinforce-
ment learning fine-tuning need not retain offline data. In The Thirteenth International Conference
on Learning Representations, 2025. URL https://openreview.net/forum?id=HNOCYZbAPw.

14

https://openreview.net/forum?id=HA0oLUvuGI
https://openreview.net/forum?id=HN0CYZbAPw

Under review as a conference paper at ICLR 2026

A ADDITIONAL DISCUSSIONS FOR RELATED WORK

CEP (Lu et al., 2023a) and CFGRL (Frans et al., 2025). Both of them build off from the idea of
classifier/classifier-free guidance, which combines the denoising step of a base diffusion/flow policy
to the denoising step of for a tilt distribution.

CEP (diffusion): log (s, a’,t) < alogms(s,a’,t) + (1 — a)Q' (s, a’,t) (27)
CFGRL (flow): v(s,a’,t) < avg(s,a’,t) + (1 — @)ve—1(s,a’,t) (28)

where Q'(s, a’,t) < log Eqt|, [e“()] is the score of the Boltzmann distribution (i.e., & e?(*4)) at
denoising time ¢ and v, is the velocity field of the policy that is conditioned on a optimality variable,

a binary indicator of whether the policy is ‘optimal’ (0 = 1 means it is). CEP aims at approximating
(1—a)

T X Wg‘e(l_“)Q(S’“) whereas CFGRL aims at approximating 7 o< g,

However, as discussed in many prior work (Du et al., 2023; Bradley & Nakkiran, 2024), even when
both the denoising steps are exact (log 7t for diffusion and v(-, -, t) for flow), the denoising process
that uses a summation of them do not lead to the correct distribution:

Vatlogmt(a’ | s) # Ve logmh(a® | s) +7VaeQ (s, a"). (29)

DAC (Fang et al., 2025). Diffusion actor critic uses the diffusion formulation where the goal is to
find a policy that satisfies 7(- | s) o 75(- | 5)e?(*). However, their training objective is derived
based on the assumption that
Vaulogp“(a™ |) = Vaulogpg(a” | 5) + 7V Q" (s, a"), (30)
and additionally
Ve Q¥(s,a") = VauQ(s,a"). 3D

While these assumptions provide a convenient approximation of the objective function, it does not
provide guarantees on where policy converges to at the optimum.

B DOMAIN AND EXPERIMENT DETAILS

We consider 5 domains in our experiments. The dataset size, episode length, and the action dimension
for each domain is available in Table 2. For each method and each task, we run four seeds. All the
plots and tables are reported the mean of the four seeds (or more for aggregated results) with a 95%
confidence interval computed via bootstrapping. All our experiments are run on RTX5000 GPU and
our code is written in JAX (Bradbury et al., 2018).

Tasks Dataset Size Episode Length Action Dimension (A)
cube-double-* 1M 500 5
cube-triple-* M 1000 5

cube-quadruple-100M-* 100M 1000)
antmaze-large-* 1M 1000 8
antmaze-giant-* 1M 1000 8

Table 2: Domain metadata.

C BASELINES

1. DDPG-based.

FBRAC is a baseline considered in FQL (Park et al., 2025) as a flow counterpart of diffusion Q-
learning (DQL) (Wang et al., 2023), where the multi-step flow policy is directly optimized against
the Q-function with backpropagation through time (BPTT). In addition to maximizing the Q-value,
FBRAC also has a behavior cloning term where the flow policy is trained with the standard flow-
matching objective on the dataset action with a BC coefficient a.

15

Under review as a conference paper at ICLR 2026

We implement this baseline by training a flow-matching policy with the following loss:
Lrprac(f) = aLrm(8) + Lprr(0), (32)
where Ly is the standard flow-matching loss that clones the data behavior (i.e., Equation (17)) and

T-1

1
z+hzve(57akl,kh)] SNES
-1

k=0

Leprr(0) = —Ego—2nr0,14) | Qo | 8, Clip

where Clip[-]? is an element-wise clipping function that makes sure the actions generated from the
flow model vy are within the valid range [—1, 1] and {a'}; is the discrete approximation of the ODE
trajectory using Euler’s method with a step size of h = 1/T"

a'™ = a' + hvg(s,a’ "1, ih), Vi € {0,1,--- ,T}. (34)
We use
T-1 1
ODE(vg(s,-,-),z) :=Clip |z + h Y _ vp(s,a’ ", ih)] (35)
1=0 -1

as the abbreviation for the rest of this section, and additionally use ,,, to denote the distribution of
actions generated by vyg.

