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ABSTRACT

Recent advancements in multimodal reward models (RMs) have substantially im-
proved post-training for visual generative models. However, current RMs face
inherent limitations: (1) visual inputs consume large context budgets, forcing
fewer frames and causing loss of fine-grained details; and (2) all visual infor-
mation is packed into the initial prompt, exacerbating hallucination and forget-
ting during chain-of-thought reasoning. To overcome these issues, we introduce
VIDEOSEARCH REASONER, a thinking-with-image framework that equips the
RM with visual reasoning operations (e.g., select frame) and a configurable vi-
sual memory window. This allows the RM to actively acquire and update visual
evidence within context limits, improving reasoning fidelity and reliability. We
activate visual reasoning via a reinforcement fine-tuning pipeline: (i) Cold Start
with curated visual chain-of-thought data to distill basic reasoning skills and oper-
ation formatting; (ii) select samples whose per-dimension and overall judgments
are all correct, then conduct Rejection sampling Fine-Tuning on these high-quality
traces to further enhance reasoning; and (iii) apply Group Relative Policy Opti-
mization (GRPO) to strengthen reasoning. Our approach delivers state-of-the-art
accuracy among open-source models on video preference benchmarks, especially
for longer videos: a 7B VideoSearch Reasoner achieves 80.5% on VideoGen Re-
ward, 82.3% on GenAI-Bench, and 75.6% on MJ-Bench-Video. These results
validate the effectiveness and promise of thinking-with-image multimodal reward
modeling.

1 INTRODUCTION

With the advancement of multimodal Reward Models (RMs) (Wang et al., 2025b; Zang et al., 2025;
Wang et al., 2024; Xiong et al., 2024; Liu et al., 2025; Xu et al., 2024; He et al., 2024), the sub-
stantial potential of RMs in aligning vision models with human preferences (Liu et al., 2025; Schul-
man et al., 2017; Ouyang et al., 2022) has garnered increasing attention, owing to their capacity to
provide accurate reward signals during model training and fine-tuning processes (Liu et al., 2024;
Wijaya et al., 2024). Most RMs are predominantly classifier-based or generative (Xiong et al., 2024;
Wang et al., 2024; Li et al., 2025; Liu et al., 2025; Wang et al., 2025c; Tong et al., 2025; Zang
et al., 2025). After being trained on large, pre-annotated preference datasets, they typically either
(i) directly output scalar scores (and, for pairwise data, relative preference rankings), or (ii) produce
brief natural-language justifications along with judgments. The former mode tends to operate as a
black box, raising concerns about insufficient interpretability; the latter often relies on rudimentary
reasoning, lacking concise logical structure and depth of analysis, thereby undermining accuracy.

In light of these issues, recent work (Wu et al., 2025; Wang et al., 2025b; Hong et al., 2025; Chen
et al., 2025) has proposed reasoning-based RMs to leverage the language generation capabilities of
Visual Language Models (VLMs). By eliciting richer chains of reasoning, these approaches aim to
produce multi-dimensional, logically structured, and more in-depth analyses, thereby improving the
accuracy, robustness, and transparency of RMs. Despite these successes, inherent limitations remain
in VLM-based RMs, particularly for video preference data. On the one hand, visual inputs consume
substantial context budget, forcing RMs to process fewer frames and risking the loss of fine-grained
details. On the other hand, all visual information is typically packed into the initial prompt; during
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(b) illustration of Training Pipeline

(a) illustration of Thinking-with-Image framework 
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Figure 1: (a) shows the main process of our proposed Thinking-with-Image framework. (b) shows an overview
of the three training stages we proposed, including Cold Start, Rejection sampling Fine-Tuning, and GRPO.

the RM’s Chain-of-Thought (CoT) reasoning, the process proceeds purely in text without revisiting
or updating visual evidence, which exacerbates forgetting and hallucination.

In this work, we introduce a novel thinking-with-image framework to address the aforementioned
concerns by equipping the RM with visual reasoning operations like frame selection and a config-
urable visual memory window (Wang et al., 2025b; Guo et al., 2025a; Su et al., 2025a). Frame
selection enables the model to actively retrieve previously seen frames and acquire unseen visual
evidence as new inputs to subsequent reasoning rounds, thereby improving fidelity. The config-
urable memory window retains only the most recently active visual information, ensuring that, un-
der context-length constraints, the model can select frames multiple times, broaden its visual field,
and extend both its reasoning horizon and the total number of frames it can process, while keeping
the memory footprint stable. Building on this framework, we propose VIDEOSEARCH REASONER,
the first multimodal RM capable of visual reasoning. In principle, it imposes no upper bound on the
number of frames it can process, enabling fidelity-preserving evaluation for long video reward tasks.

Specifically, the training pipeline comprises three stages: (I) Cold Start. Using curated visual CoT
data, we instill basic textual reasoning skills and operation formatting (e.g., invoke frame selection).
(II) Rejection sampling Fine-Tuning. We run the model on large-scale preference datasets, which
include fine-grained, per-dimension assessments alongside an overall judgment. We then retain only
samples with all judgments correct, and conduct Rejection sampling Fine-Tuning on these verified
traces to encourage accurate, high-quality visual and textual reasoning. (III) Group Relative Policy
Optimization (GRPO). We apply GRPO on collected preference data, incentivizing the model to
explore details in videos and optimize toward reward rules that favor high-quality reasoning with
correct per-dimension and overall judgments. In summary, our contributions are as follows:

• We propose VideoSearch Reasoner, the first multimodal RM capable of visual reasoning, which
substantially alleviates context-length constraints and mitigates forgetting of visual information.

• In VideoSearch Reasoner, we propose to equip the RM with visual reasoning operations like frame
selection and a configurable visual memory window based on thinking-with-image framework.

• We demonstrate the crucial role of visual reasoning in multimodal RMs, showing improved accu-
racy and reliability on preference datasets and significantly increased usability and fidelity.
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2 RELATED WORK

Multimodal Reward Models (RMs) have garnered increasing attention (He et al., 2024; Liu et al.,
2025; Xu et al., 2024; Wang et al., 2025b) for their potential to effectively optimize vision generation
models to better align with human preferences. Visual-language models (VLMs) (Bai et al., 2025;
Bordes et al., 2024), have become the models of choice for RMs. For instance, Liu et al. (2025)
proposes VideoReward, a reward model that directly regresses preference-aligned scores from input
videos; Wang et al. (2025c) develops UnifiedReward in a generative response format. However, such
approaches often lack rigorous logical structure and deep analysis. To this end, Wang et al. (2025b)
introduces a reasoning framework in multimodal RMs, aiming to improve the accuracy of reward
signals. Despite these advances, VLM-based RMs still face inherent limitations, especially on video
preference datasets with more frames and longer durations (Liu et al., 2025; Tong et al., 2025).
Specifically, first, visual inputs consume substantial context budget, forcing RMs to subsample only
a subset of frames and thereby losing fine-grained details (Tong et al., 2025; Liu et al., 2025; Wang
et al., 2024; He et al., 2024; Xu et al., 2024). Second, during the RM’s generative response, reasoning
proceeds purely in text without revisiting or updating visual evidence (Wang et al., 2025b;c).

Thinking-with-Image is an emerging paradigm in VLM reasoning that overcomes the limitations
of text-centric chains of thought that treat visual inputs merely as a static initial context (Shen et al.,
2024; Mallis et al., 2024; Xu et al., 2025; Duan et al., 2025; Su et al., 2025b). Instead, it treats vision
as a dynamic, operable cognitive workspace, leveraging visual information throughout intermedi-
ate reasoning steps. Two primary modes characterize this paradigm: (1) Intrinsic imagination,
which allows the model to reason directly over the corresponding visual tokens (Team, 2024; Xu
et al., 2025; Guo et al., 2025b). (2) Active exploration, which enables the model to proactively
retrieve visual information via toolchain invocation (the VLM calls external tools through a speci-
fied interface) or programmatic manipulation (the VLM emits executable code that directly defines
operations) (Shen et al., 2024; Mallis et al., 2024; Wang et al., 2025a;d).

