
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Q-LEARNING WITH ADJOINT MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Q-learning with Adjoint Matching (QAM), a novel TD-based reinforce-
ment learning (RL) algorithm that tackles a long-standing challenge in continuous-
action RL: efficient optimization of an expressive diffusion or flow-matching policy
with respect to a parameterized value function (i.e., the critic Qϕ(s, a)). Effective
optimization requires exploiting the first-order information of the critic (i.e., the
action gradient, ∇aQϕ(s, a)), but it is challenging to do so for flow or diffusion
policies because direct gradient-based optimization via backpropagation through
their multi-step denoising process is numerically unstable. Existing methods work
around this either by only using the value and discarding the gradient information,
or by relying on approximations that sacrifice policy expressivity or bias the learned
policy. QAM sidesteps both of these challenges by leveraging adjoint matching, a
recently proposed technique in generative modeling, which transforms the critic’s
action gradient to form a step-wise objective function that is free from unstable
backpropagation, while providing an unbiased, expressive policy at the optimum.
Combined with temporal-difference (TD) backup for critic learning, QAM con-
sistently outperforms prior approaches across challenging, sparse reward tasks in
both offline and offline-to-online RL settings.

1 INTRODUCTION

QAM-EDIT
QAM-FQL

QAM

CGQL-LinexFQL
ReBRAC

CGQL-M
SE

DSRL
QSM IFQL

FEdit
CGQL DAC BAM

FBRAC
FAWAC

0

20

40

Ag
gr

eg
at

ed
 S

co
re

42 41
38

34 34 34 33 32 32
29 28 27 26

11 9 8

Offline RL (50 tasks)

πβ(⋅ ∣ s)

π(⋅ ∣ s)

a

aβ
Prior

Flow Policy

Fine-tuned
Flow Policy

z ∼ 𝒩

z ∼ 𝒩

Noises
Intermediate
Noisy Actions

Denoised
Actions

vβ

vβ

vβ

∇aQ(s, a)
Critic’s

Action Gradient

πθ(⋅ ∣ s)
residual policy Fine-tune via

Adjoint Matching

LAM(θ)
0 5 10 15 20 25

Environment Steps (×104)

0

25

50

75

100

Ag
gr

eg
at

ed
 S

co
re

Online Fine-tuning (30 Tasks)

QAM (ours)
FBRAC
DSRL
FQL
CGQL

FEdit
IFQL
RLPD
QSM
ReBRAC

Figure 1: QAM: Q-learning with Adjoint Matching. Bottom-left: QAM uses adjoint matching objec-
tive (Domingo-Enrich et al., 2025) that leverages the critic’s action gradient directly to fine-tune a residual
flow policy such that the combined policy converges to the optimal prior-constrained policy: π(· | s) ∝ πβ(· |
s)eQ(s,·). Top/Bottom-right: Aggregated score for offline RL and online fine-tuning (8 seeds).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

A long-standing tension in continuous-action reinforcement learning (RL) especially in the
offline/offline-to-online setting is between policy expressivity and optimization tractability with re-
spect to a critic (i.e., Q(s, a)). Simple policies, such as single-step Gaussian policies, are easy to
train, since they can directly leverage the critic’s action gradient (i.e., ∇aQ(s, a)) via the reparame-
terization trick (Haarnoja et al., 2018). This optimization tractability, however, often comes at the
cost of expressivity. Some of the most expressive policy classes today, such as flow policies, generate
actions through a multi-step denoising process. While this allows flow policies to represent complex,
multi-modal action distributions, leveraging the action gradient requires backpropagation through the
entire denoising process, which often leads to instability (Park et al., 2025b). Prior work has there-
fore resorted to either (1) discarding the critic’s action gradient entirely and only using its value (Ren
et al., 2024; Zhang et al., 2025; McAllister et al., 2025), or (2) distilling expressive, multi-step flow
policies into one-step noise-conditioned approximations (Park et al., 2025b). The former sacrifices
learning efficiency and often under-performs methods that use the critic’s action gradient (Park et al.,
2024b; 2025b), while the latter compromises expressivity. This raises a question: can we somehow
keep the full expressivity of flow policies while incorporating the critic’s action gradient directly into
the denoising process without backpropagation instability?

One might be tempted to directly apply the critic’s action gradient to intermediate noisy actions
within the denoising process, as in diffusion classifier guidance (with the critic function being the
classifier) (Dhariwal & Nichol, 2021). Intuitively, this blends two generative process together: one
that generates a behavior action distribution, and another that hill-climbs the critic to maximize
action value. While this approach bypasses the backpropagation instability and retains full policy
expressivity, it relies on the assumption that the critic’s gradient at a noisy action is a good proxy for
its gradient at the corresponding denoised action. In practice, this assumption often breaks down:
when the offline dataset has limited action coverage, the critic is well-trained only on a narrow
distribution of noiseless actions, rendering its gradients unreliable for intermediate noisy actions that
are out of distribution. As what we will show in our experiments, methods that use the gradients at
intermediate noisy actions underperform (CGQL in Section 5, Figure 2).

We propose Q-learning with Adjoint Matching (QAM), a novel RL algorithm that leverages adjoint
matching (Domingo-Enrich et al., 2025), a recently developed technique in generative modeling, to
effectively use the critic’s action gradient for training flow policies to maximize returns subject to
a prior constraint (e.g., behavior or entropy constraint) (Figure 1). In general, such a constrained
optimization problem on a flow model can be formulated as a stochastic optimal control (SOC)
objective, which can be solved by using the continuous adjoint method (Pontryagin et al., 1962).
However, this standard formulation has the same loss landscape as directly backpropagating through
the SOC objective, causing instability. Instead, we leverage a modified objective from Domingo-
Enrich et al. (2025) that admits the same optimal solution, but does not suffer from the instability
challenge. At a high level, the critic’s gradient at noiseless actions is directly transformed by a flow
model constructed from the prior, independent from the possibly ill-conditioned flow model that
is being optimized, to construct unbiased gradient estimates for optimizing the state-conditioned
velocity field at intermediate denoising steps. This allows the flow policy’s velocity field to align
directly with the optimal state-conditioned velocity field implied by the critic and the prior, without
direct and potentially unstable backpropagation, while preserving the full expressivity of multi-step
flow models. By combining this policy extraction procedure with a standard temporal-difference
(TD) backup for critic learning, QAM enables the flow policy to efficiently converge to the optimal
policy subject to the prior constraint. In contrast, approximation methods that rely on the critic’s
gradients at noisy intermediate actions lack such convergence guarantees.

Our main contribution is a novel TD-based RL algorithm that leverages adjoint matching to perform
policy extraction effectively on a critic function. Unlikely prior Q-learning methods with flow-
matching that rely on approximations or throwing away the action gradient of the critic altogether,
our algorithm directly uses the gradient to form an objective that at convergence recovers the
optimal behavior-regularized policy. We conduct a comprehensive empirical study comparing policy
extraction methods for flow/diffusion policies, including recent approaches and new baselines, and
show that QAM consistently achieves strong performance across both offline RL and offline-to-online
RL benchmarks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

RL with diffusion and flow policies. Diffusion and flow policies have been explored in both policy
gradient methods (Ren et al., 2024) and actor-critic methods (Fang et al., 2025; Kang et al., 2023;
Chen et al., 2024c;a; Lu et al., 2023b; Ding et al., 2024b; Wang et al., 2023; He et al., 2023a; Ding &
Jin, 2024; Ada et al., 2024; Zhang et al., 2024; Hansen-Estruch et al., 2023). The key challenge of
leveraging diffusion/flow policies in TD-based RL methods is to optimize these policies against the
critic function (i.e., Q(s, a)). Prior work can be largely put into three categories based on how the
value function is used:

(1) Post-processing approaches refine the action distribution from a base diffusion/flow policy with
rejection sampling based on the critic value (Hansen-Estruch et al., 2023; Mark et al., 2024; Li
et al., 2025; Dong et al., 2025), or using additional gradient steps to hill climb the critic (Mark et al.,
2024) (i.e., at ← at +∇aQ(s, a)). These approaches often reliably improve the quality of extracted
policy but at the expense of additional computation during evaluation or even training (i.e., rejection
sampling for value backup target (Li et al., 2025; Dong et al., 2025)). Alternatively, one may train
a residual policy that modifies a base behavior policy in either the noise space (Singh et al., 2020;
Wagenmaker et al., 2025) or in the action space directly (Yuan et al., 2024; Dong et al., 2025).

(2) Backprop-based approaches perform direct backpropagation through both the critic and the
policy (Wang et al., 2023; He et al., 2023b; Ding & Jin, 2023; Zhang et al., 2024; Park et al., 2025b;
Espinosa-Dice et al., 2025; Chen et al., 2025). While this is the most-straightforward implementation-
wise, it requires backpropagation through the diffusion/flow policy’s denoising process which has
been observed to be unstable Park et al. (2025b), or instead learns a distilled policy (Ding & Jin,
2023; Chen et al., 2024b; Park et al., 2025b; Espinosa-Dice et al., 2025; Chen et al., 2025), in the
expense of policy expressivity.

(3) Intermediate fine-tuning approaches, which our method also belongs to, mitigate the need of the
stability/expressivity trade-off in backprop-based approaches by leveraging the critic to construct an
objective that provides direct step-wise supervision to the intermediate denoising process (Psenka
et al., 2023; Fang et al., 2025; Ding et al., 2024a; Li et al., 2024b; Frans et al., 2025; Zhang et al.,
2025; Ma et al., 2025; Koirala & Fleming, 2025). While these approaches remove the need for
backpropagation through the denoising process completely, the challenge lies in carefully crafting
the step-wise objective that does not introduce additional biases and learning instability. Compared
to prior methods that either rely on approximations (Lu et al., 2023a; Fang et al., 2025) that do not
provide theoretical guarantees (see more discussions in Appendix A) or directly throwing away the
critic’s action gradient (and use its value instead) (Ding et al., 2024a; Zhang et al., 2025; Ma et al.,
2025; Koirala & Fleming, 2025), we leverage adjoint matching (Domingo-Enrich et al., 2025) which
allows us to use the critic’s action gradient directly to construct an direct step-wise objective for our
flow policy that recovers the optimal prior regularized policy at the optimum of the objective.

Offline-to-online reinforcement learning methods focus on leveraging offline RL to first pretrain
on an offline dataset, and then use the pretrained policy and value function(s) as initialization to
accelerate online RL (Xie et al., 2021; Song et al., 2023; Lee et al., 2022; Agarwal et al., 2022;
Zhang et al., 2023; Zheng et al., 2023; Ball et al., 2023; Nakamoto et al., 2024; Li et al., 2024a;
Wilcoxson et al., 2024; Zhou et al., 2025). While it is possible to skip the offline pre-training phase
altogether and use online RL methods directly by treating the offline dataset as additional off-policy
data that is pre-loaded into the replay buffer (Lee et al., 2022; Song et al., 2023; Ball et al., 2023),
these methods often under-perform the methods that leverage explicit offline pre-training, especially
on more challenging tasks (Nakamoto et al., 2024; Park et al., 2025b). Our method also operates in
this regime where we first perform offline RL pre-training and then perform online fine-tuning from
the offline pre-trained initialization. In addition, we follow a common design in prior work where
the same offline RL objective is used for both offline pre-training and online fine-tuning (Kostrikov
et al., 2021; Fujimoto & Gu, 2021; Tarasov et al., 2023; Park et al., 2025b). While we focus on
evaluating our method in the offline-to-online RL setting, the idea of using adjoint matching to train
an expressive flow policy can be applied to other settings such as online RL.

