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Abstract

Sign language segmentation focuses on iden-
tifying temporal boundaries within sign lan-
guage videos. As compared to previous seg-
mentation techniques that have depended on
frame-level and phrase-level segmentation, our
study emphasizes on subtitle-level segmenta-
tion, using synchronized subtitle data to facil-
itate temporal boundary recognition. Based
on Beginning-Inside-Outside (BIO) tagging for
subtitle unit delineation, we train a sequence-
to-sequence (Seq2Seq) model with and without
attention for subtitle boundary identification.
Training on optical flow data and aligned subti-
tles from BOBSL and YouTube-ASL, we show
that the Seq2Seq model with attention outper-
forms baseline models, achieving improved per-
centage of segments, F1 and IoU score. An ad-
ditional contribution is the development of an
method for subtitle temporal resolution, aiming
to facilitate manual annotation.

1 Introduction

Sign languages are the primary means of commu-
nication among both hard-of-hearing and deaf in-
dividuals globally. Sign languages are gestural
natural languages incorporating facial expressions,
body movements and hand gestures to communi-
cate and express meaning (Sandler et al., 2008).

A persistent challenge in Sign Language (SL)
research is the demanding and time-consuming na-
ture of creating high-quality annotations for visual-
spatial communication (Dreuw and Ney, 2008).
This limitation hinders the development and eval-
uation of robust SL recognition and segmentation
systems. Automating these processes offers a sig-
nificant advantage by reducing or eliminating the
effort needed for manual annotation.

Sign languages rely on complex spatial and tem-
poral grammatical structures. A key challenge in
SL segmentation is precise temporal localization,
accurately identifying when linguistic components

occur. Consecutive sentences can be signed with
minimal pauses, making boundary detection diffi-
cult. Therefore, a model that can precisely identify
transitions is essential.

Previous SL recognition studies focused on sign
or word-level segmentation, isolating individual
signs from pre-segmented clips (Chaaban et al.,
2021; Renz et al., 2021a). However, continuous
SL integrates sentences and phrases, making word-
level methods insufficient for capturing full linguis-
tic context. Segmenting into subtitle-like units is
crucial for capturing complete linguistic context
necessary for translation and interpretation.

Focusing on subtitle-level segmentation, we in-
vestigate the effectiveness of sequence-to-sequence
(Seq2Seq) models with and without attention mech-
anisms for automated boundary detection, using
optical flow features to integrate motion informa-
tion, which has demonstrated efficacy in shallow
models and action recognition tasks. Following
state-of-the-art research (Moryossef et al., 2023),
we use BIO (B=beginning, I=inside, O=outside)
rather than IO tagging used in previous work to
capture the smooth transitions between signs and
phrases. The model is based on an a Seq2Seq
encoder-decoder model with an attention mecha-
nism, employing a bidirectional LSTM (BiLSTM)
in the encoder, which analyzes the frame features
in both forward and backward directions, enabling
the model to capture both past and future context.
Moreover, integrating an attention mechanism en-
ables the model to focus on the most pertinent seg-
ments of the input sequence at each phase.

We evaluate our model on the BOBSL (Albanie
et al., 2021) and YouTube-ASL (Uthus et al., 2023)
datasets, demonstrating the effectiveness of our
approach for subtitle-level SL segmentation. Our
results show that the Seq2Seq model with atten-
tion outperforms baseline models, achieving im-
proved percentage of segments, F1 and IoU scores.
Furthermore, we find that the integration of BIO



Figure 1: An illustration of BIO tagging on a subtitle from the BOBSL test set: ‘If you’ve ever baked your own bread,
you probably prefer this to the supermarket bread.” The model effectively detects subtitle boundaries and segments
with BIO tags. Here the B tag (green) represents the start of the subtitle, the I tag (light blue) for continuation, and
the O tag (white) for outside of the subtitle segment, based on the probability for each segment.

tagging is crucial for modeling sign boundaries,
and that the Seq2Seq encoder-decoder architecture
with attention mechanisms significantly enhances
segmentation quality.

