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ABSTRACT

Realism constraints (or constraints on perceptual quality) have received consid-
erable recent attention within the context of lossy compression, particularly of
images. Theoretical studies of lossy compression indicate that high-rate common
randomness between the compressor and the decompressor is a valuable resource
for achieving realism. On the other hand, the utility of significant amounts of com-
mon randomness at test time has not been noted in practice. We offer an explanation
for this discrepancy by considering a realism constraint that requires satisfying
a universal critic that inspects realizations of individual compressed images, or
batches thereof. We characterize the optimal rate-distortion-perception trade-off
under such a realism constraint, and show that it is asymptotically achievable
without any common randomness, unless the batch size is impractically large.

1 INTRODUCTION

Realism, or perceptual quality, of reconstructed signals is a long-standing open challenge in lossy
compression, particularly for image/video compression (Eckert & Bradley, 1998; Wu et al., 2012). It
has received renewed interest in the recent years due to the remarkable progress in image generation
models and neural compression techniques. The idea is that reconstructed images should be indistin-
guishable to humans from naturally occurring ones in addition to having a high pixel-level fidelity
to the original source. This ensures that reconstructed images are free of obvious artifacts such as
blocking, blurriness, etc.

The idea that the output of the decoder should resemble the source in a statistical sense is not
new. Advanced Audio Coding (AAC), for instance, includes a provision to add high-frequency
noise to the output so that its power spectrum resembles that of the source (Sayood, 2012). But
the idea has received renewed attention with the emergence of adversarial loss functions in learned
compression (Santurkar et al., 2018; Tschannen et al., 2018; Agustsson et al., 2019; Blau & Michaeli,
2019). In practice, this has proven to be a powerful method for ensuring that reconstructed images
have high perceptual quality (Agustsson et al., 2019; Mentzer et al., 2020; He et al., 2022a; Iwai et al.,
2024). Adversarial loss functions can in many cases be viewed as variational forms of statistical
divergences. Thus one can think of constraining the distribution of reconstructions to be close to that
of the source according to some divergence, in addition to requiring that each reconstructed image be
close to its respective source according to conventional notions of distortion.

Rate-distortion theory characterizes the optimal trade-off between rate and distortion in lossy com-
pression (Pearlman & Said, 2011; Sayood, 2012). The fundamental object in the theory is the
rate-distortion function, for a given source distribution pX :

∆ ∈ [0,∞) 7→ R(0)(∆) := min
pY |X s.t.

Ep[d(X,Y )]≤∆

Ip(X;Y ), (1)

where pX,Y is defined as pX · pY |X . This function has been shown to describe the optimal trade-off
between rate and distortion under a variety of assumptions. Blau & Michaeli (2019) postulated an
augmented form that includes a distribution matching constraint, which they call the rate-distortion-
perception (RDP) function

(∆, λ) ∈ [0,∞)2 7→ R(1)(∆, λ) := min
pY |X s.t.

D(pX ,pY )≤λ,
Ep[d(X,Y )]≤∆

Ip(X;Y ), (2)
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where D can be any divergence between distributions. This function has likewise been shown
to describe the optimal trade-off between rate, distortion, and realism under a variety of assump-
tions (Theis & Wagner; Chen et al., 2022). Curiously, however, these results show that substantial
amounts of high-quality common randomness are needed to meet the R(1)(·, 0) bound (Saldi et al.,
2015; Wagner, 2022; Chen et al., 2022) (see also Xu et al. (2023)). The exception is the case in
which the realism constraint is imposed in a very weak form, namely that the histograms of the
source and reconstruction images should be close on a per-realization basis (Chen et al., 2022). Note
that common pseudorandomness, say generated from a shared seed, does not qualify as common
randomness for the purposes of the above results.

On the other hand, the theoretical prediction that lossy compression schemes would benefit from
substantial amounts of high-quality common randomness between the encoder and decoder has not
been observed in practice. To the best of our knowledge, there exist compression schemes (Agustsson
et al., 2023; He et al., 2022a; Hoogeboom et al., 2023; Ghouse et al., 2023; Mentzer et al., 2020;
Yang & Mandt, 2023), considered as state-of-the-art, that do not involve any common randomness.
While it is possible that future designs will find common randomness to be a valuable resource, it
seems more likely that the discrepancy between the theoretical prediction and practical experience
lies with a flaw with the theoretical models.

Consider a communication system for which a strong realism constraint is imposed: the distribution
of the reconstructions must be close to the distribution of natural images, say, in Wasserstein or
total variation distance (TVD). If the source distribution is continuous, then the code cannot be
deterministic, for otherwise the reconstruction distribution would be supported on a countable set
(corresponding to the set of received bit strings). Thus some amount of randomization is required
to meet the constraint. The decoder can randomize its output in a way that “spreads” the point
masses out to form a continuous distribution, but adding independent noise at the decoder inevitably
degrades the distortion. Common randomness is useful because it allows the discrete reconstruction
points to be dispersed to form a continuous distribution without less overall distortion. This is the
basis for the finding that common randomness is a useful resource for compression under realism
constraints (Theis & Agustsson, 2021).1

The above reasoning is evidently sensitive to the nature of the realism constraint. If we simply require
that each reconstructed image appear realistic in its own right, without reference to the reconstruction
ensemble, then the spreading process mentioned above is unnecessary. It follows that there would be
no need for randomization. This is relevant because human observers, who are the ultimate arbiters of
realism in practice, are adept at identifying unrealistic features of individual images. Yet it is difficult
for human observers to distinguish between a continuous ensemble and one that is discrete with a
very large support set, since doing so would require viewing (and remembering) many images. In
short, human critics are very good at spotting unrealistic aspects of individual images but are expected
to be poor at detecting subtle ensemble-level differences.

This suggests posing the realism constraint in a way that better captures the relative strengths and
weaknesses of human critics. The aforementioned strong realism constraint has also been challenged
in the context of other problems, such as generative modeling (Theis, 2024). We consider a novel
formulation of the lossy compression problem in which the goal is to satisfy a critic that is incredibly
discriminating when viewing individual images. In fact, a reconstructed image is declared unrealistic
if there exists some computable test, no matter how complex, that can distinguish it from the set of
typical source images (see Definition 3.5 to follow). At the same time, we assume that the critic
can glean information about the ensemble only by inspecting batches of individual samples. Under
this formulation, we show that the rate-distortion-perception function R(1)(·, 0) in (2) is achievable
without common randomness unless the batch size is unreasonably high—on par with the number
of possible outputs of the decoder (Theorems 4.1 and 4.2). If common randomness is not needed
to fool this critic, it should not be needed to fool any weaker (and more practical) critic, since the
stronger critic subsumes the weaker one. This is akin to how in cryptography one might prove security
guarantees assuming a very strong adversary, stronger than can be implemented in practice. The fact
that the adversary cannot be practically implemented is a strength of our approach. It is notable that
there exist compressors that can satisfy such discriminating critics at all. It is all the more notable that

1It is now apparent why sharing a pseudorandom seed is insufficient, as this would expand the number of
distinct reproductions by a multiplicative factor equal to the number of possible values of the seed, which is
relatively small if the seed is short.
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such critics can be satisfied while achieving the rate-distortion-perception function R(1)(·, 0) in (2),
which is the most optimistic rate-distortion trade-off possible under the circumstances. Conversely,
we show that common randomness is indeed beneficial if the batch size is extremely large, larger
than would ever occur in practice (Theorem 4.4). In this regime, our realism measure reduces
to a divergence and common randomness is again useful. These two results clarify that common
randomness is indeed useful, consistent with theoretical predictions, but only in regimes that do not
occur in practice, consistent with the current state of the experimental literature. Our results show the
existence of optimal schemes which do not involve any common randomness at test time, but there
may exist other optimal schemes, which rely on common randomness at test time, as well as learned
schemes relying on common randomness at training time.

In Section 2, we provide some background on the formalism for critics in algorithmic information
theory. In Section 3, we introduce our new formalism for the RDP trade-off. In Section 4, we state
our main results, namely Theorems 4.1, 4.2, and 4.4. All proofs are deferred to the appendices.

2 BACKGROUND

2.1 NOTATION

Calligraphic letters such as X denote sets, except in pUJ , which denotes the uniform distribution over
set J . The cardinality of a finite set X is denoted |X |. We denote by [a] the set {1, ..., ⌊a⌋} and by
{0, 1}∗ the set of non-empty finite strings of 0’s and 1’s. Given a real number τ, we denote by ⌊τ⌋
(resp. ⌈τ⌉) the largest (resp. smallest) integer less (resp. greater) than or equal to τ. We use x1:n

to denote a finite sequence (x1, ..., xn), and x(n,b) to denote a batch {x(k)
1:n}k∈[b] of b strings, each

being of length n. We abbreviate x(1,b) with x(b). The length of a string x is denoted by l(x).