Diffusion and flow-matching with guidance. Diffusion and flow-matching models have been used
for generating data with different modalities ranging from images (Rombach et al., 2022), videos (Ho
et al., 2022), and text (Lou et al., 2023). In most applications, the generative models trained on large-
scale unlabeled data do not provide high-quality samples when conditioned on some context (e.g.,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

language description), and a common practice is to augment the sampling process with classifier
guidance/classifier-free guidance (Dhariwal & Nichol, 2021; Ho & Salimans, 2022), with the goal of
aligning the sampling distribution better with the posterior distribution conditioned on the context.
However, most of the guidance methods suffer from a bias problem that is tricky to tackle, stemming
from the fact that simply adding or interpolating two diffusion/flow-matching sampling processes
(i.e., v1(·, t)+ v2(·, t) for flow or log p1t + log p2t for diffusion) does not lead to the correct composite
distribution (i.e., ∝ π1π2) in general (Du et al., 2023; Bradley & Nakkiran, 2024). One solution is to
use Langevin dynamics sampling approaches (Song & Ermon, 2019) where only the score function
for the noise-free distribution is required, but they have been known to under-perform diffusion/flow
models due to the challenge of accurately estimating the score functions in low-density regions (Song
& Ermon, 2020). Since then, a line of work has proposed solutions to generate the correct composite
distribution. Du et al. (2023), Phillips et al. (2024), Thornton et al. (2025), Singhal et al. (2025) and
Skreta et al. (2025) propose to use Sequential Monte Carlo (SMC) that uses resampling procedures to
leverage additional test-time compute to correct such bias. Rather than correcting the distribution
at test-time, Domingo-Enrich et al. (2025) and Havens et al. (2025) take a different perspective by
formulating it as a stochastic optimal control (SOC) objective that can be efficiently optimized as a
fine-tuning process while providing guarantee that the model converges to the correct distribution at
the optimum. The flow/diffusion policy optimization problem in actor-critic RL methods shares a
similarity to the aforementioned classifier/classifier-free guidance problem in generative modeling
literature where the critic function serves as the guidance to the generative policy model. This
allows our method builds directly on top of the algorithm developed by Domingo-Enrich et al. (2025)
while enjoying the guarantee that our policy converges to the optimal prior regularized solution (i.e.,
π ∝ πβ exp(Q(s, a))).

3 PRELIMINARIES

Reinforcement learning and problem setup. We consider a Markov Decision Process (MDP),
M = (S,A, P, γ,R, µ), where S is the state space, A = RA (A ∈ Z+) is the action space,
P : S ×A → ∆S is the transition function, γ ∈ [0, 1) is the discount factor, R : S ×RA → R is the
reward function, and µ ∈ ∆A is the initial state distribution. We have access to a dataset D consisting
of a set of transitions {(si, ai, s′i, ri)}

|D|
i=1, where s′ ∼ P (· | s, a) and r = R(s, a). Our first goal

(offline RL) is to learn a policy πθ : S → A from D that maximizes its expected discounted return,

Uπ = Es0∼µ,st+1∼P (·|st,at),at∼π(·|st)

[∞∑
t=0

γtR(st, at)

]
. (1)

The second goal (offline-to-online RL) is to fine-tune the offline pre-trained policy πθ by continuously
interacting with the MDP through trajectory episodes with a task/environment dependent maximum
episode length of H (i.e., the maximum number of time steps before the agent is reset to µ). The
central challenge of offline-to-online RL is to maximally leverage the behavior prior πβ in D to learn
as sample-efficiently as possible online.

Flow-matching generative model. A flow model uses a time-variant velocity field v : Rd× [0, 1]→
Rd to estimate the marginal distribution of a denoising process from noise, X0 = N (0, Id), to data,
X1 = D, at each intermediate time t ∈ [0, 1]:

Xt = (1− t)X0 + tX1. (2)

In particular, the flow model approximates the intermediate Xt via an ordinary differential equation
(ODE) starting from the noise: X0 = N :

dX̂t = f(X̂t, t)dt. (3)

Flow models are typically trained with a flow matching objective (Liu et al., 2022):

LFM(θ) = Et∼U [0,1],x0∼N ,x1∼D
[
∥fθ((1− t)x0 + tx1, t)− x1 + x0∥22

]
, (4)

where any optimal velocity field, vθ⋆ , results in X̂t where its marginal distribution pf (xt) exactly
recovers the marginal distribution of the original denoising process Xt, pD(xt), for each t ∈

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

[0, 1] (Lipman et al., 2024). Furthermore, one may use the Fokker-Planck equations to construct a
family of stochastic differential equations (SDE) that admits the same marginals as well:

dX̂t =

(
f(X̂t, t) +

σ2
t t

2(1− t)

(
f(X̂t, t) +Xt/t

))
dt+ σtdBt (5)

with Bt being a Brownian motion and σt > 0 being any noise schedule.

Adjoint matching is a technique developed by Domingo-Enrich et al. (2025) with the goal of
modifying a base flow generative model fβ such that it generates the following tilt distribution:

p⋆(x1) ∝ pβ(x1)eQ(x1) (6)

where Q : Rd → R is any value function that up-weights or down-weights the probability of each
example in the domain Rd. Domingo-Enrich et al. (2025) uses a marginal-preserving SDE with a
‘memoryless’ noise schedule (i.e., X0 and X1 are independent), σt =

√
2(1− t)/t:

dXt = (2f(Xt, t)−Xt/t) dt+
√
2(1− t)/tdBt, (7)

because solving the following stochastic optimal control equation (with Xt sampling from the joint
distribution defined by the SDE in Equation (7)),

L(θ) = EX={Xt}t

[∫ 1

0

(
1

2
∥fθ(Xt, t)− fβ(Xt, t)∥22

)
−Q(X1)

]
(8)

gives the correct marginal tilt distribution for X1:

p(X1) ∝ pβ(X1)e
Q(X1). (9)

Let the adjoint state be the gradient of the tilt function applied at the denoised X1:

g(X, t) = ∇Xt

[∫ 1

t

1

2
∥fθ(Xt′ , t

′)− fβ(Xt, t
′)∥22dt′ −Q(X1)

]
, (10)

which satisfies the following ODE:

dg(X, t) = −g(X, t)⊤∇Xt
[2fθ(Xt, t)−Xt/t] +∇Xt

∥fθ(Xt, t)− fβ(Xt, t)∥22)/(2σ2
t)dt (11)

with the boundary condition g(X, 1) = −∇X1r(X1). We can compute the adjoint states by stepping
through the reverse ODE (which can be effcieintly computed with the Jacobian-vector product (JVP)
in most modern deep learning frameworks). Then, it can be shown that it equivalently optimizes the
‘basic’ adjoint matching objective below:

LBAM(θ) = EX

[∫ 1

0

∥2(fθ(Xt, t)− fβ(Xt, t))/σt + σtg(X, t)∥22dt
]
. (12)

The optimal fθ coincides with the optimal solution in the original SOC equation (Equation (8)),
which gives the correct marginal distribution of X1 as a result. However, the objective is equivalent
to the objective used in the continuous adjoint method (Pontryagin et al., 1962) with its gradient
equivalent to that of backpropagation through the denoising process.

Instead, Domingo-Enrich et al. (2025) derive the ‘lean’ adjoint state where all the terms in the adjoint
state that are zero at the optimum are removed from the state. The ‘lean’ adjoint state satisfies the
following ODE:

dg̃(X, t) = −g̃(X, t)⊤∇Xt
[2fβ(Xt, t)−Xt/t] dt, (13)

with the same boundary condition g̃(X, 1) = −∇X1
Q(X1).

Note that computing the ‘lean’ adjoint state only requires the base flow model fβ(Xt, t) and no
longer needs to use fθ(Xt, t) as needed in either the basic adjoint matching objective (Equation (12))
or naive backpropagation through the denoising process. The resulting adjoint matching objective is

LAM(θ) = EX

[∫ 1

0

∥2(fθ(Xt, t)− fβ(Xt, t))/σt + σtg̃(X, t)∥22dt
]
, (14)

where again X is sampled from the marginal preserving SDE in Equation (7). Because the terms
omitted in the ‘lean’ adjoint state are zero at the optimum, and thus do not change the optimal solution
for fθ. Thus, the optimal solution for the adjoint matching gives the correct tilt distribution.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 Q-LEARNING WITH ADJOINT MATCHING (QAM)

In this section, we describe in details how our method leverages adjoint matching to directly align the
flow policy to prior regularized optimal policy without suffering from backpropagation instability.

To start with, we first define the optimal policy that we want to learn as the solution of the best policy
the under the standard KL behavior constraint:

argmaxπEa∼π(·|s)[Q(s, a)] s.t. DKL(πβ ∥ π) ≤ ϵ(s). (15)

or equivalently, for an appropriate τ(s),

π⋆(· | s) ∝ πβ(· | s)eτ(s)Qϕ(s,a) (16)

where τ : S → R+ is the inverse temperature coefficient that controls the strength of the behavior
constraint at each state.

We approximate the behavior policy using a flow-matching behavior policy, fβ : S × RA × [0, 1]→
RA that is optimized with the standard flow-matching objective:

LFM(β) = E(s,a)∼D,u∼[0,1],z∼N
[
∥fβ(s, (1− u)z + uz, t)− a+ z∥22

]
(17)

We then parameterize our approximation of the optimal policy as a sum of the behavior flow model
fβ and a residual flow model fθ : S × RA × [0, 1]→ RA and solve the following SOC equation:

L(θ) = Es∼D,au
[∫ 1

0

1

2
∥fθ(s, au, t)∥22 − τ(s)Qϕ(s, a1)du

]
, (18)

where au is defined by the following ‘memoryless’ SDE (e.g., a0 is independent from a1):

dau = (2fθ(s, a
u, u) + 2fβ(s, a

u, u)− au/u)du+
√
2(1− u)/udBu. (19)

Similar to the derivation by Domingo-Enrich et al. (2025), the memoryless property allows us to
directly conclude that the SOC equation has the optimum at

πθ(· | s) ∝ πβ(· | s)eτ(s)Qϕ(s,a) (20)

where πθ(· | s) and πβ(· | s) are the corresponding action distributions defined by fθ + fβ and fβ .

However, directly solving the SOC equation involves backpropagation through time that introduces
additional stability. To circumvent this issue, we use the adjoint matching objective proposed by
Domingo-Enrich et al. (2025) (Equation (14)) to construct a similar objective for policy optimization
in our case:

LAM(θ) = Es∼D,{au}u

[∫ 1

0

∥2fθ(s, au, u)/σu + σug̃
u∥22du

]
(21)

where g̃u is the ‘lean’ adjoint state defined by a reverse ODE constructed from au defined by the
forward SDE:

dg̃u = −g̃u⊤∇au [2fβ(s, a
u, u)− au/u] du. (22)

Unlike the original SOC objective (Equation (18)) from which calculating the gradient requires back-
propagating through an SDE, which suffers from stability challenges, the adjoint matching objective
is constructed without backpropagation. Instead, it uses the behavior velocity field fβ to calculate
the ‘lean’ adjoint states {g̃u}u through a series of JVPs for every SDE trajectory {au}u, which are
then used to form a squared loss in the adjoint matching objective. Mathematically, backpropagation
can also be interpreted as calculating the adjoint states through a series of JVPs, with the key distinc-
tion that the JVPs are computed under the flow model that is being optimized (i.e., fθ + fβ). This is
an important distinction because for direct backpropagation, any ill-conditioned action gradient in
fθ (i.e., ∇afθ(s, a, t)) would compound over the entire denoising process, contributing to the ‘ill-
condition-ness’ of the overall gradient to the parameter θ, which can in turn destabilize the whole
optimization process. In contrast, in adjoint matching, action gradient of fθ has no contribution to the
overall gradient to θ, which allows the optimization to be much more stable.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Finally, we combine the policy optimization with the standard critic learning objective in TD-based
RL algorithms:

L(ϕ) = Es,a,s′,r∼D
[
(Q(s, a)− r − γQϕ̄(s′, a′)

]
, a′ ← ODE(f(s′, ·, ·), a′0 ∼ N) (23)

where f(s, ·, ·) = fβ(s, ·, ·) + fθ(s, ·, ·) is the summation of the behavior velocity field and the
residual velocity field and ϕ̄ is the exponential moving average of ϕ with a time-constant of λ = 0.005
(i.e., ϕ̄i+1 ← (1− λ)ϕ̄i + λϕi for each training step i).

Practical considerations. In practice, following Domingo-Enrich et al. (2025), we solve both the
SDE and the reverse ODE with discrete approximation and a fixed step size of h = 1/T , where T is
the number of discretization steps. In particular, with a0 ∼ N and zu ∼ N ,∀u ∈ {0, h, · · · (T−1)h},
the forward SDE process is approximated by

au+h ← au + h · (2fθ(s, au, u) + 2fβ(s, a
u, u)− au/u) +

√
2h(1− u)/uzu. (24)

We set the boundary condition as g̃1 = −τ∇a1Qϕ(s, a1), where we use a state independent inverse
temperature coefficient τ to modulate the influence of the prior πβ and we additionally clip the
magnitude of the parameter gradient element-wise by 1 for numerical stability. The backward adjoint
state calculation process is then approximated by

g̃u−h ← g̃u + h · JVP(∇au(2fβ(s, au, u)− au/u), g̃u), (25)

with JVP(∇yb(y), x) = x⊤∇yb(y) being the Jacobian-vector product and it can be practically
implemented by carrying the ‘gradient’ x with backpropagation through f . For the critic, we use an
ensemble of K = 10 critic functions ϕ1, · · · , ϕK and use the pessimistic target value backup with a
coefficient of ρ = 0.5 (Ghasemipour et al., 2022). The loss function for each ϕj , j ∈ {1, 2, · · · ,K} is

L(ϕj) =
(
Qϕj (s, a)− r − γ

[
Q̄mean(s

′, a′)− ρQ̄std(s
′, a′)

])2
, (26)

where Q̄mean(s
′, a′) := 1

K

∑
kQϕ̄k(s′, a′), Q̄std(s

′, a′) =
√∑

k(Qϕ̄k(s′, a′)− Q̄mean(s′, a′))2,
and a′ is the action sampled from the combined flow model: f(s′, ·, ·) = fβ(s, ·, ·) + fθ(s, ·, ·). For
all our experiments, we do not use a separate training process for fβ and instead training it at the same
to as fθ and Qϕ, following Park et al. (2025b); Li et al. (2025), using the standard flow-matching
objective described in Equation (17). For all our loss functions, the transition tuple (s, a, s′, r) is
drawn from D uniformly. During offline training, D is the offline data. During online fine-tuning, D
is combination of the offline and online replay buffer data without any re-weighting.