The critic loss is the standard TD backup:
L(¢) =]EZNN [(Q¢(Sv a’) -r—= Qq@(slv ODE(U9(5/7) ')7 Z))Z] (36)

In practice, we also use K = 10 critic functions and pessimistic target value backup as described in
Equation (26) and the policy we use to interact with the environment is 7, .

FQL (Park et al., 2025) distill a multi-step flow policy into a one-step distillation to avoid BPTT.

This baseline is implemented by training a behavior cloning flow-matching policy (i.e., vy : S X
R4 x [0,1] — R4), and a 1-step distilled noise-conditioned policy (i.e., Q,, : S x R4 — R4):

LFQL(aaW) = LFM (9) + Lonestep (w) (37)

where Lgy(6) is the standard flow-matching loss (i.e., Equation (17)) and

Lonestep(w) = E.oz [a|Qu (s, 2) — ODE(vg(s', -, -), 2) |3 — Q(s, (s, 2))] (398)

where « is the BC coeffient that controls how close the 1-step distilled policy should be relative to
the BC policy ,,. Finally, the critic loss is the standard TD backup:

L(¢) = Eoan [(Qg(s,a) —r — Qa(s', Qu(s', 2))?] (39)

In practice, we also use K = 10 critic functions and pessimistic target value backup as described
in Equation (26) and the policy we use to interact with the environment is g where the action is
sampled by first drawing a Gaussian noise z ~ A and then obtain the action by running through the
one-step distilled model: a = (s, z).

2. Directly using the action gradient of the critic (i.e., V,(Q(s, a)) with approximations.

CGQL is a novel baseline built on top of the idea of classifier guidance (Dhariwal & Nichol, 2021).
In particular, we combine the velocity field of a behavior cloning flow policy and the gradient field of
the Q-function to form a new velocity field that approximates the velocity field that generates the
optimal behavior-constrained action distribution.

More specifically, we implement this baseline by interpreting Q4(s, -) as the score of the optimal
entropy-regularized distribution log 7* (- | s) (where 7*(- | s) oc €7@#(*)). The corresponding
velocity field that generates this distribution of actions can be obtained through a simple conversion
(e.g., following Equation 4.79 from lip (2024)):

(1-1)Q¢(s,a) +a

ve(s,a,u) = " ; (40)

16

Under review as a conference paper at ICLR 2026

where QY (s, a) = 108 Equ— (1 —u)atuz,2~N(0,14) [eQ4(:0)] is the score of the distribution over the
noisy intermediate actions. In the classifier guidance literature, the score of the noisy examples is
approximated by the score of the noise-free examples at the noisy examples (). In our setting this
translates to
1—

b5, a,u) = & “)Qﬁ(s’“) ra (41)
Empirically, both versions (v and 04) perform similarly and we opt for a simpler design ¥ as it does
not require learning or approximating Qg(s, a) for all ¢’s. Finally, we add the velocity field defined
by @4 directly to the behavior cloning velocity field to form our policy:

v = vg + Vg, 42)

where vg is trained with the standard flow-matching loss (i.e., L(8) = Lym(/5)). The critic loss uses
m, to backup the target)-value:

L(¢) =E..n [(Q¢(Sa a) -Tr-—= Q(E(s/a ODE(U(Slv) ')7 Z))2] . (43)

In practice, we also use K = 10 critic functions and pessimistic target value backup as described
in Equation (26) and the policy we use to interact with the environment is 7, (generated from the
summation of vg and ¥.

3. Directly using the critic value (i.e., Q(s, a)).

FAWAC is a baseline considered in FQL (Park et al., 2025) where it uses AWR to train the flow
policy similar to QIPO (Zhang et al., 2025).

We implement it by training a flow-matching policy with the weighted flow-matching loss:
Lrawac(0) = w(s, a)Lrm(0) (44)
= w(s,a)Eyis[0,1],2oN [HU@(S, (1 —-u)z4ua,u) —z+ aHg} (45)

where w(s, a) = min (eT(Q‘ﬁ(S’“)*Vﬁ(S)), 100.0). The inverse temperature parameter 7 controls how
sharp the prior regularized optimal policy distribution is.

The critic function Q4(s, a) is trained with the standard TD backup and the value function V(s)
regresses to the same target:

L(¢) = Ezon [(Qg(s,a) — 7 — Qg(s", ODE(v(s', -, -), 2))?] (46)
L(&) = EBan [(Ve(s) =7 = Q(s', ODE(v(s', -,), 2))?] 47)

The second line can also be alternatively implemented by regressing to the critic function Q(s, a)
directly. We implement in this particular way because we can re-use the ()-target computed.

