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ABSTRACT

Backdoor attacks, which make Convolution Neural Networks (CNNs) exhibit
specific behaviors in the presence of a predefined trigger, bring risks to the usage of
CNNs. These threats should be also considered on Vision Transformers. However,
previous studies found that the existing backdoor attacks are powerful enough in
ViTs to bypass common backdoor defenses, i.e., these defenses either fail to reduce
the attack success rate or cause a significant accuracy drop. This study investigates
the existing backdoor attacks/defenses and finds that this kind of achievement
is over-optimistic, caused by inappropriate adaption of defenses from CNNs to
ViTs. Existing backdoor attacks can still be easily defended against with proper
inheritance from CNNs. Furthermore, we propose a more reliable attack: adding a
small perturbation on the trigger is enough to help existing attacks more persistent
against various defenses. We hope our contributions, including the finding that
existing attacks are still easy to defend with adaptations and the new backdoor
attack, will promote more in-depth research into the backdoor robustness of ViTs.

1 INTRODUCTION

Table 1: The performance
of FT against Badnets attack
for ResNet-18 and ViT-B on
CIFAR-10 (Wu et al., 2022).

ResNet18 ViT-B

ASR 1.48% 8.81%

ACC 89.96% 42.00%

Vision Transformers (ViTs) (Dosovitskiy et al., 2021; Liu et al.,
2021) have demonstrated outstanding performance in various tasks,
including image classification (Yuan et al., 2021; Touvron et al.,
2022), semantic segmentation (Strudel et al., 2021), and image
generation (Hirose et al., 2021; Bao et al., 2022), leading to their
widespread popularity. However, strong performance alone is in-
sufficient for ViT to be practically deployable. It must also exhibit
security and trustworthiness without posing severe security risks.
One of the most notable threats to the security of ViTs is backdoor
attacks (Gu et al., 2017; Chen et al., 2017), which implant unex-
pected behaviors inside models, making the victim model produce specific misclassification in the
presence of a predefined trigger while maintaining high performance on benign images. While
previous studies mainly focus on convolution neural networks (CNNs), there is a growing need for an
in-depth investigation of ViTs to help practitioners better understand the potential risks and deploy
them more reliably.

After a long arms race between backdoor attack and defense, for CNNs, a relatively simple defense
has the potential to make backdoor attacks fail, taking fine-tuning defense and Badnets attack as an
example in Table 1, we find that Badnets attack makes the attack success rate (ASR) on ResNet18
only have 1.48% while the benign accuracy (ACC) is 89.96%, which indicates a comprehensive
failure of the attack under defense. Contrastingly, ViTs, when subjected to the same attack, display an
increased ASR and decreased ACC, implying the disruption of the benign utility. Given that Badnets
is model-agnostic, this differential outcome piqued our interest, driving us to explore the underlying
disparities between CNNs and ViTs.

Drawing inspiration from Mo et al. (2022), we discerned a crucial observation: 1) CNNs are usually
trained by SGD and its fine-tuning defense is also trained by SGD; 2) ViTs are typically trained by
AdamW while its fine-tuning defense is trained by SGD (NOT AdamW, inheriting from earliest work
(Dosovitskiy et al., 2021), which first introduces optimizers to computer vision). This discrepancy
in optimizers raises the possibility that the perceived vulnerability of ViTs (with defense) might be
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overstated, i.e., the success of attacks on ViTs with defense may be questionable. In this paper, we
first conduct a series of experiments to comprehensively investigate the above hypothesis, which
is further confirmed that the threat posed to ViTs with defense has been magnified. Upon minor
modifications, ViTs with existing backdoor defense methods demonstrate clear resistance to attacks,
mirroring the robustness of CNNs.

To this end, we are wondering whether a more powerful attack exists that can better evade current
defenses. Therefore, we analyze backdoored models and further propose a simple yet effective attack.
We discover that it is easy for backdoor defenses to detect and utilize the differences in channel
activations due to the noticeable difference in the intermediate layers between the inputs with and
without triggers. However, we can reduce this difference by adding small perturbations to the triggers
before training while keeping triggers unchanged during testing, resulting in more reliable backdoor
attacks. Additionally, our method has transferability across different transformer architectures and is
effective for both small and large datasets.

In summary, our contributions are summarized as follows:

• We investigate the existing backdoor defenses on ViTs and find the outstanding performance
of the backdoor attacks to ViTs is over-estimated due to the inappropriate adaption from
CNNs to ViTs. Further, we provide a practical training recipe to improve the defense
performance of existing methods and show that existing attacks can not provide reliable
performances after defense.

• We propose to add small perturbations to the triggers before training to suppress the differ-
ence in the intermediate-level representations between the inputs with and without triggers,
resulting in a reliable attack. The proposed method can transfer across various architectures.

• Our contributions, including the finding of existing attacks to current defenses and the
development of a new attack, contribute to a reliable baseline for the backdoor robustness of
ViTs. We hope it can be a cornerstone of future studies in the backdoor robustness of ViTs.

2 RELATED WORK

2.1 BACKDOOR ATTACK

Backdoor attacks Gu et al. (2017); Chen et al. (2017), also known as Trojan attacks, indicate the
behaviors of implanting specific malicious behavior into machine learning models, which make the
models perform well on benign data while leading to specific misclassifications on inputs containing
triggers (i.e., triggered inputs). The adversary usually poisons the training data (Zeng et al., 2021) or
controls the training process (Liu et al., 2018b) to achieve this. Typically, a trigger pattern is added to
the input image as follows,

xp = (1−m)⊙ x+m⊙ t, (1)

where t is the trigger pattern and mask m indicates the pixels affected by the trigger pattern. Usually,
the adversary re-labels the triggered input as the predefined target class (i.e. in a dirty-label setting).
Models trained on a mixture of these poisoned data and other benign data are implanted with an
unexpected correlation between the trigger pattern and the target class. To improve the stealthiness of
the attacks, some studies explored less noticeable trigger designs like the semi-transparent trigger
(Chen et al., 2017), the elastic transformed trigger (Nguyen & Tran, 2021), and the input-aware
trigger (Nguyen & Tran, 2020). Besides, since incorrect annotation might expose the existence of
triggered data, some studies focus on poisoning without re-labeling (clean-label settings) (Turner
et al., 2019; Barni et al., 2019; Shafahi et al., 2018). Although most previous backdoor attacks
focus on CNNs, researchers have started to focus on backdoor attacks on ViT since their increasing
popularity. Although ViTs are reported to be more robust against adversarial attacks (Aldahdooh
et al., 2021; Shao et al., 2021) and common corruption (Bai et al., 2021; Bhojanapalli et al., 2021),
they are still vulnerable to backdoor attacks (Lv et al., 2021; Subramanya et al., 2022). Reliable
attacks are needed to help practitioners properly understand the risks of backdoor attacks and deploy
these models reliably.
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2.2 BACKDOOR DEFENSE