Theoretical guarantees. As our algorithm builds off from Domingo-Enrich et al. (2025), we can
directly extend their theoretical results to our setting as follows (proof in Appendix E):

Proposition 1 (Extension of Proposition 7 in Domingo-Enrich et al. (2025) to Policy Optimiza-
tion.) Take LAM(θ) in Equation (14), there is a unique fθ such that

∂

∂fθ
LAM = 0, (27)

and for all s ∈ supp(D),

πθ(· | s) ∝ πβ(· | s)eτQϕ(s,a). (28)

The importance of this result is that as long as the loss function LAM is optimized to convergence
(i.e., with ∂L/∂fθ = 0), the learned policy coincides with the optimal behavior-constrained policy.

Combining with existing flow/diffusion RL methods. In practice, we also find it to be beneficial
to combine QAM with existing methods such as FQL (Park et al., 2025b) and edit policies (Dong
et al., 2025) to further boost the performance. For the QAM-FQL variant, we learn the 1-step noise-
conditioned policy from Park et al. (2025b), µω(s, z), and optimize the following objective (with α
being a tunable BC coefficient),

LQAM-FQL(ω) = Ez∼N
[
−Qϕ(s, µω(s, z)) + α∥µω(s, z)−ODE(f(s, ·, ·), z)∥22

]
. (29)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 1 Learning procedure in QAM.

Input: (s, a, s′, r): off-policy transition tuple, fβ : behavior velocity field, fθ residual velocity
field, Qϕ: critic function.
f(s, ·)← fθ(s, ·, ·) + fβ(s, ·, ·)
a = {a0, ah, · · · , a1} ← SDEam(f(s, ·, ·)) ▷ Memoryless SDE (Equation (24))
g̃1 ← −τ∇a1Qϕ(s, a1) ▷ Computing the critic’s action gradient
g̃0, g̃h, · · · , g̃1−h ← LeanAdjam(fβ(s, ·, ·), g̃1,a) ▷ Lean adjoint states (Equation (25))
Optimize θ w.r.t L(θ) =

∑
u ∥2fθ(s, au, u)/σu + σug̃

u∥22 ▷ Adjoint matching (Equation (21))
a′ ← ODE(f(s, ·, ·), z ∼ N (0, IA))
Optimize ϕ w.r.t L(ϕ) = (Qϕ(s, a)− r − γQϕ̄(s′, a′))2
Output: fθ, Qϕ

We then use this 1-step policy both to interact with the environment and to compute value targets (i.e.,
Q̄(s′, a′ = µ(s, z ∼ N))). Intuitively, the 1-step policy is optimized to remain close to the QAM-fine-
tuned flow policy while also maximizing the action value under the current critic. For the QAM-EDIT
variant, we optimize a Gaussian edit policy from Dong et al. (2025), πω(· | s, ã), to modify the output
from the QAM-fine-tuned flow policy (i.e., ã) for further action refinements with the objective below:

LQAM-EDIT(ω) = E∆a∼πω(·|s,ã),z∼N [−Qϕ(s,∆a + ã)] , where ã := ODE(f(s, ·, ·), z)) (30)

where ∆a is restricted to be within a L∞ ball (with a tunable scaling parameter of σa). See more
details on the implementation on the edit policy and the FQL 1-step policy in Appendix C.

5 EXPERIMENTS

We conduct experiments to evaluate the effectiveness of our method on a range of long-horizon,
sparse-reward domains and compare it against a set of representative baselines.

Domains and datasets. We consider 10 domains from OGBench (Park et al.,
2024a): scene, puzzle-3x3 (p33), puzzle-4x4 (p44), cube-double (c2), cube-triple
(c3), cube-quadruple (c4), humanoidmaze-medium (hm), humanoidmaze-large (hl),
antmaze-large (al), and antmaze-giant (ag). For antmaze-* and humanoidmaze-*, we use
the default navigate datasets. For scene, puzzle-*, and cube-*, we use the default play datasets
except for c4 and p44 where we use the larger 100M-size dataset from Park et al. (2025a), and use
the sparse reward definition for {p33, p44, scene}, following Li et al. (2025). All of these do-
mains require the RL agent to solve long-horizon tasks from diverse offline behavior data that can
only be accurately captured by expressive policies like flow/diffusion policies. Furthermore, the
harder domains (Figure 4) are difficult to solve from offline data alone, making these benchmarks
great for evaluating the online fine-tuning effectiveness of our approach. In addition, for all {cube-*,
scene-*, p33-*, p44-*} domains, we follow Li et al. (2025) to learn action chunking policies
with an action chunking size of h = 5. Action chunking policies output high-dimensional actions that
exhibits a much more complex behavior distribution, where the policy extraction becomes critical.
Since our approach primarily focuses on the policy extraction aspect, these domains make an ideal
testbed us to compare our method to prior work. See Appendix B for more details on these domains.

Comparisons. To provide a comprehensive empirical evaluation of our method, we carefully select
8 representative, strong baselines that can be roughly categorized into the following 5 categories—
(1) Gaussian: ReBRAC (Tarasov et al., 2023), (2) Backprop: FBRAC (Park et al., 2025b) (back-
prop through the flow policy’s denoising step directly), FQL (backprop through a 1-step distilled
policy) (Park et al., 2025b); (3) Adv. Weighted: FAWAC (Park et al., 2025b) (advantage weighted
actor critic, AWAC (Nair et al., 2020), with flow policy); (4) Guidance with the critic’s action
gradient: DAC (Fang et al., 2025), QSM (Psenka et al., 2023), and CGQL/CGQL-MSE/CGQL-Linex
(three variants of classifier guidance-based methods inspired by Dhariwal & Nichol (2021)); (5) Post-
processing-based: DSRL (Wagenmaker et al., 2025), FEdit (flow + Gaussian edit policy from Dong
et al. (2025)), and IFQL (flow counterpart of IDQL (Hansen-Estruch et al., 2023)). For offline-to-
online evaluations we additionally compare with RLPD (Ball et al., 2023). Finally, we compare with
BAM, a direct ablation from our method QAM where we use the ‘basic’ adjoint matching objective in
Equation (12) instead of the adjoint matching objective in Equation (14), and keep the rest of the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

al ag hm hl scene p33 p44 c2 c3 c4 all
5 tasks 5 tasks 5 tasks 5 tasks 5 tasks 5 tasks 5 tasks 5 tasks 5 tasks 5 tasks 50 tasks

GAUSSIAN ReBRAC
[93,95]

94
[33,43]

38
[38,46]

42
[6,9]

8
[55,66]

61
[63,80]

72
[0,0]

0
[7,11]

8
[0,1]

1
[1,4]

2
[33,35]

34

FBRAC
[0,3]

1
[0,0]

0
[25,32]

28
[0,0]

0
[37,48]

43
[0,0]

0
[13,21]

18
[0,1]

0
[0,0]

0
[0,0]

0
[9,9]

9

BAM
[68,72]

70
[3,5]

4
[18,22]

20
[1,1]

1
[11,14]

13
[2,3]

2
[0,0]

0
[2,2]

2
[0,1]

1
[0,0]

0
[11,12]

11BACKPROP

FQL
[63,69]

66
[0,0]

0
[57,62]

59
[2,4]

3
[64,70]

67
[100,100]

100
[4,6]

5
[12,42]

30
[1,2]

2
[0,2]

1
[33,34]

34

ADV. WEIGHTED FAWAC
[15,20]

17
[0,0]

0
[17,21]

19
[0,0]

0
[35,39]

37
[3,4]

3
[0,0]

0
[0,1]

1
[0,0]

0
[0,0]

0
[7,8]

8

CGQL
[64,74]

69
[0,0]

0
[46,55]

51
[4,5]

4
[21,31]

26
[38,48]

43
[23,38]

30
[28,45]

37
[4,7]

5
[0,0]

0
[25,28]

27

CGQL-MSE
[63,71]

67
[3,12]

8
[39,40]

39
[0,0]

0
[62,70]

66
[100,100]

100
[0,0]

0
[30,49]

40
[4,7]

5
[0,0]

0
[31,34]

33

CGQL-Linex
[54,62]

58
[0,0]

0
[45,51]

48
[3,4]

3
[82,89]

86
[93,99]

96
[0,0]

0
[30,49]

41
[4,6]

5
[0,0]

0
[33,35]

34

DAC
[73,85]

79
[8,11]

10
[63,73]

68
[0,0]

0
[54,64]

59
[11,20]

16
[0,0]

0
[18,23]

20
[2,5]

4
[1,4]

3
[24,27]

26

GUIDANCE

QSM
[68,75]

72
[1,8]

4
[63,75]

68
[5,7]

6
[69,73]

71
[25,41]

34
[0,0]

0
[39,46]

42
[2,4]

3
[11,19]

16
[30,33]

32

DSRL
[33,42]

37
[0,1]

1
[34,47]

40
[0,1]

0
[100,100]

100
[70,90]

80
[0,0]

0
[44,71]

59
[0,1]

0
[0,0]

0
[30,33]

32

FEdit
[29,44]

37
[0,1]

0
[0,6]

3
[1,3]

2
[64,72]

68
[99,100]

99
[21,38]

29
[22,34]

30
[1,2]

1
[0,0]

0
[26,30]

28POST-PROCESSING

IFQL
[19,28]

23
[0,0]

0
[68,71]

70
[7,13]

10
[79,84]

82
[100,100]

100
[0,0]

0
[8,10]

9
[0,0]

0
[0,0]

0
[29,30]

29

QAM
[62,65]

63
[5,18]

11
[58,62]

60
[1,4]

2
[97,98]

98
[94,100]

97
[0,0]

0
[50,60]

57
[2,7]

5
[2,4]

3
[37,39]

38

QAM-FQL
[69,77]

73
[3,14]

8
[52,64]

59
[3,6]

5
[97,99]

98
[100,100]

100
[4,12]

8
[38,56]

49
[1,2]

1
[6,12]

9
[39,42]

41ADJOINT MATCHING

QAM-EDIT
[65,70]

67
[0,4]

2
[55,67]

61
[2,5]

3
[97,98]

98
[99,100]

100
[24,35]

29
[53,60]

57
[2,4]

4
[0,3]

2
[41,43]

42

Table 1: Offline RL performance at 1M training steps (50 tasks, 8 seeds). Our method (QAM) and two of its
variants, QAM-FQL and QAM-EDIT outperform all prior baselines. We use abbreviations of the domains as fol-
lows: al=antmaze-large, ag=antmaze-giant, hm=humanoidmaze-medium, hl=humanoidmaze-large,
p33=puzzle-3x3, p44=puzzle-4x4, c2=cube-double, c3=cube-triple, c4=cube-quadruple.

implementation exactly the same. We categorize it as a “backprop” method because its gradient is
equivalent to that of backpropagating through the memoryless SDE as we discuss above in Section 3.

Among them, RLPD does not employ any behavior constraint, so we directly train them from scratch
online with 50/50 offline/online sampling (i.e., half of the training batch comes from offline and half
of the training batch comes from the online replay buffer). To make the comparison fair, we use
K = 10 critic networks, pessimistic value backup with ρ = 0.5 (except on humanoidmaze-large
where we find ρ = 0 to work better), no best-of-N sampling (i.e., N = 1) for both our method and all
our baselines except for IFQL where best-of-N is used for policy extraction. We refer the reader to
Appendix C for detailed description and implementation detail for each of the baselines. We also
include the domain-specific hyperparameters for each baseline in Appendix D.

6 RESULTS

In this section, we present our experimental results to answer the following three questions:

(Q1) How effective is our method for offline RL?

Table 1 reports the offline RL performance across 10 different domains (50 tasks in total). QAM
outperforms all prior methods with an aggregated score of 38. Furthermore, combining QAM with
FQL and FEdit can push the performance even further. QAM-FQL achieves an aggregated score of 40
and QAM-EDIT achieves an even higher aggregated score of 42.