As part of our research, we present a method
for subtitle temporal resolution, able to generate
.srt files from model predictions including time-
stamped segmentation. The suggested tool aims to
facilitate the annotation of SL datasets.

2 Related work

In this section we are focusing on previous work
seeking to determine boundaries between separate
signs or linguistic parts. Farag and Brock (2019)
address word boundary detection in Japanese Sign
Language (JSL) by employing a binary random
forest classifier on 3D joint positions. This frame-
by-frame approach, evaluated on JSL and human
activity datasets, achieves an F1 score of 0.89, ef-
fectively distinguishing between motion transitions
and genuine gestures.

Renz et al. (2021a) explore automatic sign seg-
mentation through two primary approaches. Ini-
tially, they propose a frame-level binary label-
ing method using 13D (Carreira and Zisserman,
2017) and MS-TCN (Farha and Gall, 2019), trained
to minimize over-segmentation and reduce an-
notation costs. Building upon this, they intro-
duce Changepoint-Modulated Pseudo Labelling for
source-free domain adaptation, leveraging pseudo-
labelling (Lee et al., 2013) to reduce model uncer-
tainty in unlabelled data Renz et al. (2021b).

Bull et al. (2020b) explore SL segmentation
through spatio-temporal modeling and transformer-
based approaches. Initially, they propose a method
to automatically identify temporal boundaries us-
ing an ST-GCN (Yan et al., 2018) combined with a
BiLSTM, trained on 2D skeleton data from French
SL (LSF) videos (Bull et al., 2020a). Subsequently,
Bull et al. (2021) introduce a system that uses

Transformers to simultaneously segment SL videos
and align them with subtitles, employing BERT
(Devlin et al., 2019) for subtitle encoding and
CNN s for video representation.

Moryossef et al. (2023) address the limitations
of binary frame classification in SL segmenta-
tion by integrating linguistic cues and adopting
a Beginning-Inside-Outside (BIO) tagging scheme
(Ramshaw and Marcus, 1995), inspired by Named
Entity Recognition, to better define segment bound-
aries. Their task is to perform segmentation of
signs and phrases, for which they also utilize opti-
cal flow and 3D hand normalization. Evaluated
on the DGS Corpus (Hanke et al., 2020), their
model demonstrates improved cross-lingual gener-
alization. Contrary to this work, that focuses on
phrase-level segmentation, our work focuses on
sentence-level and subtitle-level segmentation. We
find this granularity (a) more appropriate for captur-
ing complete meaning units, accounting for long-
distance reording and other linguistic phenomena
that require long context (b) better fit to real-world
use-cases (e.g. captioning) and NLP tasks (parallel
corpus creation, machine translation).

3 Methods

3.1 Sequence-to-sequence modelling

Our proposed approach for subtitle-level SL seg-
mentation follows these methods:

Optical Flow We use the RAFT method (Teed
and Deng, 2020) to estimate optical flow calculat-
ing pixel displacement between frames of a certain
distance (in our case, 10 frames apart). This cap-
tures the detailed motion patterns which is provided
as features to the Seq2Seq model for the boundary
detection.

BIO Tagging BIO tagging (B=beginning,
I=inside, O=outside), inspired from NER is used
to define and label segment boundaries (similar
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Figure 2: Seq2Seq Encoder-Decoder with Attention mechanism (Source: Chowdhury and Vig, 2018)

to Moryossef et al., 2023; Ramshaw and Marcus,
1995). The sentence boundary labels serve as
target labels on the output of the Seq2Seq model.

Sequence Encoder and Autoregressive Encoder
We adopt two encoder architectures to analyze fea-
ture sequences and capture temporal dependencies.
A BiLSTM (Hochreiter and Schmidhuber, 1997)
is employed to integrate preceding and subsequent
context, capturing long-range dependencies. This
serves as a baseline model. We integrate an autore-
gressive mechanism (Jiang et al., 2023; Moryossef
et al., 2023), using two stacked encoders with se-
quential logit input for temporal coherence.

