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Abstract001

Sign language segmentation focuses on iden-002
tifying temporal boundaries within sign lan-003
guage videos. As compared to previous seg-004
mentation techniques that have depended on005
frame-level and phrase-level segmentation, our006
study emphasizes on subtitle-level segmenta-007
tion, using synchronized subtitle data to facil-008
itate temporal boundary recognition. Based009
on Beginning-Inside-Outside (BIO) tagging for010
subtitle unit delineation, we train a sequence-011
to-sequence (Seq2Seq) model with and without012
attention for subtitle boundary identification.013
Training on optical flow data and aligned subti-014
tles from BOBSL and YouTube-ASL, we show015
that the Seq2Seq model with attention outper-016
forms baseline models, achieving improved per-017
centage of segments, F1 and IoU score. An ad-018
ditional contribution is the development of an019
method for subtitle temporal resolution, aiming020
to facilitate manual annotation.021

1 Introduction022

Sign languages are the primary means of commu-023

nication among both hard-of-hearing and deaf in-024

dividuals globally. Sign languages are gestural025

natural languages incorporating facial expressions,026

body movements and hand gestures to communi-027

cate and express meaning (Sandler et al., 2008).028

A persistent challenge in Sign Language (SL)029

research is the demanding and time-consuming na-030

ture of creating high-quality annotations for visual-031

spatial communication (Dreuw and Ney, 2008).032

This limitation hinders the development and eval-033

uation of robust SL recognition and segmentation034

systems. Automating these processes offers a sig-035

nificant advantage by reducing or eliminating the036

effort needed for manual annotation.037

Sign languages rely on complex spatial and tem-038

poral grammatical structures. A key challenge in039

SL segmentation is precise temporal localization,040

accurately identifying when linguistic components041

occur. Consecutive sentences can be signed with 042

minimal pauses, making boundary detection diffi- 043

cult. Therefore, a model that can precisely identify 044

transitions is essential. 045

Previous SL recognition studies focused on sign 046

or word-level segmentation, isolating individual 047

signs from pre-segmented clips (Chaaban et al., 048

2021; Renz et al., 2021a). However, continuous 049

SL integrates sentences and phrases, making word- 050

level methods insufficient for capturing full linguis- 051

tic context. Segmenting into subtitle-like units is 052

crucial for capturing complete linguistic context 053

necessary for translation and interpretation. 054

Focusing on subtitle-level segmentation, we in- 055

vestigate the effectiveness of sequence-to-sequence 056

(Seq2Seq) models with and without attention mech- 057

anisms for automated boundary detection, using 058

optical flow features to integrate motion informa- 059

tion, which has demonstrated efficacy in shallow 060

models and action recognition tasks. Following 061

state-of-the-art research (Moryossef et al., 2023), 062

we use BIO (B=beginning, I=inside, O=outside) 063

rather than IO tagging used in previous work to 064

capture the smooth transitions between signs and 065

phrases. The model is based on an a Seq2Seq 066

encoder-decoder model with an attention mecha- 067

nism, employing a bidirectional LSTM (BiLSTM) 068

in the encoder, which analyzes the frame features 069

in both forward and backward directions, enabling 070

the model to capture both past and future context. 071

Moreover, integrating an attention mechanism en- 072

ables the model to focus on the most pertinent seg- 073

ments of the input sequence at each phase. 074

We evaluate our model on the BOBSL (Albanie 075

et al., 2021) and YouTube-ASL (Uthus et al., 2023) 076

datasets, demonstrating the effectiveness of our 077

approach for subtitle-level SL segmentation. Our 078

results show that the Seq2Seq model with atten- 079

tion outperforms baseline models, achieving im- 080

proved percentage of segments, F1 and IoU scores. 081

Furthermore, we find that the integration of BIO 082
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Figure 1: An illustration of BIO tagging on a subtitle from the BOBSL test set: ‘If you’ve ever baked your own bread,
you probably prefer this to the supermarket bread.’ The model effectively detects subtitle boundaries and segments
with BIO tags. Here the B tag (green) represents the start of the subtitle, the I tag (light blue) for continuation, and
the O tag (white) for outside of the subtitle segment, based on the probability for each segment.