To mitigate the potential risks caused by backdoor attacks, numerous studies proposed various defense
methods, mainly categorized into defense during training and defense after training based on the
stages at which they are applied. Defense during training attempts to mitigate the impact of poisoned
data in the training set. Some methods detect and remove poisoned data by treating them as outliers
(Chou et al., 2018; Udeshi et al., 2022; Gao et al., 2019), some employ semi-supervised learning
to bypass the incorrect correlations (Huang et al., 2022), and others utilize differential privacy to
ensure that a poisoned portion of training data is unable to cause severe results (Miao et al., 2022).
Meanwhile, the defense after training directly removes the backdoor behavior inside DNNs. This can
be accomplished by fine-tuning the model using a small amount of clean data (Sha et al., 2022) and it
can be further enhanced by first pruning the inactivated neuron (Liu et al., 2018a) or encouraging
the alignment of attentions (Li et al., 2021) between the student and the teacher network. Since the
performances of fine-tuning are easy to suffer a substantial decrease when the data is limited, another
popular method is selectively removing neurons related to the backdoor behaviors (Wu & Wang,
2021; Chai & Chen, 2022; Wang et al., 2019): Built upon the observation that the backdoor behavior
can be revealed by the adversarial neuron perturbation, ANP (Wu & Wang, 2021) formulates the
following min-max problem with dataset Dv to expose the malicious neuron:

min
m∈[0,1]n

[
αLDv

(m⊙w,b)

+(1− α) max
δ,ξ∈[−ϵ,ϵ]n

LDv
((m+ δ)⊙w, (1 + ξ)b)

]
,

(2)

where δ and ξ are the perturbations to the weight w and bias b of all neurons respectively. They
maximize the cross-entropy loss LDv

and m is the mask that adversarially preserves the clean
accuracy and covers up the backdoor behavior. Then the neurons corresponding to low mask values
are pruned to purify the backdoor model. As an improved approach based on ANP, AWM in (Chai
& Chen, 2022) proposes to adopt the element-wise weight masking strategies and perturb the input
data instead of the neurons to gain better performances on small networks. This paper primarily
focuses on defense after training. Because ViTs demand a large amount of data and extensive training
resources, it has become impractical for most practitioners to train ViTs from scratch, making defense
after training a more realistic scenario. Previous studies (Wu et al., 2022; Yuan et al., 2023) suggested
that directly applying defenses from CNNs to ViTs fails. For example, fine-tuning decreases natural
accuracy from 94.58% to 42.00% against the Badnets attack and fine-pruning totally collapses in
(Yuan et al., 2023). At the meantime, only a few defense methods specially designed for ViT are
proposed (Doan et al., 2022; Subramanya et al., 2024) and their performance is lagging far behind
the state-of-the-art defense on CNNs: The adaptive defense proposed in (Zheng et al., 2022) only
decreases the ASR of TrojViT (a ViT-specific attack) to 77.13% and the patch processing method in
(Doan et al., 2022) fails to detect 33.2% backdoor examples on CIFAR-10. It seems that existing
attacks can already obtain outstanding performances on resisting defense for ViTs. However, in this
paper, after re-investigating various backdoor defenses with ViTs, we reveal that the achievement
obtained by previous attacks is not reliable. Furthermore, we provide a reliable attack, based on the
empirical observation of the channel activations of ViTs. It might help future research on backdoor
robustness with ViTs.

3 THE VULNERABILITY OF VITS (WITH DEFENSE) TO EXISTING ATTACKS

In this section, we reevaluate the perceived susceptibility of ViTs to prevailing backdoor attacks
when equipped with potential defenses. We primarily consider two categories of defenses: one
is fine-tuning-based, including Fine-Tuning (FT) (Sha et al., 2022), Fine-Pruning (FP) (Liu et al.,
2018a), and Neural Attention Distillation (NAD) (Li et al., 2021), and the other is pruning-based,
including Adversarial Neuron Pruning (ANP) (Wu & Wang, 2021) and Adversarial Weight Masking
(AWM) (Chai & Chen, 2022).

3.1 BASIC SETTINGS

Here, we train a backdoored ViT-B (Dosovitskiy et al., 2021) with various attack methods. Specifically,
we initialize the model with a pre-trained weight (Wightman, 2019) on the ImageNet-1k (Deng et al.,
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Table 2: The comparison between SGD and AdamW optimizer on FT. Here, AvgDrop represents the
average drop of four attacks on ASR/ACC after performing FT.

Attack ACC ASR

No defense SGD AdamW No defense SGD AdamW

Badnets 97.85 58.74 93.79 100.00 3.40 2.51
Blend 97.85 94.33 93.30 100.00 13.49 4.91
CLB 97.83 94.60 94.06 96.23 10.49 1.33
SIG 97.50 51.56 93.51 90.57 2.23 1.40

AvgDrop - 22.95 4.10↓ - 89.30 94.16↑

2009) and then fine-tune it on CIFAR-101 (Krizhevsky et al., 2009). Note that a portion of CIFAR-10
training data is contaminated to implant the backdoor behavior, i.e., some images are added with the
trigger pattern and are re-labeled as the target class if expected. We apply four commonly-used attack
methods: 1) Badnets (Gu et al., 2019), 2) Blend (Chen et al., 2017), 3) CLB (Turner et al., 2019), and
4) SIG (Barni et al., 2019). Their trigger design and poisoning method in the original paper are kept.
To accommodate the input size of ViT, we first add triggers to CIFAR-10 images (32× 32) and then
resize them to a larger size (224× 224). For detailed information, please refer to Appendix A. Here,
we use accuracy (ACC) to indicate the classification performance on benign data, and attack success
rate (ASR), the percentage of triggered input being classified as the target class, to indicate the attack
performance. Note that we will remove the inputs whose ground-truth label is the target class, and
thus, a successful defense should make ASR as low as 0.

3.2 VITS WITH FINE-TUNING-BASED DEFENSE

Fine-tuning is one of the most basic and model-agnostic defenses. However, as discussed in Section 1,
directly inheriting fine-tuning-based defense strategies from CNNs can potentially lead to suboptimal
outcomes. Note that SGD is the commonly used optimizer for both training and fine-tuning for
CNNs, while for ViTs, the first work (Dosovitskiy et al., 2021) introducing Transformers to computer
vision, adopts AdamW for pre-training and SGD for fine-tuning. Notably, prior work (Wu et al.,
2022) on backdoor defense naturally inherit this strategy and observes notably diminished accuracy
across multiple backdoor attacks. This discrepancy in optimizers motivates us to study the potential
influence of optimizers on backdoor defense. The initial learning rates for SGD and AdamW are set
to 0.02 and 3e-4, respectively. For the other parameters in AdamW, we use the common settings of the
original ViTs (refer to Appendix B for details). Table 2 illustrates the experimental fine-tuning (FT)
results against various backdoor attacks. For the results on FP and NAD, please refer to Appendix C.
We find that SGD exhibited significant instability on ViTs. Even for the same model, when defending
against Blend and CLB, it achieves more than 90% of ACC. However, for BadNet and SIG, ACC
decreases to less than 60%. In contrast, AdamW consistently achieves high ACC and low ASR using
the same hyper-parameter configuration. Therefore, simply using SGD for backdoor defense on ViTs
will yield highly unstable performance. We recommend employing AdamW for defense purposes.