Seq2Seq Encoder-Decoder without attention
utilizes a BILSTM encoder and an LSTM decoder.
The encoder analyzes the input sequence, produc-
ing context vectors (final hidden and cell states)
that are transmitted to the decoder. The decoder
subsequently produces output tokens derived from
the preceding output and the encoder’s final hid-
den state. However, this architecture depends on a
static context vector, which may restrict its capacity
to capture long-range dependencies.

Seq2Seq Encoder-Decoder with attention A
primary constraint of conventional Seq2Seq
encoder-decoder systems is their difficulty in ef-
fectively handling long input sequences. This is
due to the model’s dependence on a single context
vector of a predetermined length to store and trans-
mit the information from the input sequence to the
decoder. For long input sequences, the fixed-size
context vector may have difficulty preserving all

the required details, particularly those related to
long-range dependencies, leading to a decline in
output quality. To overcome this constraint, the
attention mechanism (Bahdanau, 2014) is incorpo-
rated into Seq2Seq models, specifically designed
for RNN-based architectures (Figure 2).

3.2 Subtitle Temporal Resolution

For subtitle file generation, where accurately iden-
tifying subtitle categories is crucial, we employ
sequence prediction methods. We find that beam
search decoding with a beam width of 4 pro-
duces more precise and accurate model predictions
compared to greedy search, after evaluating both
methodologies. This process generates temporal
interval tokens, indicating subtitle categories: no
subtitle(O), start of subtitle(B), or continuation of
subtitle(I).

1. The process starts by inputting a start token
into the model, hence commencing the predic-
tion sequence.

2. Ateach time step, we retain a collection of the
leading sequences with the highest cumulative
probability scores, limited to a certain beam
width. In our experiments, we evaluated the
beam widths 3, 4, 5 and 6, and determined that
the beam width of 4 yielded optimal results
for our purpose.

3. For every candidate sequence in the beam, the
model predicts potential subsequent tokens,
producing a probability value for each. The



cumulative score of each sequence is updated,
indicating the probability of that sequence.

4. Among all expanded sequences, the highest-
scoring sequences (up to the beam width) are
retained, while the others are eliminated.

5. The search continues until the end-of-
sequence (EOS) token is reached.

6. Upon reaching the end of the sequence, the
optimal sequence is determined by the highest
cumulative probability.

Algorithm 1 is a post-processing algorithm that
maps model predictions obtained earlier to frame
boundaries, which can subsequently be converted
into subtitle timing generation. The detailed steps
are provided in the Appendix A.1.

Input: all_predictions, all_so ftmax_outputs,
sequence_frames
Output: combined_preds: List of predictions with
frame boundaries
Initialize combined_preds < [[;
current_frame < 0;
foreach (preds_chunk, softmax_chunk) in
(all_predictions, all_so ftmazx_outputs) do
Initialize probabilities < [|;
foreach (pred, soft) in
(preds_chunk, softmax_chunk) do
probability < soft[pred];
Append probability to probabilities;
end
total_prob < sum(probabilities);

d
frame_lengths < [7tomlipmb .

sequence_frames ¥V d € probabilities];
foreach (pred, length) in
(preds_chunk, frame_lengths) do
Append
(current_frame, current_frame +
length, pred) to combined_preds;
current_frame <
current_frame + length,;
end

end
return combined_preds;

Algorithm 1: Probabilities to Subtitle bound-
aries

3.3 Evaluation Metrics

F1 Score We compute the macro-averaged per-
class F1 score at the segment level, using argmax
to determine segment labels. This is our primary
metric for validation, early stopping, and model
selection.

Percentage of Segments (%) Following
(Moryossef et al.,, 2023), we assess segment

alignment accuracy by calculating the ratio of
predicted segments to ground truth segments (1),
with 100% indicating perfect alignment.

Predicted Segments

% of Segments ( > x 100%

ey

Intersection over Union (IOU) IoU, as de-
scribed in (Moryossef et al., 2023), measures seg-
ment overlap (2), indicating the model’s ability to
capture precise segment boundaries. A score of 1
signifies perfect overlap.

Ground Truth Segments

Area of Intersection
IoU = 2
© Area of Union 2)

Efficiency We evaluate the efficiency of each
model based on parameter count and training time
(55 epochs) using V100 and RTXA6000 GPU.

