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Abstract

Relation extraction (RE) is the task of extract-001
ing relations between entities in text. Most RE002
methods extract relations from free-form run-003
ning text and leave out other rich data sources,004
such as tables. We explore RE from the per-005
spective of applying neural methods on tabu-006
larly organized data. We introduce a new model007
consisting of Convolutional Neural Network008
(CNN) and Bidirectional-Long Short Term009
Memory (BiLSTM) network to encode entities010
and learn dependencies among them, respec-011
tively. We evaluate our model on a large and re-012
cent dataset and compare results with previous013
neural methods. Experimental results show that014
our model consistently outperforms the previ-015
ous model for the task of relation extraction on016
tabular data. We perform comprehensive error017
analyses and ablation study to show the con-018
tribution of various components of our model.019
Finally, we discuss the usefulness and trade-020
offs of our approach, and provide suggestions021
for fostering further research.022

1 Introduction023

Knowledge graphs (KG) are important lexical re-024

sources for various applications involving natural025

language, such as web searches, question answer-026

ing, etc. However, KGs quickly become incom-027

plete as the world changes. Therefore, adding new028

facts to a KG is crucial for maintaining its rele-029

vance. Relation extraction (RE) is the task of ex-030

tracting relations between two entities in a piece031

of text. RE has been widely used as a way of KG032

completion. Although there is a plethora of work033

in relation extraction, most methods process con-034

tinuous free-form text (e.g., complete sentences)035

mentioning entities, leaving out other important036

data sources such as tables.037

Unlike previous works that used neural networks038

on continuous text (Lin et al., 2016; Zheng et al.,039

2017; Su et al., 2018; Xing and Luo, 2019; Lee040

et al., 2019; Zeng et al., 2015), we focus on extract-041

ing relations from tabular data. We use a neural 042

model for our analysis as neural methods have been 043

shown to outperform traditional RE approaches 044

that require feature engineering; Wang et al. (2022) 045

give a recent review of neural methods in relation 046

extraction. The model extracts relations between 047

a pair of entities in different columns inside a ta- 048

ble and, for encyclopedic and biographical articles, 049

between the subject of the article and an entity in 050

a table inside that article. The model uses a com- 051

bination of convolutions and memory networks to 052

automatically extract useful features and model de- 053

pendencies among features, respectively. We show 054

that our approach can consistently outperform and 055

makes fewer errors than a previous model. 056

Our main contributions are as follows. 057

1. We outperform a state-of-the-art neural model 058

for extracting relations from table data. 059

2. We perform a comprehensive error analysis to 060

highlight the cost of model parameters for a 061

comparable performance gain. 062

3. Analyze the model performance for individ- 063

ual relations and investigate the strengths and 064

limitations of the proposed method. 065

All of our code is provided in this repository: 066

https://github.com/simpleParadox/ 067

RE_656 068

2 Related Work 069

Most prior works have mainly focused on sentence- 070

level RE where deep neural networks have been 071

used to assign relations for a pair of entities (Lin 072

et al., 2016; Zeng et al., 2015; Zheng et al., 2017; 073

Xing and Luo, 2019; Lee et al., 2019). Recent 074

works have also moved the research direction from 075

sentence level to document level RE to utilize richer 076

information in documents and perform relation ex- 077

traction across sentences. For document-level rela- 078
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tion extraction, recent works have also used tech-079