We denote the set of (strictly) positive reals by R+, the set of (strictly) positive integers by N, the set
of rational numbers by Q, and the Borel σ-algebra of R by B(R). The closure of a set A is denoted by
cl(A). We use ≡ to denote equality of distributions, and Ip(X;Y ) to denote the mutual information
between random variables X and Y with respect to joint distribution pX,Y . Logarithms are in base 2.
The total variation distance between distributions p and q on a finite set X is defined by

∥p− q∥TV :=
1

2

∑
x∈X

|p(x)− q(x)|.

For any nonempty finite set X , and any distribution p on X , we denote by p⊗∗ the function defined on
{0, 1}∗, which is null outside of ∪n∈NXn, and such that for every n ∈ N, the restriction of p⊗∗ on Xn

is p⊗n. For a finite set X , the empirical distribution of a sequence x1:n∈Xn is denoted Pemp
X (x1:n).

Given a distribution PX1:n
on Xn, we denote by P̂X [X1:n] the average marginal distribution of

random string X1:n, i.e., the distribution on X defined by:

P̂X [X1:n] :=
1
n

∑n
t=1 PXt .

2.2 LOSSY COMPRESSION ALGORITHMS WITHOUT COMMON RANDOMNESS

The performance of practical lossy compression schemes in terms of realism (or perceptual quality)
is generally measured with well established metrics such as FID (Heusel et al., 2017), LPIPS (Zhang
et al., 2018), PieAPP (Prashnani et al., 2018), and DISTS (Ding et al., 2022). Distortion is often
measured with PSNR. According to these metrics, the following lossy compression algorithms are
state-of-the-art. In particular, these schemes achieve visually pleasing reconstructions at very low
compression rates. None of these algorithms make use of common randomness. The schemes in
Mentzer et al. (2020), He et al. (2022a), and Agustsson et al. (2023) were obtained by training with
an adversarial loss, a method inspired from generative adversarial networks (GANs). The former
combines a conditional GAN with the scale hyperprior method of Ballé et al. (2018). The latter is
an extension of the ELIC scheme (He et al., 2022b), which is state-of-the-art in terms of rate and
distortion. The loss function of the latter was augmented, in particular, with an adversarial term
and an LPIPS term. The method proposed in Agustsson et al. (2023) is inspired from He et al.
(2022b) and Mentzer et al. (2020). The schemes in Yang & Mandt (2023), Ghouse et al. (2023), and

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Hoogeboom et al. (2023) rely on diffusion models. The first uses a diffusion model conditioned on
quantized latents. The two other schemes first train an autoencoder for rate and distortion, then train
a diffusion model which improves the visual quality of the latter’s output. The fact that none of these
state-of-the-art algorithms make use of common randomness supports the theoretical results derived
in the present paper.

2.3 BACKGROUND ON ALGORITHMIC INFORMATION THEORY

The theory of p-critics and universal critics has recently been brought to the attention of the machine
vision community via Theis (2024). We refer to it for readers interested in a high-level and insightful
presentation of the topic and its usefulness in diverse machine learning tasks (generative modeling,
outlier detection). Relevant background on computability theory is provided in Appendix A. Through-
out the paper, we assume that the source X follows a distribution pX on a finite set X , and that pX
is a computable function from X to (0, 1). We identify every element of X with a string of 0’s and
1’s, via an injection from X to {0, 1}s, for some s ∈ N. For example, if X is a set of images of a
given resolution, then one can identify each image with the corresponding output from a fixed-length
lossless compressor. The following definition is substantially close to Li & Vitányi (2019, Definition
4.3.8). See also in Li & Vitányi (2019, Lemma 4.3.5).
Definition 2.1. Consider a finite set X , identified with a subset of {0, 1}s. Let p be a distribution on
X such that ∀x ∈ X , p(x) > 0. A p-critic is a function δ : X → R, such that∑

x∈X
p(x)2δ(x) ≤ 1. (3)

A p⊗∗ -critic is a function δ : ∪n∈NXn → R, such that for every input dimension n ∈ N, we have∑
x∈Xn

p⊗n(x)2δ(x) ≤ 1. (4)

The notion of p⊗∗-critic in Definition 2.1 is used to study an asymptotic regime in Section 3.2.
Note that for any probability distribution π on N, the mixture p̃ :=

∑
n∈N π(n)p⊗n is a probability

measure. By multiplying (4) by πn, and summing over n, we obtain∑
x∈∪n∈NXn

p̃(x)2δ(x) ≤ 1. (5)

Hence, a p-critic (resp. p⊗∗-critic) is akin to a log-likelihood ratio: given a p-critic (resp. p⊗∗-critic)
δ, setting q : x 7→ p(x)2δ(x) (resp. q : x 7→ p̃(x)2δ(x)) gives

∀x ∈ X s.t. p(x) > 0, δ(x) = log
(q(x)
p(x)

)
(resp. log

(q(x)
p̃(x)

)
), and

∑
x∈X

q(x) ≤ 1. (6)

Links to hypothesis testing are discussed in Theis (2024), where a sample x is deemed unrealistic
if the likelihood ratio is large enough. Hence, intuitively, δ(x) can be considered as a measure of
realism deficiency of x. The strength of this theory lies in the existence of objects (critics, measures)
having a so-called universality property. For the purpose of clarity, we defer such results to Appendix
A, as they are only used in our proofs.

3 NEW MODEL FOR THE RATE-DISTORTION-PERCEPTION TRADE-OFF

3.1 THE ONE-SHOT SETTING

We consider a function d : X×X → [0,∞) called the distortion measure. A compression scheme
can be randomized, and potentially leverage available common randomness J between the encoder
and the decoder, as depicted in Figure 1 and formalized in the following definition.

Definition 3.1. Given non-negative reals R and Rc, an (R,Rc) code is a privately randomized
encoder and decoder couple (F,G) consisting of a conditional distribution FM |X,J from X × [2Rc ]
to [2R], and a conditional distribution GY |M,J from [2R] × [2Rc ] to X . Variables M and Y are
called the message and reconstruction, respectively, and distribution

P := pX · pU[2Rc ] · FM |X,J ·GY |M,J

4
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Encoder𝑋 Decoder
𝑀 ∈ [2!]

𝑌

𝐽 ∈ [2!!]

Figure 1: The system model for the one-shot setting.

is called the distribution induced by the code. Moreover, such a code is said to be deterministic if
Rc = 0 and mappings F,G are deterministic.

We propose a new RDP trade-off, formalized in the following two definitions.
Definition 3.2. We extend d into an additive distortion measure on batches of elements of X : for all
B∈N,

∀(x(B),y(B)) ∈ XB ×XB , d(x(B),y(B)) := 1
B

∑B
k=1d(x

(k), y(k)).

Definition 3.3. Consider a positive integer B, and a p⊗B
X -critic δ. A tuple (R,∆, C) is said to be

δ-achievable with algorithmic realism if there exists some Rc ∈ R≥0 and an (R,Rc) code such that
the distribution P induced by the code satisfies

EP⊗B

[
d(X(B),Y(B))

]
≤ ∆ and (7)

EP⊗B [δ(Y(B))] ≤ C, (8)

where X(B) denotes a batch of B i.i.d. source samples, and Y(B) the batch of corresponding
reconstructions produced by the code (with each source sample being compressed separately). If the
code is deterministic, then we say that (R,∆, C) is δ-achievable with a deterministic code.

The main difference with the original RDP trade-off of Blau & Michaeli (2019) pertains to the
realism constraint. In the latter formulation, the realism constraint is D(pX , PY ) ≤ C, where D is
some divergence. Intuitively, that constraint corresponds to the special case of infinite batch size
in the RDP trade-off proposed in Definition 3.3, since the discrete distributions pX and PY can be
approximated arbitrarily well using a large enough number of samples. In that sense, our proposed
RDP framework generalizes the original one, through involving elements of practical realism metrics,
such as the number B of samples which are inspected, and a scoring function δ which is required to
be approximable via an algorithm. Theorem 4.4 to follow constitutes a rigorous statement of this
intuition. We provide achievable points in the sense of Definition 3.3 in Section 4.2. In the next
section, we define an asymptotic notion of achievability.

3.2 ASYMPTOTIC SETTING

In order to derive insight into the corresponding RDP trade-off, we study a special case, which is
typical in the information theory literature. We consider the compression of a source distributed
according to p⊗n

X , with n a large integer. More precisely, we study the RDP trade-off in asymptotic
settings where both n and the batch size go to infinity.

The extension of d into an additive distortion measure on finite sequences, and batches of finite
sequences, follows from Definition 3.2. The setup is depicted in Figure 2. Given a coding scheme,
each item in a batch of source samples is compressed separately, and realism is measured based on
the resulting batch of reconstructions. This is formalized in the definition below.