tagging is crucial for modeling sign boundaries,083

and that the Seq2Seq encoder-decoder architecture084

with attention mechanisms significantly enhances085

segmentation quality.086

As part of our research, we present a method087

for subtitle temporal resolution, able to generate088

.srt files from model predictions including time-089

stamped segmentation. The suggested tool aims to090

facilitate the annotation of SL datasets.091

2 Related work092

In this section we are focusing on previous work093

seeking to determine boundaries between separate094

signs or linguistic parts. Farag and Brock (2019)095

address word boundary detection in Japanese Sign096

Language (JSL) by employing a binary random097

forest classifier on 3D joint positions. This frame-098

by-frame approach, evaluated on JSL and human099

activity datasets, achieves an F1 score of 0.89, ef-100

fectively distinguishing between motion transitions101

and genuine gestures.102

Renz et al. (2021a) explore automatic sign seg-103

mentation through two primary approaches. Ini-104

tially, they propose a frame-level binary label-105

ing method using I3D (Carreira and Zisserman,106

2017) and MS-TCN (Farha and Gall, 2019), trained107

to minimize over-segmentation and reduce an-108

notation costs. Building upon this, they intro-109

duce Changepoint-Modulated Pseudo Labelling for110

source-free domain adaptation, leveraging pseudo-111

labelling (Lee et al., 2013) to reduce model uncer-112

tainty in unlabelled data Renz et al. (2021b).113

Bull et al. (2020b) explore SL segmentation114

through spatio-temporal modeling and transformer-115

based approaches. Initially, they propose a method116

to automatically identify temporal boundaries us-117

ing an ST-GCN (Yan et al., 2018) combined with a118

BiLSTM, trained on 2D skeleton data from French119

SL (LSF) videos (Bull et al., 2020a). Subsequently,120

Bull et al. (2021) introduce a system that uses121

Transformers to simultaneously segment SL videos 122

and align them with subtitles, employing BERT 123

(Devlin et al., 2019) for subtitle encoding and 124

CNNs for video representation. 125

Moryossef et al. (2023) address the limitations 126

of binary frame classification in SL segmenta- 127

tion by integrating linguistic cues and adopting 128

a Beginning-Inside-Outside (BIO) tagging scheme 129

(Ramshaw and Marcus, 1995), inspired by Named 130

Entity Recognition, to better define segment bound- 131

aries. Their task is to perform segmentation of 132

signs and phrases, for which they also utilize opti- 133

cal flow and 3D hand normalization. Evaluated 134

on the DGS Corpus (Hanke et al., 2020), their 135

model demonstrates improved cross-lingual gener- 136

alization. Contrary to this work, that focuses on 137

phrase-level segmentation, our work focuses on 138

sentence-level and subtitle-level segmentation. We 139

find this granularity (a) more appropriate for captur- 140

ing complete meaning units, accounting for long- 141

distance reording and other linguistic phenomena 142

that require long context (b) better fit to real-world 143

use-cases (e.g. captioning) and NLP tasks (parallel 144

corpus creation, machine translation). 145

3 Methods 146

3.1 Sequence-to-sequence modelling 147

Our proposed approach for subtitle-level SL seg- 148

mentation follows these methods: 149

Optical Flow We use the RAFT method (Teed 150

and Deng, 2020) to estimate optical flow calculat- 151

ing pixel displacement between frames of a certain 152

distance (in our case, 10 frames apart). This cap- 153

tures the detailed motion patterns which is provided 154

as features to the Seq2Seq model for the boundary 155

detection. 156

BIO Tagging BIO tagging (B=beginning, 157

I=inside, O=outside), inspired from NER is used 158

to define and label segment boundaries (similar 159
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Figure 2: Seq2Seq Encoder-Decoder with Attention mechanism (Source: Chowdhury and Vig, 2018)