niques such as constructing a document-level graph080

using dependency trees, coreference information,081

rule-based heuristics, and Graph Convolutional082

Networks (GCN) (Sahu et al., 2019; Christopoulou083

et al., 2019; Nan et al., 2020) for reasoning and pre-084

dicting relations. As evident, RE from continuous085

text is explored widely, but only a few papers have086

addressed the task of RE from data that is non-free087

form, such as data organized into tables (Macdon-088

ald and Barbosa, 2020; Muñoz et al., 2014).089

We need features that accurately describe the090

input data for the relation classification task. These091

features can be manually created or automatically092

learned from the input. Muñoz et al. used man-093

ual feature-engineering techniques and traditional094

machine-learning models to extract relations in the095

form of Resource Description Framework (RDF)096

triples from tabular data. Although their method097

achieved an F1-score of 79.40%, it requires compli-098

cated manual feature engineering. On the contrary,099

most recent works overcome the task of manual100

feature engineering using end-to-end deep learning101

techniques, and we use a similar motivation to use102

neural models for automating feature extraction for103

relation classification.104

The most notable work related to ours is the one105

by Macdonald and Barbosa, looking at extracting106

relations from a given pair of entities in Wikipedia107

tables. They used embeddings from BERT (Devlin108

et al., 2019) and a simple neural network with 1109

LSTM unit to classify relations. Although a highly110

effective approach, we found the method to be over-111

simplistic to properly capture many relations. We112

show that a more sophisticated model involving113

convolutions and bidirectional-LSTM may be a114

better approach for the task of classifying relations115

for entity pairs from tabular data.116

The choice of convolution networks here is jus-117

tified by the many previous works showing that118

CNNs perform significantly better than traditional119

feature-based methods for relation extraction. Each120

instance in our data is composed of multiple com-121

ponents such as table headers, table caption, section122

title containing the table etc. A CNN will automati-123

cally learn the useful features, and then finally, max-124

pooling merges them to perform predictions glob-125

ally. Previous works such as Zeng et al. (2015) in-126

troduced the convolutional architecture with piece-127

wise max pooling (PCNN) to capture structural128

information between entities and adopted multi-129

instance learning into PCNN for a dataset that was 130

built using distant supervision (Mintz et al., 2009). 131

They divided the input sentence into three segments 132

and applied a max-pooling operation on each seg- 133

ment instead of the entire sentence. Secondly, Lin 134

et al. (2016) used a CNN model for an RE task with 135

sentence-level attention for multi-instance learning, 136

where the model used informative sentences and 137

de-emphasized noisy samples. Finally, Xing and 138

Luo (2019) proposed a novel framework that uses 139

separate head-tail convolution and pooling to en- 140

code input sentences and classified relations from 141

coarse to fine to filter out negative instances. There- 142

fore, the papers mentioned above have shown the 143

effectiveness of CNN for automatically learning 144

features from sentences. 145

Hybrid neural models have also been shown to 146

perform well in RE tasks. Zheng et al. (2017) intro- 147

duced a hybrid neural network (NN) that consists 148

of a bidirectional encoder-decoder LSTM module 149

(BILSTM-ED) for named entity recognition and a 150

CNN module for relation classification. Initially, 151

they used BILSTM-ED to capture context and then 152

fed obtained contextual information to the CNN 153

module to improve relation classification. Further- 154

more, an encoder-decoder-based CNN+LSTM ap- 155

proach has been presented by Su et al. (2018) for 156

distant supervised RE. Their CNN encoder cap- 157

tured sentence features from a bag of sentences 158

and merged them into a bag representation, and 159

the LSTM decoder predicted relations sequentially 160

by modelling relations’ dependencies. As hybrid 161

networks have shown their utility for the RE task, 162

we utilize a hybrid architecture for relation classifi- 163

cation from tabular data. 164

The utility of BiLSTM is also evident in tack- 165

ling the task of RE. Lee et al. (2019) proposed an 166

end-to-end recurrent neural model incorporating an 167

entity-aware attention mechanism with latent entity 168

typing. They applied BiLSTM to build recurrent 169

neural architecture to encode the context of the sen- 170

tence. We also include a BiLSTM as a component 171

of our model since it has been shown to perform 172

well on RE tasks by modelling contextual informa- 173

tion and leveraging long-term dependencies. 174

3 Methods 175

Here, we describe our task and our model in detail. 176
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Figure 1: Table from the Wikipedia article for “Nishan-e-Haider”. The head and tail entities can be the cell values
in the same row but different columns, or, the article title (Nishan-e-Haider) and any of the cell values of the table.