3 VIDEOSEARCH REASONER

In this section, we first elaborate on the concrete components of the Thinking-with-Image frame-
work (Section 3.1). We then present the multi-stage training pipeline, explaining how it elicits and
cultivates multimodal reasoning capabilities in both vision and text (Section 3.2).

Video 1

Video 2

The camera remains still, a boy with short black hair and 
wearing a white shirt is playing the violin, the 

background is a music room, soft afternoon lighting

VideoSearch Reasoner
With Initial Input

<snapshot>
Four input frames from Video 1 and Video 2 show 
a boy playing the violin in a music room.  The 
lighting is soft, and the boy is wearing a white 
shirt ……
</snapshot>

<think>
…… it is difficult to draw conclusions at this stage. 
To further analyze, I will select additional frames 
to zoom in on the boy's movements and the overall 
visual quality, particularly focusing on the violin-
playing dynamics between the first and second input 
frames.
</think>

<recommend answer>
TA = 2, MQ = 1, VQ = 0, OA = 0, CF = 2
</recommend answer>

<tool_call> { "name": "select_frames", 
"arguments": { "target_frames": [12, 16, 20, 24, 
60, 64, 68, 72] } } </tool_call>

Video 1
Retrieved

Video 2
Retrieved

VideoSearch Reasoner
With Retrieved Frames 

<snapshot>
…… In Video 1, the boy’s violin-playing actions appear blurry 
and the finger movements seem less natural. In Video 2, more 
dynamics are displayed, especially in the violin-playing 
posture, which appears smoother and more natural……
</snapshot>

<think>
The selected frames confirm that Video 2 has a higher visual 
quality due to the clearer posture. The motion quality in 
Video 2 is good, and its alignment with the caption is 
consistent……
</think>

<answer>
TA = 2, MQ = 0, VQ = 2, OA = 2, CF = 2
</ answer>

Caption

Input Query
Your task is to compare two videos generated based on the same 
caption and provide an overall judgment along with a 
judgment for each dimension. 
Video 1: First 4 input frames; Video2: Next 4 input frames.
The caption is: {caption}
Evaluation Dimensions:
1. Text Alignment : Alignment between video content and prompt
2. Visual Quality : The visual aesthetics of the video 
3. Motion Quality: Level of motion coherence
Frames and Analysis Rules: 8 sampled frames are provided, evenly 
downsampled from 128 frames; Insufficient frames? Request more
Format Requirement:
1. Snapshot: summarize any information that might be useful for 
your final judgment within <snapshot></snapshot> tags.
2. Think: Place all reasoning content within <think></think> tags.
3. Answer: output the answer within <Answer></Answer> tags. If 
final answer is uncertain, output the recommended answer and 
confidence level within <Recommend Answer></Recommend 
Answer> tags. 
1 represents Video 1, 2 represents Video 2, and 0 represents Tie. 
The confidence levels range from high to low as 1, 2, and 3.

Final Round? Tool Call? Tool Call?Final Round?

Figure 2: Qualitative Cases. When frames are down sampled, key information might not be included in the
input. VIDEOSEARCH REASONER actively retrieves frames, which ensures the correctness of such cases.

3.1 THINKING-WITH-IMAGE-BASED FRAMEWORK

The data flow of VIDEOSEARCH REASONER under our Thinking-with-Image framework is shown
in Figure 1. Video preference data are uniformly downsampled into a preset number of input frames
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as visual input and paired with a prompt template that explicitly specifies the total number of frames
and the downsampling scheme. The model then iteratively performs tool invocations and updates
its reasoning with the tool-execution outcomes; these outcomes remain valid only within a preset
window. To mitigate the risk of information loss, the reasoning format converts visual evidence into
linguistic summaries within specific regions.

Tool Invocation. Consistent with standard VLMs used as reward models, our model requires down-
sampling for video inputs. However, instead of treating the unselected visual content as if it does
not exist, we retain it as an operable workspace that the model is aware of. After an initial round of
multimodal reasoning, the model may find that missing evidence (or near-ties in paired preference
cases) prevents a definitive judgment, which potentially is due to the unselected visual information.
The model then iteratively issues tool-invocation instructions to retrieve additional visual evidence,
and updates its reasoning by incorporating the tool-execution outcomes, repeating this process until
a final preference judgment can be made.

Formally, the initial input is X = [V, T ], where V is the downsampled visual input and T is the
textual query. A model πθ constructs a multimodal reasoning chain via iterative reasoning and
tool invocation, where at each step the model first yields a reasoning unit rt ∼ πθ(· | X , R̃t−1),
conditioned on the initial input X and all preceding t − 1 reasoning steps denoted by R̃t−1. Each
reasoning unit may be purely textual or multimodal; the latter can then invoke a tool to directly
interact with information in the whole visual workspace ( denoted by Ṽ , to distinguish V). For each
multimodal reasoning step rt, the model calls a tool f , obtains a tool-execution outcome ot = f(Ṽ ),
for subsequent reasoning steps.

Window Memeory. The reasoning process does not, by default, retain all tool-execution outcomes.
Instead, we employ a windowed memory: each outcome remains active for a preset number of
rounds p before being deliberately forgotten. This design is motivated by the substantial context
budget consumed by visual information, especially for longer videos where frames dominate the
context: In multimodal reasoning, the textual portion per segment Rn typically occupies less than
400 tokens, while a single visual frame contributes roughly 500 tokens. With a default of 8 input
frames, visual evidence accounts for approximately 4,000 tokens, around 10× the textual budget.
Under the windowed memory, the total context usage remains relatively stable, preventing bottle-
necks from repeatedly retrieving additional visual information through tool invocation.

Formally, after each update, we maintain the entire prefix of reasoning units but only with a sliding
window over the most recent tool outcomes: Let R̃t−1 denote the prior reasoning chain, rt the new
reasoning unit. The update process can be described as:

R̃t−1 = [r1, r2 . . . , rt−p−2, (rt−p−1, ot−p−1), . . . , (rt−1, ot−1)]

rt ∼ πθ(· | X , R̃t−1), where tool f is called
ot = f(V)
R̃t = [r1, r2 . . . , rt−p−1, (rt−p, ot−p), . . . , (rt, ot)]

, where p is the window width and (rk, ok) denotes a reasoning unit paired with its tool-execution
outcome retained within the window. The total token count Ttotal till step t is

T (X ) + T (R̃t) = T (V) + T (T ) +

t∑
k=1

T (rk) +

t∑
k=t−p

T (ok) ≈ T (V) +
t∑

k=t−p

T (ok),

where T (·) denotes the number of tokens and we approximate textual tokens as a minor component
relative to visual tokens. Further, approximating token costs by per-frame contributions, we obtain
Ttotal ≈ (Nin + pNex)Vt, where Nin is the number of initial input frames, Nex is the number of
frames retrieved per tool invocation, p is the window width, and Vt is the average token cost per
visual frame. Crucially, Ttotal is approximately independent of the total number of reasoning steps t,
highlighting how windowed memory sustains the context budget under this setting.

Reasoning Format. As shown in Figure 2, the model is required to follow a specific reasoning
format, using XML-style tags to delineate functional areas and reasoning-focus categories, which
helps ensure clarity and consistency in reasoning and logical structure.