Definition 3.4. Given R,Rc ≥ 0, and n ∈ N, a (n,R,Rc) code is a privately randomized encoder
and decoder couple (F (n), G(n)) consisting of a mapping F

(n)
M |X1:n,J

from Xn × [2nRc ] to [2nR]

and a mapping G
(n)
Y1:n|M,J from [2nRc ] × [2nR] to Xn. Moreover, such a code is said to be fully

deterministic if Rc = 0 and both F (n) and G(n) are deterministic. The distribution induced by the
code is

P (n) := p⊗n
X · pU[2nRc ] · F

(n)
M |X1:n,J

·G(n)
Y1:n|M,J ,

5
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Encoder𝑋1:𝑛
(𝑘) Decoder

𝐽 ∈ [2𝑛𝑅𝑐]

𝑌1:𝑛
(𝑘)

𝑀 ∈ [2𝑛𝑅]

Figure 2: The system model for the asymptotic setting. Index k ranges from 1 to the batch size. The
same encoder-decoder pair is used to process each source sample in the batch.

and variable Y1:n is called the reconstruction.

We define asymptotic achievability as follows. See Appendix A for background on notions of
computability.
Definition 3.5.
A quadruplet (R,Rc, {Bn}n≥1,∆) is said to be asymptotically achievable with algorithmic realism
if for any ε > 0, there exists a sequence of codes {(F (n), G(n))}n, the n-th being (n,R + ε,Rc),
such that the sequence {P (n)}n of distributions induced by the codes satisfies

lim sup
n→∞

E(P (n))⊗Bn

[
d(X(n,Bn),Y(n,Bn))

]
≤ ∆+ ε, (9)

and for any lower semi-computable p⊗∗
X -critic δ,

sup
n∈N

E(P (n))⊗Bn

[
δ(Y(n,Bn))

]
< ∞. (10)

We say that (R, {Bn}n≥1,∆) is achievable with a fully deterministic scheme if for each n, the code
(F (n), G(n)) is fully deterministic.

Constraint (10) is very stringent: a single compression scheme is to satisfy a performance guarantee
for every lower semi-computable p⊗∗

X -critic (i.e. every relevant one). The motivation for the specific
form of (10) is firstly from the algorithmic information theory literature: it is stated in Li & Vitányi
(2019, p.140) that a sample from a large set, identified to a long string of 0’s and 1’s of some length
k, is realistic if its realism deficiency is small compared to k. The constraint in (10) is at least as
stringent, since in our asymptotic setting, each x1:n ∈ Xn is identified with a string of length linear
in n, while we require the realism deficiency to be bounded. Moreover, consider the following simple
example. Assume X = {0, 1}, and pX is a Bernoulli distribution B(ρ). Consider the 0-1 distortion
(also called Hamming distortion), and some distortion level ∆ < min(ρ, 1 − ρ). Then, for large
enough n, the classical rate-distortion optimal code appearing in the information theory literature
produces reconstructions having a frequency of 1’s of roughly (ρ−∆)/(1− 2∆) (Cover & Thomas,
2006, Sections 10.3.1 and 10.5), i.e. different from ρ (if ρ ̸= 1/2 and ∆ > 0). Then, for the p⊗∗

X -critic
appearing in Appendix G (Claim G.1), which involves the frequency of occurrence of a pattern, the
expected score diverges as n goes to infinity. Hence, the constraint in (10) is not satisfied by such a
code, optimized only for rate and distortion, but not for realism. This concludes the definitions for our
setup. In the next sections, we present our results, in the one-shot setting and in asymptotic settings.

4 RESULTS

4.1 LOW BATCH SIZE REGIME

The following theorem states that R(1)(·, 0), defined in (2), which naturaly arises in the distribution
matching formalism, also characterizes the optimal trade-off in our asymptotic setting, when the
batch size is not impractically large.
Theorem 4.1. Consider a sequence {Bn}n≥1 of positive integers such that

log(Bn)/n −→
n→∞

0. (11)

For any ∆ ∈ R+, let R(∆) be the infimum of rates R such that there exists Rc ∈ R≥0 such
that (R,Rc, {Bn}n≥1,∆) is asymptotically achievable with algorithmic realism. Moreover, for

6
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any ∆ ∈ R+, let R∗(∆) be the infimum of rates R such that (R, {Bn}n≥1,∆) is asymptotically
achievable with algorithmic realism with fully deterministic codes. Then, we have

∀∆ ∈ R+ s.t. R(1)(∆, 0) < Hp(X), we have R(∆) = R∗(∆) = R(1)(∆, 0). (12)

The proof is provided in Appendices C and D. The strength of this result lies in how stringent
constraint (10) is: a single compression scheme satisfies a performance guarantee for every relevant
p⊗∗
X -critic, and deterministic schemes are sufficient. Moreover, one can find such a scheme for any

batch size sequence which is sub-exponential in the dimension n of the source, i.e. for all regimes
where the batch size is not impractically large. To prove the achievability direction of Theorem 4.1,
we leverage the existence of a universal p⊗∗

X -critic δ0 (see Appendix A.2), which is one of the great
successes of algorithmic information theory. Indeed, it is sufficient to construct a scheme which
achieves (10) only for such a δ0, which is more sensitive than all relevant p⊗∗

X -critics. It is a very
strong critic, stronger than can be implemented in practice, which is another strength of Theorem 4.1.

4.2 ONE-SHOT ACHIEVABLE POINTS

For theoretical interest, we provide a family of points which are achievable, in the sense of Definition
3.3, without any statistical assumption on the source distribution pX . For the sake of gleaning
intuition, one can consider the following example.

• X is a finite set of images, e.g. the set of all images of a given resolution, with a finite range
for pixels (finite precision).

• d is the mean squared error between pixel values.
• B is the number of images inspected by the critic at a time.
• R1 is the number of bits into which a given image is compressed.

Theorem 4.2. Consider a finite set X such that |X | ≥ 2, a computable distribution pX on X such
that ∀x ∈ X , pX(x)>0, a positive integer B, some R > log(B)/ log(X ), some ∆ ∈ R+, and a
p⊗B
X -critic δ. Consider any conditional transition kernel pY |X from X to X satisfying

pY ≡ pX , Ep[d(X,Y )] ≤ ∆. (13)

Then, for any ε ∈ (0,∆/2), and any γ > 0, the triplet (R1,∆1, C1) is δ-achievable, with a (R1, 0)
code, where

R1 := R log(|X |) (14)

∆1 := ∆ + ε+
6∆

ε
max(d) · ηR,γ (15)

C1 :=
3∆

ε

[ B2

⌊2R1⌋
+ 2BηR,γ

]
·maxx B log

1

pX(x)
(16)

ηR,γ := p(AR,γ) + 2−γ log(|X |)/2 (17)

AR,γ :=
{
(x, y) ∈ X 2 | log

( pX,Y (x, y)

pX(x)pY (y)

)
− log(⌊2R1⌋) > −γ log(|X |)

}
, (18)

with the convention 0/0 := 1.

The proof is provided in Appendix B. The term B2/⌊2R1⌋ is an upper bound on the probability
that two source samples in the batch are compressed into the same message. This is related to the
so-called birthday paradox (see Appendix I). The term maxx B log(1/pX(x)) is an upper bound on
the output of δ, which follows from Definition 2.1.

Theorem 4.2 provides insights on the asymptotic regime of Theorem 4.1. Consider the limit of large
|X |, with fixed R,∆, ε, γ, and with log(B) = o(log |X |). We know that

Ep

[
log

( pX,Y (x, y)

pX(x)pY (y)

)]
= Ip(X;Y ). (19)

Hence, if this log-likelihood ratio concentrates well, and if R1 > Ip(X;Y ), as in the definition of
R(1)(·, 0) in (2), then p(AR,γ) is small for small enough γ. In such an asymptotic regime, we obtain
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∆1 ≈ ∆, and C1 = O(1). Therefore, the assumption in Theorem 4.1, that the source is of the form
p⊗n
X for some large n, is only used to ensure fast concentration of the log-likelihood ratio. Hence,

Theorem 4.1 can be extended to a larger set of sources. In the next section, we present our last main
result, which pertains to an asymptotic regime with large batch size.

4.3 GENERALIZING THE DISTRIBUTION MATCHING FORMALISM

In this section, we present a result which connects our proposed formalism for the RDP trade-off to
the distribution matching formalism of Blau & Michaeli (2019), and concludes our findings regarding
the role of common randomness.