3.1 Task177

The task is to extract relations between a pair of178

entities in which one or both appear inside a ta-179

ble. This task has been studied in the context of180

Wikipedia, so we use that encyclopedia in our dis-181

cussion for clarity. Recall that each Wikipedia182

article is about a single entity, which is called the183

(entity) subject of that article. Our task is then to184

find relations either between a pair of entities ap-185

pearing on the same row (but different columns)186

of a table inside an article, or between an entity187

appearing inside a table and the subject entity of188

the article.189

For example, consider a table from the190

Wikipedia article “Nishan-e-Haider” shown in Fig-191

ure 1. Each entity under the “name of the recipient”192

column (“Raja Muhammad Sarwar") is a recipient193

of the award “Nishan-e-Haider”1. Therefore, the194

article subject has a relation (award-nominee) with195

the recipient entity in the table cell. Furthermore,196

elements of the article besides table cell values, like197

a column header (“Name of the recipient”), table198

section title, and caption (“Recipients") provide199

additional contextual information to identify the200

relation “award-nominee” between corresponding201

entity pairs.202

3.2 Embeddings203

Before training our model, we obtain vector repre-204

sentations of our input. For each table in the dataset,205

we tokenize the table cell values representing the206

subject and object entities. We also use contextual207

information from the table, including the title of208

the section containing the table and table headers209

and captions (if present). In addition, we use the210

subject and object column indices to obtain related211

entity pairs for a table row. We do not use the ta-212

ble section paragraphs as Macdonald and Barbosa213

(2020) found no gain in performance by including214

them.215

We concatenate the entity pairs and the contex-216

tual information to obtain a training sample for217

1https://en.wikipedia.org/wiki/
Nishan-e-Haider

a given relation. We then preprocess the sample 218

and remove all non-alphanumeric characters (e.g. 219

<SEP> token, brackets []) using Python’s regex 220

module. Then we use the pretrained BERT tok- 221

enizer2 based on the WordPiece to tokenize the 222

inputs. To obtain a vector representation of the 223

concatenated input, we use HuggingFace’s imple- 224

mentation of BERT (base_uncased) (Devlin et al., 225

2019) pretrained on Wikipedia and BookCorpus 226

and trained in an uncased fashion. We set the max 227

length of the input to consist of 80 tokens, com- 228

pared to the previous work by Macdonald and Bar- 229

bosa (2020), which used 50 tokens. We retrieve 230

a 768-dimensional word embedding for each to- 231

ken and then concatenate all the embeddings to 232

represent the sample. We used BERT embeddings 233

because they have been shown to perform well 234

in various NLP tasks (Baldini Soares et al., 2019; 235

Wang et al., 2019; Nan et al., 2020; Tang et al., 236

2020). Moreover, we use contextual clues for ta- 237

bles for relation extraction which justifies the use 238

of contextual word embeddings. 239

3.3 Convolutional Neural Network 240

As customary (Lin et al., 2016; Xing and Luo, 241

2019; Zeng et al., 2015), we fed the instance em- 242

beddings to a convolutional layer as it is capable 243

of merging all the local features in input sentences. 244

Since we are considering all surrounding informa- 245

tion around the table, important information can 246

appear anywhere in the input sentence. There- 247

fore, it is necessary to leverage all local features 248

and contextual clues in input samples. Convolu- 249

tion involves a dot product of the weight matrix 250

with every k grams in the sequence S to obtain 251

latent feature C(i) , which is shown in equation 252

1. W (i)
c ∈ Rk × d indicates ith convolutional filter, 253

k indicates context window size of the learnable 254

filter and b(i) indicates bias term. To ensure input 255

dimensions are consistent, we padded with zeros 256

evenly to the left and right of the input sequence. 257

Moreover, we employed 8 filters in the convolu- 258

2https://github.com/google-research/
bert/blob/master/tokenization.py
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tion process to learn different features. We applied259