4 Experimental Setup

4.1 Dataset

For our research, we employ the BOBSL and
YouTube-ASL datasets. BOBSL comprises British
Sign Language (BSL) interpreted footage from
various BBC broadcasts, paired with English sub-
titles (Albanie et al., 2021), while the YouTube-
ASL dataset provides a comprehensive collection
of American Sign Language (ASL) videos with
corresponding annotations (Uthus et al., 2023).

We use the manually-aligned subset of the
BOBSL dataset, consisting of 60 videos, as other
subsets exhibit inconsistencies. The videos, with
a frame rate of 25 fps, are pre-divided into train-
ing (40 videos), validation (10 videos), and test
(10 videos) sets. Most videos are either 30 or 60
minutes long, with an average duration of 45 min-
utes. This dataset features diverse genres, includ-
ing comedy, drama, and entertainment, captures
co-articulated signs, and offers a natural signing
style. For the YouTube-ASL dataset, we use 70%
of the dataset for training, 20% for validation, and
10% for testing. The videos in this dataset vary
in duration, ranging from 40 seconds to 40 min-
utes, providing a diverse collection of lengths that
supports effective model training and evaluation.

For our segmentation task, we preprocess video
frames by resizing, normalizing, and grouping
them into 375-feature segments based on anno-
tations. This segmentation enables the model to
learn temporal context and transitions, essential for
accurate results.



4.2 Experiments

Our experiments are organized into 4 stages: fea-
ture extraction, baseline temporal modeling, and
two variations of Seq2Seq encoder-decoder archi-
tectures. We first establish a robust feature rep-
resentation using ResNet-101, then explore tem-
poral modeling with BILSTM and autoregressive
encoders, and finally evaluate the to segmentation
accuracy of Seq2Seq models with and without at-
tention. Code and datasets (to the extent permitted
by the licenses) will be available open source upon
acceptance.

Feature Extraction Given the different nature of
motion data compared to RGB, training 2DCNNs
from scratch is often preferred. However, due to
our limited data relative to ImageNet, we employ
transfer learning with a ResNet-101 model pre-
trained on ImageNet (motivated by Yosinski et al.
(2014)) for feature extraction.

As our objective is exclusively feature extraction
rather than classification, we remove the final fully
connected layer from the ResNet-101 model. An
Adaptive Average Pooling layer is set to produce a
constant spatial dimension in the network output.
This setting guarantees the model’s output will be
a compact feature vector, irrespective of the input
image dimensions. This layer generates a feature
vector with the shape (2048,). Employing Adaptive
Average Pooling enables preserving the high-level
features of the ResNet model, while normalizing
the output dimensions to a vector format. The input
dimensions for each image are (224, 224, 3), where
224x224 denotes the spatial dimensions and 3 indi-
cates the number of channels for RGB images.

For BOBSL we use their pre-computed optical
flow features as input, which have been processed
through a ResNet model to extract relevant features.
For the Youtube-SL we use RAFT (Teed and Deng,
2020) to estimate optical flow, calculating pixel
displacement between frames 10 frames apart.

Sequence Encoder and Autoregressive Encoder
For temporal modeling, 2048-dimensional feature
vectors are fed into a BILSTM encoder. Each batch
has 375 feature vectors, where each vector repre-
sents the features extracted from a single frame
of the video segment. The sequence length is de-
termined after testing multiple different values to
achieve an appropriate balance between collecting
temporal patterns and guaranteeing efficient pro-
cessing. The BiLSTM predicts BIO labels for each

frame, classifying them as B, I or O of the subtitle,
effectively segmenting the video into SL segments.
Similarly, an autoregressive encoder processes
the 375 feature vectors, incorporating logits from
the current time step as input to the next, enhancing
temporal coherence in the BIO label predictions.

Seq2Seq Encoder-Decoder without attention
In the Seq2Seq model without attention, the input
consists of 2048-dimensional features from ResNet-
101, with a sequence length of 375 frames. To op-
timize efficiency, sequences are sorted by length,
avoiding padding tokens. The BiLSTM encoder
processes these sequence, generating a context vec-
tor that summarizes the input. The LSTM decoder
then uses this context vector to predict segments
corresponding to "B" (beginning), "I" (inside), or
"O" (outside) within the SL sequence.