4.3.1 BACKGROUND

Under the distribution matching formalism for the RDP trade-off, the natural asymptotic notion of
achievability is as follows.
Definition 4.3. (Saldi et al., 2015; Blau & Michaeli, 2019)
A quadruplet (R,Rc, {Bn}n≥1,∆) is said to be asymptotically achievable with near-perfect realism
if for any ε > 0, there exists a sequence of codes {(F (n), G(n))}n, the n-th being (n,R + ε,Rc),
such that the sequence {P (n)}n of distributions induced by the codes satisfies

lim sup
n→∞

EP (n)

[
d(X1:n, Y1:n)

]
≤ ∆+ ε,

∥P (n)
Y1:n

− p⊗n
X ∥TV −→

n→∞
0. (20)

The TVD in (20) is directly related to the performance of the optimal hypothesis tester between the
reconstruction distribution P

(n)
Y1:n

, and the source distribution p⊗n
X (Blau & Michaeli, 2019).

Replacing (20) with

∃N ∈ N,∀n ≥ N, P
(n)
Y1:n

≡ p⊗n
X (21)

gives the notion of asymptotic achievability with perfect realism. It was shown that these two notions
are equivalent for finite-valued sources (Saldi et al., 2015), as well as for continuous sources under
mild assumptions (Saldi et al., 2015; Wagner, 2022).

4.3.2 CONNECTION TO OUR FORMALISM

As stated in the theorem below, in a certain large batch size regime, asymptotic achievability with
algorithmic realism (Definition 3.5) is equivalent to asymptotic achievability with near-perfect realism
(Definition 4.3). The proof is provided in Appendix E.
Theorem 4.4. Consider a computable increasing sequence {Bn}n≥1 of positive integers such that

Bn

|X |n
→ ∞. (22)

Then, for any Rc ∈ R≥0, and any (R,∆) ∈ (R+)
2, tuple (R,Rc, {Bn}n≥1,∆) is asymptotically

achievable with algorithmic realism if and only if (R,Rc,∆) is asymptotically achievable with
near-perfect realism, if and only if (R,Rc,∆) is asymptotically achievable with perfect realism.

Hence, Theorem 4.4, similarly to the finding in Theis (2024), shows that for large batch size, our
formalism is equivalent to the distribution matching formalism. Hence, the former is a generalization
of the latter. Moreover, Theorem 4.4 and prior work on the distribution matching formalism (Saldi
et al., 2015; Wagner, 2022; Chen et al., 2022) imply that common randomness is useful when the size
of the batch inspected by the critic is extremely large.

5 DISCUSSION

Theorem 4.1 states that common randomness does not improve the trade-off under our formalism,
in all regimes where the batch size is not impractically large with respect to the dimension n of the

8
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source. Theorem 4.4 states that common randomness is useful — consistent with prior theoretical
predictions — when the batch size is extremely large. Thus, Theorems 4.1 and 4.4 indicate that,
in order to understand the role of randomization in lossy compression with realism constraints, the
focus should be shifted to the size of the batch inspected by the critic. A continuation of our work
could be to investigate realism metrics, where particular attention would be given to the choice of
the batch size. This could lead to highlighting specific strengths and weaknesses of existing realism
metrics. It may also inspire a critical assessment of the relative performance of existing compression
schemes, depending on the choice of realism metric. Another continuation could be to more precisely
characterize the amount of randomness needed as a function of the batch size. Furthermore, possible
extensions of our setup include compression with side information, and other distributed settings.
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A FURTHER BACKGROUND ON ALGORITHMIC INFORMATION THEORY

A.1 COMPUTABILITY

This definition matches Li & Vitányi (2019, Definition 1.7.4), except for the definition of a computable
real number, which we adapted from Li & Vitányi (2019, Exercise 1.7.22), and for the definition of a
computable set, which matches that of Li & Vitányi (2019, page 32).
Definition A.1. Consider a subset E of N≥0. A map f from E into N3

≥0 is said to be computable if it
corresponds to a Turing machine (Li & Vitányi, 2019, Section 1.7.1). This notion extends to functions
having as domain other common countable sets, such as Nk

≥0 for k ∈ N, and {0, 1}∗, or any subset
thereof, by identifying elements of these sets with non-negative integers via some reference bijections.
Consider a computable map f from a subset E of N≥0 into {0, 1} × N≥0 × N. Then, composing f
with (s, a, b) 7→ (2s− 1)a/b yields a map from E to Q, which is said to be a computable map from
E to Q. A map f from a subset E of N≥0 into R is said to be lower semi-computable if there exists a
computable function φ from E × N into Q, such that

∀x ∈ E , φ(x, k) →
k→∞

f(x), and ∀x ∈ E ,∀k ∈ N, φ(x, k + 1) ≥ φ(x, k).

Moreover, f is said to be a computable map from E to R if both f and −f are lower semi-computable.
A real number λ is said to be computable if the constant function f : N≥0 → R, n 7→ λ is a
computable function from N≥0 to R. A (possibly infinite) subset X of N≥0, is said to be computable
if there exists a computable function f from N≥0 to {0, 1}, which returns 1 if its input is in X , and 0
otherwise.

The following lemma allows to construct (semi-)computable functions. Its proof is deferred to
Appendix K.
Lemma A.2. Let E denote a non-empty subset of N≥0, and let f and g denote functions from E to R.
(i) If f and g are both lower semi-computable, then functions f + g, ⌈f⌉, and 2f are lower semi-
computable. If, in addition, f and g only take non-negative values, then fg and 2f/(3+f)2 are lower
semi-computable. If, in addition, f only takes positive values, then log(f) is lower semi-computable.
(ii) If f and g are both computable, then functions f + g, fg, and |f | are computable. If, in addition,
f only takes positive values, then functions 1/f, and f1/b are computable, for any positive integer b.
(iii) Let X be a computable finite subset of {0, 1}∗. If f is a lower semi-computable function from
{0, 1}∗ into R, then the function f̃ : {0, 1}∗ → R which is null outside of ∪n∈NXn, and is defined by

∀x ∈ ∪n∈NXn, f̃(x) =
∑

y∈X l(x)

f(y),

is lower semi-computable. Moreover, if p is a lower semi-computable probability measure on X , then
p⊗∗ is lower semi-computable.

A.2 UNIVERSAL CRITICS AND SEMI-MEASURES

Definition A.3. Given a finite set W, a function f : W → [0, 1] is a semi-measure if∑
w∈W

f(w) ≤ 1.

It is said to be a lower semi-computable semi-measure if f is a semi-measure and f is lower
semi-computable.

The following theorem, corresponds to Definition 4.3.2, Equation (4.2), and Theorems 4.3.1 and
4.3.3 in Li & Vitányi (2019). It introduces the notion of universal p⊗∗-critic, used in Theis (2024).
The mixture m therein can be used as a prior distribution, which has been shown to be relevant in
machine learning applications involving realism, such as outlier detection and generative modeling
(Theis, 2024).
Theorem A.4. Consider a finite set X , each element of which is identified with a string in {0, 1}s,
for some s ∈ N. Let p be a computable distribution on X such that ∀x ∈ X , p(x) > 0. Then, there

12
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exists a p⊗∗-critic δ0 (which is not necessarily lower semi-computable), such that for any lower
semi-computable p⊗∗-critic δ, there exists a constant cδ such that

∀x ∈
⋃
n∈N

Xn, δ0(x) ≥ δ(x)− cδ. (23)

Any p⊗∗-critic satisfying (23) is called a universal p⊗∗-critic.

Since our definitions are slightly different from the classical ones, we provide a proof of Theorem
A.4 in Appendix J. Such a critic δ0 is one of the best measures of realism deficiency according to p,
in the limit of arbitrarily long strings. If a critic δ identifies a certain amount of deficiency in a given
string, then δ0 will identify at least as much deficiency, up to some additive constant. Intuitively, δ0
is sensitive to all properties of randomness according to p. The existence of such a δ0 constitutes a
remarkable property of the set of all lower semi-computable p⊗∗

X -critics (which is infinite).
Remark A.5. (Li & Vitányi, 2019, Theorem 4.3.3) The universal semi-measure m can be chosen in
such a way that

∀x ∈ {0, 1}∗, | − log(m(x))−K(x)| ≤ c, (24)

for some constant c, where K is the Kolmogorov complexity (Li & Vitányi, 2019, Section 3.1). Property
(24) constitutes a strong result, since the Kolmogorov complexity is only defined up to a constant
-we omit the corresponding details, for the purpose of clarity. The map x 7→ log(1/p(x))−K(x) is
sometimes considered to be an approximation of a universal p⊗∗ critic, see, e.g., Theis (2024), and
Appendix J.

B PROOF OF THEOREM 4.2

B.1 OUTLINE

To show the achievability of a tuple (R1,∆1, C1), it is not necessary to construct an explicit com-
pression scheme: it is sufficient to prove the abstract existence of such a scheme. To that end, we
consider a set of random reconstructions, and study its realism properties in Section B.2. Then, we
show the existence of a suitable choice of realizations of the latter reconstructions in Section B.3. In
Section B.4, we prove Theorem 4.2 by proposing a compression scheme achieving a close-to-uniform
sampling from the set of reconstructions. For the remainder of Section B, we fix a finite set X such
that |X | ≥ 2, a computable distribution pX on X such that ∀x ∈ X , pX(x)>0, a positive integer B,

and a p⊗B
X -critic δ.