3.3 VITS WITH PRUNING-BASED DEFENSE

Pruning is also a typical defense approach, which attempts to remove backdoor-related neu-
rons/channels and is severely impacted by the architectures. In previous studies, pruning-based
methods have achieved excellent robustness against backdoor attacks with CNNs (Wu & Wang, 2021;
Chai & Chen, 2022). However, when we directly apply these methods to ViTs, we find that they
are unable to effectively defend as shown in Table 3. Specifically, ANP fails to reduce ASR and
cannot remove the backdoor-related neurons. Besides, although AWM reduces ASR, it also severely
decreases ACC, making the model unusable. To explore the potential reason, we look deeply at the
implementation of ANP and find that ANP actually prunes channels inside norm layers rather than
neurons inside convolutional layers. This is because, in CNNs, each neuron is typically surrounded

1Ony 95% of the original training data on CIFAR-10 are used to train the backdoored model, and the
remaining data are kept for defense.
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Table 3: The Performance of pruning-based defense with or without ViTs adaptation.

Metric Setting Before ANP ANP (Adapted) AWM AWM (Adapted)

ACC

Badnets 97.85 97.85 94.26 85.98 95.02
Blend 97.85 97.85 92.70 83.29 95.08
CLB 97.83 97.83 95.71 85.67 95.60
SIG 97.50 97.50 92.60 87.22 94.58

ASR

Badnets 100.00 100.00 1.34 1.24 0.71
Blend 100.00 100.00 23.7 2.03 1.70
CLB 96.23 96.23 12.71 3.48 1.52
SIG 90.57 90.57 1.48 1.16 3.87

0 200 400 600 800
Channel

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Av
er

ag
e 

ac
tiv

at
io

n

natural examples
backdoored examples

(a) Activation after poison-
ing

0 200 400 600 800
Channel

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Av
er

ag
e 

ac
tiv

at
io

n

natural examples
backdoored examples

(b) Activation for FT
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(c) Activation for AWM

Figure 1: The average activations for different channels before (a) and after the backdoor defense
(b)-(c). The activations are sorted in descending order of the activations on natural samples.

by at least one norm layer2. However, in ViT, many norm layers are removed, and norm-layer-based
pruning only influences part of neurons and limits the defense performance. Meanwhile, AWM
utilizes element-wise masks for optimization, whose number of parameters is the same as the total
number of parameters of ViT. Since ViTs are typically larger, AWM encounters the severe overfitting
issue, leading to low accuracy. Therefore, to make pruning methods applicable to ViTs, selecting
appropriate granularity and pruning locations is necessary. Here, we recommend directly pruning all
channels of linear projection inside both attention and MLP layers, which provides better coverage
than ANP and requires fewer parameters compared to AWM. This modification decreases ASR
notably and keeps ACC high.

4 PROPOSED BACKDOOR ATTACKS

Following the above analysis, existing defense methods (ViTs adapted) successfully defend against
backdoor attacks in ViTs, just as they do in CNNs. Here, we want to explore whether there exist new
backdoor attacks to beat the newly adapted defense on ViTs.

To obtain a better insight into why defense methods can detect and remove backdoor behaviors,
we investigate the per-channel activations before the MLP head in ViT. We illustrate the average
activations of all channels for a backdoored ViT-B on triggered and benign inputs from the CIFAR-10
test set, respectively. For clarity, we reorganize the channels based on their average activations,
arranging them from largest to smallest with respect to average activations on benign data. In
Figure 1, we find a significant activation difference between benign and triggered inputs, which
is easy to capture. Further, we compare the average activation of all channels for models purified
by FT and AWM, and find that benign and triggered inputs have similar average activation after
defense. This suggests that the naive trigger design (usually predefined universal patterns) for current
backdoor attacks results in a significant difference between benign and triggered data, revealing attack
information to possible defenders. Next, we will study whether we could improve the trigger design

2Specifically, for Preact-ResNet, the norm layer is always located before the neuron; for ResNet, it is located
after the neuron
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Figure 2: The illustration of our proposed attack. We illustrate our attack by taking ViT-B as an
example. left: Using the existing poisoned dataset, we also train the BD and TC simultaneously
during backdoor training (Step 1). right: When the training is over, we perform adversarial attacks
on the BD and TC modules to generate adversarial perturbation (Step 2). In each step during crafting
adversarial perturbations, we manually mask some patches of perturbation to better poisoned ViTs
(Step 3).

to escape defenses. The general process of our attack is summarized in Figure 2 and we term it as the
Channel Activation attack in ViT (CAT).

Adversarial Loss. Based on our observation, a good trigger design is expected to avoid noticeable
channel activation differences between benign and triggered inputs. Therefore, we require additional
backdoor discriminators (BD) to clarify whether the training input has the predefined trigger during
the training. Specifically, we denote the feature extractor of the backdoored model as g(·)3, and
the backdoor discriminator di(g(x)) uses the intermediate feature of the i-th layer to discriminate
whether the input x has the trigger pattern. During backdoor training, we also train these backdoor
discriminators of the last n layers, i.e., di(g(x)), i = L − n + 1, · · · , L. After training, we could
use these backdoor discriminators to generate adversarial perturbations on the trigger pattern to
minimize the activation difference between benign and triggered inputs. Meanwhile, naive difference
minimization might make the model classify triggered inputs as a non-target label, leading to
the failure of backdoor attacks. To address this issue, we introduce additional target classifiers
fi(g(x)) (TC), which uses the intermediate feature of the i-th layer to make classification between
benign samples, i.e., classifying the benign input as the ground-truth label. Similar to the backdoor
discriminator, we also train these clean classifiers of the last n layers, i.e., fi(g(x)), i = L −
n+ 1, · · · , L during training. In conclusion, we craft adversarial perturbation via maximizing the
following loss,

L(δ) =
L∑

i=L−n+1

(1− γ) · ℓ
(
di(g(x+m⊙ δ)), ybd

)
− γ · ℓ

(
fi(g(x+m⊙ δ)), ytc

)
,

(3)

where ybd is the label for the backdoor discriminator, i.e., 1 for triggered data and 0 for benign data.
ytc is the label for the target classifier as the adversary expects, i.e., the ground-truth label for benign
input, and the target label for triggered input. Here γ is a trade-off coefficient to balance the effect
between TC and BD.