In addition to commonly used tags like <think> and <answer> in reasoning models, two addi-
tional tags are employed: <Snapshot>: This tag is used in every reasoning segment to mitigate
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the risk of forgetting critical information under the Window Memory mechanism. After each exe-
cution outcome is incorporated, this tag is used to create a snapshot of essential information from
these frames in the form of language tokens. This approach serves as an information compression
strategy, reducing thousands of visual tokens to dozens of language tokens, which balances fidelity
and budget. <Recommend Answer>: Unlike the <answer> tag, this tag is used in non-final
reasoning segments. The model outputs its current preferred result along with the confidence level,
which helps assess the value of additional multimodal reasoning segments and also aids the model
in organizing its current judgments.

3.2 MULTI-STAGE REWARD MODEL TRAINING

The training pipeline consists of three main stages: (i) Cold Start efficiently elicits textual reasoning
skills and bootstraps basic visual reasoning. (ii) Rejection sampling Fine-Tuning consolidates both
textual and visual reasoning capabilities. (iii) Exploratory Reinforcement Learning reinforces the
integrated multimodal reasoning ability.

3.2.1 COLD START & REJECTION FINE-TUNING

Cold Start. This stage serves two purposes. First, VLMs have limited zero-shot ability to execute
novel tool invocations. To ensure accurate reasoning structure and tool-calling syntax, we employ
CoT data that adheres to our reasoning format. Second, although VLMs possess strong latent lin-
guistic reasoning capabilities, inadequate reward modeling often leads to underdeveloped reasoning
behavior. High-quality Cold Start CoT data not only elicits linguistic reasoning but also bootstraps
basic visual reasoning through vision-related analytical steps embedded in the trajectories.

Concretely, we construct Cold Start data by selecting a subset of video pairs and textual queries
from a video preference dataset. Following the Think-with-Image framework, we iteratively invoke
a powerful multimodal model, e.g. GPT-4o (Hurst et al., 2024), to generate high-quality, long CoT
trajectories. A two-stage filtering process ensures that these multimodal CoTs are suitable for initial-
ization: (i) every reasoning segment must strictly conform to the prescribed format, and (ii) the final
judgments, both per-dimension and overall preference, must exactly match the ground-truth labels
in the preference dataset, thereby guaranteeing high-accuracy multimodal reasoning. We train with
the standard Supervised Fine-Tuning (SFT) loss during this Cold Start phase, while masking tokens
associated with tool-execution outcomes from the loss computation.

Rejection sampling Fine-Tuning. The previous stage instilled the correct reasoning format and
high-quality multimodal CoT exemplars, initializing the model’s reasoning capabilities. However,
the proportion of model-generated CoT samples that are both well-formed and accurate remains
low. An excess of negative samples due to limited Cold Start data and training epochs hampers the
efficiency of sampling-based reinforcement learning. To consolidate the learned reasoning skills and
increase the yield of high-quality reasoning segments, thereby paving the way for RL. we perform
Supervised Fine-Tuning on a large, rejection-sampled multimodal CoT dataset.

Specifically, we blend multiple video preference datasets and select a large subset of video–query
pairs. Similar to the previous stage, we generate CoT samples, but now we sample from the model
trained in Stage 1, drawing multiple samples per input to ensure sufficient positives. The same two-
stage filtering is applied to construct the SFT dataset. We use the same loss as in the Cold Start
phase, with tool-execution outcome tokens masked from the loss. This stage substantially improves
both the format compliance and quality of the model’s reasoning segments.

3.2.2 EXPLORATORY REINFORCEMENT FINE-TUNING

To further reinforce multimodal reasoning on top of these capabilities we apply GRPO-based rein-
forcement fine-tuning. Using predefined rule-based reward functions together with additional ex-
ploratory incentives, we evaluate the model-sampled reasoning segments and iteratively optimize
the model toward producing higher-quality reasoning.

GRPO is employed to assess the quality of multimodal CoT reasoning via rule-based reward func-
tions, which are both accurate and robust. For each query, GRPO draws multiple samples and
compares the relative quality of the resulting samples, iteratively nudging the model toward higher-
quality reasoning segments and thereby improving its capabilities (Guo et al., 2025a; Shao et al.,
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2024). We follow the standard GRPO framework while incorporating several new practical tricks to
enhance training efficiency and stability, as detailed in prior works (Yu et al., 2025). A full descrip-
tion of GRPO is provided in Appendix A.1.

Rule-Based Reward is the primary foundation for providing reward signals to the model; its rela-
tive magnitude determines the ranking among CoT samples. We employ the classic Format Reward
and Accuracy Reward as follows: (1). Format reward ensures the correctness of the model’s re-
sponse structure. Specifically, it requires that the reasoning content be delineated with the correct
tags, and that the answers provided in <Recomend Answer> and <Answer> adhere to the spec-
ified requirements. (2). Accuracy reward evaluates the factual correctness of the model’s reasoning.
It consists of both per-dimension judgments and an overall preference. An important underlying
assumption for GRPO’s effectiveness is that if the result satisfies the correctness rules, then the cor-
responding CoT reasoning sample should reflect a high-quality, accurate reasoning process, thereby
truly incentivizing the desired reasoning trajectory.

In conventional RM training, accuracy is assessed only by whether the correct preference is cho-
sen, where the answer space is limited to just three options: former, latter, and tie (Wang
et al., 2025b;c). This contradicts our assumption, since many trajectories may have suboptimal mul-
timodal reasoning and insufficient factual grounding yet still produce the correct final answer. Such
cases introduce misleading reward signals, reducing efficiency and steering learning in the wrong
direction, which harms stability. In contrast, we incorporate both per-dimension judgments and the
overall preference. This expands the answer space to 3d+1, where d is the number of dimensions.
For more on sampling efficiency and answer space analysis, please refer to Appendix A.

Formally, the accuracy reward can be written as:
racc = α · racc all + ᾱ · racc dim, where α+ ᾱ = 1,

racc all = 1(Jall = Ĵall), racc dim =
1

d

d∑
i=1

1(Jdim i = Ĵdim i).

where Jall is the overall judgment, Jdim i is the judgment for the i-th dimension, and Ĵall, Ĵdim i denote
the respective ground truths. The function 1(·) is an indicator function that returns 1 if the condition
is true and 0 otherwise. α is a tunable hyperparameter that controls the relative importance of the
overall preference and the per-dimension judgment.

CoT Gain Reward is designed to reward the improvement in accuracy brought by the updated
answers in each reasoning segment. This reward is intended to encourage the model to obtain more
visual evidence through visual reasoning, update its conclusions with greater accuracy and factual
alignment, and thereby strengthen its visual reasoning abilities:

rcot = k ·

(
t−1∑
i=1

∆ri

)
,

where ∆ri = ri+1
acc − riacc represents the improvement in the accuracy reward between successive

updates in the reasoning chain. Here, i denotes the i-th reasoning step, t is the total number of
reasoning steps, and k is a hyperparameter used to control the degree of the reward.

Exploratory Incentive is designed to prevent the model from defaulting to textual reasoning, which
can reduce or even degrade its visual reasoning capabilities (Su et al., 2025a). As stated earlier,
VLMs inherently possess stronger textual reasoning abilities compared to visual reasoning. During
the GRPO process, two factors exacerbate this issue: first, errors in visual tool invocation can lead to
negative rewards; second, a certain proportion of queries can achieve decent results through purely
textual reasoning, making it difficult for the model to overcome a local optimum .

To encourage exploration, we enforce a lower bound on the proportion of multimodal reasoning
produced by the model. This turns the RL objective into a constrained optimization problem, which
can be converted into an unconstrained one via Lagrangian Relaxation, as detailed in Appendix A.
Formally, the transformed objective can be viewed as adding an auxiliary exploratory reward rexplo:

rexplo = max(ω −R(X), 0) · 1mul(R),

where ω represents the lower bound on the proportion, R(X) denotes the proportion of multi-
modal reasoning in the samples for the query X, and 1mul(·) is an indicator function that determines
whether the sample R corresponds to multimodal reasoning.