to Moryossef et al., 2023; Ramshaw and Marcus,160

1995). The sentence boundary labels serve as161

target labels on the output of the Seq2Seq model.162

Sequence Encoder and Autoregressive Encoder163

We adopt two encoder architectures to analyze fea-164

ture sequences and capture temporal dependencies.165

A BiLSTM (Hochreiter and Schmidhuber, 1997)166

is employed to integrate preceding and subsequent167

context, capturing long-range dependencies. This168

serves as a baseline model. We integrate an autore-169

gressive mechanism (Jiang et al., 2023; Moryossef170

et al., 2023), using two stacked encoders with se-171

quential logit input for temporal coherence.172

Seq2Seq Encoder-Decoder without attention173

utilizes a BiLSTM encoder and an LSTM decoder.174

The encoder analyzes the input sequence, produc-175

ing context vectors (final hidden and cell states)176

that are transmitted to the decoder. The decoder177

subsequently produces output tokens derived from178

the preceding output and the encoder’s final hid-179

den state. However, this architecture depends on a180

static context vector, which may restrict its capacity181

to capture long-range dependencies.182

Seq2Seq Encoder-Decoder with attention A183

primary constraint of conventional Seq2Seq184

encoder-decoder systems is their difficulty in ef-185

fectively handling long input sequences. This is186

due to the model’s dependence on a single context187

vector of a predetermined length to store and trans-188

mit the information from the input sequence to the189

decoder. For long input sequences, the fixed-size190

context vector may have difficulty preserving all191

the required details, particularly those related to 192

long-range dependencies, leading to a decline in 193

output quality. To overcome this constraint, the 194

attention mechanism (Bahdanau, 2014) is incorpo- 195

rated into Seq2Seq models, specifically designed 196

for RNN-based architectures (Figure 2). 197

3.2 Subtitle Temporal Resolution 198

For subtitle file generation, where accurately iden- 199

tifying subtitle categories is crucial, we employ 200

sequence prediction methods. We find that beam 201

search decoding with a beam width of 4 pro- 202

duces more precise and accurate model predictions 203

compared to greedy search, after evaluating both 204

methodologies. This process generates temporal 205

interval tokens, indicating subtitle categories: no 206

subtitle(O), start of subtitle(B), or continuation of 207

subtitle(I). 208

1. The process starts by inputting a start token 209

into the model, hence commencing the predic- 210

tion sequence. 211

2. At each time step, we retain a collection of the 212

leading sequences with the highest cumulative 213

probability scores, limited to a certain beam 214

width. In our experiments, we evaluated the 215

beam widths 3, 4, 5 and 6, and determined that 216

the beam width of 4 yielded optimal results 217

for our purpose. 218

3. For every candidate sequence in the beam, the 219

model predicts potential subsequent tokens, 220

producing a probability value for each. The 221
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cumulative score of each sequence is updated,222

indicating the probability of that sequence.223

4. Among all expanded sequences, the highest-224

scoring sequences (up to the beam width) are225

retained, while the others are eliminated.226

5. The search continues until the end-of-227

sequence (EOS) token is reached.228

6. Upon reaching the end of the sequence, the229

optimal sequence is determined by the highest230

cumulative probability.231

Algorithm 1 is a post-processing algorithm that232

maps model predictions obtained earlier to frame233

boundaries, which can subsequently be converted234

into subtitle timing generation. The detailed steps235

are provided in the Appendix A.1.236

Input: all_predictions, all_softmax_outputs,
sequence_frames

Output: combined_preds: List of predictions with
frame boundaries

Initialize combined_preds← [];
current_frame← 0;
foreach (preds_chunk, softmax_chunk) in
(all_predictions, all_softmax_outputs) do

Initialize probabilities← [];
foreach (pred, soft) in
(preds_chunk, softmax_chunk) do

probability ← soft[pred];
Append probability to probabilities;

end
total_prob← sum(probabilities);
frame_lengths←

[
d

total_prob ·
sequence_frames ∀ d ∈ probabilities

]
;

foreach (pred, length) in
(preds_chunk, frame_lengths) do

Append
(current_frame, current_frame+
length, pred) to combined_preds;

current_frame←
current_frame+ length;

end
end
return combined_preds;