Seq2Seq Encoder-Decoder with attention Here
a BiLSTM encoder (2 layers, 128 hidden units,
dropout 0.2) to encode 375x2048 input sequences
from ResNet-101. The decoder (2 LSTM layers,
128 hidden units, dropout 0.1) uses an attention
mechanism to compute a weighted sum of the en-
coder outputs, forming a context vector (256 dimen-
sions) at each decoding step. This context vector,
combined with the previous output embedding (128
dimensions), is used to generate logits via a fully
connected layer. A softmax operation is used to
normalize these logits into a probability distribu-
tion over the output segments.

4.3 Model Training

4.3.1 Training Details

We train the BiLSTM and autoregressive encoders
using the Adam optimizer with a learning rate of
le-4 and a batch size of 16. Gradient clipping with
a clip value of 1 is applied to overcome the ex-
ploding gradient. We use theReduceLROnPlateau,
and an early stopping with patience=10 using both
validation loss and the F1 score.

We train Seq2Seq encoder-decoder models, both
with and without attention mechanisms, for seg-
menting SL into subtitle units. Preliminary tests us-
ing cross-entropy loss resulted in overfitting, adopt-
ing the transition to Negative Log-Likelihood Loss
(NLLLoss) for improved management of class im-
balance. Our preliminary hyperparameter search
involves testing a range of LSTM layers (2, 4, 6,
8), fully connected layers (1, 2), hidden sizes (128,
256, 512, 1024), dropout rates (0, 0.1, 0.2, 0.3), op-
timizers (SGD, Adam), learning rates (le-3, le-4,



le-5), and batch sizes (9, 12, 16), we conclude hid-
den size 128, 4 LSTM layers, 1 FC layer, encoder
dropout 0.2, and decoder dropout 0.1, optimal to
both YouTube-ASL and BOBSL datasets.

4.4 Training Time

To optimize training efficiency, we employ a two-
stage process: pre-extracting ResNet-101 features
from optical flow images and storing them for di-
rect loading during training, thus reducing compu-
tational overhead. The Seq2Seq Encoder-Decoder
without attention trains in 14-16 hours, whereas
the attention-based model requires around one day.
Training on the BOBSL dataset is faster due to its
limited size, whereas the extensive YouTube-ASL
dataset requires longer training times to achieve
adequate convergence.

4.5 Teacher Forcing and Scheduled Sampling

Teacher Forcing, where the decoder receives ac-
tual target outputs during training, can result in
over-dependence on ground truth labels and insta-
bility during inference. To mitigate this, we employ
Scheduled Sampling. This method randomly alter-
nates between using actual labels (teacher forcing)
and model predictions as decoder inputs during
training, enabling the model to adapt to prediction
eITorS.

5 Results

In this section, we present the results of our experi-
ments, focusing on answering some key research
questions.

What are the performance differences be-
tween Sequence Encoder and Autoregressive
Encoder models in segmentation tasks?

On the BOBSL dataset, the Sequence Encoder
achieves an F1 score of 0.58 and IoU of 0.60,
with a segment percentage of 250%, 1.38 mil-
lion parameters, and a 14-hour training time. On
YouTube-ASL, it achieves an F1 of 0.56 and IoU
of 0.58, with a segment percentage of 70%, 1.18
million parameters, and a 15-hour training time.
The Autoregressive Encoder, on BOBSL, achieves
an F1 of 0.55 and IoU of 0.51, with a segment
percentage of 174%, 1.42 million parameters, and
a one-day training time. On YouTube-ASL, it
achieves an F1 of 0.47 and IoU of 0.50, with a
segment percentage of 55%, 1.26 million param-
eters, and a one-day training time. Notably, the
BOBSL dataset results in over-segmentation for

both models, while the YouTube-ASL dataset re-
sults in under-segmentation. To address these chal-
lenges, we move to a subtitle-level prediction strat-
egy using Seq2Seq models. Due to differences in
datasets and the specific nature of our subtitle seg-
mentation task, a direct comparison with previous
work is not feasible.