B.2 REALISM PERFORMANCE OF A UNIFORMLY SAMPLED BATCH OF RANDOM
RECONSTRUCTIONS

B.2.1 RANDOM CANDIDATE RECONSTRUCTIONS

Given a positive real R1, let C be a family of ⌊2R1⌋ i.i.d. variables, each sampled from pX . The m-th
variable is denoted y(C,m). We denote their joint distribution by QC . Given a realization c of C, we
consider a batch y(B) of B elements of c, sampled uniformly with replacement. Then, we compute
the batch’s realism score δ(y(B)). This is formalized in the following lemma, which gives an upper
bound of the expected score with respect to QC .

Lemma B.1. Consider a positive real R1 ∈ (log(B),∞), and the following pmf.

QC,M(B),Y(B)

(
{y(m′)}m′∈[⌊2R1⌋],m

(B),y(B)
)

:=
( ⌊2R1⌋∏

m′=1

pX (y(m′))

)
· 1

⌊2R1⌋B
·

B∏
k=1

1y(k)=y(m(k)). (25)

Then, we have

EQ[δ(Y
(B))] ≤ B2

⌊2R1⌋
maxx B log

1

pX(x)
. (26)

The remainder of Section B.2 is dedicated to the proof of Lemma B.1. Fix R1 > log(B).
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B.2.2 REALISM PERFORMANCE

Claim B.2. Since R1 > log(B), a simple bound yields,

(pU
[⌊2R1⌋])

⊗B(M (1), ...,M (B) 2 by 2 distinct) ≥ 1− B2

⌊2R1⌋
.

See Appendix I for a proof. From the definition (Section B.2.1) of Q, for any E ∈ B(R),

Q
({

δ0
({

y(C,M (k))
}
k∈[B]

)
∈ E

}
∣∣∣{M (1), ...,M (B) 2 by 2 distinct

})
= p⊗B

X

(
δ0
(
X(B)

)
∈ E

)
. (27)

Therefore, we have

EQ[δ({y(C,M (k))}k∈[B])]

=
∑
m(B)

EQ[1M(B)=m(B)δ({y(C,m(k))}k∈[B])]

=
∑
m(B)

EQ[1M(B)=m(B) ]EQ[δ({y(C,m(k))}k∈[B])]

=
∑

{m(k)}k∈[B] 2 by 2 ̸=

(pU[⌊2R1⌋])
⊗B(M(B)=m(B))Ep⊗B

X
[δ(X(B))]

+
∑

{m(k)}k∈[B] not 2 by 2 ̸=

(pU[⌊2R1⌋])
⊗B(M(B)=m(B))EQ[δ({y(C,m(k))}k∈[B])]

≤ Ep⊗B
X

[δ(X(B))] + max(δ)(pU[⌊2R1⌋])
⊗B(M (1), ...,M (B)not 2 by 2 ̸=)

≤ Ep⊗B
X

[δ(X(B))] +
B2

⌊2R1⌋
max

x
B log

1

pX(x)
, (28)

where (28) follows from Claim B.2 and (3).

Claim B.3. For any distribution p on a finite set, any p-critic δ satisfies

Ep[δ(X)] ≤ 0. (29)

Proof. By setting q : x 7→ p(x) · 2δ(x), we can write

∀x ∈ X s.t. p(x) > 0, δ(x) = log
(q(x)
p(x)

)
, with 0 <

∑
x∈X

q(x) ≤ 1. (30)

We denote the latter sum by q(X ). Then, q/q(X ) is a probability distribution on X , and we have

Ep[δ(X)] ≤ Ep

[
log

(q(X)/q(X )

p(X)

)
1p(X)>0

]
= −KL(p||q/q(X )) ≤ 0. (31)

This concludes the proof of Lemma B.1.

B.3 FURTHER PROPERTIES OF A UNIFORMLY SAMPLED BATCH

Proposition B.4. Consider a finite set X such that |X | ≥ 2, a distribution pX on X such that
∀x ∈ X , pX(x)>0, a positive integer B, some R > log(B)/ log(|X |), some ∆ ∈ R+, and a
p⊗B
X -critic δ. Consider any conditional transition kernel pY |X from X to X satisfying

pY ≡ pX , Ep[d(X,Y )] ≤ ∆. (32)

14
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Then, for any ε ∈ (0,∆/2), and any γ > 0, there exists a family {y(m)}m∈[⌊2R1⌋], denoted c, of
elements of X , such that distribution

QM,Y,X

(
m, y, x

)
:=

1

⌊2R1⌋
·
(
1y=y(m)

)
· pX|Y=y(m)(x) (33)

satisfies

∥QX − pX∥TV ≤ 3∆

ε
[p(AR,γ) + 2−γ log(|X |)/2] (34)

EQ⊗B [d(X(B),Y(B))] ≤ ∆+ ε (35)

EQ⊗B [δ(Y(B))] ≤ 3∆

ε
· B2

⌊2R1⌋
max

x
B log

1

pX(x)
, (36)

where R1 = R log |X|, and

AR,γ :=
{
(x, y) ∈ X 2 | log

( pX,Y (x, y)

pX(x)pY (y)

)
− log(⌊2R1⌋) > −γ log(|X |)

}
. (37)

Proof. Fix some R > log(B)/ log(|X |), some ∆ > 0, some ε ∈ (0,∆/2), some γ > 0, and a
conditional transition kernel pY |X from X to X satisfying

pY ≡ pX , Ep[d(X,Y )] ≤ ∆. (38)

Define R1 = R log |X |. We apply Lemma B.1, and use the notation therein. Then, from Markov’s
inequality, we have

QC

(
EQ[δ(Y

(B))|C] ≥ 3∆

ε

B2

⌊2R1⌋
max

x
B log

1

pX(x)

)
≤ ε

3∆
. (39)

We extend distribution Q as follows.

QC,M(B),Y(B),X(B)

(
{y(m′)}m′∈[⌊2R1⌋],m

(B),y(B),x(B)
)
:=

QC,M(B),Y(B)

(
{y(m′)}m′∈[⌊2R1⌋],m

(B),y(B)
)
·

B∏
k=1

pX|Y=y(m(k))(x
(k)). (40)

Distribution QC,M(1),Y (1),X(1) corresponds to the setting of Cuff (2013, Theorem VII.1), known as
the soft covering lemma. Since pY ≡ pX , the latter lemma yields that for any τ ∈ R,

EC
[
∥QX(1)|C − pX∥TV

]
≤ p(Aτ ) + 2τ/2, (41)

where

Aτ := {(x, y) | log(pY |X=x(y)/pX(y))− log(⌊2R1⌋) > τ}. (42)

We choose τ = −γ log |X |. Then, Aτ = AR,γ , with the notation of Proposition B.4. Hence, from
(41) and Markov’s inequality, we have

QC

(
∥QX(1)|C − pX∥TV ≥ 3∆

ε
[p(AR,γ) + 2−γ log(|X |)/2]

)
≤ ε

3∆
. (43)

By construction, we have QY(B),X(B) ≡ p⊗B
Y,X . Therefore, from (38), and the additivity of d, we have

EQ[d(X
(B),Y(B))] ≤ ∆. (44)

Therefore, from Markov’s inequality,

QC

(
EQ[d(X

(B),Y(B))|C] ≥ ∆+ ε
)
≤ ∆

∆+ ε
= 1− ε

∆
· 1

1 + ε/∆
< 1− 2ε

3∆
, (45)

where we have used the fact that ε ∈ (0,∆/2). From a union bound and (39), (43), and (45) there
exists a realization c∗ of C such that none of the corresponding events hold. Since, by construction,

QM(B),Y(B),X(B)|C=c∗ ≡ Q⊗B
M(1),Y (1),X(1)|C=c∗,

this concludes the proof of Proposition B.4.
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B.4 PROOF OF THEOREM 4.2

Fix some R > log(B)/ log(|X |), some ∆ > 0, some ε ∈ (0,∆/2), some γ > 0, and a conditional
transition kernel pY |X from X to X satisfying

pY ≡ pX , Ep[d(X,Y )] ≤ ∆. (46)

Define R1 = R log |X |. Then, we can apply Proposition B.4. We use the notation from the latter.