Algorithm 1: Probabilities to Subtitle bound-
aries

3.3 Evaluation Metrics237

F1 Score We compute the macro-averaged per-238

class F1 score at the segment level, using argmax239

to determine segment labels. This is our primary240

metric for validation, early stopping, and model241

selection.242

Percentage of Segments (%) Following243

(Moryossef et al., 2023), we assess segment244

alignment accuracy by calculating the ratio of 245

predicted segments to ground truth segments (1), 246

with 100% indicating perfect alignment. 247

% of Segments
(

Predicted Segments
Ground Truth Segments

)
× 100%

(1)
248

Intersection over Union (IOU) IoU, as de- 249

scribed in (Moryossef et al., 2023), measures seg- 250

ment overlap (2), indicating the model’s ability to 251

capture precise segment boundaries. A score of 1 252

signifies perfect overlap. 253

IoU =
Area of Intersection

Area of Union
(2) 254

Efficiency We evaluate the efficiency of each 255

model based on parameter count and training time 256

(55 epochs) using V100 and RTXA6000 GPU. 257

4 Experimental Setup 258

4.1 Dataset 259

For our research, we employ the BOBSL and 260

YouTube-ASL datasets. BOBSL comprises British 261

Sign Language (BSL) interpreted footage from 262

various BBC broadcasts, paired with English sub- 263

titles (Albanie et al., 2021), while the YouTube- 264

ASL dataset provides a comprehensive collection 265

of American Sign Language (ASL) videos with 266

corresponding annotations (Uthus et al., 2023). 267

We use the manually-aligned subset of the 268

BOBSL dataset, consisting of 60 videos, as other 269

subsets exhibit inconsistencies. The videos, with 270

a frame rate of 25 fps, are pre-divided into train- 271

ing (40 videos), validation (10 videos), and test 272

(10 videos) sets. Most videos are either 30 or 60 273

minutes long, with an average duration of 45 min- 274

utes. This dataset features diverse genres, includ- 275

ing comedy, drama, and entertainment, captures 276

co-articulated signs, and offers a natural signing 277

style. For the YouTube-ASL dataset, we use 70% 278

of the dataset for training, 20% for validation, and 279

10% for testing. The videos in this dataset vary 280

in duration, ranging from 40 seconds to 40 min- 281

utes, providing a diverse collection of lengths that 282

supports effective model training and evaluation. 283

For our segmentation task, we preprocess video 284

frames by resizing, normalizing, and grouping 285

them into 375-feature segments based on anno- 286

tations. This segmentation enables the model to 287

learn temporal context and transitions, essential for 288

accurate results. 289
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4.2 Experiments290