6
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. For training, we use three datasets: VideoGen-Reward (182k) (Liu et al., 2025), MJ-
Bench-Video (train) (8.7k) (Tong et al., 2025), and Text2Video-Human Preferences (2.6k) by Rap-
idata1. In addition, we distill 1.2k high-quality Multimodal CoT Cold Start samples from GPT-
4o (Hurst et al., 2024); these are randomly drawn in proportion from a blend of the three train-
ing datasets, and the corresponding original samples are excluded from subsequent training stages.
For benchmarking, we evaluate on the video part of GenAI-Bench (Jiang et al., 2024), VideoGen-
RewardBench (Liu et al., 2025), and MJ-Bench-Video (test) (Tong et al., 2025). More details on
dataset processing and settings are provided in Appendix B. Base Model. As a VLM-based reward
model, VideoSearch Reasoner is initialized from Qwen2.5-VL-7B (Bai et al., 2025), which has
strong visual understanding and video temporal perception capabilities. This provides a solid foun-
dation for unlocking the model’s multimodal reasoning potential in long-video scenarios. Bench-
marking. We compare multiple baseline reward models and VIDEOSEARCH REASONER using
greedy decoding across the aforementioned video preference benchmarks. These benchmarks span
a wide range of topics and originate from various video generation models (Liu et al., 2025; Tong
et al., 2025; Jiang et al., 2024), ensuring generality of evaluation. We provide detailed descriptions
of the baseline models and benchmark datasets in Appendix B. For more detail, please refer to our
code at https://anonymous.4open.science/r/videosearchreasoner/.

4.2 MAIN RESULTS

Table 1 compares VIDEOSEARCH REASONER against a range of high-performing reward models.
Across both evaluation protocols, tau (which accounts for ties) and diff (which excludes ties), our
model achieves state-of-the-art performance, significantly surpassing both classic classifier-based
and generative-based models, with an average improvement of up to 11.4%. It also outperforms
emerging reasoning-style models, owing to our model cultivating not only textual reasoning but also
visual reasoning capabilities; when datasets contain more frames than the preset input limit, typi-
cal RMs that rely on downsampling inevitably miss key information, whereas our model achieves
higher accuracy by processing frames without predetermined limits. Moreover, compared with UNI-
FIEDREWARD and UNIFIEDREWARD-THINK (Wang et al., 2025b;c), which are both trained on
multiple tasks spanning image and video datasets to obtain substantial mutual benefits, our model is
trained purely on video preference datasets, yet still surpasses these mutual benefits. These results
provide strong evidence for the effectiveness and superiority of our Thinking-with-Image frame-
work, which shows the positive impact of multimodal reasoning for reward models. For further
experiments, please refer to the additional experiments section in Appendix C.

4.3 ABLATION STUDIES

Ablation of Visual Reasoning In our VIDEOSEARCH REASONER framework, we perform tool
invocation via Thinking with Image to retrieve visual information and enable multimodal reason-
ing. To assess the effectiveness of visual reasoning within each reasoning segment, we conduct an
ablation on the usefulness of retrieved visual information during tool invocation. Specifically, we
compare retrieval guided by the model’s visual reasoning–driven tool invocations against randomly
retrieving information from the same video data regardless of the tool invocation. As shown in Fig-
ure 3, the random strategy yields a clear performance drop, demonstrating that visual reasoning is
indispensable for discovering the additional visual evidence needed for reliable judgments.

Ablation of Training pipeline We adopt a multi-stage training pipeline and hence conduct ab-
lations on each stage. Following prior work on reasoning-based general models and reward mod-
els(Wang et al., 2025b; Guo et al., 2025a), our ablations center on GRPO-based reinforcement fine-
tuning, comparing the gains from the cold-start and Rejection sampling Fine-Tuning stages on the
final GRPO-trained model. As shown in Figure 3, GRPO contributes the most substantial per-
formance improvement, while both cold start and Rejection sampling Fine-Tuning provide crucial

1https://huggingface.co/datasets/Rapidata
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Table 1: Preference accuracy on evaluation dataset. tau: accuracy is calculated with ties included; diff
excludes tied pairs when calculating accuracy. Best performance in Bold.

Model Size GenAI-Bench VideoGen-Reward MJBench-Video
Protocol tau ↑ (%) diff ↑ (%) tau ↑ (%) diff ↑ (%) tau ↑ (%) diff ↑ (%)

Classifier-based Reward Models

VideoScore 7B 47.5 70.9 41.9 50.2 57.9 63.5
VideoReward 2B 49.9 73.1 60.8 73.8 56.8 62.6
VisionReward 13B 52.6 72.7 57.9 68.4 54.1 65.2

Generative-based Reward Models

LiFT 13B 38.1 59.4 40.1 57.9 42.5 51.4
UnifiedReward 7B 61.2 76.8 67.1 78.6 63.3 69.5

Reasoning-based Reward Models

UnifiedReward-Think 7B 64.7 80.4 69.7 79.1 62.8 71.9
VIDEOSEARCH REASONER 7B 68.7 82.3 71.8 80.5 67.3 75.6

GenAI_Video
VideoGen_Bench

MJVideo_Bench
60

65

70

75

80

85 (1) Ablation of Visual Reasoning

Retrieve by Visual Reasoning Retrieve by Random Select

GenAI_Video

VideoGen_Bench

MJVideo_Bench
50

55

60

65

70

75

80

85 (2) Ablation of Training pipeline

GRPO
Cold Start

Cold Start + GRPO
Cold Start + SFT

Cold Start + SFT + GRPO

GenAI_Video
VideoGen_Bench

MJVideo_Bench
60

65

70

75

80

85 (3) Ablation of Auxiliary Reward Setting

w/ CoT gain & w/ explo. incentive
w/o CoT gain & w/ explo. incentive
w/ CoT gain & w/o explo. incentive

GenAI_Video
VideoGen_Bench

MJVideo_Bench
60

65

70

75

80

85 (4) Ablation of Different Accuracy Reward Signals

overall + per-dim preference
overall preference
per-dim preference

Figure 3: The results of ablation studies are summarized in this figure: (1) investigates the ablation of visual
reasoning; (2) examines the impact of different training stages on the final model performance; (3) explores
ablations of different auxiliary reward settings; and (4) studies the ablation of different accuracy reward
signals by our modification of the accuracy reward.

reasoning foundations that further boost post-GRPO performance. Notably, the gains from Rejec-
tion sampling Fine-Tuning are especially pronounced, likely because it increases the likelihood of
high-quality reasoning segments, thereby improving the efficiency of GRPO-driven improvements.

Ablation of Auxiliary Reward Setting In the GRPO stage, we augment the standard format and
rule-based accuracy rewards (Shao et al., 2024) with several auxiliary rewards. We conduct abla-
tion studies to quantify the impact of these auxiliary rewards, with results shown in Figure 3. We
observe clear performance drops when removing the CoT gain reward and the exploratory incen-
tive. Notably, removing the CoT gain reward has a more pronounced negative effect, highlighting
its importance in encouraging the reward model to attempt multimodal reasoning.

Ablation of Different Accuracy Reward Signals. In the GRPO stage, beyond the auxiliary re-
wards described above, we specially design the accuracy reward as a linear combination of the over-
all reward and per-dimension reward to enlarge the answer space. We conduct ablations to assess
their effects, comparing three settings: using only the overall reward, using only the per-dimension
reward, and using a 50/50 mix of overall and per-dimension rewards (the setting we adopt). The
results, shown in Figure 3, validate the benefits of the mixed scheme.
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Table 2: Preference accuracy on Long Video and Complex Prompt subset. tau: accuracy is calculated with
ties included; diff excludes tied pairs when calculating accuracy. Best performance in Bold.