(Q2) How effective is our method for offline-to-online fine-tuning?

Next, we take the best performing variant of QAM, QAM-EDIT, and evaluate its ability to online fine-
tune from its offline RL initialization. Figure 2 shows the sample efficiency curve (with x-axis being
the number of environment steps). QAM outperforms all prior methods on cube-triple and is
the most robust method across the board. For example, compared to ours, QSM fine-tunes better on
al, ag but struggles on all other tasks except on c2 where it performs similar to our method. FQL
fine-tunes slightly better on ag and much slower on both p44 and c3.

(Q3) How sensitive is our method to hyperparameters? Finally, we conduct sensitivity analyses
for various components of our method including pessimistic backup (ρ), gradient clipping, number of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25
0.00

0.25

0.50

0.75

1.00
antmaze-large

0 5 10 15 20 25

antmaze-giant

0 5 10 15 20 25

puzzle-4x4

0 5 10 15 20 25

cube-double

0 5 10 15 20 25

cube-triple

0 5 10 15 20 25

cube-quadruple-100M

Environment Steps (×104)

Su
cc

es
s R

at
e

QAM FBRAC DSRL FQL CGQL FEdit IFQL RLPD QSM ReBRAC

Figure 2: QAM online fine-tunes more effectively than prior methods (30 tasks, 8 seeds). For online fine-
tuning experiments, we use the QAM-FEdit variant for QAM and we use CGQL-Linex variant for CGQL due to
their good performance in our offline experiments.

0 5 10 15 20 25
0

20

40

60

80

100
Pessemistic Backup Coefficient ()

= 1
= 0.5 (ours)
= 0

0 5 10 15 20 25
0

20

40

60

80

100
Gradient Clipping

without clipping
with clipping (ours)

0 5 10 15 20 25
0

20

40

60

80

100
Flow Steps (T)

T = 30
T = 20
T = 10 (ours)
T = 3
T = 1

0 5 10 15 20 25
0

20

40

60

80

100
Critic Ensemble Size (K)

K = 2
K = 10 (ours)

0 5 10 15 20 25
0

20

40

60

80

100
Temperature ()

10 ×
3 ×
1 × (ours)
0.3 ×
0.1 ×

Environment Steps (×104)

Sc
or

e

Figure 3: Sensitivity analysis on cube-triple-task2 (8 seeds). Pessimistic Backup Coefficient (ρ): this
parameter controls how the standard deviation multiplier in the TD backup target Q̄mean−ρQ̄std (Equation (26));
Gradient Clipping: whether to use gradient clipping in our optimizer; Flow Steps (T): this parameter indicates
the number of numerical integration steps that we use for the flow model. Critic Ensemble Size (K): number of
critic network in the ensemble; Temperature (τ): the parameter that modulates the influence of the prior. We
rerun our method with 0.1×, 0.3×, 3×, and 10× the temperature value we obtain from our tuning runs.

flow steps (T), critic ensemble size (K) and the temperature coefficient (τ). As we show in Figure 3,
all of these components contribute to QAM’s effectiveness. Among them, the pessimistic backup
coefficient, and the temperature parameter (τ) have the biggest impact on QAM’s performance and
need to be tuned. For the other components, we find enabling gradient clipping and having a large
critic ensemble size (K = 10) always helps. We also find setting the number of flow steps to T = 10
works the best empirically.

7 DISCUSSION

We present Q-learning with Adjoint Matching (QAM), a novel TD-based RL method that effectively
leverages the critic’s action gradient to extract an optimal prior-constrained policy while circumventing
common limitations of prior approaches (e.g., approximations that do not guarantee to converge
to the desired optimal solution, learning instability, or reduced expressivity from distillation). Our
empirical results suggest that QAM is an effective policy extraction method in both the offline RL
setting and the offline-to-online RL setting, performing on par or better than prior methods. There are
still practical challenges associated with QAM. While QAM’s effectiveness can be largely attributed
to how well it is able to leverage the critic’s action gradient, this can be a double-edge sword—for
cases where the critic function is ill-conditioned, it could lead to optimization stability issue. Gradient
clipping (as done in our method) can alleviate this issue, but a more principled method that combines
both value and gradient information could further improve robustness and performance. Another
possible extension is to apply QAM in real-world robotic settings with action chunking policies.
Our initial success (especially in the manipulation domains where we also leverage action chunking
policies) may suggest that our method might work more effectively in complex real-world scenarios.

REPRODUCIBILITY STATEMENT

We include our source code as part of the supplementary materials (including installation instructions
and example scripts for running our method and all our baselines). We describe our evaluation

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

domains in Appendix B, hyperparameters in Appendix D, and implementation details for each of our
baselines in Appendix C.

REFERENCES

Suzan Ece Ada, Erhan Oztop, and Emre Ugur. Diffusion policies for out-of-distribution generalization
in offline reinforcement learning. IEEE Robotics and Automation Letters (RA-L), 9:3116–3123,
2024.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Reincarnating reinforcement learning: Reusing prior computation to accelerate progress. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 28955–28971. Curran Associates, Inc., 2022.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data. In International Conference on Machine Learning, pp. 1577–1594. PMLR, 2023.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang.
JAX: composable transformations of Python+NumPy programs, 2018. URL http://github.
com/jax-ml/jax.

Arwen Bradley and Preetum Nakkiran. Classifier-free guidance is a predictor-corrector. arXiv
preprint arXiv:2408.09000, 2024.

Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy optimization
through diffusion behavior. In International Conference on Learning Representations (ICLR),
2024a.

Tianyi Chen, Haitong Ma, Na Li, Kai Wang, and Bo Dai. One-step flow policy mirror descent. arXiv
preprint arXiv:2507.23675, 2025.

Tianyu Chen, Zhendong Wang, and Mingyuan Zhou. Diffusion policies creating a trust region for
offline reinforcement learning. Advances in Neural Information Processing Systems, 37:50098–
50125, 2024b.

Tianyu Chen, Zhendong Wang, and Mingyuan Zhou. Diffusion policies creating a trust region for
offline reinforcement learning. In Neural Information Processing Systems (NeurIPS), 2024c.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and Ye Shi.
Diffusion-based reinforcement learning via q-weighted variational policy optimization. Advances
in Neural Information Processing Systems, 37:53945–53968, 2024a.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and Ye Shi.
Diffusion-based reinforcement learning via q-weighted variational policy optimization. In Neural
Information Processing Systems (NeurIPS), 2024b.

Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement
learning. arXiv preprint arXiv:2309.16984, 2023.

Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement
learning. In International Conference on Learning Representations (ICLR), 2024.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky T. Q. Chen. Adjoint matching:
Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=xQBRrtQM8u.

11

http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
https://openreview.net/forum?id=xQBRrtQM8u
https://openreview.net/forum?id=xQBRrtQM8u

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Perry Dong, Qiyang Li, Dorsa Sadigh, and Chelsea Finn. Expo: Stable reinforcement learning with
expressive policies. arXiv preprint arXiv:2507.07986, 2025.

Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus, Jascha
Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle: Composi-
tional generation with energy-based diffusion models and mcmc. In International conference on
machine learning, pp. 8489–8510. PMLR, 2023.

Nicolas Espinosa-Dice, Yiyi Zhang, Yiding Chen, Bradley Guo, Owen Oertell, Gokul Swamy, Kiante
Brantley, and Wen Sun. Scaling offline rl via efficient and expressive shortcut models. arXiv
preprint arXiv:2505.22866, 2025.

Linjiajie Fang, Ruoxue Liu, Jing Zhang, Wenjia Wang, and Bingyi Jing. Diffusion actor-critic:
Formulating constrained policy iteration as diffusion noise regression for offline reinforcement
learning. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=ldVkAO09Km.

Kevin Frans, Seohong Park, Pieter Abbeel, and Sergey Levine. Diffusion guidance is a controllable
policy improvement operator. arXiv preprint arXiv:2505.23458, 2025.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Kamyar Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic? estimating
uncertainties for offline RL through ensembles, and why their independence matters. Advances in
Neural Information Processing Systems, 35:18267–18281, 2022.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
IDQL: Implicit Q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Aaron Havens, Benjamin Kurt Miller, Bing Yan, Carles Domingo-Enrich, Anuroop Sriram, Brandon
Wood, Daniel Levine, Bin Hu, Brandon Amos, Brian Karrer, et al. Adjoint sampling: Highly
scalable diffusion samplers via adjoint matching. arXiv preprint arXiv:2504.11713, 2025.

Longxiang He, Li Shen, Linrui Zhang, Junbo Tan, and Xueqian Wang. Diffcps: Diffusion model
based constrained policy search for offline reinforcement learning. ArXiv, abs/2310.05333, 2023a.

Longxiang He, Li Shen, Linrui Zhang, Junbo Tan, and Xueqian Wang. Diffcps: Diffusion model based
constrained policy search for offline reinforcement learning. arXiv preprint arXiv:2310.05333,
2023b.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J Fleet.
Video diffusion models. Advances in neural information processing systems, 35:8633–8646, 2022.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning. In Neural Information Processing Systems (NeurIPS), 2023.

Prajwal Koirala and Cody Fleming. Flow-based single-step completion for efficient and expressive
policy learning. arXiv preprint arXiv:2506.21427, 2025.

12

https://openreview.net/forum?id=ldVkAO09Km

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit Q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic Q-ensemble. In Conference on Robot
Learning, pp. 1702–1712. PMLR, 2022.

Qiyang Li, Jason Zhang, Dibya Ghosh, Amy Zhang, and Sergey Levine. Accelerating exploration
with unlabeled prior data. Advances in Neural Information Processing Systems, 36, 2024a.

Qiyang Li, Zhiyuan Zhou, and Sergey Levine. Reinforcement learning with action chunking. arXiv
preprint arXiv:2507.07969, 2025.

Steven Li, Rickmer Krohn, Tao Chen, Anurag Ajay, Pulkit Agrawal, and Georgia Chalvatzaki.
Learning multimodal behaviors from scratch with diffusion policy gradient. Advances in Neural
Information Processing Systems, 37:38456–38479, 2024b.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ Chen,
David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv preprint
arXiv:2412.06264, 2024.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In
International Conference on Machine Learning, pp. 22825–22855. PMLR, 2023a.

Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In
International Conference on Machine Learning (ICML), 2023b.

Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Efficient online reinforcement learning for
diffusion policy. arXiv preprint arXiv:2502.00361, 2025.

Max Sobol Mark, Tian Gao, Georgia Gabriela Sampaio, Mohan Kumar Srirama, Archit Sharma,
Chelsea Finn, and Aviral Kumar. Policy agnostic rl: Offline rl and online rl fine-tuning of any class
and backbone. arXiv preprint arXiv:2412.06685, 2024.

David McAllister, Songwei Ge, Brent Yi, Chung Min Kim, Ethan Weber, Hongsuk Choi, Haiwen
Feng, and Angjoo Kanazawa. Flow matching policy gradients. arXiv preprint arXiv:2507.21053,
2025.

Vivek Myers, Bill Chunyuan Zheng, Benjamin Eysenbach, and Sergey Levine. Offline
goal-conditioned reinforcement learning with quasimetric representations. arXiv preprint
arXiv:2509.20478, 2025.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-QL: Calibrated offline RL pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36, 2024.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl. ArXiv, 2024a.

Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main
bottleneck in offline RL? Advances in Neural Information Processing Systems, 37:79029–79056,
2024b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Seohong Park, Kevin Frans, Deepinder Mann, Benjamin Eysenbach, Aviral Kumar, and Sergey
Levine. Horizon reduction makes rl scalable. arXiv preprint arXiv:2506.04168, 2025a.

Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. arXiv preprint arXiv:2502.02538,
2025b.

Ahmad Parsian and SNUA Kirmani. Estimation under linex loss function. In Handbook of applied
econometrics and statistical inference, pp. 75–98. CRC Press, 2002.

Angus Phillips, Hai-Dang Dau, Michael John Hutchinson, Valentin De Bortoli, George Deligiannidis,
and Arnaud Doucet. Particle denoising diffusion sampler. arXiv preprint arXiv:2402.06320, 2024.

Lev Semenovich Pontryagin, V G Boltyanskii, R V Gamkrelidze, and E F Mishchenko. The
Mathematical Theory of Optimal Processes. Wiley, 1962.

Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model policy
from rewards via q-score matching. arXiv preprint arXiv:2312.11752, 2023.

Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model policy
from rewards via q-score matching. In International Conference on Machine Learning (ICML),
2024.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar,
Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization.
arXiv preprint arXiv:2409.00588, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Parrot:
Data-driven behavioral priors for reinforcement learning. arXiv preprint arXiv:2011.10024, 2020.

Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
models. arXiv preprint arXiv:2501.06848, 2025.

Marta Skreta, Tara Akhound-Sadegh, Viktor Ohanesian, Roberto Bondesan, Alán Aspuru-Guzik,
Arnaud Doucet, Rob Brekelmans, Alexander Tong, and Kirill Neklyudov. Feynman-kac correctors
in diffusion: Annealing, guidance, and product of experts. arXiv preprint arXiv:2503.02819, 2025.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438–12448, 2020.

Yuda Song, Yifei Zhou, Ayush Sekhari, Drew Bagnell, Akshay Krishnamurthy, and Wen Sun. Hybrid
RL: Using both offline and online data can make RL efficient. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
yyBis80iUuU.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the mini-
malist approach to offline reinforcement learning. In Thirty-seventh Conference on Neural Infor-
mation Processing Systems, 2023. URL https://openreview.net/forum?id=vqGWslLeEw.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
minimalist approach to offline reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

14

https://openreview.net/forum?id=yyBis80iUuU
https://openreview.net/forum?id=yyBis80iUuU
https://openreview.net/forum?id=vqGWslLeEw

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

James Thornton, Louis Béthune, Ruixiang Zhang, Arwen Bradley, Preetum Nakkiran, and Shuangfei
Zhai. Composition and control with distilled energy diffusion models and sequential monte carlo.
arXiv preprint arXiv:2502.12786, 2025.

Andrew Wagenmaker, Mitsuhiko Nakamoto, Yunchu Zhang, Seohong Park, Waleed Yagoub, Anusha
Nagabandi, Abhishek Gupta, and Sergey Levine. Steering your diffusion policy with latent space
reinforcement learning. arXiv preprint arXiv:2506.15799, 2025.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In International Conference on Learning Representations
(ICLR), 2023.

Max Wilcoxson, Qiyang Li, Kevin Frans, and Sergey Levine. Leveraging skills from unlabeled
prior data for efficient online exploration. In Arxiv, 2024. URL https://arxiv.org/abs/2410.
18076.

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridging
sample-efficient offline and online reinforcement learning. Advances in neural information pro-
cessing systems, 34:27395–27407, 2021.

Xiu Yuan, Tongzhou Mu, Stone Tao, Yunhao Fang, Mengke Zhang, and Hao Su. Policy decorator:
Model-agnostic online refinement for large policy model. arXiv preprint arXiv:2412.13630, 2024.

Haichao Zhang, Wei Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforce-
ment learning. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=-Y34L45JR6z.

Ruoqi Zhang, Ziwei Luo, Jens Sjölund, Thomas B Schön, and Per Mattsson. Entropy-regularized
diffusion policy with Q-ensembles for offline reinforcement learning. In Neural Information
Processing Systems (NeurIPS), 2024.

Shiyuan Zhang, Weitong Zhang, and Quanquan Gu. Energy-weighted flow matching for offline
reinforcement learning. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=HA0oLUvuGI.

Han Zheng, Xufang Luo, Pengfei Wei, Xuan Song, Dongsheng Li, and Jing Jiang. Adaptive policy
learning for offline-to-online reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 11372–11380, 2023.

Zhiyuan Zhou, Andy Peng, Qiyang Li, Sergey Levine, and Aviral Kumar. Efficient online reinforce-
ment learning fine-tuning need not retain offline data. In The Thirteenth International Conference
on Learning Representations, 2025. URL https://openreview.net/forum?id=HN0CYZbAPw.

15

https://arxiv.org/abs/2410.18076
https://arxiv.org/abs/2410.18076
https://openreview.net/forum?id=-Y34L45JR6z
https://openreview.net/forum?id=HA0oLUvuGI
https://openreview.net/forum?id=HN0CYZbAPw

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A ADDITIONAL DISCUSSIONS FOR RELATED WORK

CEP (Lu et al., 2023a) and CFGRL (Frans et al., 2025). Both of them build off from the idea of
classifier/classifier-free guidance, which combines the denoising step of a base diffusion/flow policy
to the denoising step of for a tilt distribution.

CEP (diffusion): log πt(s, at, t)← α log πtβ(s, a
t, t) + (1− α)Qt(s, at, t) (31)

CFGRL (flow): v(s, at, t)← αvβ(s, a
t, t) + (1− α)vo=1(s, a

t, t) (32)

where Qt(s, at, t)← logEat|a
[
eQ(s,a)

]
is the score of the Boltzmann distribution (i.e.,∝ eQ(s,a)) at

denoising time t and vo is the velocity field of the policy that is conditioned on a optimality variable,
a binary indicator of whether the policy is ‘optimal’ (o = 1 means it is). CEP aims at approximating
π ∝ παβ e(1−α)Q(s,a) whereas CFGRL aims at approximating π ∝ παβπ

(1−α)
o=1 .

However, as discussed in many prior work (Du et al., 2023; Bradley & Nakkiran, 2024), even when
both the denoising steps are exact (log πt for diffusion and v(·, ·, t) for flow), the denoising process
that uses a summation of them do not lead to the correct distribution:

∇at log πt(at | s) ̸= ∇at log πtβ(at | s) + τ∇atQt(s, at). (33)

DAC (Fang et al., 2025). Diffusion actor critic uses the diffusion formulation where the goal is to
find a policy that satisfies π(· | s) ∝ πβ(· | s)eQ(s,·). However, their training objective is derived
based on the assumption that

∇au log pu(au | s) ≈ ∇au log puβ(a
u | s) + τ∇auQu(s, au), (34)

and additionally

∇auQu(s, au) ≈ ∇auQ(s, au). (35)

While these assumptions provide a convenient approximation of the objective function, it does not
provide guarantees on where policy converges to at the optimum.

B DOMAIN AND EXPERIMENT DETAILS

We consider 10 domains in our experiments. The dataset size, episode length, and the action
dimension for each domain is available in Table 2. For each method and each task, we run 8 seeds. All
plots and tables report the means with 95% confidence intervals computed via bootstrapping. All our
experiments are run on NVIDIA RTX-A5000 GPU and our code is written in JAX (Bradbury et al.,
2018). We use NVIDIA-A5000 GPU to run all our experiments. Each complete offline-to-online
experiment run takes around 3 hours. To reproduce all our results in Table 1 and Figure 2, we estimate
that it would take around 3︸︷︷︸

hours per single run

× 17︸︷︷︸
of methods

× 50︸︷︷︸
of tasks

× 8︸︷︷︸
of seeds

= 20 400 GPU hours.

Tasks Dataset Size Episode Length Action Dimension (A)
cube-double-* 1M 500 5
cube-triple-* 3M 1000 5

cube-quadruple-100M-* 100M 1000 5
antmaze-large-* 1M 1000 8
antmaze-giant-* 1M 1000 8

humanoidmaze-medium-* 2M 2000 21
humanoidmaze-large-* 2M 2000 21

scene-sparse-* 1M 750 5
puzzle-3x3-sparse-* 1M 500 5

puzzle-4x4-100M-sparse-* 100M 500 5

Table 2: Domain metadata.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 4: OGBench domains. In this paper, we primarily focus on evaluating our method on some of the
hardest domains on OGBench (Park et al., 2024a). cube-{triple, quadruple} (left) requires a robot arm to
manipulate up to 3/4 cubes from an initial arrangement to a goal arrangement. antmaze-giant (right) requires
an ant robot agent to navigate from one location to another location. All of these domains are long-horizon by
design and are difficult to solve from offline data alone. The offline dataset in these domains contain diverse multi-
modal behaviors that can only be accurately captured by expressive generative models like flow/diffusion policies.

C BASELINES

In this section, we describe in details how each of our baselines are implemented. In all the loss
functions below, unless specified otherwise, s, a, r, s′ are assumed to be sampled from D and as
part of the expectation even when it is not explicitly written under the expectation (i.e., Ez∼N [·] :=
E(s,a,r,s′)∼D,z∼N [·]).

C.1 BASELINE IMPLEMENTATION DETAILS

1. Backprop-based.

FBRAC is a baseline considered in FQL (Park et al., 2025b) as a flow counterpart of diffusion Q-
learning (DQL) (Wang et al., 2023), where the multi-step flow policy is directly optimized against
the Q-function with backpropagation through time (BPTT). In addition to maximizing the Q-value,
FBRAC also has a behavior cloning term where the flow policy is trained with the standard flow-
matching objective on the dataset action with a BC coefficient α.

We implement this baseline by training a flow-matching policy with the following loss:

LFBRAC(θ) = αLFM(θ) + LBPTT(θ), (36)

where LFM is the standard flow-matching loss that clones the data behavior (i.e., Equation (17)) and

LBPTT(θ) = −Ea0=z∼N (0,IA)

Qϕ
s,Clip[z + h

T−1∑
k=0

vθ(s, a
k−1, kh)

]1

−1

 , (37)

where Clip[·]ba is an element-wise clipping function that makes sure the actions generated from the
flow model vθ are within the valid range [−1, 1] and {ai}i is the discrete approximation of the ODE
trajectory using Euler’s method with a step size of h = 1/T :

ai+1 := ai + hvθ(s, a
i−1, ih),∀i ∈ {0, 1, · · · , T}. (38)

We use

ODE(vθ(s, ·, ·), z) := Clip

[
z + h

T−1∑
i=0

vθ(s, a
i−1, ih)

]1

−1

(39)

as the abbreviation for the rest of this section, and additionally use πvθ to denote the distribution of
actions generated by vθ.

The critic loss is the standard TD backup:

L(ϕ) = Ez∼N
[
(Qϕ(s, a)− r −Qϕ̄(s′,ODE(vθ(s

′, ·, ·), z))2
]

(40)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

In practice, we also use K = 10 critic functions and pessimistic target value backup as described in
Equation (26) and the policy we use to interact with the environment is πvθ .

FQL (Park et al., 2025b) distill a multi-step flow policy into a one-step distillation to avoid BPTT.

This baseline is implemented by training a behavior cloning flow-matching policy (i.e., vθ : S ×
RA × [0, 1]→ RA), and a 1-step distilled noise-conditioned policy (i.e., Ωω : S × RA → RA):

LFQL(θ, ω) = LFM(θ) + Lonestep(ω) (41)

where LFM(θ) is the standard flow-matching loss (i.e., Equation (17)) and

Lonestep(ω) = Ez∼Z
[
α∥Ωω(s, z)−ODE(vθ(s

′, ·, ·), z)∥22 −Q(s,Ωω(s, z))
]

(42)

where α is the BC coeffient that controls how close the 1-step distilled policy should be relative to
the BC policy πvθ . Finally, the critic loss is the standard TD backup:

L(ϕ) = Ez∼N
[
(Qϕ(s, a)− r −Qϕ̄(s′,Ωω(s′, z))2

]
(43)

In practice, we also use K = 10 critic functions and pessimistic target value backup as described
in Equation (26) and the policy we use to interact with the environment is πΩω

where the action is
sampled by first drawing a Gaussian noise z ∼ N and then obtain the action by running through the
one-step distilled model: a = Ωω(s, z).

2. Directly using the action gradient of the critic (i.e.,∇aQ(s, a)) with approximations.

QSM (Psenka et al., 2024) uses the action gradient of the critic to train a diffusion model such that it
can reconstruct the policy that follows the Boltzmann distribution of the Q-function:

π(· | s) ∝ τQϕ(s, ·). (44)

To approximate the score of the intermediate actions,∇ai log πi(ai | s), QSM directly uses the critic
evaluated at ai:

∇ai log πi(ai | s) ≈ τ∇aiQϕ(s, ai) (45)

where ai =
√
αia+

√
1− αiε with ε ∼ N and {α0, · · · , αT−1} being any diffusion schedule with

the number of diffusion steps of T . For all diffusion methods in this paper, we follow Hansen-Estruch
et al. (2023) to use the variance preserving diffusion schedule:

βi = 1− exp

(
−bmin

T
− (bmax − bmin)(2i+ 1)

2T 2

)
, (46)

αi =

i∏
j=0

(1− βj), (47)

for all i ∈ {0, 1, · · · , T − 1} with bmin = 0.1, bmax = 10 and T being the number of diffusion steps.

To train the diffusion model, QSM uses the following loss function:

Lqsm(θ) = Eε∼N ,i∼U{0,··· ,T−1}
[
∥ − τ∇aQϕ(s, ai)− fθ(s, ai, i)∥22

]
, (48)

where again ai =
√
αia+

√
1− αiε. In practice, we find that using∇aQϕ̄(s, ai) (the action gradient

of the critic network) helps learning stability, so we use that instead.