Generation Steps. Since the nonlinearity of ViTs, it is mathematically infeasible to obtain the exact
solution for Equation 3. However, we can use the projected gradient descent (PGD) (Madry et al.,

3In our method, the extractor will return intermediate features from all layers.
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2018) from the normal adversarial attacks to craft the perturbations on the trigger pattern as follows:

δ ←m⊙Πϵ

(
δ + α · ∇δL(δ)

∥∇δL(δ)∥2
)
, (4)

where m is the mask for triggers, ⊙ is the Hadamard product, and Πϵ(·) is the projection function,

Πϵ(δ) =
ϵ

∥δ∥2
δ. (5)

Random Masking of Perturbation. In practical situations, the adversary has no access to model
architecture and its parameters. Usually, the adversary expects to craft these perturbations from
models with known parameters and structure (source model) to attack these unknown models (target
model). The generated perturbations in this situation are expected to be effective across various
architectures. Unfortunately, different ViTs could have various patch sizes for splitting, leading to
differences in the scale of sensitive features. This might cause low transferability across architectures.
Therefore, we propose a method termed Random Masking of Perturbation (RMP). In each step during
crafting adversarial perturbations, we first split perturbation with k patches and randomly drop a
predefined percentage of perturbation patches. This can create features of varying scales manually
and make the perturbations effective for kinds of ViTs with different patch-splitting approaches.

5 EXPERIMENTS

5.1 MAIN RESULTS

Settings: We evaluate the performances of our methods in two scenarios. 1) White-box: the target
model and source models have the same architectures and backdoor training from the same pre-trained
model. 2) Black-box: the architectures of the target model and the source model are different. We
choose ViT-B as the source model and five ViT variants, including ViT-B, DeiT-S (Touvron et al.,
2021a), Swin-B (Liu et al., 2021), Cait-S (Touvron et al., 2021b) and XciT-S (Ali et al., 2021) as
our target models. In our experiments, we choose the last two layers (i.e., n = 2) to add BD and
TC modules, which are composed of one Linear layer. For the perturbation generation step, the
adversarial attack is l2 bounded PGD-10 with budget 16/255, step size 4/255, and the trade-off
parameter γ is set to 0.6. For random masking of perturbation, we split the perturbation into multiple
small pieces, each of which has the shape of 2× 2. The percentage of dropped patches is set to 0.1
and 0.05 for the whole-image patch and trigger-based path, respectively. For other hyperparameters,
we mainly keep in line with Section 3 and summarize them in Appendix A and B. All experiments
are performed on CIFAR-10. The ASR of our CAT against five defenses are summarized in Table
4. For ACC, please refer to Appendix D. In addition to the five defenses mentioned in previous
sections, in Appendix E, we also demonstrate that CAT can even help prevailing attacks bypass the
detected-based defenses.

Results: First, when no defenses are performed, CAT will obtain a comparable ASR compared to
the vanilla settings. In most cases, it even can gain better performance. For example, our method
increases the ASR of SIG attack from 90.57% to 91.19% on ViT-B. Second, for the post-defense
situation, CAT can achieve higher ASR in a novel margin. For example, under the white-box setting,
it increases the ASR from 2.51% to 66.72% against the badnets attack for FT. In the black-box
settings, the ASR of SIG attacks increases from 3.30% to 13.81% on DeiT-S for the AWM defenses.
As for ACC, the results in Appendix D show that CAT will obtain comparable ACC compared to the
vanilla attack. It indicates that our method will only enhance the ASR without compromising the
classification of the benign images.

5.2 PERFORMANCE ON IMAGENET WITH COMPARISONS WITH VIT-SPECIFIC METHODS

Attribute to the highly flexible multi-head self-attention mechanism, ViTs can outperform CNNs
when millions of data are provided. Thus in this section, we not only evaluate the performance of
our attack on ImageNet (Deng et al., 2009) but also compare it with existing ViT-specific attacks to
illustrate its superiority. Here we only report the results after combining badnets and blend attacks
because the clean-label attacks will fail for only at-most poisoning 0.1% of training data. More details
of our experimental configurations are summarized in Appendix F. In addition to the model-agnostic
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Table 4: ASR (%) of our proposed attack with different ViT variants on the CIFAR-10 dataset. The
best results are in bold.

Defense Attack ViT-B DeiT-S Swin-B CaiT-S XciT-S

Vanilla CAT Vanilla CAT Vanilla CAT Vanilla CAT Vanilla CAT

No defense

BadNets 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Blend 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
CLB 96.23 94.57 95.28 94.04 84.86 90.23 85.71 92.21 100.00 100.00
SIG 90.57 91.19 84.77 88.28 94.99 97.77 80.93 82.26 94.21 96.17

FT

BadNets 2.51 66.72 8.21 56.82 8.17 36.07 16.57 64.34 8.81 51.80
Blend 4.91 38.53 1.84 18.94 1.84 15.36 10.11 49.12 11.58 85.93
CLB 1.33 12.32 6.39 18.39 0.90 8.22 0.48 10.93 9.88 63.39
SIG 1.40 10.99 0.88 4.20 0.18 15.02 14.54 19.82 3.09 25.18

FP

BadNets 0.91 27.90 33.98 45.09 11.49 19.52 15.80 19.96 6.37 14.39
Blend 0.73 12.49 3.82 14.73 2.48 22.67 43.09 90.27 23.82 29.50
CLB 1.70 26.88 3.87 16.52 2.54 5.56 1.59 6.12 13.99 20.49
SIG 0.81 9.68 2.26 14.79 3.81 5.49 8.96 19.23 13.22 16.43

NAD

BadNets 1.57 86.50 10.20 43.73 4.26 47.09 3.83 32.52 15.20 32.63
Blend 8.94 61.93 1.50 23.30 5.70 59.32 11.89 73.71 18.57 55.90
CLB 7.27 13.30 5.88 19.66 1.32 11.61 3.84 29.66 20.10 36.04
SIG 3.60 9.07 3.99 21.02 1.27 24.62 4.39 18.17 6.16 23.01

ANP

BadNets 1.34 51.09 6.03 58.17 2.63 19.47 31.24 83.34 6.82 81.57
Blend 23.70 92.23 36.67 79.91 34.37 99.62 59.83 100.00 0.00 99.99
CLB 12.71 14.01 13.18 25.19 2.78 10.62 2.64 23.51 44.53 92.43
SIG 1.48 67.57 20.8 79.91 21.78 60.26 41.88 67.63 21.72 64.52

AWM

BadNets 0.71 6.78 2.71 6.64 4.79 12.76 0.90 10.57 2.31 16.11
Blend 1.70 26.22 1.27 5.12 0.32 27.62 36.00 57.72 88.43 94.56
CLB 1.52 4.40 2.19 5.42 3.16 6.74 0.91 2.66 26.84 40.71
SIG 3.87 38.59 3.30 13.81 29.83 59.82 16.79 23.22 35.99 96.05

Table 5: ASR (%) of our attack on ImageNet dataset. The higher ASR is in bold.