Long Video

Model Size GenAI-Bench (long) VideoGen-Reward (long) MJBench-Video (long)
Protocol tau ↑ (%) diff ↑ (%) tau ↑ (%) diff ↑ (%) tau ↑ (%) diff ↑ (%)

LiFT 13B 36.0 56.5 35.8 53.6 39.5 50.4
UnifiedReward 7B 56.8 71.6 63.5 72.2 59.6 67.3
UnifiedReward-Think 7B 61.7 76.4 65.8 76.7 60.1 69.6

VIDEOSEARCH REASONER 7B 66.2 81.4 70.9 79.6 66.1 74.8

Complex Prompt

Model Size GenAI-Bench (complex) VideoGen-Reward (complex) MJBench-Video (complex)
Protocol tau ↑ (%) diff ↑ (%) tau ↑ (%) diff ↑ (%) tau ↑ (%) diff ↑ (%)

LiFT 13B 37.6 58.7 40.5 57.6 39.8 50.8
UnifiedReward 7B 58.8 74.9 65.2 76.6 62.4 69.1
UnifiedReward-Think 7B 63.9 79.8 68.2 78.2 60.5 70.1

VIDEOSEARCH REASONER 7B 68.4 81.9 70.6 80.7 66.3 74.3

4.4 FURTHER ANALYSIS
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Figure 4: The training dynamics of the GRPO stage: (1) accuracy on GenAI-Bench throughout training; (2)
average tool invocations per sample; (3) average reasoning segment length.

Visualization on GRPO Training For a deeper analysis of the GRPO stage and the differences in
training under various baselines, we provide a visualization of GRPO training in Figure 4. It high-
lights the model’s changes in evaluation accuracy, average number of tool invocations per sample,
and average length per reasoning segment in different experimental settings, including: setting of
VIDEOSEARCH REASONER, without exploratory reward, without per-dimension accuracy reward
(α = 1), and without overall accuracy reward (α = 0).

Error Analysis To more rigorously validate that our RM on long videos and complex reasoning
scenarios, we conduct an error analysis. Standard video preference datasets comprise videos of
varying lengths produced by multiple generators and prompted at different complexity levels. For
instance, in VideoGen-RewardBench, 16.4% of videos contain roughly 49 frames, whereas 15.7%
contain approximately 173 frames, resulting in a 3.5× disparity. Shorter videos are typically easier
for baseline models, obscuring our advantage in visual reasoning, while higher prompt complexity
further increases content richness and alignment demands, thereby making RM evaluation more
challenging. To better assess our model under these difficult scenarios, especially in comparison to
native generative outputs and text-only reasoning paradigms (namely, LIFT, UNIFIEDREWARD, and
UNIFIEDREWARD-THINK), we perform a secondary filtering of each dataset to construct two “hard”
subsets by selecting the top 10% by video length and the top 10% by prompt length. Results are
reported in Table 2. It can be seen that, compared with baseline models, VIDEOSEARCH REASONER
shows a smaller drop in accuracy on all of the hard subsets.

5 CONCLUSION

In this work, we introduce VideoSearch Reasoner, the first multimodal RM capable of visual rea-
soning. VideoSearch Reasoner leverages the Thinking-with-Image framework to alleviate context-
length constraints and mitigate forgetting of visual information. We adopt a three-stage training
pipeline to progressively enhance both textual and visual reasoning abilities. Extensive experiments
shows the effect of our framework, which improves the accuracy of preference judgments and the
interpretability of reward signals.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made the following comprehensive efforts.
First, we provide detailed descriptions of the data construction pipeline and input prompt tem-
plates in Section 3.1 and Appendix D. Second, we present thorough documentation of the pro-
cessing templates and workflows for handling video-query pairs from datasets as inputs in Ap-
pendix D. Third, as described in Section 4.1, we have open-sourced our training code for each stage
of the training process, which is available at https://anonymous.4open.science/r/
videosearchreasoner/. Fourth, for all theoretical results and corresponding insights claimed
in this paper, we provide complete proofs and explanations in Appendix A. These efforts, combined
with detailed descriptions throughout the paper, fully guarantee the reproducibility of our research
findings and enable other researchers to validate and build upon our work.
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APPENDIX

The appendix of this paper is organized as follows: Appendix A provides mathematical details and
derivations omitted from the main text; Appendix B supplements additional experimental details;
Appendix C presents more extensive experimental results; Appendix D includes prompt templates.
Appendix E and F will describe the limitations and the LLM usage, respectively.

A MATHEMATICAL ANALYSIS

A.1 MATHEMATICAL DETAILS OF THE TRAINING PIPELINE

Supervised fine-tuning (SFT) loss. As mentioned in Section 3.2.1, our training comprises two
major stages: Cold Start and Supervised Fine-Tuning. For high-quality CoT data constructed via the
specific pipeline, we use the standard supervised fine-tuning loss while masking tokens associated
with tool-execution outcomes from the loss computation. Formally, in the multi–reasoning-segment
setting, the SFT loss is:

Lsft(θ) = −
t∑

i=1

Ni∑
j=1

log p (ri,j | X , (r1, o1), . . . , (ri−1, oi−1), ri,<j ; θ) , (1)

where θ denotes the parameters of the reward model (RM), X = [V, T ] represents the pair of the
initial visual input V and the query template T , ri is the i-th reasoning segment, ri,j is the j-th token
of the i-th reasoning segment, oi is the i-th tool-execution outcome, Ni is the total number of tokens
in the i-th reasoning segment, and t is the total number of CoT steps.

GRPO Algorithm. As mentioned in Section 3.2.2, GRPO-based reinforcement fine-tuning is em-
ployed because the rule-based reward function provides a robust reward signal to nudge the model
toward generating higher-quality reasoning segments. The specific algorithm is similar to the one
described in Shao et al. (2024), with some novel practical tricks introduced in Yu et al. (2025).

For each input X = [V, T ] (the pair of the initial visual input V and the query template T ), a set of
CoT samples is randomly drawn from the same model πθ(·), denoted as G = {R̃1,t1 , . . . , R̃n,tn},
where n refers to the number of sampled CoT examples, and Ri,ti represents the i-th CoT sample
with ti reasoning segments.

A predefined reward function f(·) =
∑

i fi(·) is applied to each sample, resulting in S =
{
∑

i fi(R1,t1), . . . ,
∑

i fi(Rn,tn) = {s1, . . . , sn}, where the specific f(·) in our setting is defined
as:

f(·) = ffmt(·) + facc(·) + fcot(·) + ηfexplo(·),
where β and η are adjustable hyperparameters, predefined here for simplicity. This is followed
by intra-group normalization to calculate the advantage for each sample: Ai = {si − µ(S)}/σ(S),
where µ(S) represents the mean of the scores in the set S and σ(S) represents the standard deviation
of the scores in the set S.

Subsequently, the likelihood ratio of each response is computed to guide the model toward higher-
quality reasoning segments:

ζi,t =
πθ(ri,t | X , (r1, o1), . . . , (ri−1, oi−1), ri,<t)

πθold(ri,t | X , (r1, o1), . . . , (ri−1, oi−1), ri,<t)
,

where πθ represents the new policy and πθold represents the old policy.

The final optimization objective in GRPO is:

Jgrpo(θ) =

E[X∼D,R̃i,ti
∼πθold ]

1

T (R̃i,ti)

T (R̃i,ti
)∑

t=1

{[min (ζi,t,clip(ζi,t, , 1− ε, 1 + ε))Ai]− βDKL[πθ ∥ πref]}

13
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where D represents the dataset, T (R̃i,ti) denotes the total number of tokens in the multimodal CoT
sample, clipping within 1 − ε ensures training stability, and DKL is the KL divergence penalty to
constrain the model update range.