How can the Seq2Seq Encoder-Decoder
model with and without attention improve sub-
title generation for SL in longer, multi-sentence
videos?

We evaluate the ability of Seq2Seq models, with
and without attention, to improve subtitle gener-
ation for SL videos. Using F1 Score, IoU, and
segment percentage on the BOBSL dataset, we
compare model performance. The datasets’ video
lengths allow us to analyze each model’s capacity
to handle continuous SL sequences, focusing on
performance differences and strengths.

For the BOBSL dataset as shown in Table 2,
the Seq2Seq Encoder-Decoder without attention
demonstrates moderate segmentation accuracy with
an F1 score of 0.58 and reasonable overlap recog-
nition with an IoU of 0.70, but exhibits significant
over-segmentation, with a segment percentage of
216%. In contrast, the Seq2Seq model with atten-
tion attains an F1 Score of 0.60, signifying moder-
ate precision in identifying and segmenting relevant
SL sequences. This is supported by an IoU of 0.74,
highlighting the model’s ability to identify overlap-
ping regions between predicted and ground-truth
segments. The model attains best segment percent-
age of 103%. The addition of attention increases
the model’s parameters to 7.8 million and training
time to about 2 days, from 3.1 million parameters
and 15 hours for the model without attention.

On the YouTube-ASL dataset as in Table 3, the
Seq2Seq model without attention achieves an F1
score of 0.55 and an IoU of 0.58, indicating poor
segmentation and overlap recognition. The model
demonstrates under-segmentation, identifying only
87% of the segments. It has 3.1 million parameters
and trains in 19 hours, suggesting optimization is
needed. However, he Seq2Seq model with attention
demonstrates a balanced performance with an F1
score of 0.60 and moderate overlap recognition
(IoU: 0.62). The model identifies 95% of segments,
indicating slight under-segmentation.

The observed performance differences between
the datasets can be attributed to their distinct struc-
tural characteristics. For example, the BOBSL
dataset consists of full sentences, where inter-



Model Dataset F1 10U % # Params  Time
Sequence BOBSL 0.58 0.60 2.50 1.38M ~ 14h
Encoder YouTube-ASL  0.56 0.58 0.70 1.18M ~ 15h

Autoregressive BOBSL 055 051 1.74 1.42M ~ 1d
Encoder YouTube-ASL 047 050 0.55 1.26M ~ 1d

Table 1: Test evaluation metrics for our BOBSL and YouTube-ASL dataset using Sequence Encoder and Autore-
gressive Encoder model. A Comparative Analysis of F1, IOU and % of segments across Sequence Encoder and

Autoregressive Encoder.

Figure 3: Continuation of the sequence from Figure 1, where the model correctly labels the new subtitle with the
"beginning" and "inside" tags as it moves smoothly between subtitles without pausing.

Model F1 10U % # Params  Time Model F1 10U % # Params  Time
Seq2Seq Seq2Seq

Encoder- 058 070 2.16 3.IM  ~15h Encoder- 055 058 087 3IM  ~1%
Decoder Decoder

w/o attention w/0 attention

Seq2Seq Seq2Seq

Encoder- 060 074 103 78M ~2d Encoder- 060 062 095 30M ~2d
Decoder Decoder

w/ attention

w/ attention

Table 2: Test evaluation metrics for our BOBSL dataset
using the proposed Seq2Seq Encoder-Decoder model
with and without attention. A Comparative Analysis of
F1,I0U and % of segments across two models.

preters typically make clear pauses between them,
aiding the model’s segmentation task. In contrast,
the YouTube-ASL dataset contains subtitles that
may span across multiple sentences or include two
sentences within a single subtitle, which may cause
greater challenges for segmentation. This differ-
ence in structure could explain the model’s superior
performance on the BOBSL dataset, and it may be
assumed that this structural difference affects the
segmentation task on the YouTube-ASL dataset.

How does the subtitle temporal resolution af-
fect the quality of generated .srt files for sign
language?