Attack Before FT FP NAD ANP AWM AB

TrojViT 91.08 0.14 0.11 0.16 0.46 0.18 -

DBIA 99.58 0.09 0.07 0.10 0.10 0.05 -

Badnets 100.00 27.75 3.67 26.82 18.30 24.32 3.84
Badnets+CAT 100.00 51.35 14.17 28.75 44.36 81.98 12.76

Blend 100.00 18.44 1.01 6.71 19.79 39.63 100.00
Blend+CAT 100.00 27.83 3.17 13.44 48.49 71.29 100.00

attacks mentioned in the previous sections, we also include two ViT-specific attacks: the Trojan
Insertion attack in ViT (TrojViT) (Zheng et al., 2022) and the Data-free Backdoor Injection Attack
(DBIA) (Lv et al., 2021) for comparison. We also evaluate our methods on the current ViT-specific
defense, including Attention Blocking (AB) (Subramanya et al., 2024). The hyperparameter settings
of ViT-specific attacks or defenses are the same as those in the original paper (Please refer to Appendix
F for details). Considering both the white-box and black-box attacks, ViT-B is chosen as the source
model and our target models include ViT-B and Swin-B. The ASR and ACC of the white-box setting
are summarized in Table 5 and Appendix G respectively. For the performances of CAT on the
black-box settings, please refer to Appendix H for the results.

First, similar to the results on CIFAR-10, the results reveal that CAT can help existing attacks better
bypass the adapted defenses. For example, our approach boosts the ASR of Badnets from 24.32% to
81.98% after applying AWM. In addition, compared to the existing ViT-specific backdoor attacks,
our method also shows its superior performance: Both TrojViT and DBIA only obtain less than 1%
ASR after performing the adapted defense which is quite lower than those of CAT. In addition, for
ViT-specific defense, our method also obtains better performance: the gains on ASR are observed
after combining Badnets with CAT. We conjecture this is because our attack reduces the anomalous
behavior of backdoor samples on ViTs by introducing benign features. This increases the difficulty
of detecting them from the poison dataset. AB totally fails to defend Blend or CAT+Blend because it
only masks a patch of images which will be less effective when encountering the whole-image attack,
i.e. Blend.

5.3 ABLATION STUDY

For our proposed CAT, there are two key components: one is to perform adversarial attacks on triggers
(PA), and the other is to randomly mask patches of perturbation (RMP). To evaluate the contribution

8
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Table 6: The ASR for different combinations of our technique. The better result is in bold.

Attack ViT-B Swin-B

Badnets Blend CLB SIG Badnets Blend CLB SIG

FP
Vanilla 0.91 0.73 1.70 0.81 11.49 2.48 2.54 3.81

+PA 14.54 6.52 7.50 7.04 15.19 14.97 3.40 3.82
+PA+RMP 27.90 12.49 26.88 9.68 19.52 22.67 5.56 5.49

AWM
Vanilla 0.71 1.70 1.52 3.87 4.97 0.32 3.16 29.83

+PA 4.78 23.26 2.48 21.52 11.32 26.32 4.39 47.87
+PA+RMP 6.78 26.22 4.40 38.59 12.76 27.62 6.74 59.82
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Figure 3: The effect of hyperparameters to the performances of our method.

of each component, we test the performances under three combinations: 1) the vanilla backdoor
attacks, 2) backdoor attacks with PA, 3) backdoor attacks with both PA and RMP. Considering both
white-box and black-box settings, we select ViT-B and Swin-B as the target models. We select FP
and AWM to evaluate the performances of backdoor attacks since they show the most promising
performances in Table 4. Other configurations are the same as those in section 5.1. We summarize
the ASR for all combinations in Table 6. It reveals that PA can improve the ASR for both ViT-B and
Swin-B but applying PA and RMP together can gain higher ASR. For example, under the white-box
setting, the gain of PA for FP against badnets attack is 13.63%, performing PA and RMP both can
further improve the ASR by 26.99%. Similar results are also observed for the black-box settings.

5.4 HYPERPARAMETER ANALYSIS

In this section, we test the effect of hyperparameters on our proposed methods. Taking Badnets
attacks as an example, we report the ASR after performing fine-tuning (FT) for ViT-B and Swin-B.

Attack budget: Recalling that in Section 4, we craft the adversarial samples to reduce the differences
in features between the backdoor and benign data. The previous works reveal that the strength of
the attacks plays a vital significance in the adversarial region. Therefore, we first investigate the
effect of the attack strength ϵ on the performance of our method. As shown in Figure 3 (a), the ASR
of our method increases when we increase the budget. This is because more and more features on
the triggers that mismatches the benign data are removed. However, when the attack is too strong
(ϵ > 16/255), the performance of our method will decrease because it makes it too hard for the
network to learn backdoor information from the data.

Trade-off coefficient: γ is another important hyperparameter for our method. As shown in Figure 3
(b), the results illustrate that the adversarial information from both additional modules: the backdoor
discriminator and the target classifier can improve the ASR (γ = 0 or 1.0). However, mixing the
information from both can gain better performance. When γ = 0.6, our method achieves the best
performance by simultaneously enhancing the information of the target class while eliminating the
irrelevant features on the triggers.

5.5 A CLOSER LOOK AT CAT

Time costs: As proposed in Section 4, CAT only increases the cost before training, thus its additional
overhead is proportional to the number of poisoned samples and the attack steps for crafting adversar-
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Table 7: The time costs of
CAT on CIFAR-10 and Ima-
geNet datasets.

Time CIFAR-10 ImageNet

Badnets 1min10s 3min39s
Blend 1min6s 3min46s
CLB 1min50s -
SIG 1min51s -
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Figure 4: The activation difference for vanilla badnets and
CAT attacks.

ial perturbations. We also further perform experiments on a single RTX3090 to demonstrate that CAT
only brings negligible cost to practical use on ViT-B. As shown in Table 7, the preprocessing process
of CAT can be completed in a few minutes. Even on large datasets such as ImageNet, the overall
costs are less than 4 minutes. The results demonstrate that it is affordable to perform CAT for most
attackers, which could potentially increase its threat to current AI systems.

Channel activations: We visualize the activation difference with or without performing CAT against
the badnets attack in Figure 4 and sort them in descending order. Here the activation difference refers
to the absolute value of the difference in activation between clean and backdoor samples in different
channels. For the results of Blend, CLB and SIG attacks, please refer to Appendix I for more details.
Compared to vanilla attacks, the results demonstrate that CAT can largely reduce the differences
between the activations of the backdoor and clean samples. Therefore it effectively increases the
stealthiness of the combined attacks.