As previously studied in Yu et al. (2025), we incorporate a Dynamic Sampling improvement into
our GRPO training algorithm. Specifically, when drawing a batch of samples, if the accuracy is 1
or 0, the entire batch’s advantage becomes zero, yielding zero gradients for that batch. This effec-
tively reduces the gradient-accumulation batch size, increases noise sensitivity, and lowers sample
efficiency. The issue worsens as training progresses and accuracy rises, since fully correct cases
become more frequent, leading to more zero-gradient batches. Dynamic Sampling mitigates this
by filtering out batches whose accuracy is 1 or 0 and resampling until all batches yield nonzero
gradients, thereby improving training efficiency.

Sampling efficiency and answer-space in GRPO. We first analyze, as in Section 3.2.2, how the
size of the answer space affects GRPO sampling and learning efficiency. Let the answer space size
be N , the observed model accuracy be p, the model’s intrinsic accuracy be q (interpreted as “finding
the key information correctly and thus making the correct judgment”), and the proportion of invalid
samples be r (failing to find the key information, yet coincidentally producing the correct judgment).
We have:

p = q + (1− q)/N, (1)
r = (1− q)/(N) = (1− p)/(N − 1). (2)

For the (1−q) fraction of samples where key information is not found, the model’s judgment can be
viewed as randomly selecting an answer from an answer space of size N , which yields an additional
accuracy of (1 − q)/N , giving Equation (1). For Equation (2), although these (1 − q)/N samples
happen to produce correct judgments, their reasoning lacks the key information and is thus off-
point; we term them invalid samples. In reinforcement learning (RL), assigning these samples high
advantage and increasing their likelihood is not only unhelpful for improving the model, but can be
harmful. The expression (1−p)/(N−1) thus provides an estimate of the proportion of such invalid
samples.

Take the observed accuracy p as an intermediate value during training, say 0.7. Then: For N = 3
(setting in classic RM training), the estimated invalid data proportion is r = (1−0.7)/2 = 15%. For
N = 3d+1 = 81 (our setting with d = 3), the estimated invalid data proportion is r = (1−0.7)/80 =
0.375%, which greatly reduces the fraction of invalid data and improves sampling effectiveness.

Next, we analyze the impact of accuracy p in Dynamic Sampling, as stated in A.1. Denote the batch
sample size by n. The probability that a batch is entirely correct or entirely wrong is:

r′ = pn + (1− p)n.

Taking p = 0.7 and n = 8, we get:

r′ = 0.78 + (1− 0.7)8 = 16.7%.

Without a Dynamic Sampling mechanism, this nontrivial fraction of ineffective batches would in-
deed hamper training.

A.2 DERIVATION OF THE GRPO EXPLORATORY INCENTIVE

Here, we provide a more detailed explanation of the design and derivation of the Exploratory Incen-
tive. The reason the Exploratory Incentive is not directly designed as an auxiliary reward that in-
creases according to the multimodal CoT ratio R, which would be simpler, is because merely adding
rewards may lead to reward hacking. In such cases, the model might excessively prioritize gener-
ating visual CoTs, resulting in useless reasoning that hinders the development of well-integrated
multimodal reasoning capabilities. Inspired by Su et al. (2025a), we transform this problem into a
constrained optimization problem. This ensures that the final optimization objective does not explic-
itly contain the multimodal CoT ratio R, thereby avoiding the issue of reward hacking. Meanwhile,
by incorporating the multimodal CoT ratio R into the constraints, we achieve the goal of preventing
degeneration and maintaining the desired behavior.

14
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Formally, the original reinforcement learning problem is an unconstrained optimization problem,
written as:

max
θ

E
[
r(X , R̃t)

∣∣∣ X ∼ D, R̃t ∼ πθ(· | X )
]
,

where r(X , R̃t) represents the reward, X is the input sampled from the dataset D, and R̃t is the CoT
sample with t reasoning steps generated by the policy πθ(· | X ).

After adding constraints, the optimization problem becomes a constrained one:

max
θ

E
[
r(X , R̃t)

∣∣∣ X ∼ D, R̃t ∼ πθ(· | X )
]

(2)

subject to, R(X ) ≥ ω (3)

Where R(X) denotes the proportion of multimodal reasoning in the samples for the query. The con-
straint can be rewritten as g(X , θ) = ω −R(X ) ≤ 0. We apply the Lagrangian Relaxation method
(?) to incorporate this constraint into the optimization objective. Unlike the standard Lagrangian
method, which rewrites the objective as:

rnew(X , R̃t) = r(X , R̃t)− λ · (ω −R(X )),

where λ ≥ 0 is the Lagrange multiplier, we instead follow the approach described in Su et al.
(2025a); Wang et al. (2022), which uses the formulation:

rnew(X , R̃t) = r(X , R̃t) + η ·max(ω −R(X ), 0) · 1mul(R̃t),

where η ≥ 0 is a fixed hyperparameter.

This formulation preserves equivalence to the original constrained objective while offering signif-
icant benefits during GRPO: unlike standard Lagrangian methods, where the multiplier λ needs to
be dynamically adjusted, as derived in Wang et al. (2022), this structure avoids that requirement.
Instead, it allows η to be treated as a fixed hyperparameter. By pre-selecting η, this transformation
can then be interpreted during RL training as adding an additional exploratory incentive reward,
making the computation highly convenient:

rexpo = max(ω −R(X ), 0) · 1mul(R̃t).

B DETAILED EXPERIMENTAL SETTINGS

B.1 TRAINING DETAILS.

Pipeline details. For the cold start and Rejection sampling Fine-Tuning data, we referenced and
modified the TRL code. For CoT samples, we compute the SFT loss (as stated in A.1) with a
batch size of 1 and set gradient accumulation steps to 32. For the GRPO stage, we adopt and adapt
the OpenRLHF training code. In each batch, the number of queries is set to 64, and the number of
responses per query N is set to 8; accordingly, the samples collected per training batch total 512. We
update the behavior policy model with the improved policy model every 4 batches, corresponding
to experience from 256 queries. 8 NVIDIA A800 (80GB) GPUs are used for both the cold start
and Rejection sampling Fine-Tuning stages, while 32 NVIDIA A800 (80GB) GPUs are used for the
GRPO stage.

Hyperparameters. For cold start and Rejection sampling Fine-Tuning, we use a learning rate of
1.5 × 10−6 with a warm-up ratio of 0.2. During the GRPO stage, we use a learning rate of 10−6

with a KL penalty coefficient of β = 0.01. Additionally, for reward-related hyperparameters: α,
which controls the balance between per-dimension and overall preference in the accuracy reward, is
set to 0.5, selected via parameter search. The parameter k, which controls the strength of the CoT
gain reward, is set as 0.2 to balance emphasizing visual reasoning and avoiding excessive strength
that could cause reward hacking (see Appendix C for detailed analysis). For η, the hyperparameter
governing the exploratory incentive reward as detailed in Appendix A.2, we set it to 0.5; correspond-
ingly, the minimum multimodal reasoning ratio in the constraint, ω, is set to 0.2. For the window
width p, we default to 1, considering GPU memory limitations and the <Snapshot> mechanism’s
preservation of salient information.
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B.2 COMPARED BASELINES.

We compare our model against a range of leading, high-performing reward models. We categorize
the compared models into three major classes: classifier-based reward models, generative-based
reward models , and reasoning-based reward models.

Classifier-based Reward Models. These methods build on VLMs but replace the final linear layer
of the VLM’s LLM backbone. Instead of outputting a next-token distribution, they retrain a linear
head to directly produce per-dimension or overall scores (or preferences). In this paradigm, the
RMs include VideoScore (He et al., 2024), VisionReward (Xu et al., 2024), and VideoReward
(Liu et al., 2025). They leverage VLMs’ strong capabilities for understanding and embedding visual
information to produce preference judgments in a single classifier step. While the risk of reward
hacking has been highlighted when aligning preferences with such models, such RMs that directly
judge visual information still provide strong baselines.