In practice, we also use K = 10 critic functions and pessimistic target value backup as described in
Equation (26) and the policy we use to interact with the environment is 7, .

4. Post-processing-based.

FEdit is a baseline that uses the policy edit from a recent offline-to-online RL method conceptually
similar to EXPO (Dong et al., 2025). We implement a Gaussian edit policy on top of a BC flow
policy rather than a diffusion policy used in EXPO. EXPO also uses the standard sample-and-rank
trick where it samples multiple actions and rank them based on the value. To keep computational
cost down and comparisons fair to other methods, we only use a single edited action for both value
backup and evaluation.

We implement this baseline by training a flow-matching policy (i.e., vp : S x R4 x [0,1] — R4),
and a 1-step Gaussian edit policy (i.e., m,, : S X A — A 4) implemented with an entropy regularized
SAC policy (Haarnoja et al., 2018). The loss function can be described as follows:

LFEdit (97 W) = LFM (9) + LGaussian(w)7 s.t. ESND [H(ﬂ—w(| 3))] 2 Htarget (48)

where Ly is the standard flow-matching loss that clones the data behavior (i.e., Equation (17)),
Hiarget 1s the target entropy that the Gaussian policy is constrained to be above of, and

LGaussian(W) = EAQNWW(-‘S,&)7ZNN _Qqﬁ(sa Clip [Ua -Aa + a, Z)]£1):| (49)

17

Under review as a conference paper at ICLR 2026

where @ = ODE(vg(s, -, +), z) and Clip[-]% is an element-wise clipping function that makes sure the
actions are within the valid range [—1, 1].

Intuitively, the Gaussian SAC policy edits the behavior flow policy by modifying its output action
where o, is the hyperparameter that controls how much the origianl behavior actions can be edited.

The critic loss is the standard TD backup:
L((b) = E’ZNN,Aa’Nﬂ'w(-\s’,&’) (Q¢(57 a) -7 — Q&(Slv Chp [d/ + 04 Aa/]il)2:| (50)

where again @’ = ODE(uvg(s',-,+),2). In practice, we also use K = 10 critic functions and
pessimistic target value backup as described in Equation (26) and the policy we use to interact with
the environment is a combination of the BC policy 7,, and the Gaussian edit policy. We first sample
z ~ N and then run it through the BC flow policy to obtain an initial action @ <~ ODE(vs(s, -, -), 2)
and then both the initial action and the state is fed into the edit policy to generate the final action
a4 a+ o, - Aa where Aa ~ 7,(- | s,a).

DSRL (Wagenmaker et al., 2025) is a recently proposed method that performs RL directly in the noise-
space of a pre-trained expressive BC policy (flow or diffusion). We use the flow-matching version of
DSRL as our method is also based on flow-matching policies. The original DSRL implementation
does not fine-tune the BC policy during online learning while all our baselines do fine-tune the BC
policy online. To make the comparison fair, we modify the DSRL implementation such that it also fine-
tunes the BC policy. One additional implementation trick that allows this modification to work well is
the use of target policy network for the noise-space policy. In general, we find that fine-tuning the BC
policy yields better online performance, so we adopt this new design of DSRL in our experiments.

More specifically, we train a flow-matching policy (i.e., vg : S x R4 x [0,1] — R#), and a 1-
step Gaussian edit policy (i.e., 7, : S x A — A 4) implemented with an entropy regularized SAC
policy (Haarnoja et al., 2018). The loss function can be described as follows:

LDSRL (97 UJ) = LFM (0) + LLatentGaussian(w)a s.t. ESND [H(ﬂ—w(| 3))] 2 Htarget (51)

where L) is the standard flow-matching loss that clones the data behavior (i.e., Equation (17)),
Hiarget 1s the target entropy that the Gaussian policy is constrained to be above of, and

L atentGaussian (W) = Ez~7rw(~|s) [_qup (s, Z)} (52)

where Q7 (s, 2) is a distilled critic function in the noise space that is regressed to the original critic
function, Q4(s, a):

L(d)) =E. v [(pr(sa Z) - Q¢(5, ODE(U§(57) ')7 Z))z] . (53)

Intuitively, DSRL directly learns a policy in the noise space by hill-climbing a distilled critic that also
operates in the noise space. Finally, the critic loss for the original critic function in the action space is