the ReLU non-linear activation to the output for260

incorporating non-linearity.261

C(i) = W (i)
c × Sl:l+k−1 + b(i) (1)262

Finally, we used max-pooling to preserve the263

most prominent features derived from each filter,264

which is defined in the following equation. The265

max-pooling operation combines all local features266

to obtain a fixed-size representation of each input267

sentence.268

C(i)
max = max{C(i)} (2)269

3.4 Long-Short-Term-Memory Network270

We have used bidirectional long short-term mem-271

ory networks (BiLSTM) because both earlier and272

later information can be considered for sequentially273

modeling contextual information in forward and274

reverse order. Moreover, LSTM models were suc-275

cessfully applied for relation extraction tasks (Su276

et al., 2018; Lee et al., 2019) as it uses memory277

blocks to capture long-term temporal dependencies.278

Macdonald and Barbosa (2019) also achieved high279

performance by using LSTMs to predict relations280

between pairs of entities in Wikipedia tables. In-281

spired by their work, we have experimented with282

BiLSTM to observe any performance increment.283

We use BiLSTM to capture interactions among284

hidden representations obtained from the pool-285

ing layer. So, the input to the BiLSTM layer286

is a sequence obtained from the previous layer287

Cmax = {c1, c2, . . . , cn}. Here, n indicates half of288

the maximum token length preserved after down-289

sampling the convolutional output representation290

using the max-pooling operation.291

−→
ht = ForwardLSTM(ct, ht−1) (3)292

293 ←−
ht = BackwardLSTM(ct, ht−1) (4)294

295

xt = [
−→
ht ;
←−
ht ] (5)296

The BiLSTM consists of two sub-LSTM net-297

works: a forward LSTM and a backward LSTM for298

modeling dependencies in forward and backward299

order, respectively.
−→
ht and

←−
ht are the computed300

outputs at the tth time step from the forward and301

backward LSTM. Then, we concatenate hidden302

states
−→
ht and

←−
ht to obtain the final hidden represen-303

tation ht.304

3.5 Dropout 305

We use dropout at the BiLSTM layer for regular- 306

ization to prevent overfitting. Dropout randomly 307

turns-off a fraction of hidden units during the for- 308

ward pass. It ensures that hidden units can iden- 309

tify features independent of each other rather than 310

showing co-adaption and enable the model to learn 311

a more general representation. 312

3.6 Classification Layer 313

We feed the output of the LSTM/BiLSTM layer 314

into a fully connected layer. We then take the out- 315

put of the fully connected layer and apply a softmax 316

function to obtain the probability for each class. 317

zk = W ×X 318

ŷ = softmax(zk) 319

where X is the output of the LSTM/BiLSTM layer. 320

We show the architecture of our proposed model in 321

Figure 2. 322

4 Experiments 323

4.1 Dataset 324

We use the data from Macdonald and Barbosa 325

(2019) in all of our experiemnts. The dataset con- 326

tains individual JSON files for each relation. These 327

JSON files were obtained from a Wikidata dump 328

from March 2019. We used subject and object col- 329

umn indexes present in the dataset to retrieve the 330

subject and object entity pairs from Wikipedia arti- 331

cles. These subject and object entities indicate re- 332

lated entity pairs in the same row of table or article 333

subject and associated table cell value. Moreover, 334

the dataset also includes table information like the 335

title of the table section, table caption and headers, 336

and table section paragraph. To the best of our 337

knowledge, this is the most recent and the largest 338

dataset created specifically for the task of RE on 339

tabular data. 340

The dataset was annotated using distant supervi- 341

sion by aligning Freebase entities with mentions of 342

pairs of entities appearing in the table row or article 343

subject and table cell value. The dataset contains 344

217,834 tables and 29 relations (28 relation types 345

and one none relation). The dataset is highly imbal- 346

anced, with some relation classes having less than 347

500 examples. This results in a long-tailed dataset. 348

We do not remove these long-tailed relations. 349
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Figure 2: Proposed neural architecture. Concatenated BERT embeddings are passed through a CNN layer,
max-pooling layer followed by a ReLU activation function. An LSTM / biLSTM block is used to learn dependencies
which is followed by a softmax activation to obtain probabilities for each relation label.

4.2 Model Training and Evaluation350

To train and evaluate our model, we split the dataset351

into train and test splits. We follow the configu-352

rations used by Macdonald and Barbosa (2020),353

where 40% of the data was used for training the354

model, 40% for validation (for hyperparameter tun-355

ing), and 20% for testing. We use five seeds to356

obtain train, validation, and test splits and report357

our results which is the average over the five seeds.358

We use sparse categorical cross-entropy loss3 to359

train the model. We used one Nvidia A100 GPU360

(40GB Memory) for model training.361

4.3 Comparison with Baseline Model362

We use the neural relation extraction model pro-363

posed by Macdonald and Barbosa (2020), consist-364

ing of a single LSTM unit, as the baseline. In order365

to have a fair comparison with the model intro-366

duced by Macdonald and Barbosa, we use F1 and367

accuracy to measure the performance of our model.368

We trained the model for forty epochs (as suggested369

by Macdonald and Barbosa).370

We summarize the number of training param-371

eters of our model and compare it to that of the372

baseline in Table 1. We also performed an ablation373

study where we removed the convolutional layer374

and investigated the performance of the task for375

the BiLSTM model only. We show the differences376

between the hyperparameters of our model and the377

baseline model in Table 2.378

3https://www.tensorflow.org/
api_docs/python/tf/keras/losses/
SparseCategoricalCrossentropy

Model Parameters
Macdonald and Barbosa (2020) 4,559

CNN-LSTM (ours) 40,581
CNN-BiLSTM (ours) 50,405

BiLSTM (8 units) 86,877

Table 1: Comparison of trainable model parameters for
baseline (Macdonald and Barbosa, 2020), our proposed
model, and the BiLSTM only model which we use for
comparison with our proposed model.