To adopt QSM into the offline-to-online RL setting, we additionally augment the loss function with
the standard diffusion loss (Ho et al., 2020) as the behavior regularization:

Lddpm(θ) = Eε∼N ,i∼U{0,··· ,T−1}
[
∥ε− fθ(s, ai, i)∥22

]
. (49)

The overall actor loss is thus

L(θ) = Lqsm(θ) + ηLddpm(θ). (50)

QSM then uses the standard diffusion denoising procedure (with the clipping to make sure generated
actions are within [−1, 1]|A|):

ai−1 ← Clip

[
1√

1− βi

(
ai − βi√

1− αi
fθ(s, a

i, i)

)
+

√
βiεi

]1

−1

, εi ∼ N , (51)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where aT ∼ N . We denote Diff(fθ(s, ·, ·)) as the resulting a0 after going through the diffusion
procedure above and πfθ : s 7→ Diff(fθ(s, ·, ·)) as the policy that generates actions using fθ.

The critic loss can now be defined as follows:
L(ϕ) = Ez∼N

[
(Qϕ(s, a)− r −Qϕ̄(s′, a′ ∼ πfθ (· | s′)))2

]
(52)

In practice, we also use K = 10 critic functions and pessimistic target value backup as described in
Equation (26) and the policy we use to interact with the environment is πfθ .

DAC (Fang et al., 2025) is another method that uses a similar approximation with a behavior prior
(i.e.,∇ai log πi(ai | s) ≈ ∇ai log πiβ(ai | s) + τ∇aiQϕ(s, ai)). To train the diffusion model, DAC
matches fθ to a linear combination of ε (behavior cloning) and ∇aiQ(s, ai) (Q-maximization).

Ldac(θ) = Eε∼N ,i∼U{0,··· ,T−1}
[
∥ε− τ∇aiQϕ(s, ai)− fθ(s, ai, i)∥22

]
= Eε∼N ,i∼U{0,··· ,T−1}

[
∥ε− fθ(s, ai, i)∥22 + η−1(fθ(s, a

i, i) · ∇aiQϕ(s, ai))
]
+ C,

(53)
with η = 2/τ . In practice, it is implemented as a combination of

L(θ) = Eε∼N ,i∼U{0,··· ,T−1}
[
∥(fθ(s, ai, i) · ∇aiQϕ(s, ai))

]
+ ηLddpm(θ) (54)

DAC uses a slightly different way to clip the actions:

âi−1 ← Clip

[
1√

1− βi

(
ai − βi√

1− αi
fθ(s, a

i, i)

)]1

−1

(55)

ai−1 ← βi
√
αi−1

1− αi
âi−1 +

√
1− βi(1− αi−1)ai +

√
βiεi, εi ∼ N (56)

where aT ∼ N and âi−1 can be interpreted as an approximation of the denoised action (e.g., in the
DDIM sampler (Song et al., 2020)). This approximated denoised action is first clipped to be within
[−1, 1]|A| and then used to reconstruct ai−1 using the closed-form Gaussian conditional probability
distribution of p(ai−1 | a0 = âi−1, aT = a) (e.g., Eq. (7) in Ho et al. (2020)). In practice, DAC
also uses

√
β
i as standard deviation for this conditional distribution instead of the correct one β̃i =√

1−αi−1√
1−αi

βi as an approximation. This is why in the expression above the multiplier before εi is
√
βi.

Similar to QSM, the critic loss can now be defined as follows:
L(ϕ) = Ez∼N

[
(Qϕ(s, a)− r −Qϕ̄(s′, a′ ∼ πfθ (· | s′)))2

]
, (57)

where πfθ is the policy that generates actions using the procedure above in Equation (55) and
Equation (56). In practice, we also use K = 10 critic functions and pessimistic target value backup
as described in Equation (26) and the policy we use to interact with the environment is πfθ .

CGQL is a novel baseline built on top of the idea of classifier guidance (Dhariwal & Nichol, 2021).
In particular, we combine the velocity field of a behavior cloning flow policy and the gradient field of
the Q-function to form a new velocity field that approximates the velocity field that generates the
optimal behavior-constrained action distribution.

More specifically, we implement this baseline by interpreting Qϕ(s, ·) as the score of the optimal
entropy-regularized distribution log π⋆(· | s) (where π⋆(· | s) ∝ eτQϕ(s,·)). The corresponding
velocity field that generates this distribution of actions can be obtained through a simple conversion
(e.g., following Equation 4.79 from Lipman et al. (2024)):

vϕ(s, a, u) :=
(1− u)τ∇aQuϕ(s, a) + a

u
, (58)

where

Quϕ(s, a) :=
1

τ
logEz∼N (0,IA)

[
eτQϕ(s,(1−u)z+ua)

]
, (59)

is the score of the distribution over the noisy intermediate actions. In the classifier guidance literature,
the score of the noisy examples is approximated by the score of the noise-free examples at the noisy
examples (Dhariwal & Nichol, 2021). In our setting this translates to

v̂ϕ(s, a
u, u) :=

(1− u)τ∇aQϕ(s, au) + au

u
. (60)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Empirically, both versions (vϕ and v̂ϕ) perform similarly and we opt for a simpler design v̂ as it does
not require learning or approximating Quϕ(s, a) for all u ∈ [0, 1]. Finally, we add the velocity field
defined by Qϕ directly to the behavior cloning velocity field to form our policy:

v = vβ + ϑv̂ϕ, (61)

where vβ is trained with the standard flow-matching loss (i.e., L(β) = LFM(β)) and ϑ is coefficient
that modulates influence of the guidance that we find to be helpful (e.g., ϑ < 1 often works better
than ϑ = 1). The critic loss uses πv to backup the target Q-value:

L(ϕ) = Ez∼N
[
(Qϕ(s, a)− r −Qϕ̄(s′,ODE(v(s′, ·, ·), z))2

]
. (62)

In practice, we also use K = 10 critic functions and pessimistic target value backup as described
in Equation (26) and the policy we use to interact with the environment is πv (generated from the
summation of vβ and v̂ϕ.

CGQL-MSE/Linex. Alternatively, we can approximate Quϕ in Equation (59) more closely with a
training objective. In particular, we explore the following two regression objectives:

MSE: LMSE(ζ) = Eu∼U [0,1],z∼N

[(
Q̂uζ (s, a

u)−Qϕ(s, a)
)2

]
(63)

Linex: LLinex(ζ) = Eu∼U [0,1],z∼N

[
exp(τ(Qϕ(s, a)− Q̂uξ (s, au))) + τQ̂uξ (s, a

u)
]

(64)

where au := (1− u)z + ua. The optimal solution of Q̂uζ in Equation (63) is not exactly the same as
the desired Quϕ in Equation (59) but constitutes a lower-bound due to Jensen’s inequality:

Qu⋆mse = Ez,u [Qϕ(s, au)] ≤
1

τ
logEz∼N (0,IA)

[
eτQϕ(s,a

u)
]
. (65)

The second objective resembles the classic Linex objective (Parsian & Kirmani, 2002) where the
optimal solution of Q̂uζ in Equation (64) is the same as the desired Quϕ in Equation (59):

Qu⋆linex =
1

τ
logEz∼N (0,IA)

[
eτQϕ(s,(1−u)z+ua)

]
. (66)

A discussion on this can be found in Myers et al. (2025). For completeness, we show this below.
Without loss of generality, we just need to show that exp(y) = E[exp(x)] =

∫
p(x) exp(x)dx is the

unique minimum for the following loss function:

L(y) =

∫
p(x) [exp(x− y) + y] dx (67)

Taking the first and second derivatives with respect to y gives
dL

dy
= − exp(−y)E[exp(x)] + 1 (68)

d2L

dy2
= exp(−y)E[exp(x)] (69)

Setting Equation (68) gives y = logE[exp(x)] at which the second derivative is 1 (i.e., d2L
dy2 = 1).

Furthermore, to prevent the exponential blow up of exp(Qϕ(s, a)− Q̂uξ (s, au)), we follow Myers
et al. (2025) to use a Huber-style loss that locally behaves like a Linex loss but with a linear penalty
when the exponential term is too large. In particular, we use the following loss:

LLinex+(ζ) =

{
E
[
exp(∆) + τQ̂uξ (s, a

u)
]
, ∆ > 5

E [∆] , ∆ ≤ 5
(70)

where ∆ = τ(Qϕ(s, a)− Q̂uξ (s, au)).

In practice, however, both the MSE and Linex objectives (LLinex+ , LMSE+) can still be unstable and
exhibit high variances. Instead of learning Q̂uζ and Qϕ separately, we find it is often better to directly
learn both of them in a single network Qϕ(s, a, u) : S ×A× [0, 1]→ R as follows:

L(ϕ) =Ez∼N
[
(Qϕ(s, a, 1)− r −Qϕ̄(s′,ODE(v(s′, ·, ·), z))2

]
+

ϱEu∈U [0,1],z∼N
[
(Qϕ(s, (1− u)z + ua, u)−Qϕ̄(s, a, 1))2

]
,

(71)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where ϱ is the coefficient that balances the TD backup for Qϕ(s, a, 1) and the noisy target regression
for Qϕ(s, a, u < 1). With Qϕ(s, ·, u), we can define our velocity field (which is also used as the TD
backup above) as

v := vβ + ϑv̂ϕ, where v̂ϕ(s, au, u) :=
(1− u)τ∇aQϕ(s, au, u) + au

u
, (72)

and ϑ again modulates the guidance strength.

3. Directly using the critic value (i.e., Q(s, a)).

FAWAC is a baseline considered in FQL (Park et al., 2025b) where it uses AWR to train the flow
policy similar to QIPO (Zhang et al., 2025).

We implement it by training a flow-matching policy with the weighted flow-matching loss:

LFAWAC(θ) = w̃(s, a)LFM(θ) (73)

= w̃(s, a)Eu∼U [0,1],z∼N
[
∥vθ(s, (1− u)z + ua, u)− z + a∥22

]
(74)

where w̃(s, a) = min
(
eτ(Qϕ(s,a)−Vξ(s)), 100.0

)
. The inverse temperature parameter τ controls how

sharp the prior regularized optimal policy distribution is.

The critic function Qϕ(s, a) is trained with the standard TD backup and the value function Vξ(s)
regresses to the same target:

L(ϕ) = Ez∼N
[
(Qϕ(s, a)− r −Qϕ̄(s′,ODE(v(s′, ·, ·), z))2

]
(75)

L(ξ) = Ez∼N
[
(Vξ(s)− r −Qϕ̄(s′,ODE(v(s′, ·, ·), z))2

]
(76)

The second line can also be alternatively implemented by regressing to the critic function Q(s, a)
directly. We implement in this particular way because we can re-use the Q-target computed.

In practice, we also use K = 10 critic functions and pessimistic target value backup as described in
Equation (26) and the policy we use to interact with the environment is πvθ .

4. Post-processing-based.

FEdit is a baseline that uses the policy edit from a recent offline-to-online RL method conceptually
similar to EXPO (Dong et al., 2025). We implement a Gaussian edit policy on top of a BC flow
policy rather than a diffusion policy used in EXPO. EXPO also uses the standard sample-and-rank
trick where it samples multiple actions and rank them based on the value. To keep computational
cost down and comparisons fair to other methods, we only use a single edited action for both value
backup and evaluation.

We implement this baseline by training a flow-matching policy (i.e., vθ : S × RA × [0, 1]→ RA),
and a 1-step Gaussian edit policy (i.e., πω : S ×A → ∆A) implemented with an entropy regularized
SAC policy (Haarnoja et al., 2018). The loss function can be described as follows:

LFEdit(θ, ω) = LFM(θ) + LGaussian(ω), s.t. Es∼D [H(πω(· | s))] ≥ Htarget (77)

where LFM is the standard flow-matching loss that clones the data behavior (i.e., Equation (17)),
Htarget is the target entropy that the Gaussian policy is constrained to be above of, and

LGaussian(ω) = E∆a∼πω(·|s,ã),z∼N

[
−Qϕ(s,Clip [σa ·∆a+ ã]

1
−1)

]
(78)

where ã = ODE(vθ(s, ·, ·), z) and Clip[·]ba is an element-wise clipping function that makes sure the
actions are within the valid range [−1, 1].
Intuitively, the Gaussian SAC policy edits the behavior flow policy by modifying its output action
where σa is the hyperparameter that controls how much the origianl behavior actions can be edited.