To assess the quality of generated .srt files, we
manually evaluate the model’s accuracy in captur-
ing subtitle timing and segmentation, as shown
in Table 4. This table compares the original
and model-generated subtitle start and end times.
This case study illustrates the model’s overall per-

Table 3: Test evaluation metrics for our YouTube-ASL
dataset using the proposed Seq2Seq Encoder-Decoder
model with and without attention. A Comparative Anal-
ysis of F1, IOU and % of segments across two models.

formance on the BOBSL dataset, revealing its
strengths and limitations in boundary detection,
segmentation accuracy, and alignment with natural
speech flow. The model demonstrates promising
capabilities, achieving closer boundaries in specific
segments, though perfect matches remain challeng-
ing.

The model effectively delineates subtitle bound-
aries in segments like [Subtitle 8, 9, 13, 14], closely
aligning generated timings with actual subtitles.
For example, Subtitle [8] and [9] correctly separate
paused segments, while [13] and [14] accurately
capture continuous signing. This demonstrates the
model’s ability to perceive subtle subtitle transi-
tions beyond simple pauses. However, achieving
exact timing matches is difficult due to our segment-
level analysis, resulting in minor discrepancies.
Furthermore, the model introduces temporal dis-
crepancies in other segments, notably subtitles that



succeed [10] and those before [13], leading to arti-
ficial interruptions and fragmented subtitles. This
inconsistency in segmentation accuracy highlights
the challenge of achieving frame-level precision
without frame-level segmentation, and disrupting
the natural flow.

To what extent can the segmentation tool accu-
rately recognize and delineate significant subti-
tle boundaries within continuous SL sequences?
To illustrate model performance, we present com-
parative case studies. In Figure 1, the model ac-
curately segments the BOBSL dataset video, cor-
rectly identifying subtitle boundaries. It accurately
predicts non-signing periods (white), the start of
subtitle segments (green "B" tag), and the continu-
ation of segments (light blue "I" tag). This demon-
strates the model’s ability to label the beginning
and continuation of signing subtitles without false
boundaries. Similarly, in Figure 3, the model ef-
fectively detects transitions between subtitles, even
without pauses, using high probability scores for
"B" and "I" tags. This highlights the model’s abil-
ity to identify boundaries based on natural signing
structure rather than just pauses.

Despite general efficiency, the model occasion-
ally misidentifies subtitle boundaries, failing to con-
sistently distinguish signing from non-signing ac-
tivity. In Figure 4, the model incorrectly assigns a
high probability to the "I" label, indicating signing
when there is none. This error may stem from fea-
ture ambiguity, where subtle motion in non-signing
segments, such as raising and removing a hat, is
misconstrued as signing. Additionally, an imbal-
ance in training data may bias the model towards
the "I" label, particularly with minimal or uninten-
tional movements. In Figure 5, the model over-
segments, failing to recognize transitions between
distinct signing periods, further highlighting the
difficulty in distinguishing between signing and
non-signing behaviors.

6 Conclusion

SL segmentation presents unique challenges due
to its temporal and spatial complexity, including
subtle transitions and variability across users. This
study addresses subtitle-level SL segmentation us-
ing Seq2Seq models. A key contribution is an
automated system for generating .srt subtitle files
with accurate temporal boundaries. We adapt and
improve the Encoder-Decoder model with attention
specifically for subtitle-level segmentation. Utiliz-

ing optical flow and ResNet features, our model
enhances temporal alignment and transition man-
agement. Our focus on subtitle boundaries distin-
guishes our approach from frame-level studies. Our
Seq2Seq models achieve strong F1, IoU, and seg-
mentation accuracy, emphasizing the importance
of temporal boundary identification and attention
mechanisms in subtitle-level SL segmentation.