6 CONCLUSION

In this paper, we conduct a comprehensive evaluation of backdoor methods on ViTs and show that
the illustration of success achieved by current attacks to ViTs is due to inappropriate adaption of
defense from CNNs to ViTs. We further provide some training recipes to correctly evaluate the
attack, including using AdamW rather than SGD and selecting appropriate granularity for pruning.
Our results demonstrate that existing attacks can not provide reliable performance after defense.
Therefore, we investigate why the defense method easily removes backdoor behavior and find a
huge difference in channel activation in intermediate layers with commonly used predefined triggers.
Inspired by this, we propose a more reliable attack by adding special adversarial perturbations into
the trigger pattern to avoid noticeable channel activation differences between benign and triggered
input. We hope our method, including the proposed recipes in ViTs and the new attack method, could
be a cornerstone of future studies on the backdoor robustness of ViTs.

ETHICS STATEMENT

The popular use of ViTs in multiple vision tasks makes us notice their security concerns and one
of those is backdoor attacks. In this paper, we not only make adaptions for the existing backdoor
defenses but also propose a new backdoor attack based on the differences in dimensional activations.
Our contributions may help the community reliably evaluate the backdoor robustness of ViTs and the
safer application of ViTs in real-world scenarios. In the meantime, the negative impact can not be
simply ignored: our proposed attack could be exploited by malicious attackers to build more powerful
backdoor attacks for ViTs.

REPRODUCIBILITY STATEMENT

We perform all experiments on publicly available datasets. To ensure the reproducibility of the paper,
we summarize the basic settings in Section 3.1 and Section 5.1. For others, we list them in Appendix
A and B respectively. We will release the open-source code upon acceptance.
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A DETAILED SETTINGS FOR BACKDOOR ATTACK

(a) Benign (b) Badnets (c) Blend (d) CLB (e) SIG

Figure 5: Examples for the benign and backdoor images in the poisoned training set.

(a) Benign (b) Badnets (c) Blend (d) CLB (e) SIG

Figure 6: Examples for the benign and backdoor images in the poisoned test set.

This section provides detailed information about the settings for the backdoor attacks. As demon-
strated in Section 3.1, we first pre-train the ViT-B on ImageNet-1k and finetune the network on the
poisoned dataset using AdamW optimizer for 20 epochs with a learning rate of 0.0001. Simple
data augmentations, including random crop with padding and horizontal flipping, are adopted for
backdoor training. We assign the Class 0 (”airplane”) of the CIFAR-10 dataset as the target class for
backdoor attacks. Examples of benign and backdoor images in the training set and poisoned test set
are shown in Figure 5 and Figure 6. All experiments are performed on the NVIDIA 3090 GPUs. The
implementation details of each attack are summarized as follows:

Badnets: Following the original paper (Gu et al., 2019), we take a 3×3 checkerboard as the trigger.
As shown in Figure 5(b), the trigger is placed at the bottom right corner of the original image. Given
the target class, 5% of images from the other classes are attached with the trigger and re-labeled as
the target class. For ViT-B, we obtain the ACC of 97.85% and ASR of 100.00%.

Blend: For Blend attack, we take the Gaussian noise (t) as the trigger. In particular, the trigger has
the same size as the original image. For the benign image x, the poisoned image can be given as
xp = (1− α) · x+ α · t. In contrast to the definition shown in Section 2.1, α ∈ [0, 1] denotes as the
blending rate between the benign image and the trigger pattern. Following the original paper (Chen
et al., 2017), α is set to 0.2. Examples of poisoned images in the training and test set are shown in
Figure 5(c) and Figure 6(c). Same as Badnets attack, 5% images from the other classes are attached
with the trigger pattern and relabeled as Class 0. For ViT-B, we achieve the ACC of 97.85% and ASR
of 100.00%.

CLB: We select 80% benign images from the target class for data poisoning. Next, we perform a 100-
step PGD attack on the selected images using a pre-trained robust model 4. For the hyperparameter
settings, we follow the original paper with the budget 16/255 and the step size of 2.4/255. As shown
in Figure 5(d), we attach the trigger, a four-corner 3× 3 checkerboard, on these selected images. The
poisoned training set combines these poisoned images and the remaining benign images from all
classes. For ViT-B, we obtain the ACC of 97.83% and ASR of 96.23%.

SIG: We follow the original work in (Barni et al., 2019), which adopts the sinusoidal signal as the
trigger. We also select 80% benign images from the target class for data poisoning. The strength ∆
and frequency f for SIG attack are set to 40 and 6 respectively following previous studies (Wu et al.,
2022; Barni et al., 2019). Examples of the poisoned images are shown in Figure 5(e) and Figure 6(e).
For ViT-B, we obtain the ACC of 97.50% and ASR of 90.57%.

4https://github.com/yaircarmon/semisup-adv
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B DETAILED SETTINGS FOR BACKDOOR DEFENSE

This section provides detailed information on the backdoor defenses applied in this paper. The
settings of each defense are summarized as follows:

FT: We use AdamW (Loshchilov & Hutter, 2018) optimizer, the most popular optimizer for ViTs, to
fine-tune the backdoor ViTs for 20 epochs with a weight decay of 0.2. For ViT-B, the learning rate is
set as 3e-4. For other transformers, it is set as 5e-4. In addition, we adopt the cosine learning rate
schedule. Same as backdoor training, only simple data augmentations, including random crop with
padding and horizontal flipping, are used to retain the clean accuracy better and avoid the increasing
ASR of whole-image backdoor attacks caused by strong data augmentation as discussed in section 3.

FP: FP (Liu et al., 2018a) first prunes the last layer of CNNs by a predefined pruning threshold and
then fine-tune the network on the clean subset of data. Similarly, we prune the last linear projection
layer of transformer encoder blocks in ViTs. For the pruning partition threshold, we use the tolerance
of clean accuracy reduction to limit the maximum drop of the benign accuracy following (Wu et al.,
2022). In this paper, we set it to 0.9. The other settings are the same as the original paper (Liu et al.,
2018a).

NAD: NAD (Li et al., 2021) first makes two copies of the original backdoor models, referred to as
the teacher model and student model respectively. Next, NAD fine-tunes the teacher model with the
vanilla FT. Finally, the finetuning of the student model is guided through neural attention transfer
from the teacher model. For the hyperparameter setting, we mainly keep in line with (Wu et al., 2022)
except for two differences: we train the student network for 20 epochs using the AdamW optimizer
instead of hundreds of epochs with SGD optimizer. The above changes are made because of the
observation shown in Appendix C and Appendix ??. As for the configuration of learning rate, we
follow FT, set 3e-4 for ViT-B and 5e-4 for other ViTs.