Our experiments are organized into 4 stages: fea-291

ture extraction, baseline temporal modeling, and292

two variations of Seq2Seq encoder-decoder archi-293

tectures. We first establish a robust feature rep-294

resentation using ResNet-101, then explore tem-295

poral modeling with BiLSTM and autoregressive296

encoders, and finally evaluate the to segmentation297

accuracy of Seq2Seq models with and without at-298

tention. Code and datasets (to the extent permitted299

by the licenses) will be available open source upon300

acceptance.301

Feature Extraction Given the different nature of302

motion data compared to RGB, training 2DCNNs303

from scratch is often preferred. However, due to304

our limited data relative to ImageNet, we employ305

transfer learning with a ResNet-101 model pre-306

trained on ImageNet (motivated by Yosinski et al.307

(2014)) for feature extraction.308

As our objective is exclusively feature extraction309

rather than classification, we remove the final fully310

connected layer from the ResNet-101 model. An311

Adaptive Average Pooling layer is set to produce a312

constant spatial dimension in the network output.313

This setting guarantees the model’s output will be314

a compact feature vector, irrespective of the input315

image dimensions. This layer generates a feature316

vector with the shape (2048,). Employing Adaptive317

Average Pooling enables preserving the high-level318

features of the ResNet model, while normalizing319

the output dimensions to a vector format. The input320

dimensions for each image are (224, 224, 3), where321

224x224 denotes the spatial dimensions and 3 indi-322

cates the number of channels for RGB images.323

For BOBSL we use their pre-computed optical324

flow features as input, which have been processed325

through a ResNet model to extract relevant features.326

For the Youtube-SL we use RAFT (Teed and Deng,327

2020) to estimate optical flow, calculating pixel328

displacement between frames 10 frames apart.329

Sequence Encoder and Autoregressive Encoder330

For temporal modeling, 2048-dimensional feature331

vectors are fed into a BiLSTM encoder. Each batch332

has 375 feature vectors, where each vector repre-333

sents the features extracted from a single frame334

of the video segment. The sequence length is de-335

termined after testing multiple different values to336

achieve an appropriate balance between collecting337

temporal patterns and guaranteeing efficient pro-338

cessing. The BiLSTM predicts BIO labels for each339

frame, classifying them as B, I or O of the subtitle, 340

effectively segmenting the video into SL segments. 341

Similarly, an autoregressive encoder processes 342

the 375 feature vectors, incorporating logits from 343

the current time step as input to the next, enhancing 344

temporal coherence in the BIO label predictions. 345

Seq2Seq Encoder-Decoder without attention 346

In the Seq2Seq model without attention, the input 347

consists of 2048-dimensional features from ResNet- 348

101, with a sequence length of 375 frames. To op- 349

timize efficiency, sequences are sorted by length, 350

avoiding padding tokens. The BiLSTM encoder 351

processes these sequence, generating a context vec- 352

tor that summarizes the input. The LSTM decoder 353

then uses this context vector to predict segments 354

corresponding to "B" (beginning), "I" (inside), or 355

"O" (outside) within the SL sequence. 356

Seq2Seq Encoder-Decoder with attention Here 357

a BiLSTM encoder (2 layers, 128 hidden units, 358

dropout 0.2) to encode 375x2048 input sequences 359

from ResNet-101. The decoder (2 LSTM layers, 360

128 hidden units, dropout 0.1) uses an attention 361

mechanism to compute a weighted sum of the en- 362

coder outputs, forming a context vector (256 dimen- 363

sions) at each decoding step. This context vector, 364

combined with the previous output embedding (128 365

dimensions), is used to generate logits via a fully 366

connected layer. A softmax operation is used to 367

normalize these logits into a probability distribu- 368

tion over the output segments. 369

4.3 Model Training 370

4.3.1 Training Details 371

We train the BiLSTM and autoregressive encoders 372

using the Adam optimizer with a learning rate of 373

1e-4 and a batch size of 16. Gradient clipping with 374

a clip value of 1 is applied to overcome the ex- 375

ploding gradient. We use theReduceLROnPlateau, 376

and an early stopping with patience=10 using both 377

validation loss and the F1 score. 378

We train Seq2Seq encoder-decoder models, both 379

with and without attention mechanisms, for seg- 380

menting SL into subtitle units. Preliminary tests us- 381

ing cross-entropy loss resulted in overfitting, adopt- 382

ing the transition to Negative Log-Likelihood Loss 383

(NLLLoss) for improved management of class im- 384

balance. Our preliminary hyperparameter search 385

involves testing a range of LSTM layers (2, 4, 6, 386

8), fully connected layers (1, 2), hidden sizes (128, 387

256, 512, 1024), dropout rates (0, 0.1, 0.2, 0.3), op- 388

timizers (SGD, Adam), learning rates (1e-3, 1e-4, 389
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1e-5), and batch sizes (9, 12, 16), we conclude hid-390