Hyperparameter Ours Baseline
CNN Filters 8 None

LSTM/BiLSTM units 8 1
Batch Size 16 16
Optimizer Adam RMSProp

Max token length 80 50
Learning rate 2e-5 0.001

LSTM/BiLSTM Dropout 0.2 None

Table 2: Comparison of hyperparameters between the
baseline model and our proposed model.

5 Results 379

We show the results in Table 3. For relation ex- 380

traction on tabular data, the previous best model 381

was proposed by Macdonald and Barbosa (2020). 382

Although the performance of the baseline model is 383

significantly high, it may benefit from leveraging 384

automated feature extraction methods, such as us- 385

ing a CNN to extract features. We also add more 386

LSTM units to increase the learning capability of 387

the model. We refer to the upgraded model as 388

CNN+LSTM or CNN+BiLSTM (based on whether 389

we use LSTM or BiLSTM). As we see in Table 390

3, both CNN+LSTM and CNN+BiLSTM outper- 391
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form the baseline model and are the current state-392

of-the-art model for relation extraction on tabu-393

lar data. The accuracy of the CNN+LSTM model394

is 5.57% points higher, and the accuracy of the395

CNN+BiLSTM model is 5.8% points higher than396

the baseline. A higher accuracy will result in more397

accurately assigning a relation class to an entity398

pair.399

We believe that our model performed better be-400

cause we used 8 BiLSTM units for capturing con-401

text and learning dependencies, and 8 CNN filters402

as a feature extractor. In contrast, Macdonald and403

Barbosa (2020) used only a single LSTM unit for404

modeling dependencies among input tokens. In405

comparison to the baseline method that used a max-406

imum token length of 50, we used a maximum407

token length of 80 to capture more information408

for each instance. Furthermore, we use dropout409

that benefits the model, preventing overfitting and410

ensuring generalizability.411

Interestingly, our model was not able to outper-412

form the baseline in terms of F1 score but was413

still able to provide comparable performance of414

around 92.46%. Although a model with better per-415

formance will lead to improvements in downstream416

tasks, for applications such as building knowledge417

graphs, the performance achieved by our model is418

sufficient.419

5.1 Ablation Study420

To understand the effectiveness of the convolution421

layer, we perform an ablation study. We perform422

the relation extraction on the dataset without using423

the CNN module, which we refer to as the BilSTM-424

only model (with 8 units). The number of training425

parameters is shown in Table 1.426

Interestingly, removing the CNN module im-427

proves the performance on the task by 6.19% points428

more than the baseline. This improvement is likely429

due to the increase in the number of trainable pa-430

rameters to over twice that of the CNN+LSTM431

model. This increase in the number of trainable432

parameters also leads to a more complex model.433

Such a result reinforces the prevalent idea that in-434

creasing the number of parameters is helpful for the435

model to learn information from the data. However,436

this comes at the cost of requiring more computing437

resources.438

5.2 Performance vs. Parameters Tradeoff439

For the dataset, a combination of convolution and440

memory networks performs better for the rela-441

Model Accuracy F1
Baseline 92% 95%

CNN-LSTM 97.57% 91.44%
CNN-BiLSTM 97.80% 92.46%

BiLSTM-only (8 units) 98.19% 94.35%

Table 3: Performance measures of our approach com-
pared to previous model.