B.4.1 COMPRESSION SCHEME ACHIEVING CLOSE-TO-UNIFORM SAMPLING

We define the following distribution PX,Y,M , which differs from Q in having the correct marginal for
X :

PX,M,Y := pX ·QM,Y |X. (47)

Therefore, from (33), distribution P satisfies Markov chain X−M−Y. Hence, it defines a (R1, 0)
code. From Lemma H.2 (Appendix H), comparing P with Q reduces to comparing marginals, i.e. to
(34) : ∥∥PM,X, Y−QM,X, Y

∥∥
TV

=
∥∥PX−QX

∥∥
TV

=
∥∥pX −QX

∥∥
TV

≤ 3∆

ε
[p(AR,γ) + 2−γ log(|X |)/2]. (48)

Since d is additive, we have

E(P )⊗B [d(X(B),Y(B))] = EP [d(X,Y )] and

E(Q)⊗B [d(X(B),Y(B))] = EQ[d(X,Y )].

Since d is bounded, then we can apply Lemma H.3 (Appendix H). Then, from (48), and Lemma H.1
with W = (X,Y ), we have

EP⊗B [d(X(B),Y(B))] ≤ EQ⊗B [d(X(B),Y(B))] +
6∆

ε
max(d)[p(AR,γ) + 2−γ log(|X |)/2]

≤ ∆+ ε+
6∆

ε
max(d)[p(AR,γ) + 2−γ log(|X |)/2], (49)

where the last inequality follows from (35). Moving to the realism performance, we have the following
property of the TVD - see Appendix H:
Claim B.5. Given any two distributions P and Q on the same finite alphabet, we have, for any
B ∈ N, ∥∥∥P⊗B−Q⊗B

∥∥∥
TV

≤ B
∥∥P−Q

∥∥
TV

.

From Lemma H.3, Claim B.5, (48), and Lemma H.1 with W = Y(B), we have,

EP⊗B [δ(Y(B))] ≤ EQ⊗B [δ(Y(B))] +
6B∆

ε
max(δ)[p(AR,γ) + 2−γ log(|X |)/2]

≤ 3∆

ε
· B2

⌊2R1⌋
max

x
B log

1

pX(x)
+

6B∆

ε
[p(AR,γ) + 2−γ log(|X |)/2] ·max

x
B log

1

pX(x)
. (50)

This concludes the proof.

C ACHIEVABILITY OF THEOREM 4.1

Consider some ∆ ∈ R+ such that R(1)(∆, 0) < Hp(X), and a sequence {Bn}n≥1 of positive
integers such that

log(Bn)/n −→
n→∞

0. (51)

Fix R ∈ (R(1)(∆, 0), Hp(X)), ε ∈ (0, R − R(1)(∆, 0)), and γ ∈ (0, ε/ log(|X |)). Then, there
exists pY |X such that

pY ≡ pX , Ep[d(X,Y )] ≤ ∆, R ≥ Ip(X;Y ) + ε. (52)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We use the powerful result of Theorem A.4 regarding the existence of a so-called universal critic.
From Definition 2.1, for every n ∈ N, the restriction of δ0 to XnBn is a p⊗nBn

X -critic. Moreover,
from (51), for large enough n, we have nR > log(Bn). Then, for large enough n, we can apply
Theorem 4.2 for set Xn, distribution p⊗n

X , transition kernel
∏n

t=1 pY |X, batch size Bn, critic δ0, rate
nR/ log(|Xn|), and constants ∆, ε, γ. This gives that, for every n large enough, there is a (n,R, 0)
code, inducing a distribution P (n) such that

E(P (n))⊗Bn

[
d(X(n,Bn),Y(n,Bn))

]
≤ ∆+ ε+

6∆

ε
max(d)[p(A(n)

R,γ) + 2−γn log(|X |)/2], (53)

E(P (n))⊗Bn

[
δ0(Y

(n,Bn))
]
≤

3∆

ε

[ B2
n

⌊2nR⌋
maxx nBn log

1

pX(x)
+ 2Bn[p(A(n)

R,γ) + 2−γn log(|X |)/2] ·maxx nBn log
1

pX(x)

]
, (54)

where

A(n)
R,γ :=

{
(x1:n, y1:n) ∈ (Xn)2 |

n∑
t=1

log
( pX,Y (xt, yt)

pX(xt)pY (yt)

)
− log(⌊2nR⌋) > −γn log(|X |)

}
, (55)

with the convention 0/0 := 1. From (52), log(⌊2nR⌋)/n− γ log(|X |) > Ip(X;Y ) for large enough
n. Then, since X is finite, we have, from Hoeffding’s inequality,

p(A(n)
R,γ) = O(e−κn), (56)

for some κ > 0. Hence, from (51), (53), (54), and Theorem A.4, we have

lim sup
n→∞

E(P (n))⊗Bn

[
d(X(n,Bn),Y(n,Bn))

]
≤ ∆+ ε, (57)

and for any lower semi-computable p⊗∗
X -critic δ,

sup
n∈N

E(P (n))⊗Bn

[
δ(Y(n,Bn))

]
< ∞. (58)

From the proof of Theorem 4.2, we know that P (n) has a deterministic decoder. Hence, it only
remains to derandomize the encoder of P (n). We denote its decoder by m 7→ y1:n(m). The following
claim is a slight modification of Hamdi et al. (2024, Proposition 4). We provide details in Section
C.1.
Claim C.1. There exists a sequence of deterministic maps

f (n) : Xn → [2nR], such that∥∥ ˆ̃P
(n)
X 2 [X

n, y1:n(M)]− P̂
(n)
X 2 [X

n, y1:n(M)]
∥∥
TV

−→
n→∞

0,

lim infn→∞
−1

n
log

∥∥P̃ (n)
M − P

(n)
M

∥∥
TV

> 0, where (59)

P̃
(n)
Xn,M := p⊗n

X · 1M=f(n)(Xn).

Then, from (51) and Claim B.5, we have

lim infn→∞
−1

n
log

∥∥(P̃ (n))⊗Bn

M − (P (n))⊗Bn

M

∥∥
TV

> 0. (60)

Thus, from Lemma H.3 and (3), we have

|E(P̃ (n))⊗Bn

[
δ(Y(n,Bn))

]
− E(P (n))⊗Bn

[
δ(Y(n,Bn))

]
| −→
n→∞

0. (61)

Moreover, since d is bounded, then from Lemma H.3, we obtain

|E(P (n))⊗Bn

[
d(X(n,Bn),Y(n,Bn))

]
− E(P (n))⊗Bn

[
d(X(n,Bn),Y(n,Bn))

]
| −→
n→∞

0. (62)

Since this analysis is valid for any ε ∈ (0, R−R(1)(∆, 0)), then tuple (R, {Bn}n≥1,∆) is asymp-
totically achievable with algorithmic realism with fully deterministic codes. This being true for any
R ∈ (R(1)(∆, 0), Hp(X)), we have

R(∆) ≤ R∗(∆) ≤ R(1)(∆, 0),

as desired.
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C.1 ENCODER DERANDOMIZATION

We show that Claim C.1 follows from Hamdi et al. (2024, Proposition 4), and its proof. We can apply
that result directly, since R < Hp(X) and X is finite. This would give all properties in Claim C.1,
except for the exponential decay in (59). To obtain the latter, it is sufficient to adapt the proof of
Hamdi et al. (2024, Proposition 4), by replacing the use of the law of large numbers with the use of
Hoeffding’s inequality, and using Cuff (2013, Theorem VII.1) with τ = −nγ, for small enough γ.

D CONVERSE OF THEOREM 4.1

From standard information-theoretic arguments, we have the following result - see Appendix F for a
proof.
Lemma D.1. Consider a triplet (R,Rc,∆) and a sequence of codes, the n-th being (n,R,Rc),

inducing a sequence {P (n)
X1:n,J,M,Y1:n

}n≥1 of distributions such that

lim sup
n→∞

E(P (n))⊗bn

[
d(X(n,bn),Y(n,bn))

]
≤ ∆, (63)

for some sequence {bn}n≥1 of positive integers. For every n ≥ 1, let T (n) denote a uniform variable
on [nbn] independent from all other random variables. Then, there exists a conditional distribution
pY |X and an increasing sequence {ni}i≥1 of positive integers such that

(P (ni))
⊗bni

X
T (ni)

,Y
T (ni)

−→
i→∞

pX,Y (64)

∆ ≥ Ep[d(X,Y )] (65)
R ≥ Ip(X;Y ), (66)

where pX,Y refers to pX · pY |X .