den size 128, 4 LSTM layers, 1 FC layer, encoder391

dropout 0.2, and decoder dropout 0.1, optimal to392

both YouTube-ASL and BOBSL datasets.393

4.4 Training Time394

To optimize training efficiency, we employ a two-395

stage process: pre-extracting ResNet-101 features396

from optical flow images and storing them for di-397

rect loading during training, thus reducing compu-398

tational overhead. The Seq2Seq Encoder-Decoder399

without attention trains in 14-16 hours, whereas400

the attention-based model requires around one day.401

Training on the BOBSL dataset is faster due to its402

limited size, whereas the extensive YouTube-ASL403

dataset requires longer training times to achieve404

adequate convergence.405

4.5 Teacher Forcing and Scheduled Sampling406

Teacher Forcing, where the decoder receives ac-407

tual target outputs during training, can result in408

over-dependence on ground truth labels and insta-409

bility during inference. To mitigate this, we employ410

Scheduled Sampling. This method randomly alter-411

nates between using actual labels (teacher forcing)412

and model predictions as decoder inputs during413

training, enabling the model to adapt to prediction414

errors.415

5 Results416

In this section, we present the results of our experi-417

ments, focusing on answering some key research418

questions.419

What are the performance differences be-420

tween Sequence Encoder and Autoregressive421

Encoder models in segmentation tasks?422

On the BOBSL dataset, the Sequence Encoder423

achieves an F1 score of 0.58 and IoU of 0.60,424

with a segment percentage of 250%, 1.38 mil-425

lion parameters, and a 14-hour training time. On426

YouTube-ASL, it achieves an F1 of 0.56 and IoU427

of 0.58, with a segment percentage of 70%, 1.18428

million parameters, and a 15-hour training time.429

The Autoregressive Encoder, on BOBSL, achieves430

an F1 of 0.55 and IoU of 0.51, with a segment431

percentage of 174%, 1.42 million parameters, and432

a one-day training time. On YouTube-ASL, it433

achieves an F1 of 0.47 and IoU of 0.50, with a434

segment percentage of 55%, 1.26 million param-435

eters, and a one-day training time. Notably, the436

BOBSL dataset results in over-segmentation for437

both models, while the YouTube-ASL dataset re- 438

sults in under-segmentation. To address these chal- 439

lenges, we move to a subtitle-level prediction strat- 440

egy using Seq2Seq models. Due to differences in 441

datasets and the specific nature of our subtitle seg- 442

mentation task, a direct comparison with previous 443

work is not feasible. 444

How can the Seq2Seq Encoder-Decoder 445

model with and without attention improve sub- 446

title generation for SL in longer, multi-sentence 447

videos? 448

We evaluate the ability of Seq2Seq models, with 449

and without attention, to improve subtitle gener- 450

ation for SL videos. Using F1 Score, IoU, and 451

segment percentage on the BOBSL dataset, we 452

compare model performance. The datasets’ video 453

lengths allow us to analyze each model’s capacity 454

to handle continuous SL sequences, focusing on 455

performance differences and strengths. 456

For the BOBSL dataset as shown in Table 2, 457

the Seq2Seq Encoder-Decoder without attention 458

demonstrates moderate segmentation accuracy with 459

an F1 score of 0.58 and reasonable overlap recog- 460

nition with an IoU of 0.70, but exhibits significant 461

over-segmentation, with a segment percentage of 462

216%. In contrast, the Seq2Seq model with atten- 463

tion attains an F1 Score of 0.60, signifying moder- 464

ate precision in identifying and segmenting relevant 465

SL sequences. This is supported by an IoU of 0.74, 466

highlighting the model’s ability to identify overlap- 467

ping regions between predicted and ground-truth 468

segments. The model attains best segment percent- 469

age of 103%. The addition of attention increases 470

the model’s parameters to 7.8 million and training 471

time to about 2 days, from 3.1 million parameters 472

and 15 hours for the model without attention. 473

On the YouTube-ASL dataset as in Table 3, the 474

Seq2Seq model without attention achieves an F1 475

score of 0.55 and an IoU of 0.58, indicating poor 476

segmentation and overlap recognition. The model 477

demonstrates under-segmentation, identifying only 478

87% of the segments. It has 3.1 million parameters 479

and trains in 19 hours, suggesting optimization is 480

needed. However, he Seq2Seq model with attention 481

demonstrates a balanced performance with an F1 482

score of 0.60 and moderate overlap recognition 483

(IoU: 0.62). The model identifies 95% of segments, 484

indicating slight under-segmentation. 485

The observed performance differences between 486

the datasets can be attributed to their distinct struc- 487

tural characteristics. For example, the BOBSL 488

dataset consists of full sentences, where inter- 489
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Model Dataset F1 IOU % # Params Time

BOBSL 0.58 0.60 2.50 1.38M ∼ 14hSequence
Encoder YouTube-ASL 0.56 0.58 0.70 1.18M ∼ 15h

BOBSL 0.55 0.51 1.74 1.42M ∼ 1dAutoregressive
Encoder YouTube-ASL 0.47 0.50 0.55 1.26M ∼ 1d

Table 1: Test evaluation metrics for our BOBSL and YouTube-ASL dataset using Sequence Encoder and Autore-
gressive Encoder model. A Comparative Analysis of F1, IOU and % of segments across Sequence Encoder and
Autoregressive Encoder.

Figure 3: Continuation of the sequence from Figure 1, where the model correctly labels the new subtitle with the
"beginning" and "inside" tags as it moves smoothly between subtitles without pausing.

Model F1 IOU % # Params Time
Seq2Seq
Encoder-
Decoder
w/o attention

0.58 0.70 2.16 3.1M ∼ 15h

Seq2Seq
Encoder-
Decoder
w/ attention

0.60 0.74 1.03 7.8M ∼ 2d

Table 2: Test evaluation metrics for our BOBSL dataset
using the proposed Seq2Seq Encoder-Decoder model
with and without attention. A Comparative Analysis of
F1, IOU and % of segments across two models.

preters typically make clear pauses between them,490

aiding the model’s segmentation task. In contrast,491

the YouTube-ASL dataset contains subtitles that492

may span across multiple sentences or include two493

sentences within a single subtitle, which may cause494

greater challenges for segmentation. This differ-495

ence in structure could explain the model’s superior496

performance on the BOBSL dataset, and it may be497

assumed that this structural difference affects the498

segmentation task on the YouTube-ASL dataset.499

How does the subtitle temporal resolution af-500

fect the quality of generated .srt files for sign501

language?502

To assess the quality of generated .srt files, we503

manually evaluate the model’s accuracy in captur-504

ing subtitle timing and segmentation, as shown505

in Table 4. This table compares the original506

and model-generated subtitle start and end times.507

This case study illustrates the model’s overall per-508

Model F1 IOU % # Params Time
Seq2Seq
Encoder-
Decoder
w/o attention

0.55 0.58 0.87 3.1M ∼ 19h

Seq2Seq
Encoder-
Decoder
w/ attention

0.60 0.62 0.95 3.0M ∼ 2d

Table 3: Test evaluation metrics for our YouTube-ASL
dataset using the proposed Seq2Seq Encoder-Decoder
model with and without attention. A Comparative Anal-
ysis of F1, IOU and % of segments across two models.