tion classification task. The number of trainable 442

parameters for CNN+LSTM is almost ten times 443

that of the baseline model. Although the cost 444

of training increases, this increment in the num- 445

ber of parameters leads to more information being 446

learned by the deep learning model, which results 447

in better performance over the baseline. Moreover, 448

the CNN+BiLSTM outperforms the CNN+LSTM 449

model as it holds the capacity to learn more infor- 450

mation from the data due to more trainable parame- 451

ters in the BiLSTM (10,000 parameters more than 452

CNN+LSTM model). In addition, BiLSTM equips 453

the model with the capability of learning context in 454

both forward and reverse order. In fact, when we 455

train models by increasing the number of parame- 456

ters, the classification accuracy increases. However, 457

the F1 score does not follow a similar trend. Our 458

model has a comparable F1 score which should be 459

sufficient for relation extractions, although the base- 460

line model performs better in terms of F1 score. 461

As model complexity increases, so do the re- 462

sources required for training the model. Compared 463

to the baseline model, which has only 4,559 train- 464

able parameters, our proposed model has a much 465

higher number of parameters, significantly increas- 466

ing training time. Although we do not investigate 467

avenues of model interpretability in this work, mod- 468

els with more parameters generally tend to be less 469

interpretable than models with fewer parameters. 470

These factors should be considered when designing 471

models for any task. Keeping this in mind, we used 472

a max pooling layer after the CNN model to reduce 473

the number of trainable parameters compared to the 474

BiLSTM model without significant loss in general- 475

izable performance. As the CNN+LSTM/BiLSTM 476

model has a higher performance, this will directly 477

translate into more relations being accurately added 478

to an existing knowledge graph. Our model also 479

converges faster than the baseline model (outper- 480

forming the previous model in terms of accuracy 481

in about five epochs). This performance increase is 482

likely due to the complexity of the model and more 483
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Figure 3: Confusion Matrix for CNN+BiLSTM. The y-axis are the predicted relation labels, and the x-axis are the
true relation labels. Off-diagonal accuracy values show misclassifications for specific relations.

trainable parameters.484

From the ablation study in section 5.1, we ob-485

serve that using just the BiLSTM model leads to486

performance gain over the CNN+BiLSTM model.487

However, the slight performance gain of 0.39%488

points in accuracy and 1.89% points in F1 score489

comes with the cost of a significant increase in490

the number of trainable parameters (36,472 more491

parameters than CNN+BiLSTM). This BiLSTM-492

only model leads to higher training time and a less493

interpretable architecture. Therefore, considering494

the computing cost and performance trade-off, we495

advocate for the CNN+BiLSTM for extracting re-496

lations from tabular data as a balance between the497

two extremes.498

Fine-tuning BERT may also be beneficial for our499

task as fine-tuning approaches for language models500

have been shown to benefit the task at hand (Xue501

et al., 2019; Su and Vijay-Shanker, 2022; Liu et al.,502

2021). However, fine-tuning can be extremely com-503

putationally extensive and may be impractical for504

scenarios where time is of importance. Moreover,505

fine-tuning BERT results in an increase in the num-506

ber of trainable parameters, thus increasing the507

complexity of the model. Although beneficial for508

relation extraction, we used the embedddings from 509

the pre-trained model in the interest of training and 510

computation time. 511

5.3 Difficult Relations 512

We also wanted to investigate our model’s abil- 513

ity to distinguish between difficult relations. We 514

show a confusion matrix in Figure 3 that de- 515

picts the accuracy of our proposed model for 516

all the relation classes (we chose the model 517

for the best performing seed value). Rela- 518

tions such as director-film, actor-film, 519

writer-film, and producer-film are 520

some of the most confusing examples for the model. 521

This may be due to the fact that such relations are 522

very similar to each other and is thus difficult for 523

the model to distinguish one from the other. One 524

may choose to provide extra information from the 525

Wikipedia article or the table to the model for better 526

understanding of the relations. More research is 527

required to explore this idea. 528

As model complexity increases, so does the per- 529

formance leading to better ability to distinguish 530

between relations. However, this may not directly 531

translate to high classification accuracy for difficult 532
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relations. A worthwhile direction to explore would533

be to design intelligent model training strategies534

that focus specifically on difficult relations with-535

out compromising performance on the rest of the536

classes.537

6 Conclusion and Future Work538

In this work, we proposed a neural method that539

uses a combination of convolution and memory net-540

works to extract relations from Wikipedia tables,541

which we evaluate on a benchmark dataset. We542

also showed that combining convolution and max543

pooling helps to learn more about the data without544

a significant increase in the number of training pa-545

rameters. We analyze our results and discuss the546

trade-off between the number of training parame-547

ters and model performance. Finally, we show how548

our model performs on relations that are deemed549

to be difficult to distinguish between and suggest550

some possible improvements for such cases. We551

also conducted an ablation study to show the useful-552

ness of the CNN layer. An extension of the ablation553

approach would be to remove certain input fields,554

like table cell values, headers, and captions, to eval-555

uate model performance. An impactful idea in the556

space of relation extraction is the usage of the atten-557

tion mechanism. Using the attention mechanism to558

identify tokens in the input that better represent a559

relation is a promising approach that may signifi-560

cantly improve tabular relation extraction.561

We also highlight the trade-offs between param-562

eters and the performance of the model as a first563

step toward probing relation extraction models. As564

neural network models become larger, it becomes565

even more crucial to provide explanations about566

the inner workings of the model.567

As neural network models grow larger with more568

training parameters, interpretability becomes cru-569

cial. In the future, we want to use sophisticated570

tools such as LIME (Ribeiro et al., 2016) and SHAP571

(Lundberg and Lee, 2017) to explain how complex572

relation extraction models understand the input to573

classify them into correct categories.574
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