Generative-based Reward Models. These models leverage the VLM’s intrinsic understanding and
generating ability without modifying the model; instead, they treat preference decisions as a visual-
language task. By using prompt templates, they tap into the VLM’s comprehension and generative
capabilities to produce responses and preference judgments. Representative RMs in this paradigm
include LiFT-Critic (Wang et al., 2024) and UnifiedReward (Wang et al., 2025c), which, even
without eliciting reasoning, fully leverage VLMs’ vision–language alignment and serve as strong
baselines.

Reasoning-based Reward Models. This emerging class recognizes the close relationship between
preference judgment and reasoning, and the positive impact of logical reasoning on producing more
accurate outcomes. Models in this category include UnifiedReward-Think Wang et al. (2025b),
which, via RL-centric training pipelines, elicits the model’s textual reasoning ability, yielding strong
reasoning-driven baselines that exploit VLMs. Our newly proposed VIDEOSEARCH REASONER
also belongs to this category but further introduces multimodal reasoning, breaking the VLM’s inher-
ent processed-frame limitation and reducing risks of forgetting induced by purely textual reasoning.

B.3 DATASETS AND USAGE SETTINGS

Training data setup. As noted in Section 3.2, we compute the accuracy reward using both per-
dimension and overall preferences, which our ablation shows to be crucial. This requires datasets
annotated with per-dimension preferences-something that is non-trivial. Many preference datasets
used for training, such as VideoDPO (Liu et al., 2024) and LiFT-HRA (Wang et al., 2024), pro-
vide only an overall preference and thus are not usable for our reward design. We therefore select
fine-grained datasets with per-dimension labels: VideoGen-Reward (182k) (Liu et al., 2025), MJ-
Bench-Video (train) (8.7k) (Tong et al., 2025), and Text2Video-Human Preferences (2.6k) by
Rapidata 2.

Due to differing annotation schemes and label contents, we still need to harmonize fine-grained an-
notations across datasets: Dimension selection. MJ-Bench-Video (train) includes 5 high-level pref-
erences and up to 28 fine-grained preferences. We align its dimensionality with VideoGen-Reward
and Text2Video-Human Preferences by selecting three core dimensions: Alignment, Fineness, and
Coherence & Consistency. Dimension semantics. Since dimension titles differ across datasets,
we take two steps:(i) For each dataset, we include a dataset-specific explanation in the prompt
that clarifies the meaning of each dimension as detailed in Appendix D. (ii) We map dimensions
with different names but similar semantics to a common triad: VideoGen-Reward’s Text Alignment,
Visual Quality, and Motion Quality; MJ-Bench-Video’s Alignment, Fineness, and Coherence &
Consistency; and Rapidata’s Text2Video-Human Preferences’ Alignment, Preference 3, and Coher-
ence. Although the labels differ in name, they consistently target: (1) alignment to the prompt, (2)
intrinsic visual quality, and (3) temporal coherence/motion. This allows the model to learn the un-
derlying correspondences without being misled by naming differences, projecting knowledge onto
these three core dimensions.

2https://huggingface.co/datasets/Rapidata
3as per Rapidata, this reflects visual appeal rather than overall preference
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Benchmarking data setup. As noted above, we evaluate on three high-quality video preference
datasets, GenAI-Bench (Jiang et al., 2024), VideoGen-RewardBench (Liu et al., 2025), and MJ-
Bench-Video (Tong et al., 2025), which also serve as mainstream leaderboards for video preference
(Wang et al., 2025b). Each dataset contains entries which consist of a prompt, a pair of videos
generated from the same prompt (by different models or by different seeds of the same model),
and human expert annotations of preference, including an overall preference and, in some cases,
per-dimension preferences. For example, VideoGen-RewardBench includes three additional per-
dimension metrics: Text Alignment, Video Quality, and Movement Quality; MJ-Bench-Video in-
cludes five high-level categories and up to 28 fine-grained preferences; GenAI-Bench provides only
an overall preference. To align evaluation with both the leaderboards and our training setup, we keep
the same prompt template and required response format as in training, but when computing evalua-
tion accuracy, we use only the model’s predicted overall preference. For more detail, please refer to
our code at https://anonymous.4open.science/r/videosearchreasoner/.

C FURTHER EXPERIMENTAL RESULTS

In this section, we present more detailed experiments, including comparisons of hyperparameter
choices, the impact of varying reject fine-tuning data volumes on the GRPO stage, benchmarking
after excluding the hard subsets from the evaluation set, and performance after increasing the number
of frames per video.
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(a) Parameter search of α
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(b) Parameter search of k
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(c) Comparison on RFT data volume

Figure 5: The results of the hyperparameter search and the reject fine-tuning data volume comparison are
summarized in this figure: (a) shows parameter search for α; (b) shows parameter search for k; (c) shows
comparison across rejection sampling fine-tuning data volumes.

Comparison of different hyperparameter choices To identify the optimal hyperparameters in
Appendix B.1, we conducted a parameter search. Specifically, we tuned α, which balances the
weights of overall accuracy versus per-dimension accuracy, and k, which controls the strength of
the Chain-of-Thought (CoT) gain reward. The final evaluations are reported in Figure 5a and 5b.
We observe that α has a pronounced effect on performance: α = 1 reduces to training without the
per-dimension accuracy reward, whereas α = 0 removes the overall accuracy reward. Our chosen
setting, α = 0.5, yields the best results. The choice of k also matters, with k = 0.2 performing
best, indicating that a sufficiently strong CoT gain reward is important. However, larger k values
do not further improve performance, likely because the model can game the signal by remaining
deliberately neutral in early reasoning steps to secure larger subsequent gains (i.e., reward hacking).

Comparison of reject fine-tuning data volume As shown in Section 3.2, the rejection sampling
fine-tuning stage is crucial for consolidating the model’s reasoning ability, thereby paving the way
for improved GRPO. We further investigate the effect of data volume during the rejection sampling
fine-tuning stage for post-GRPO performance; results are presented in Figure 5c. We observe a clear
positive correlation of post-GRPO performance and rejection sampling fine-tuning data volume at
smaller scales, which is expected: more sampled reasoning patterns that are filtered for quality and
correctness lead to better capabilities. However, using even more data (40k in our setting) degrades
performance, potentially because extensive supervised fine-tuning reduces output entropy, making
subsequent GRPO optimization more difficult.

Evaluation on the remaining eval set To better compare improvements across different compo-
nents of the evaluation set (grouped by prompt complexity and frame count) and assess whether
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Table 3: Preference accuracy on Residual subset and Redundant version dataset. tau: accuracy is calculated
with ties included; diff excludes tied pairs when calculating accuracy. Best performance in Bold

Residual Dataset

Model Size GenAI-Bench (residual) VideoGen-Reward (residual) MJBench-Video (residual)
Protocol tau ↑ (%) diff ↑ (%) tau ↑ (%) diff ↑ (%) tau ↑ (%) diff ↑ (%)

LiFT 13B 38.3 59.6 40.4 58.2 42.8 51.5
UnifiedReward 7B 61.5 77.2 67.5 79.0 63.6 69.7
UnifiedReward-Think 7B 65.0 80.7 70.0 79.3 63.1 72.1

VIDEOSEARCH REASONER 7B 68.9 82.4 71.9 80.6 67.4 75.7

Redundant Dataset

Model Size GenAI-Bench (redundant) VideoGen-Reward (redundant) MJBench-Video (redundant)
Protocol tau ↑ (%) diff ↑ (%) tau ↑ (%) diff ↑ (%) tau ↑ (%) diff ↑ (%)

LiFT 13B 36.9 57.9 38.2 55.8 40.1 50.8
UnifiedReward 7B 58.9 74.7 65.2 74.2 62.1 68.7
UnifiedReward-Think 7B 63.4 77.9 66.8 77.3 61.8 70.8

VIDEOSEARCH REASONER 7B 67.2 81.9 71.5 79.8 66.3 75.2

gains are larger on complex scenarios and longer videos, in addition to the results on the Longer
video and Complex prompt subsets reported in Table 2, we also report results on the rest of the
dataset for comparison. As shown in Table 3, relative to Table 2, the improvements on the Residual
subset are less pronounced than on the Longer video and Complex prompt subsets, which validates
our analysis.