Limitations

Our proposed approach, while effective, has sev-
eral limitations. We haven’t directly compared to
the phrase-based SoTA but this is due to limita-
tions of the available annotated datasets, and we
are strong on our opinion that subtitle-level segmen-
tation is the ideal one. Its evaluation is restricted to
BOBSL and YouTube-ASL datasets with English
subtitles, potentially limiting its generalizability to
the broader linguistic diversity of global sign lan-
guages. Furthermore, the model’s primary reliance
on optical flow makes it susceptible to noisy or in-
adequate motion data, such as during occlusions or
subtle movements. Achieving a perfect one-to-one
mapping between predicted and actual subtitle tim-
ing also remains a challenge. Finally, the study’s
reliance on manually labeled subtitle boundaries
introduces potential noise and imprecision due to
the inherent difficulty in their exact delineation. Fu-
ture research should explore incorporating diverse
input features like OpenPose, applying the model
to synchronize subtitles with continuous signing,
and testing on more varied sign language datasets
to enhance generalizability.

Ethical considerations

In our work, we present experiments on the British
Sign Language and American Sign Language
which should be seen and respected as the primary
languages of the respective language communities.
Although we perform this research aiming to pro-
vide equal access to language technology for sign
language users, the fact that the majority of the re-
searchers in NLP are hearing people entails the risk
of developments that are not in accordance with the
will of the respective communities, and therefore
it is required that every research step takes them in
constant consideration. In order to mitigate this, in
our broader research we have included members of
the Deaf/deaf and hard of hearing communities as
part of the research team, consultants and partici-
pants in user studies and workshops and we have



been in co-operation with related unions and com-
munication centers. It should also be noted, that our
experiments are part of a broader series of research
projects, and the results presented here should by
no means considered ready for production and be
used as final products without the agreement of
the communities. The use of the dataset follows
their respective licenses and limitations and every
follow-up work should adhere to those.
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A Appendix

A.1 Algorithm to Map Probabilities to
Subtitle Boundaries

1. Model Predictions: Collect raw predictions
and their corresponding confidence scores
(softmax probabilities) for each segment.

2. Normalize Probabilities: Compute the pro-
portion of each prediction by dividing its prob-
ability by the total probability of all predic-
tions in the sequence.

Probability,
Total Probability

Normalized Probability, =

3. Frame Allocation: Assign frames to each
segment using the normalized probability and
the total number of frames in the sequence.

Frames; = Normalized Probability, x Sequence Frames

4. Frame Mapping: Calculate the start and end
frame for each segment iteratively.

End Frame; = Start Frame; + Frames;

Start the first segment at frame 0, and for sub-
sequent segments, the start frame is the end
frame of the previous segment.

5. Convert to Time: Map the calculated start

and end frames to time using the frame rate
(FPS).

. Frame
Time =

Frames per Second
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Figure 4: Failure instance in which the model incorrectly assigns a high probability to the "Inside" (I) label,
indicating that signing activity is occurring.

Actual subtitle

Model generated subtitle

00:00:20.410 --> 00:00:21.813
Bug free?

00:00:21.816 --> 00:00:22.676
No.

00:00:22.774 —--> 00:00:24.748
Insect free?

00:00:24.748 --> 00:00:25.722
Brilliant.

00:00:25.883 --> 00:00:31.710
Well, I'm going to reveal the
secrets behind supermarket
food, by making the
ingredients that go

into a sandwich.

00:00:48.453 --> 00:00:55.707
If you've ever baked your own
bread, you probably prefer

this to the supermarket bread.

00:00:55.707 --> 00:01:01.220
But the problem with this
stuff is that it goes rock
hard in a day or so, while
the supermarket bread...

00:00:20,930 --> 00:00:21,054
[Subtitle 8]

00:00:22,657 --> 00:00:24,055
[Subtitle 9]

00:00:24,055 --> 00:00:26,047
[Subtitle 10]

00:00:26,047 --> 00:00:28,027
[Subtitle 11]

00:00:28,027 --> 00:00:30,000
[Subtitle 12]

00:00:48,646 —--> 00:00:55,638
[Subtitle 13]

00:00:55,638 --> 00:01:01,140
[Subtitle 14]
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Table 4: Comparison of Original Subtitles with Model-Generated Subtitles for BOBSL dataset




Figure 5: Failure instance where the model incorrectly oversegments the subtitles, predicting a single subtitle instead

of two distinct ones, thereby assigning a high probability to the "Inside" (I) label and indicating continuous signing
activity.
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