D.1 CONVERSE PROOF

Consider some ∆ ∈ R+ such that R(1)(∆, 0) < Hp(X), and a sequence {Bn}n≥1 of positive
integers such that

log(Bn)/n −→
n→∞

0. (67)

We know that R∗(∆) ≥ R(∆), and prove that R(∆) ≥ R(1)(∆, 0). Consider a couple (R,∆) ∈ R2
+,

and some Rc ∈ R≥0 such that (R,Rc, {Bn}n≥1,∆) is asymptotically achievable with algorithmic
realism. Fix ε > 0. Then, there exists a sequence of codes, the n-th being (n,R,Rc), inducing a
sequence {P (n)

X1:n,J,M,Y1:n
}n of distributions such that

lim sup
n→∞

E(P (n))⊗Bn

[
d(X(n,Bn),Y(n,Bn))

]
≤ ∆+ ε, (68)

and for any lower semi-computable p⊗∗
X -critic δ,

sup
n∈N

E(P (n))⊗Bn

[
δ(Y(n,Bn))

]
< ∞. (69)

Then, Lemma D.1 applies, with bn = Bn, for all n, with R+ ε instead of R, and ∆+ ε instead of
∆. Then, there exists a conditional distribution pY |X and an increasing sequence {ni}i≥1 of positive
integers such that

(P (ni))
⊗bni

X
T (ni)

,Y
T (ni)

−→
i→∞

pX,Y (70)

∆+ ε ≥ Ep[d(X,Y )] (71)
R+ ε ≥ Ip(X;Y ), (72)

where for any n ∈ N, variable T (n) is uniformly distributed on [nBn], and independent from all
other random variables. We prove that pY ≡ pX . Fix e0 ∈ X . Consider the computable p⊗∗

X -critic δ
from Claim G.1, with q therein taken to be pX . Then, from (69),

sup
n∈N

E(P (n))⊗Bn

[
δ(Y(n,Bn))− 2 log(δ(Y(n,Bn)) + 3)

]
< ∞. (73)
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Thus,

sup
n∈N

E(P (n))⊗Bn

[
δ(Y(n,Bn))

]
< ∞, and E(P (n))⊗Bn

[
δ(Y(n,Bn))− 1

2
log(nBn)

]
−→
n→∞

−∞.

Thus, the frequency of e0 in a batch of reconstructions converges in L1 norm to pX(e0). Hence, the
expected frequencies converge to pX(e0). This rewrites as

(P (n))⊗Bn

Y
T (n)

(e0) → pX(e0). (74)

This is true for any e0 in X . Thus, from (70), pY ≡ pX . Hence, from (71) and (72), we have

R+ ε ≥ R(1)(∆ + ε, 0). (75)

This being true for any ε > 0, and since R(1)(·, 0) is convex -thus continuous- on (0,∞), we have

R ≥ R(1)(∆, 0). (76)

This being true for any R ∈ R+ such that there exists Rc ∈ R≥0 such that (R,Rc, {Bn}n≥1,∆) is
asymptotically achievable with algorithmic realism, we have

R(∆) ≥ R(1)(∆, 0), (77)

as desired.

E PROOF OF THEOREM 4.4

Consider an increasing sequence {Bn}n≥1 of positive integers such that
Bn

|X |n
→ ∞, (78)

some Rc ∈ R≥0, and some (R,∆) ∈ (R+)
2 such that tuple (R,Rc,∆) is asymptotically achievable

with near-perfect realism. From Theorem 1 in Wagner (2022), (R,Rc,∆) achievable with perfect
realism, i.e. satisfying the properties in Definition 4.3, with (20) replaced with

∃N ∈ N,∀n ≥ N, P
(n)
Y1:n

≡ p⊗n
X . (79)

Fix ε > 0, and a corresponding sequence of (n,R+ ε,Rc) codes. Denote by P (n) the distribution
induces by the n-th code. Then, there exists an integer Nε such that

lim sup
n→∞

EP (n)

[
d(X1:n, Y1:n)

]
≤ ∆+ ε, (80)

∀n ≥ Nε, (P
(n)
Y1:n

)⊗Bn ≡ p⊗nBn

X . (81)

From (80), (81), Claim B.3, and the additivity of the distortion measure d, we have

lim sup
n→∞

E(P (n))⊗Bn

[
d(X(n,Bn),Y(n,Bn))

]
≤ ∆+ ε, (82)

and for any lower semi-computable p⊗∗
X -critic δ,

sup
n∈N

E(P (n))⊗Bn

[
δ(Y(n,Bn))

]
< ∞. (83)

Since this analysis is valid for every ε > 0, then (R,Rc, {Bn}n≥1,∆) is asymptotically achievable
with algorithmic realism. Moving to the converse, consider a computable increasing sequence
{Bn}n≥1 of positive integers such that

Bn

|X |n
→ ∞, (84)

some Rc ∈ R≥0, and some (R,∆) ∈ (R+)
2 such that tuple (R,Rc,∆) is asymptotically achievable

with algorithmic realism. Fix ε > 0. Then, there exists a sequence of codes, the n-th being
(n,R+ ε,Rc), such that the sequence {P (n)}n of distributions induced by the codes satisfies

lim sup
n→∞

E(P (n))⊗Bn

[
d(X(n,Bn),Y(n,Bn))

]
≤ ∆+ ε, and (85)

and for any lower semi-computable p⊗∗
X -critic δ,

sup
n∈N

E(P (n))⊗Bn

[
δ(Y(n,Bn))

]
< ∞. (86)
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Lemma E.1. (Canonne, 2020) There exists a positive integer λ such that for any k ∈ N, any
distribution q on some finite set W of size k, any ε, η > 0, and any integer b satisfying

b ≥ λ · k + log(1/η)

ε2
, (87)

we have

q⊗b
(∥∥Pemp

W [W b]− q
∥∥
TV

≥ ε
)
≤ η. (88)

For every n ∈ N, define

Cn :=
⌈( Bn

|X |n
) 1

3
⌉
. (89)

Since X is finite, {Cn}n≥1 is a computable sequence of positive integers. Moreover, from (84), we
have

Cn −→
n→∞

∞. (90)

Choosing, for every n ∈ N, η = 1/3 and ε = 1/Cn, then from Lemma E.1 and (90) we have, for
large enough n,

(P (n))⊗Bn

(∥∥Pemp
Xn [Y

(n,Bn)]− P
(n)
Y1:n

∥∥
TV

≥ 1

Cn

)
≤ 1

3
. (91)

Consider the computable sequence of positive integers defined by

∀n ∈ N, An :=
⌈( Bn

|X |n
) 4

9
⌉
. (92)

Since {Bn}n≥1 is increasing, then for any t ∈ N, there exists a unique integer n ∈ N≥0 such that

t ∈ [nBn, (n+ 1)Bn+1),

with the definition B0 := 0. We define δ : ∪t∈NX t → N≥0 as follows. For any integer t ∈ [1, B1),
and any x1:t ∈ X t, let δ(x) := 0. For any n ∈ N, any t ∈ [nBn, (n+ 1)Bn+1), and any x1:t ∈ X t,
let

δ(x1:t) :=
⌈
An

∥∥Pemp
Xn [x1:nBn ]− p⊗n

X

∥∥
TV

⌉
. (93)

Claim E.2. From Lemma E.1 and (90), there exists a positive integer L such that δ−2 log(δ+3)−L
is a lower semi-computable p⊗∗

X -critic.

We provide a proof in Appendix G.2. Then, we can apply (86) to critic δ− 2 log(δ+3)−L, and get,

sup
n∈N

E(P (n))⊗Bn

[
δ(Y(n,Bn))− 2 log(δ(Y(n,Bn)) + 3)− L

]
< ∞. (94)

Thus,

sup
n∈N

E(P (n))⊗Bn

[
δ(Y(n,Bn))

]
< ∞, and (P (n))⊗Bn

(
δ(Y(n,Bn)) ≥ Cn

)
−→
n→∞

0,

because {Cn}n≥1 tends to infinity. Combining this with (91) through a union bound, we obtain, from
the triangle inequality for the TVD,

(P (n))⊗Bn
(∥∥P (n)

Y1:n
− p⊗n

X

∥∥
TV

≤ Cn

An
+

1

Cn

)
> 0,

for large enough n. The above event does not depend on the random batch, hence the corresponding
inequality is true, for large enough n. Since {Cn}n≥1 tends to infinity and since from (84), (89), and
(92), we have Cn/An → 0, then we obtain∥∥P (n)

Y1:n
− p⊗n

X

∥∥
TV

−→
n→∞

0. (95)

Hence, from (85) and the additivity of d, we have that (R,Rc,∆) is asymptotically achievable with
near-perfect realism. This concludes the proof.
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F STANDARD CONVERSE ARGUMENTS

Here, we provide a proof of Lemma D.1 (Appendix D). The sequence of distributions (P (n))⊗bn
XT ,YT

can be seen as a bounded sequence in R22s , thus it admits a converging subsequence:

(P (ni))⊗bn
XT ,YT

−→
i→∞

pX,Y . (96)

Since d is bounded, we have

E(P (ni))⊗bn [d(XT , YT )] −→
i→∞

Ep[d(X,Y )]. (97)

Since d is additive, we have, for any n ∈ N,

E(P (n))⊗bn

[
d(X(n,bn),Y(n,bn))

]
= E(P (n))⊗bn

[
d(XT , YT )

]
. (98)

From (63), (97) and (98), we have ∆ ≥ Ep[d(X,Y )]. Secondly, distribution P (n) satisfies

nbnR ≥ H({m(k)}k∈[bn]|{J
(k)}k∈[bn])

≥ I({m(k)}k∈[bn];X
(n,bn)|{J (k)}k∈[bn])

= I({m(k)}k∈[bn], {J
(k)}k∈[bn];X

(n,bn))

≥ I(Y(n,bn);X(n,bn))

≥
bn∑
k=1

n∑
t=1

I(Y
(k)
t ;X

(k)
t )

= nbnI(YT ;XT |T )
= nbnI(T, YT ;XT )

≥ nbnI(YT ;XT ).