formance on the BOBSL dataset, revealing its 509

strengths and limitations in boundary detection, 510

segmentation accuracy, and alignment with natural 511

speech flow. The model demonstrates promising 512

capabilities, achieving closer boundaries in specific 513

segments, though perfect matches remain challeng- 514

ing. 515

The model effectively delineates subtitle bound- 516

aries in segments like [Subtitle 8, 9, 13, 14], closely 517

aligning generated timings with actual subtitles. 518

For example, Subtitle [8] and [9] correctly separate 519

paused segments, while [13] and [14] accurately 520

capture continuous signing. This demonstrates the 521

model’s ability to perceive subtle subtitle transi- 522

tions beyond simple pauses. However, achieving 523

exact timing matches is difficult due to our segment- 524

level analysis, resulting in minor discrepancies. 525

Furthermore, the model introduces temporal dis- 526

crepancies in other segments, notably subtitles that 527
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succeed [10] and those before [13], leading to arti-528

ficial interruptions and fragmented subtitles. This529

inconsistency in segmentation accuracy highlights530

the challenge of achieving frame-level precision531

without frame-level segmentation, and disrupting532

the natural flow.533

To what extent can the segmentation tool accu-534

rately recognize and delineate significant subti-535

tle boundaries within continuous SL sequences?536

To illustrate model performance, we present com-537

parative case studies. In Figure 1, the model ac-538

curately segments the BOBSL dataset video, cor-539

rectly identifying subtitle boundaries. It accurately540

predicts non-signing periods (white), the start of541

subtitle segments (green "B" tag), and the continu-542

ation of segments (light blue "I" tag). This demon-543

strates the model’s ability to label the beginning544

and continuation of signing subtitles without false545

boundaries. Similarly, in Figure 3, the model ef-546

fectively detects transitions between subtitles, even547

without pauses, using high probability scores for548

"B" and "I" tags. This highlights the model’s abil-549

ity to identify boundaries based on natural signing550

structure rather than just pauses.551

Despite general efficiency, the model occasion-552

ally misidentifies subtitle boundaries, failing to con-553

sistently distinguish signing from non-signing ac-554

tivity. In Figure 4, the model incorrectly assigns a555

high probability to the "I" label, indicating signing556

when there is none. This error may stem from fea-557

ture ambiguity, where subtle motion in non-signing558

segments, such as raising and removing a hat, is559

misconstrued as signing. Additionally, an imbal-560

ance in training data may bias the model towards561

the "I" label, particularly with minimal or uninten-562

tional movements. In Figure 5, the model over-563

segments, failing to recognize transitions between564

distinct signing periods, further highlighting the565

difficulty in distinguishing between signing and566

non-signing behaviors.567

6 Conclusion568

SL segmentation presents unique challenges due569

to its temporal and spatial complexity, including570

subtle transitions and variability across users. This571

study addresses subtitle-level SL segmentation us-572

ing Seq2Seq models. A key contribution is an573

automated system for generating .srt subtitle files574

with accurate temporal boundaries. We adapt and575

improve the Encoder-Decoder model with attention576

specifically for subtitle-level segmentation. Utiliz-577

ing optical flow and ResNet features, our model 578

enhances temporal alignment and transition man- 579

agement. Our focus on subtitle boundaries distin- 580

guishes our approach from frame-level studies. Our 581

Seq2Seq models achieve strong F1, IoU, and seg- 582

mentation accuracy, emphasizing the importance 583

of temporal boundary identification and attention 584

mechanisms in subtitle-level SL segmentation. 585

Limitations 586

Our proposed approach, while effective, has sev- 587

eral limitations. We haven’t directly compared to 588

the phrase-based SoTA but this is due to limita- 589

tions of the available annotated datasets, and we 590

are strong on our opinion that subtitle-level segmen- 591

tation is the ideal one. Its evaluation is restricted to 592

BOBSL and YouTube-ASL datasets with English 593

subtitles, potentially limiting its generalizability to 594

the broader linguistic diversity of global sign lan- 595

guages. Furthermore, the model’s primary reliance 596

on optical flow makes it susceptible to noisy or in- 597

adequate motion data, such as during occlusions or 598