ANP: Wu et al. (Wu et al., 2020) observe that backdoor models are prone to output the target labels
when the neurons are perturbed by the adversarial perturbations. Inspired by this, they propose to
optimize the mask of each neuron, a continuous value in [0, 1], under adversarial neuron perturbations
and then prune neurons whose mask values are lower than the threshold, i.e., hardening the continuous
mask values as binary masks. In this paper, we use the same settings as the original paper except
for applying 4000 iterations to avoid under-convergence of large models like ViTs (longer than the
2000 iterations for CNNs in the original paper). Compared to the hardened masks (pruned) applied in
their original paper, we find that soft masks, continuous mask values without hardening, can preserve
ACC better and decrease ASR further. Thus, we apply soft masks in this paper, and these masks are
applied to the channels of linear projection.

AWM: Compared to ANP, AWM (Chai & Chen, 2022) makes two improvements on CNNs. The
authors apply soft element-wise weight masking instead of neuron pruning (hardened mask values)
to avoid over-cutting beneficial information. Besides, they perturb the data instead of the neurons to
utilize the training data more efficiently. When applied to ViTs, we mask the channel of the linear
projection, similar to ANP. The other hyperparameters are the same as the original paper (Chai &
Chen, 2022) without turning.

C THE EFFECT OF OPTIMIZER ON FP AND NAD

Table 8: The effect of optimizer on FP and NAD. AdamW gains higher ACC and lower ASR than
SGD.

(a) ACC

Attack SGD AdamW

No defense FP NAD FP NAD

Badnets 97.85 93.17 57.59 93.52 93.77
Blend 97.85 93.41 94.27 92.59 94.09
CLB 97.83 27.20 94.31 93.22 93.88
SIG 97.50 77.34 94.31 93.88 93.86

AvgDrop - 24.98 12.91 4.46↓ 3.86↓

(b) ASR

Attack SGD AdamW

No defense FP NAD FP NAD

Badnets 100.00 0.90 4.24 0.91 1.57
Blend 100.00 9.67 48.57 0.73 8.94
CLB 96.23 8.21 10.15 1.70 7.27
SIG 90.57 1.93 5.00 0.81 3.60

AvgDrop - 91.53 79.71 95.66↑ 91.36↑
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In this section, we compare the performance of SGD and AdamW on the other two fine-tuning-based
methods, FP and NAD, following the settings in section 3.2. As shown in Table 8, the results
demonstrate that, compared to SGD, AdamW always performs better on FP and NAD. For example,
SGD results in an average ACC drop of 24% in FP, much larger than 4.46% caused by AdamW.
Besides, SGD also has a little worse defense performance.

D THE ACCURACY OF OUR ATTACK ON CIFAR-10 DATASET

Table 9: ACC (%) of our attacks with different ViT variants on the benchmark dataset. The best
results are in bold.

Defense Attack Vanilla Ours

ViT-B DeiT-S Swin-B Cait-S XciT-S ViT-B DeiT-S Swin-B Cait-S XciT-S

No defense

BadNets 97.85 97.67 98.53 98.47 97.83 98.18 97.75 98.69 98.35 97.90
Blend 97.85 97.98 98.90 98.62 98.39 98.04 97.86 98.75 98.47 98.34
CLB 97.83 97.70 98.41 98.27 97.65 97.88 97.83 98.49 98.27 97.72
SIG 97.50 97.44 98.56 98.21 98.05 97.88 97.36 98.67 98.14 97.89

FT

BadNets 93.79 93.17 95.23 94.24 93.99 94.03 93.47 95.17 95.17 93.89
Blend 93.30 93.57 95.32 94.56 93.96 94.00 93.99 95.70 94.91 94.33
CLB 94.06 93.33 95.75 94.99 93.95 94.20 93.78 95.96 95.07 94.43
SIG 93.51 93.75 95.47 94.75 94.07 93.38 93.51 95.10 94.97 94.44

FP

BadNets 93.52 93.40 95.84 95.18 94.57 93.67 93.41 95.98 95.29 93.59
Blend 92.59 94.06 95.94 94.69 94.37 93.05 93.96 96.11 95.43 94.79
CLB 93.22 93.99 95.91 95.36 94.55 93.15 94.17 95.48 95.42 94.36
SIG 93.88 93.36 95.97 95.50 94.54 93.75 93.84 96.24 95.20 94.37

NAD

BadNets 93.77 93.75 93.62 95.69 95.86 93.82 94.92 94.44 95.82 95.32
Blend 94.09 94.20 94.29 95.22 95.69 94.12 94.49 93.81 95.50 95.08
CLB 93.88 94.21 93.67 95.83 95.62 94.02 94.82 94.14 95.67 95.87
SIG 93.86 94.30 93.90 95.91 95.90 93.95 94.08 94.75 95.55 95.15

ANP

BadNets 94.26 93.77 98.05 96.89 93.45 94.40 94.49 97.62 97.39 95.78
Blend 92.70 95.92 94.91 97.27 95.42 95.67 94.70 97.48 97.32 83.74
CLB 95.71 94.93 98.05 97.43 85.98 95.83 94.37 97.60 97.41 91.26
SIG 92.60 95.25 97.79 97.76 96.18 94.62 94.70 97.51 96.98 96.55

AWM

BadNets 95.02 94.52 96.39 95.93 95.46 93.87 94.91 96.28 96.18 95.43
Blend 95.08 94.99 93.00 96.51 96.00 95.06 94.82 95.38 96.28 94.40
CLB 95.60 94.94 95.20 96.17 95.33 95.12 94.84 94.22 96.41 95.53
SIG 94.58 94.76 96.89 96.59 96.05 94.46 94.43 96.90 96.57 95.80

We have discussed the attack performance of our proposed method as shown in Table 4 of Section
5.1. Here, we continue to explore the effect on the accuracy of our attacks. As shown in Table 9,
the backdoored models with our method have comparable accuracy to their baselines (without our
method), which indicates our method does not influence the utility of the backdoored model and
guarantees the stealthiness of backdoored models with our method.

E THE PERFORMANCES OF CAT AGAINST THE DETECTION-BASED DEFENSES

We further evaluate CAT on Neural Cleanse (NC) (Wang et al., 2019) to see whether CAT can help
existing attacks better bypass the detected-based defense. NC is composed of two stages: Firstly, it
reconstructs all possible triggers through optimization and determines whether the victim model is
implanted with a backdoor via outlier detection. Secondly, if the answer is true, it will mitigate the
backdoor behavior through unlearning with the reconstructed trigger, i.e., restoring the performance
even with the presence of the trigger. We examine whether CAT can better bypass NC in these
two stages, and all experiments are performed on the CIFAR-10 dataset with ViT-B and Swin-B
architectures, covering both the white-box and black-box settings.