The critic loss is the standard TD backup:

L(ϕ) = Ez∼N ,∆a′∼πω(·|s′,ã′)

[
(Qϕ(s, a)− r −Qϕ̄(s′,Clip [ã′ + σa ·∆a′]

1
−1)

2
]

(79)

where again ã′ = ODE(vθ(s
′, ·, ·), z). In practice, we also use K = 10 critic functions and

pessimistic target value backup as described in Equation (26) and the policy we use to interact with

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

the environment is a combination of the BC policy πvθ and the Gaussian edit policy. We first sample
z ∼ N and then run it through the BC flow policy to obtain an initial action ã← ODE(vθ(s, ·, ·), z)
and then both the initial action and the state is fed into the edit policy to generate the final action
a← ã+ σa ·∆a where ∆a ∼ πω(· | s, ã).
DSRL (Wagenmaker et al., 2025) is a recently proposed method that performs RL directly in the noise-
space of a pre-trained expressive BC policy (flow or diffusion). We use the flow-matching version of
DSRL as our method is also based on flow-matching policies. The original DSRL implementation
does not fine-tune the BC policy during online learning while all our baselines do fine-tune the BC
policy online. To make the comparison fair, we modify the DSRL implementation such that it also fine-
tunes the BC policy. One additional implementation trick that allows this modification to work well is
the use of target policy network for the noise-space policy. In general, we find that fine-tuning the BC
policy yields better online performance, so we adopt this new design of DSRL in our experiments.

More specifically, we train a flow-matching policy (i.e., vθ : S × RA × [0, 1] → RA), and a 1-
step Gaussian edit policy (i.e., πω : S ×A → ∆A) implemented with an entropy regularized SAC
policy (Haarnoja et al., 2018). The loss function can be described as follows:

LDSRL(θ, ω) = LFM(θ) + LLatentGaussian(ω), s.t. Es∼D [H(πω(· | s))] ≥ Htarget (80)

where LFM is the standard flow-matching loss that clones the data behavior (i.e., Equation (17)),
Htarget is the target entropy that the Gaussian policy is constrained to be above of, and

LLatentGaussian(ω) = Ez∼πω(·|s)
[
−Qzψ(s, z)

]
(81)

where Qzψ(s, z) is a distilled critic function in the noise space that is regressed to the original critic
function, Qϕ(s, a):

L(ψ) = Ez∼N
[
(Qzψ(s, z)−Qϕ(s,ODE(vθ̄(s, ·, ·), z))2

]
. (82)

Intuitively, DSRL directly learns a policy in the noise space by hill-climbing a distilled critic that also
operates in the noise space. Finally, the critic loss for the original critic function in the action space is

L(ϕ) = Ez∼πω(·|s′)
[
(Qϕ(s, a)− r −Qϕ̄(s′,ODE(vθ̄(s

′, ·, ·), z))2
]

(83)

We use K = 10 critic functions and pessimistic target value backup as described in Equation (26).
The policy we use to interact with the environment is a combination of the BC policy πvθ and the
Gaussian noise-space policy. We first sample z ∼ πω(· | s) and then run it through the BC flow policy
to obtain the final action a← ODE(vθ(s, ·, ·), z). One important implementation detail for stability
in the offline-to-online setting is to use the target network for the BC flow policy vθ̄ (instead of vθ.
Without it DSRL can become unstable sometimes when the BC flow policy changes too fast online.

IFQL is a baseline considered in FQL (Park et al., 2025b) as a flow counterpart of implicit diffusion
Q-learning (IDQL) (Hansen-Estruch et al., 2023), where IQL (Kostrikov et al., 2021) is used for
value learning and the policy extraction is done by sampling multiple actions from a behavior cloning
diffusion policy and select the one that maximizes the Q-function value.

More specifically, we train a critic function Qϕ(s, a) and a value function Vξ(s) with implicit value
backup:

L(ϕ) = (Qϕ(s, a)− r − Vξ(s′))2 (84)
L(ξ) = fκexp(Qϕ̄(s, a)− Vξ(s)) (85)

where fκexp(u) = |κ− Iu<0|u2 is the expectile regression loss function.

On top of that, we also K = 10 critic functions and pessimistic target value backup as described in
Equation (26) for training the value function Vξ(s). To extract a policy from Qϕ(s, a), IFQL uses
rejection sampling with a base behavior cloning flow policy that is trained with the standard flow-
matching objective. In particular, the output action a⋆ for s is selected as the following:

a⋆ ← argmaxa1,··· ,aNQ(s, ai), a1, · · · , aN ∼ πvβ (· | s). (86)

5. Gaussian.

RLPD (Ball et al., 2023) is a strong offline-to-online RL method that trains a SAC agent from scratch
online with a 50/50 sampling scheme (i.e., 50% of training examples in a batch comes from the
offline dataset wheras the other 50% of training examples comes from the online replay buffer).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

ReBRAC (Tarasov et al., 2024) is a strong offline RL method that trains a TD3 (Fujimoto et al., 2018)
agent with behavior cloning loss. In practice, we find two hyperparameters to impact performance
the most. The first hyperparameter is α which controls the strength of the behavior cloning loss. The
second hyperparameter is σ which controls the magnitude of the Gaussian noise added in the TD3
policy. We keep the action noise clip to be 0.5 and an actor delay of 2, following the original paper.

C.2 CHARACTERIZATION BY BEHAVIOR CONSTRAINT SHAPE

Reversed KL. The reversed KL constraint is the most commonly used constraint in offline RL and
offline-to-online RL. It amounts to the following constraint on the learned policy π:

DKL(π(· | s) ∥ πβ(· | s)) =
∫
πθ(a | s)(log πβ(a | s)− log π(a | s))da (87)

When combined with the Q-maximization objective,

L(π) = −Ea∼π(·|s) [Q(s, a)] + β(s)DKL(π ∥ πβ), (88)

the optimal policy admits the following closed-form solution:

π⋆(· | s) ∝ πβ(· | s) exp(τ(s)Q(s, ·)) (89)

where τ(s) depends on β(s) and the magnitude of Q.

In practice, we often use a state-independent τ for simplicity:

π⋆(· | s) ∝ πβ(· | s) exp(τQ(s, ·)). (90)

Our method, QAM, and many of our baselines, FAWAC, CGQL*, DAC, QSM approximate π⋆ in different
ways. FAWAC uses advantage-weighted behavior cloning (flow-matching loss since we are using flow
policies) like the following:

LFAWAC(π) = Ea∼D [exp(Q(s, a)− V (s))LπFM(s, a)] (91)

such that the policy converges to the desired optimal policy at the optimum:

π⋆(· | s) ∝ πβ(· | s) exp(τ(Q(s, ·)− V (s))) ∝ πβ(· | s) exp(τQ(s, ·)). (92)

The value function does not change the optimum but is important to reduce the learning variance.

CGQL*, DAC, QSM are based on the observation that

∇a log π⋆(a | s) = ∇a log πβ(a | s) + τ∇aQ(s, a) (93)

make the approximation that

∇au log πu⋆(au | s) ≈ ∇au log πuβ(a
u | s) + τ∇auQ(s, au) (94)

where au is the intermediate noisy action at some denoising time u and πu, πu⋆ are the distributions
of the noisy actions from the behavior and optimal respectively from the corresponding time u.

In contrast to these prior methods, QAM does not rely on approximations while leveraging ∇aQ(s, a)
to align the flow-matching policy directly to π⋆.

In general, reversed KL behavior constraint respects the support of the behavior distribution πβ the
best because at the optimum, π⋆ cannot assign non-zero probability to any action a that is outside the
support of πβ (i.e., πβ(a | s) = 0). The geometry-agnostic nature of the KL divergence, in principle,
allows these methods to deal with any behavior distribution and value function landscapes. This is in
contrast to geometry-aware methods which we will discuss below.

Wasserstein distance. Another rising class of behavior constraint is the Wasserstein distance
constraint. It amounts to the following constraint:

Wp(π, πβ) = min
P∈C(π,πβ)

E(aπ,aβ∼P)

[
d(aπ, aβ)p

]1/p
(95)

where d : A×A is some distance metric that is commonly picked to be L2 or L∞.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

With d(a, a′) = ∥a− a′∥2 and p = 2, FQL (Park et al., 2025b) optimizes the following objective

L(π) = −Ea∼π(·|s) [Q(s, a)] + αW2(πβ , π)
2 (96)

where α is the behavior regularization strength.

Unlike reversed KL behavior constraint, the Wasserstein behavior constraint does not necessarily
respect the support constraint and can assign high probability mass to an action as long as it is close
to some behavior actions in terms of d.

Loosely speaking, FEdit also imposes the behavior constraint in a similar spirit but with a non-metric
d. In particular, it can be interpreted as using

d(aπ, aβ) = I
[
∥aπ − aβ∥∞ > σe

]
(97)

with α→∞. This is equivalent to parameterizing π(· | s) as ã← πedit(s, a ∼ πβ(· | s)) where a
residual edit policy πedit : S × A → A is used to modify the original behavior policy up to σe (in
terms of the infinity norm of the action difference):

L(π) = −Ea∼πβ(·|s) [Q(s, πedit(s, a))] , s.t. ∥πedit(s, a)− a∥∞ ≤ σe (98)

Though strictly speaking it is no longer a Wasserstein distance as d is no longer a metric, it is still
a valid behavior constraint that shares a similar geometry property as the Wasserstein behavior
constraint–it does not respect the support of πβ and can assign large probability mass that is close to
the behavior action in terms of d.

While not respecting the support constraint might seem to be a bad thing, these methods, conceptually,
may attain a better performance compared to the reversed KL methods, especially when the Q-
function generalizes well beyond the behavior support.

Behavior support constraint. The behavior constraint shape in our discussion is the support
constraint. This is similar to the reversed KL constraint but with a more uniform weight over the
actions in the support:

Dsupp(π ∥ πβ) =
∫
πθ(a | s)I [πβ(a | s) > 0] da. (99)

Compared to the reversed KL constraint, which up-weights actions that have higher probability in the
behavior distribution, the behavior support constraint puts a uniform weight over all actions that are in
the support. While achieving this exactly is difficult, a line of work (DSRL (Wagenmaker et al., 2025)
and Singh et al. (2020)) can be seen as an approximation of this by learning a policy in the noise-
space of a diffusion/flow policy. To approximate the support of the diffusion/flow policy, it uses a L∞-
bounded action space in the noise space az ∈ [−σz, σz] and then optimize the following objective:

L(π) = −Eaz∼π(·|s) [Q(s, a = Fβ(s, az))] , (100)

where Fβ : S × Z → A is the behavior policy that maps from a noise space to the action space.
There are many choices of Fβ (e.g., Singh et al. (2020) use normalizing flow (Dinh et al., 2016)) and
in our experiments, we use DSRL, which uses a flow-matching policy. One practical trick that makes
DSRL work is to use a distilled Q-network that directly estimates the action value in the noise space.
We refer the reader to the original paper for more details. We describe the implementation details
regarding the distilled Q-network in Appendix C.1.

D HYPERPARAMETERS

While most methods share a common set of hyperparameters (Table 3 for a fair comparison, most
methods need to be tuned for each domain. We include the domain-specific in Table 4 and the tuning
range of them in Table 5. To pick the hyperparmaeter for each domain for each method, we first run
a sweep over all hyperparmeters in the range (specified by Table 5), or all combinations of them if
there are multiple hyperparameters involved. The hyperparameter tuning runs use 4 seeds for each
method for each hyperparameter configuration for each of the two tasks per domain. For locomotion
domains, we use task 1 (the default task) and task 4. For manipulation domains, we use task 2 (the
default task) and task 4. We use task 4 in addition to the default task recommended by OGBench
because we often find the combination of these two cover the characteristics of each domain better.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

We then use the combined performance of the two tuning tasks per domain per method to pick the
hyperparameter configuration. We include them in Table 4. Finally, for all our main results, we run
all methods on all five tasks for each domain on 8 new seeds (different from the tuning seeds). We
pick the hyperparmeter range such that the total number of tuning runs are similar across methods.
To achieve this, we use the following strategy: For methods where more than one hyperparameter
needs to be tuned, we use a coarser hyperparmeter range. For methods where there is only one
hyperparmeter, we use a more fine-grained sweep. The only exception is our method QAM where we
find 4 tuning hyperparameters (i.e., {1, 3, 10, 30}) are enough to outperform all prior methods.

Parameter Value
Batch size 256

Discount factor (γ) 0.99 for {puzzle/scene/cube/antmaze-large}-*
0.995 for {humanoidmaze/antmaze-giant}-*

Optimizer Adam
Learning rate 3× 10−4

Target network update rate (λ) 5× 10−3

Critic ensemble size (K) 10

Critic target pessimistic coefficient (ρ) 0.5 for {puzzle/scene/cube/antmaze}-*
0 for humanoidmaze-*

UTD Ratio 1
Number of flow steps (T) 10

Number of offline training steps 106; except RLPD (0)
Number of online environment steps 0.5× 106

Network width 512
Network depth 4 hidden layers

Optimizer Gradient clipping 1 for QSM, DAC and QAM*. No clipping for others.