subtle movements. Achieving a perfect one-to-one 599

mapping between predicted and actual subtitle tim- 600

ing also remains a challenge. Finally, the study’s 601

reliance on manually labeled subtitle boundaries 602

introduces potential noise and imprecision due to 603

the inherent difficulty in their exact delineation. Fu- 604

ture research should explore incorporating diverse 605

input features like OpenPose, applying the model 606

to synchronize subtitles with continuous signing, 607

and testing on more varied sign language datasets 608

to enhance generalizability. 609

Ethical considerations 610

In our work, we present experiments on the British 611

Sign Language and American Sign Language 612

which should be seen and respected as the primary 613

languages of the respective language communities. 614

Although we perform this research aiming to pro- 615

vide equal access to language technology for sign 616

language users, the fact that the majority of the re- 617

searchers in NLP are hearing people entails the risk 618

of developments that are not in accordance with the 619

will of the respective communities, and therefore 620

it is required that every research step takes them in 621

constant consideration. In order to mitigate this, in 622

our broader research we have included members of 623

the Deaf/deaf and hard of hearing communities as 624

part of the research team, consultants and partici- 625

pants in user studies and workshops and we have 626
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been in co-operation with related unions and com-627

munication centers. It should also be noted, that our628

experiments are part of a broader series of research629

projects, and the results presented here should by630

no means considered ready for production and be631

used as final products without the agreement of632

the communities. The use of the dataset follows633

their respective licenses and limitations and every634

follow-up work should adhere to those.635
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A Appendix750

A.1 Algorithm to Map Probabilities to751

Subtitle Boundaries752

1. Model Predictions: Collect raw predictions753

and their corresponding confidence scores754

(softmax probabilities) for each segment.755

2. Normalize Probabilities: Compute the pro-756

portion of each prediction by dividing its prob-757

ability by the total probability of all predic-758

tions in the sequence.759

Normalized Probabilityi =
Probabilityi

Total Probability
760

3. Frame Allocation: Assign frames to each761

segment using the normalized probability and762

the total number of frames in the sequence.763

Framesi = Normalized Probabilityi×Sequence Frames764

4. Frame Mapping: Calculate the start and end765

frame for each segment iteratively.766

End Framei = Start Framei + Framesi767

Start the first segment at frame 0, and for sub-768

sequent segments, the start frame is the end769

frame of the previous segment.770

5. Convert to Time: Map the calculated start771

and end frames to time using the frame rate772

(FPS).773

Time =
Frame

Frames per Second
774
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Figure 4: Failure instance in which the model incorrectly assigns a high probability to the "Inside" (I) label,
indicating that signing activity is occurring.

Actual subtitle Model generated subtitle

00:00:20.410 --> 00:00:21.813
Bug free?

00:00:20,930 --> 00:00:21,054
[Subtitle 8]

00:00:21.816 --> 00:00:22.676
No.

00:00:22,657 --> 00:00:24,055
[Subtitle 9]

00:00:22.774 --> 00:00:24.748
Insect free?

00:00:24,055 --> 00:00:26,047
[Subtitle 10]

00:00:24.748 --> 00:00:25.722
Brilliant.

00:00:26,047 --> 00:00:28,027
[Subtitle 11]

00:00:25.883 --> 00:00:31.710
Well, I'm going to reveal the
secrets behind supermarket
food, by making the
ingredients that go
into a sandwich.

00:00:28,027 --> 00:00:30,000
[Subtitle 12]

00:00:48.453 --> 00:00:55.707
If you've ever baked your own
bread, you probably prefer
this to the supermarket bread.

00:00:48,646 --> 00:00:55,638
[Subtitle 13]

00:00:55.707 --> 00:01:01.220
But the problem with this
stuff is that it goes rock
hard in a day or so, while
the supermarket bread...

00:00:55,638 --> 00:01:01,140
[Subtitle 14]

Table 4: Comparison of Original Subtitles with Model-Generated Subtitles for BOBSL dataset
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Figure 5: Failure instance where the model incorrectly oversegments the subtitles, predicting a single subtitle instead
of two distinct ones, thereby assigning a high probability to the "Inside" (I) label and indicating continuous signing
activity.
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