L(¢) = Ezwﬂw(~\s’) [(Qtﬁ(sa a) —-r—= QJB(S/’ ODE(”@(S/’ K ')7 Z))Q] (54)

We use K = 10 critic functions and pessimistic target value backup as described in Equation (26).
The policy we use to interact with the environment is a combination of the BC policy 7, and the
Gaussian noise-space policy. We first sample z ~ 7, (- |) and then run it through the BC flow policy
to obtain the final action a <— ODE(vy(s, -,), z). One important implementation detail for stability
in the offline-to-online setting is to use the target network for the BC flow policy vj (instead of vyg.
Without it DSRL can become unstable sometimes when the BC flow policy changes too fast online.

IFQL is a baseline considered in FQL (Park et al., 2025) as a flow counterpart of implicit diffusion
Q-learning (IDQL) (Hansen-Estruch et al., 2023), where IQL (Kostrikov et al., 2021) is used for
value learning and the policy extraction is done by sampling multiple actions from a behavior cloning
diffusion policy and select the one that maximizes the ()-function value.

More specifically, we train a critic function Q4 (s, a) and a value function Vg (s) with implicit value
backup:

L(¢) = (Qy(s,a) — r — Ve(s))? (55)
L(§) = fop(Qp(s,a) — Ve(s)) (56)

18

Under review as a conference paper at ICLR 2026

where f7 (u) = |u — T, <o|u® is the expectile regression loss function.

On top of that, we also K = 10 critic functions and pessimistic target value backup as described in
Equation (26) for training the value function Vg(s). To extract a policy from Q4(s, a), IFQL uses
rejection sampling with a base behavior cloning flow policy that is trained with the standard flow-
matching objective. In particular, the output action a* for s is selected as the following:

a* < argmax, .. . Q(s,a;), ai,-,an ~ (-] 8). (57)

5. Gaussian.

RLPD (Ball et al., 2023) is a strong offline-to-online RL method that trains a SAC agent from scratch
online with a 50/50 sampling scheme (i.e., 50% of training examples in a batch comes from the
offline dataset wheras the other 50% of training examples comes from the online replay buffer).

D HYPERPARAMETERS

While most methods share a common set of hyperparameters (Table 3 for a fair comparison, most
methods need to be tuned for each domain. We include the domain-specific in Table 4 and the tuning
range of them in Table 5.

Parameter Value

Batch size 256
0.99 for cube-*/antmaze-large-*
0.999 for antmaze-giant-*

Discount factor (v)

Optimizer Adam
Learning rate 3x 1074
Target network update rate () 5x 1073
Critic ensemble size (K) 10
Critic target pessimistic coefficient (p) 0.5
UTD Ratio 1
Number of flow steps (1) 10
Number of offline training steps 106; except RLPD (0)
Number of online environment steps 0.5 x 10°
Network width 512
Network depth 4 hidden layers

Table 3: Common hyperparameters.

Domains FBRAC CGQL FQL DSRL FEdit FAWAC TIFQL QAM
a T o o Oq T N (7,¢)
cube-double-* 0.1 0.1 300.0 0.5 0.25 10.0 32 (1.0,10.0)
cube-triple-* 0.01 0.1 100.0 1.0 0.5 10.0 32 (10.0,100.0)
cube-quadruple-100M-* 1.0 0.1 30.0 1.25 0.5 10.0 32 (3.0,10.0)
antmaze-large-* 10.0 0.1 10.0 0.25 0.25 10.0 32 (10.0,100.0)
antmaze-giant-* 10.0 0.1 10.0 025 0.25 10.0 32 (3.0,100.0)

Table 4: Domain-specific hyperparameters for each method.

19

Under review as a conference paper at ICLR 2026

Method Hyperparameter(s) Sweep Range
FBRAC Q {0.01,0.1,1.0,10, 100}
CGQL T {0.1,0.3,1, 3,10}
FQL o {3, 10, 30, 100, 300}
DSRL o {0.25,0.5,0.75,1,1.25}
FEdit o {0.1,0.25,0.5,1.0}
FAWAC T {1.0,3.0,10.0}
QAM (1,¢) ({1.0,3.0,10.0}, {10.0,100.0})

Table 5: Domain-specific hyperparameter tuning range for each method

20

	Introduction
	Related Work
	Preliminaries
	Q-learning with Adjoint Matching (QAM)
	Experiments
	Results
	Discussion
	Additional Discussions for Related Work
	Domain and experiment details
	Baselines
	Hyperparameters