Table 3: Common hyperparameters.

Domains ReBRAC QSM DAC FBRAC FQL DSRL FEdit IFQL CGQL CGQL-MSE CGQL-Linex QAM & BAM QAM-Edit QAM-FQL
(α, σ) (τ, η) η α α σz σa τ (ϑ, τ) (ϑ, ϱ, τ) (ϑ, ϱ, τ) τ (τ, σa) (τ, α)

scene-sparse-* (0.03, 0) (3, 30) 1 100 300 0.4 0.2 0.9 (10, 0.1) (10, 0.1, 0.1) (10, 0.1, 0.1) 1 (1, 0) (1,∞)
puzzle-3x3-sparse-* (0.1, 0) (10, 30) 1 0.3 300 1 0.2 0.95 (10, 0.1) (10, 0.1, 0.1) (10, 0.001, 0.1) 3 (3, 0.1) (3,∞)

puzzle-4x4-100M-sparse-* (0.01, 0.2) (10, 1) 1 0.3 1 1 0.8 0.9 (10, 0.1) (10, 0.001, 1) (10, 0.001, 1) 30 (3, 0.9) (1, 3)
cube-double-* (0.01, 0) (1, 10) 3 0.1 300 1 0.2 0.9 (10, 0.01) (10, 0.001, 0.01) (10, 0.001, 0.01) 1 (1, 0) (1, 0)
cube-triple-* (0.01, 0.2) (10, 10) 0.3 0.03 30 1.4 0.3 0.95 (10, 0.1) (10, 0.001, 0.1) (10, 0.001, 0.1) 10 (10, 0.1) (10, 30)

cube-quadruple-100M-* (0.01, 0.2) (1, 10) 1 1 100 1.4 0.4 0.95 (10, 0.1) (10, 0.1, 0.01) (10, 0.1, 0.01) 1 (3, 0.5) (1, 30)
antmaze-large-* (0.01, 0) (10, 10) 0.3 0.1 3 0.8 0.2 0.9 (10, 0.1) (10, 0.1, 0.1) (10, 0.001, 0.1) 10 (1, 0.1) (3, 30)
antmaze-giant-* (0.01, 0) (10, 10) 0.3 0.1 3 1.2 0.3 0.8 (10, 0.1) (10, 0.001, 0.1) (10, 0.001, 0.1) 3 (3, 0.1) (3, 300)

humanoidmaze-medium-* (0.01, 0) (10, 30) 1 30 30 0.6 0.5 0.7 (10, 0.01) (10, 0.1, 0.1) (10, 0.1, 0.1) 3 (1, 0.1) (3,∞)
humanoidmaze-large-* (0.01, 0.1) (10, 30) 0.3 10 30 0.8 0.1 0.8 (10, 0.01) (10, 0.1, 0.1) (10, 0.1, 0.1) 3 (1, 0.1) (1, 30)

Table 4: Domain-specific hyperparameters. The best hyperparameter configuration obtained from our tuning
runs. We use the same hyperparameter configuration for all tasks in each domain.

E PROOF OF PROPOSITION 1

Proposition 1 (Extension of Proposition 7 in Domingo-Enrich et al. (2025) to Policy Optimiza-
tion.) Take LAM(θ) in Equation (14), there is a unique fθ such that

∂

∂fθ
LAM = 0, (27)

and for all s ∈ supp(D),

πθ(· | s) ∝ πβ(· | s)eτQϕ(s,a). (28)

Proof. Our proof mainly rewrites the assumptions and the statement of Proposition 7 of Domingo-
Enrich et al. (2025) in our notations with a simple extra step that extends it to the state-conditioned
version (e.g., for policy optimization).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Method Hyperparameter(s) Sweep Range
ReBRAC (α, σ) ({0.01, 0.03, 0.1, 0.3, 1}, {0, 0.1, 0.2})
FBRAC α {0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0, 100.0}
CGQL (ϑ, τ) ({0.01, 0.1, 1}, {0.1, 1, 10})

CGQL-{MSE, Linex} (ϑ, τ, ϱ) ({0.01, 0.1, 1}, {0.1, 1, 10}, {0.001, 0.1})
FQL α {0.3, 1, 3, 10, 30, 100, 300, 1000}
DSRL σz {0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4}
FEdit σa {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}
FAWAC τ {0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8}
IFQL κ {0.5, 0.6, 0.7, 0.8, 0.9, 0.95}
DAC η {0.1, 0.3, 1, 3.0, 10, 30, 100, 300}
QSM (τ, η) ({1.0, 3.0, 10.0, 30}, {1, 3, 10, 30})
QAM τ {1, 3, 10, 30}

QAM-Edit (τ, σa) ({1, 3, 10}, {0, 0.1, 0.5, 0.9})
QAM-FQL (τ, α) ({1, 3, 10}, {3, 30, 300,∞})

Table 5: Domain-specific hyperparameter tuning range. For QAM-FQL, α = ∞ is implemented by QAM.
Similarly, for QAM-FQL, σa = 0 is implemented by QAM. For methods with more than one parameter, we tune
all possible combinations within the sweep range. For example, for CGQL, we sweep over all 3 × 3 = 9
configurations with 3 possible values of ϑ and 3 possible values of τ .

We first define (from Equation 27 in Domingo-Enrich et al. (2025)) the residual

vres(s, a
u, u) :=

√
2

βu(βuα̇u/αu − β̇u)
(vθ(s, a

u, u)). (101)

While the original result showed for a more general case with a family of α, β (and later on σ), in our
work we assume

α(u) = u (102)
β(u) = 1− u (103)

σ(u) =
√
2(1− u)/u (104)

This allows us to simplify the expression for vres as

vres(s, a
u, u) =

√
2u

1− u
vθ(s, a

u, u) (105)

Then, we restate the definition of b (from Equation 27 in Domingo-Enrich et al. (2025)):

b(s, au, u) = 2(vβ(s, a
u, u) + vθ(s, a

u, u))− α̇u
αu
au − σ(u)vres(s, au, u) (106)

= 2(vβ(s, a
u, u) + vθ(s, a

u, u))− au/u− 2vθ(s, a
u, u) (107)

= 2vβ(s, a
u, u)− au/u (108)

We can now rewrite our ‘lean’ adjoint state definition as

dg̃u = −g̃u⊤∇au [b(s, au, u)] , g̃1 = −τ∇a1Qϕ(s, a1) (109)

which coincides with the definition in Equation 38 in Domingo-Enrich et al. (2025), with f = 0 and
g(·) = −τQϕ(s, ·)). Now, we can rewrite our adjoint matching objective as

LAM(θ) := Es∼D,{au}u

[
L̃AM(vθ, {au}u)

]
(110)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

where

L̃AM(s, vθ, {au}u) :=
∫ 1

0

∥vres(s, au, u) + σ(u)g̃u∥ du (111)

=
1

2

∫ 1

0

∥∥∥∥∥
√

2u

1− u
vθ(s, a

u, u) + σ(u)g̃u

∥∥∥∥∥
2

2

du (112)

=
1

2

∫ 1

0

∥2vθ(s, au, u)/σ(u) + σ(u)g̃u∥22 du (113)

Comparing L̃AM(s, vθ, {au}u) to the definition in Equation 37 in Domingo-Enrich et al. (2025), they
are different by only a factor of 2 conditioned on a fixed s. Thus, their critical points are the same.

By triggering Proposition 7 in Domingo-Enrich et al. (2025), we can conclude that for a fixed s, the
only critical point of the following loss function,

E{au}u

[
L̃AM(s, vθ, {au}u)

]
, (114)

is v⋆res(s, a
u, u), the velocity field that generates the following distribution,

π⋆(· | s) ∝ πβ(· | s) exp(τQϕ(s, ·)). (115)

Finally, since the LAM(θ) is a linear combination of E{au}u

[
L̃AM(s, vθ, {au}u)

]
over different

s, the critic point of LAM(vθ) is simply the cartesian product of over the critic points for each
s ∈ supp(D). Since there is only one critical point for each E{au}u

[
L̃AM(s, vθ, {au}u)

]
, LAM(vθ)

also has only one critical point and coincides with v⋆res(s, a
u, u). This concludes that the only critical

point of LAM(vθ) results in velocity fields that satisfy

π⋆(· | s) ∝ πβ(· | s) exp(τQϕ(s, ·)), ∀s ∈ supp(D). (116)

Method Training Speed (milliseconds/step) Parameter Count
ReBRAC 2.97 18 238 534
FBRAC 4.54 17 426 989
CGQL 9.62 18 275 398

CGQL-{MSE, Linex} 10.40 18 275 398
FQL 3.58 18 264 646
DSRL 5.63 27 397 251
FEdit 3.77 18 277 472
FAWAC 3.44 18 243 630
IFQL 2.66 18 243 630
DAC 4.44 18 509 901
QSM 4.44 18 509 901
QAM 5.83 19 941 496

QAM-Edit 6.61 20 791 979
QAM-FQL 6.36 20 779 153

Table 6: Training speed and parameter count for each method on cube-triple.

F ADDITIONAL RESULTS

In this section, we analyze the performance of our method, QAM, when subject to data of different
equalities. Figure 5 reports the performance of our method on cube-quadruple-task2 with
different dataset sizes. Figure 6 reports the comparison of our method with representative baselines
(FQL, ReBRAC and FEdit) on cube-double-noisy-task4 and cube-triple-noisy-task4,
two of the hardest tasks in the benchmark. Figure 7 contains additional results that aggregate over all
5 tasks for each domain.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25
Environment Steps (×104)

0

20

40

60

80

100

Sc
or

e

Data Size

25%
50%
75%
100%

Figure 5: Dataset size analysis on cube-quadruple-task2 (6 seeds). 100%, 75%, 50%, 25% corresponds
to a dataset size of 100M, 75M, 50M, and 25M. Our method can also work on dataset with smaller size until
25M-size dataset where it completely fails.

0 5 10 15 20 25
0

25

50

75

100
cube-double-play-task4

0 5 10 15 20 25

cube-triple-play-task4

0 5 10 15 20 25
0

25

50

75

100
cube-double-noisy-task4

0 5 10 15 20 25

cube-triple-noisy-task4

Environment Steps (×104)

Sc
or

e

QAM FQL FEdit ReBRAC

Figure 6: Experiments on cube-double-task4 and cube-triple-task4 on play and noisy datasets (6
seeds). Top: the original play-style datasets we use in our main experiments; Bottom: the noisy-style datasets
that were collected by expert policies with large uncorrelated, Gaussian action noises. We use the QAM-EDIT
variant as it is the best-performing variant in our offline RL experiments. We use the same hyperparameters for
experiments on noisy-style and play-style datasets. Our method exhibits strong robustness against action noises.
While all our baselines fail completely on the noisy datasets, our method only suffers minor performance drop.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25
0

25
50
75

100
hm-nav

0 5 10 15 20 25

al-nav

0 5 10 15 20 25

scene-play

0 5 10 15 20 25

p33-play

0 5 10 15 20 25

c2-play

0 5 10 15 20 25

c3-play

0 5 10 15 20 25
0

25
50
75

100
hm-stitch

0 5 10 15 20 25

al-stitch

0 5 10 15 20 25

scene-noisy

0 5 10 15 20 25

p33-noisy

0 5 10 15 20 25

c2-noisy

0 5 10 15 20 25

c3-noisy

Environment Steps (×104)

Ag
gr

eg
at

ed
 S

co
re

QAM FQL FEdit ReBRAC

Figure 7: Data quality analysis (4 seeds). Top: performance on the original {navigate/play}-style datasets
we use in our main experiments; Bottom: performance on the {stitch/noisy}-style datasets. stitch-style
datasets were collected the same way as navigate-style datasets but with much shorter trajectory segments.
noisy-style datasets were collected by expert policies with large uncorrelated, Gaussian action noises. We
use the QAM-EDIT variant as it is the best-performing variant in our offline RL experiments. We use the same
hyperparameters from our main experiments. Each subplot reports the aggregated score over 5 tasks in each
domain. For locomotion tasks (e.g., humanoidmaze-medium and antmaze-large), we observe almost no
performance difference when switching from navigate-style to stitch-style dataset. For manipulation tasks,
our method exhibits strong robustness against action noises. In particular, while all our baselines fail completely
on the cube-triple-noisy environments, our method only suffers minor performance drop.

29

	Introduction
	Related Work
	Preliminaries
	Q-learning with Adjoint Matching (QAM)
	Experiments
	Results
	Discussion
	Additional Discussions for Related Work
	Domain and experiment details
	Baselines
	Baseline implementation details
	Characterization by behavior constraint shape

	Hyperparameters
	Proof of thm:theory
	Additional results