Evaluation on the eval set with increased-frame processing Beyond direct evaluation on our
Video Preference Dataset, we further probe the model’s ability to mine and analyze information from
long videos by artificially increasing data size. Concretely, we inject redundant visual information
by duplicating frames: frames at random positions are duplicated a number of times equal to the
original video length, doubling the total frame count. On this redundancy-augmented dataset, results
in Table 3 show that our model experiences a smaller performance drop compared with other models.

D PROMPTS TEMPLATES

In this section, we provide detailed prompt templates used across the workflow, including system
prompts, input-pair construction templates, and templates or auxiliary prompts employed during
synthetic data generation.

System prompt For our model, due to the presence of tool invocation, the following system
prompt is used:

1 You are a helpful assistant.
2 Tools: You may call one or more functions to assist with the user query.
3 You are provided with function signatures within <tools></tools> XML

tags:
4 <tools>:{
5 "type": "function",
6 "function": {
7 "name": "select_frames",
8 "description": "Select frames from a video.", "parameters": {
9 "type": "object",

10 "properties": {"target_frames": {
11 "type": "array",
12 "description": "List of frame indices to select from the

video.",
13 "items": {"type": "integer", "description": "Frame index

from 1 to N. N will be specified in the following"}}},
14 "required": ["target_frames"]}
15 }
16 }</tools>
17 For each function call, return a json object with function name and

arguments within <tool_call></tool_call> XML tags:
18 <tool_call>
19 {"name": <function-name>, "arguments": <args-json-object>}
20 </tool_call>",

18
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Input data construction template Each input consists of a pair: a video preference datum and a
query. The query is constructed following the prompt below. Notably, as discussed above, since the
per-dimension annotations differ slightly across datasets, dataset-specific explanations are injected
depending on the source of the video preference data.

1 Task Description:
2 Your task is to compare two videos generated based on the same prompt by

analyzing their frames in detail and provide an overall judgment
along with a judgment for each dimension. This involves:

3 - Iterative reasoning,
4 - Zooming in on details,
5 - Dynamically selecting frames for further analysis.
6
7 The provided frames are downsampled from these videos:
8 - Video 1: First four input frames.
9 - Video 2: Next four input frames.

10
11 The prompt is: {prompt}
12
13 Evaluation Dimensions:
14 1. {dim name 1}(TA):
15 {dim_explain_1}
16 2. {dim name 2}(VQ):
17 {dim_explain_2}
18 3. {dim name 3}(MQ):
19 {dim_explain_3}
20
21 Frames and Analysis Rules
22 - 8 sampled frames are provided, evenly downsampled from {N} frames
23 - Insufficient frames? Request more:
24 <tool_call>{"target_frames": []}</tool_call>
25
26 Format Requirement:
27
28 1. Snapshot:
29 Every time you receive new visual information, summarize any information

that might be useful for your final judgment within
<Snapshot></Snapshot> tags.

30
31 2. Think:
32 Place all reasoning content within <Think></Think> tags.
33
34 3. Answer:
35 If the final answer can be determined, output the answer within

<Answer></Answer> tags. If the answer is still uncertain, output the
recommended answer and confidence level within <Recommend
Answer></Recommend Answer> tags.

36 Here, 1 represents Video 1, 2 represents Video 2, and 0 represents Tie.
The confidence levels range from high to low as 1, 2, and 3.

37
38 Examples:
39 <Answer>TA=1, VQ=1, MQ=0, OA=1</Answer>, or
40 <Recommend Answer>TA=0, VQ=1, MQ=0, OA=1, CF=2</Recommend Answer>

The per-dimension explanations for each dataset are as follows:

VideoGen-Reward

1 Text Alignment: Alignment between video content and prompt
2 Visual Quality: The visual aesthetics of the video
3 Motion Quality: Level of motion coherence

19
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Text2Video-Human

1 Alignment: Alignment between video content and prompt
2 Preference: The intrinsic aesthetics of the video
3 Coherence: Level of temporal coherence

MJ-Bench-Video

1 Alignment: Alignment between video content and prompt
2 Fineness: The level of fineness in visual content
3 Coherence & Consistency: Level of temporal coherence and Consistency

Cold Start Data Construction template To improve adherence to the response format and in-
crease efficiency during the Cold Start data construction phase, we provide an additional example
for Cold Start data generation (which is removed during training), as shown below:

1 Reason Segment 1:
2
3 <Snapshot>
4 The first four frames from Video 1 and Video 2 show a close-up of a

mother orangutan holding her baby in the rainforest. The mother's
expression is gentle, and the baby's tiny fingers are gripping her
fur.

5
6 The background is lush with green foliage, and the lighting suggests it

is raining. The frames capture the tender moment between the mother
and her baby, aligning well with the caption.

7 </Snapshot>
8
9 <think>

10 The frames are clear and detailed, showing the intimate moment between
the mother and her baby. The motion appears natural, and the visual
quality is high, with vibrant colors and sharp details. The rain
adds a serene and realistic touch to the scene. The frames are
evenly sampled, ensuring a representative view of the video content.

11
12 The next four frames will help in evaluating the motion quality and

visual quality more comprehensively. I will select frames 12, 24,
36, 48, 60, 72, 84, and 96 to analyze further.

13 </think>
14
15 <recommend answer>
16 TA = 1, MQ = 0, VQ = 0, OA = 1, CF = 2
17 </recommend answer>
18
19 <tool call>
20 {"name": "select_frames", "arguments": {"target_frames": [12, 24, 36,

48, 60, 72, 84, 96]}}
21 </tool call>
22
23 Reason Segment 2:
24
25 <Snapshot>
26 The first four frames from Video 1 and Video 2 show a close-up of a

mother orangutan holding her baby in the rainforest. The mother's
expression is gentle, and the baby's tiny fingers are gripping her
fur.

27
28 The background is lush with green foliage, and the lighting suggests it

is raining. The frames capture the tender moment between the mother
and her baby, aligning well with the caption.
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1 </Snapshot>
2
3 <think>
4 The selected frames provide a clear view of the motion quality and

visual quality. The motion is smooth, with natural transitions and
no abrupt changes.

5
6 The final frames confirm that Video 1 is superior in terms of motion

quality, visual quality, and overall alignment with the caption. The
confidence in this conclusion is high, as the selected frames
provide clear evidence of the video's quality.

7 </think>
8
9 <final answer>

10 TA = 1, MQ = 1, VQ = 1, OA = 1
11 </final answer>

E LIMITATIONS

Our approach enhances the reward model through multimodal reasoning; however, this unavoid-
ably introduces longer inference chains, leading to higher latency and computational cost. In future
work, we will aim to reduce inference overhead and shorten Chain-of-Thought (CoT) length for
straightforward video cases without compromising quality, by further improving the model’s rea-
soning efficiency. Our current training pipeline primarily relies on Reject Fine-Tuning and GRPO,
which tend to amplify capabilities the model has already learned (Yue et al., 2025). To achieve more
substantial gains, constructing a higher-quality supervised fine-tuning dataset with carefully curated
CoT rationales is essential. Building such datasets is an important direction for future research.

F USE OF LLMS

LLMs were used to support writing by suggesting improvements to grammar and clarity, and to
assist with code authoring via completion. However, all final implementations and the experimental
design were conceived and executed by the authors.
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