Detection Stage: NC reconstructs potential triggers for each class and uses the anomaly index metrics
to determine if one of them is a valid trigger. The larger the anomaly index, the more likely it is to be
a real backdoor trigger. Here, we calculate the anomaly indexes of the attack with or without CAT for
comparison. The results in Table 10 (a) show that CAT can always lower anomaly indexes, making
the attack stealthier. For example, the vanilla badnets attack obtains anomaly indexes of 7.45, which
is larger than those after combining CAT (5.04). It means CAT can help existing attacks better bypass
the detection of NC.
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Table 10: Performance (%) of CAT against NC on the CIFAR-10 dataset.

(a) Anomaly Index

ViT-B Swin-B

BadNets 7.45 4.17
CAT+BadNets 5.04 3.25

Blend 3.14 3.80
CAT+Blend 1.60 1.62

CLB 7.13 2.99
CAT+CLB 2.48 2.26

SIG 2.26 3.47
CAT+SIG 0.90 1.16

(b) ASR after unlearning

ViT-B Swin-B

BadNets 1.08 11.67
CAT+BadNets 99.99 56.69

Blend 0.66 1.24
CAT+Blend 53.49 21.88

CLB 0.36 1.28
CAT+CLB 6.25 9.86

SIG 5.64 2.36
CAT+SIG 43.79 15.63

(c) ACC after unlearning

ViT-B Swin-B

BadNets 96.85 96.87
CAT+BadNets 97.22 96.35

Blend 96.61 96.97
CAT+Blend 97.08 96.84

CLB 96.78 96.88
CAT+CLB 96.75 96.90

SIG 96.78 96.01
CAT+SIG 97.06 97.03

Unlearning Stage: Next, the defenders use the reconstructed triggers to mitigate the backdoor
behavior once the reconstructed triggers are identified. Specifically, they fine-tune the model to
predict ground-truth labels in the presence of the triggers, i.e., unlearning the backdoor behavior.
Here, we explore whether CAT makes existing attacks more resistant to unlearning. According to
previous research (Wu et al., 2022) which observes that the unlearning process of NC with CNNs’
default settings will decrease the benign accuracy a lot (¿50%), we make the following adaptations
based on the observations in our paper: (1) Use AdamW optimizer to unlearn the backdoored models.
(2) Unlearn the backdoored model only for 20 epochs. We summarize the results in Table 10 (b). The
table shows that CAT can make unlearning more difficult and keeps backdoor behavior inside the
model. Therefore, we can conclude that CAT has a better capability of resisting the detection-based
defense.

F THE SETTING OF OUR ATTACK ON IMAGENET DATASET

(a) Benign (b) Badnets (c) Blend

Figure 7: Examples for the benign and backdoor images on ImageNet dataset.

Attack: Since the huge computational cost, we fine-tune the pre-trained ViT-B on the poisoned
ImageNet with 512 batch size and 10 epochs to insert backdoors. Because ImageNet is a high-
resolution dataset, we increase the trigger size of badnets attacks to 21 × 21 for better poisoning.
For the Blend attack, we resize the image of gaussian noise to 224× 224 to accommodate the large
input size on ImageNet. In Figure 8, we show examples of benign and backdoor images. For other
settings of the vanilla poisoning, we keep the same with our experiments on CIFAR-10 (Please
refer to Appendix A for details.). For the settings of our proposed attack, we follow the settings of
CIFAR-10 except for the following two points: During the perturbation generation step, the budget
and step size are set to 8/255 and 2/255, respectively. Similar to the vanilla backdoor attack, the
patch size of RMP is enlarged to 16 because ImageNet is a high-resolution dataset. For ViT-specific
attacks, we choose DeiT-B (Touvron et al., 2022) which has the exact same architecture as ViT-B for
poisoning without any hyperparameter change.

Defense: First, for the defense methods unrelated to architectures, to achieve a better acceleration
of the experiments on ImageNet, we adopt a large batch size of images for defense. In detail, for
fine-tuning-based defense, the batch size is set to 512. For pruning-based defense, the batch size is
set to 128 to avoid the out-of-memory problem on 4 NVIDIA 3090 GPUs. Other settings are the
same as our experiment on CIFAR-10. Please refer to Appendix B for details. As for the ViT-specific
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attack: attention blocking (AB), we adopt the default setting recommended by (Subramanya et al.,
2024): during the inference stage, we block out the region of size 30× 30 which is highlighted by
Attention Rollout (Abnar & Zuidema, 2020).

G THE ACCURACY OF OUR ATTACK ON IMAGENET DATASET (THE
WHITE-BOX SETTING)

Like the experiments on CIFAR-10, we also evaluate the effect of our method on ACC for large
datasets like ImageNet. The results in Table 12 show that our method does not influence the utility
of the backdoored models and the stealthiness of backdoored models on large datasets can also be
further guaranteed.

Table 11: ACC (%) of our attack on ImageNet dataset. The higher ACC is in bold.

Attack Before FT FP NAD ANP AWM AB

TrojViT 80.59 76.82 76.93 77.55 76.31 77.78 -

DBIA 79.52 78.3 75.2 77.18 76.49 78.94 -

Badnets 80.82 71.05 68.10 72.38 69.56 76.40 74.86
CAT+Badnets 81.01 71.41 68.31 72.69 69.79 76.62 74.51

Blend 80.82 71.03 68.43 72.60 69.69 76.77 74.72
CAT+Blend 81.03 71.12 68.39 72.62 69.96 76.36 74.73

H THE PERFORMANCE OF CAT ON THE IMAGENET DATASET UNDER THE
BLACK-BOX SETTING

Table 12: Performance (%) of CAT on the ImageNet dataset under the black-box setting. The better
performances are in bold. CAT obtains better performances than the vanilla attack.

(a) ASR
Attack Before FT FP NAD ANP AWM

Badnets 100.00 31.91 22.23 42.36 42.29 35.92
CAT+Badnets 100.00 79.17 35.96 61.18 73.62 59.58

Blend 100.00 6.10 3.01 18.00 10.85 31.96
CAT+Blend 100.00 21.62 22.32 35.11 43.84 45.92

(b) ACC
Attack Before FT FP NAD ANP AWM

Badnets 83.02 77.28 76.06 77.45 68.93 75.78
CAT+Badnets 83.11 77.27 76.10 77.86 69.54 76.84

Blend 82.93 76.70 76.37 77.81 68.23 76.22
CAT+Blend 83.09 76.87 76.51 77.26 70.16 75.96

I ACTIVATION DIFFERENCE WITH OR WITHOUT COMBINING CAT
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(a) Blend
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(b) CLB
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(c) SIG

Figure 8: The activation difference with or without combining CAT.
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