Therefore, from (96), and by continuity of mutual information on the set of distributions on ({0, 1}s)2,
we have R ≥ Ip(X;Y ).

G FREQUENCY CRITICS

G.1 CRITIC INVOLVING THE FREQUENCY OF A SPECIFIC PATTERN

The following claim, and its proof, are inspired from Li & Vitányi (2019, Lemma 4.3.5 & Exer-
cise 2.4.1).
Claim G.1. Consider a finite set X , identified with a subset of {0, 1}s. Let q be a distribution on X
such that ∀x ∈ X , q(x) > 0. Let e0 be any string in X , considered as a pattern of interest. For any
n ∈ N and any x1:n ∈ Xn, let S(x1:n) denote the number of occurrences of e0 in x1:n. Define map
δ:∪n∈N → N≥0 by

∀n ∈ N,∀x1:n ∈ Xn, x1:n 7→
⌈
log

⌈
|S(x1:n)− q(e0)n|

/ √
n
⌉⌉

. (99)

Then, δ − 2 log(δ + 3) is a computable q⊗∗-critic.

Proof. From Lemma A.2, δ is lower semi-computable. Since δ − 2 log(δ + 3) = log(2δ/(δ + 3)2),
then by Lemma A.2, δ − 2 log(δ + 3) is lower semi-computable. For any (n,C) ∈ N2, and any
x1:n ∈ Xn, we have:

{δ(x1:n) ≥ C} =
{⌈

log
⌈
|S(x1:n)− nq(e0)|

/√
n
⌉⌉

≥ C
}

=
{
log

⌈
|S(x1:n)− nq(e0)|

/ √
n
⌉
> C − 1

}
=

{⌈
|S(x1:n)− nq(e0)|

/ √
n
⌉
> 2C−1

}
=

{
|S(x1:n)− nq(e0)|

/ √
n > 2C−1

}
.
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From this and Chebyshev inequality, we obtain:

q⊗n(δ(X1:n) ≥ C) ≤ Eq⊗n

[(
S(X1:n)− nq(e0)

)2
/n

]
/4C−1

= (q(e0)−q(e0)
2)/4C−1 (100)

≤ 4−C

≤ 2−C ,

where (100) comes from the fact that S(X1:n) follows a binomial distribution B(n, q(e0)). Thus,

Eq⊗n [1δ(X1:n)=C ] ≤ 2−C . (101)

Therefore,

Eq⊗n [1δ(X1:n)=C · 2δ(X1:n)−2 log(δ(X1:n)+3)] ≤ 1

(C + 3)2
. (102)

This also holds for C = 0. Summing over C ∈ N≥0 gives, for any n ∈ N,∑
x1:n∈Xn

q⊗n(x1:n) · 2δ(x1:n)−2 log(δ(x1:n)+1)−1 ≤ 1. (103)

Hence, we have that δ − 2 log(δ + 3) is a lower semi-computable q⊗∗-critic.

G.2 CRITIC INVOLVING AN EMPIRICAL DISTRIBUTION

We provide a proof of Claim E.2.
Claim G.2. The map f : ∪t∈NX t → R defined by ∀t ∈ [1, B1) ∩ N,∀x1:t ∈ X t, f(x1:t) := 0, and

∀n ∈ N,∀t ∈ [nBn, (n+ 1)Bn+1) ∩ N,∀x1:t ∈ X t, f(x1:t) :=
∥∥Pemp

Xn [x1:nBn
]− p⊗n

∥∥
TV

(104)

is computable.

Proof. Since there exists s ∈ N such that X ⊆ {0, 1}s, then, given some x ∈ ∪t∈NX t → R, one can
compute the unique corresponding t via a Turing machine. Moreover, since {Bn}n≥1 is computable,
one can further compute the unique n such that t ∈ [nBn, (n+ 1)Bn+1) via a Turing machine, as
well as the empirical probability appearing in (104). For any k ∈ N, and any x0 ∈ X , one can
call the rational-valued computable upper and lower approximations of p at point (x0, k). Then,
one can go over all y1:n ∈ Xn, and use the explicit constructions from the proof of Lemma A.2
regarding the product, sum, and absolute value, yielding rational-valued computable upper and lower
approximations of f.

We know that Ann≥1 is computable. From Lemma A.2, the product of two computable functions
is computable, thus lower semi-computable, and the ceiling function preserves semi-computability.
Therefore, δ is lower semi-computable. Since δ − 2 log(δ + 3) = log(2δ/(δ + 3)2), then by Lemma
A.2, for any positive integer L, function δ − 2 log(δ + 3)− L is lower semi-computable. It remains
to prove that a certain choice of L yields a p⊗∗

X -critic. From (84) and (92), there exists N0 ∈ N such
that

∀n ≥ N0, Bn ≥ λ(|X |n + 2)A2
n. (105)

For any n ≥ N0, any C ≥ 2, any integer t ∈ [nBn, (n+ 1)Bn+1), and any x1:t ∈ X t, we have:

{δ(x1:t) ≥ C} =
{⌈

An

∥∥Pemp
Xn [x1:nBn

]− p⊗n
∥∥
TV

⌉
≥ C

}
=

{
An

∥∥Pemp
Xn [x1:nBn

]− p⊗n
∥∥
TV

> C − 1
}
.

From this, (105), and Lemma E.1, with distribution p⊗n
X , and parameters b = Bn,

ε = (C−1)/An, η = 2−C we obtain,

∀t ≥ [N0BN0
,∞) ∩ N,∀C ∈ N≥2, p⊗t

X (δ(X1:t) ≥ C) ≤ 2−C .

Therefore,

∀t ≥ [N0BN0 ,∞) ∩ N,∀C ∈ N≥2, Ep⊗t
X
[1δ(X1:t)=C · 2δ(X1:t)−2 log(δ(X1:t)+3)] ≤ 1

(C + 3)2
.
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This also holds for C ∈ {0, 1}. Summing over C ∈ N≥0 gives,

∀t ≥ [N0BN0
,∞) ∩ N,

∑
x1:t∈X t

p⊗t
X (x1:t) · 2δ(x1:t)−2 log(δ(x1:t)+3) ≤ 1. (106)

In order to extend this to all positive integers t, it is sufficient to multiply by 2−L for some L large
enough. Therefore, there exists L ∈ N such that δ − 2 log(δ + 3)− L is a lower semi-computable
p⊗∗
X -critic. This concludes the proof.

H ON THE TOTAL VARIATION DISTANCE

H.1 SOME LEMMAS

Lemma H.1. Let Π and Γ be two distributions on a set W ×L. Then

∥ΠW − ΓW ∥TV ≤ ∥ΠW,L − ΓW,L∥TV .

Lemma H.2. Let Π and Γ be two distributions on a set W×L. Then when using the same conditional
probability kernel ΠL|W , we have

∥ΠWΠL|W − ΓWΠL|W ∥TV = ∥ΠW − ΓW ∥TV .

Lemma H.3. Let Π and Γ be two distributions on a set W, and f : W → R be a bounded function.
Then,

| EΠ[f ]− EΓ[f ] | ≤ 2max |f | · ∥Π− Γ∥TV .

H.2 PROOF OF CLAIM B.5

Let P and Q be any two distributions on the same alphabet. Fix a positive integer B. Then, we have,
with the convention Π⊗ Γ⊗0 ≡ Π,

∥PB −QB∥TV = ∥
B∑

k=1

(P⊗(B−k+1) ⊗Q⊗(k−1) − P⊗(B−k) ⊗Q⊗k)∥TV

≤
B∑

k=1

∥P⊗(B−k+1) ⊗Q⊗(k−1) − P⊗(B−k) ⊗Q⊗k∥TV (107)

≤
B∑

k=1

∥P⊗(B−k) ⊗ P ⊗Q⊗(k−1) − P⊗(B−k) ⊗Q⊗Q⊗(k−1)∥TV

≤
B∑

k=1

∥P −Q∥TV = B∥P −Q∥TV , (108)

where (107) follows from the triangle inequality for the TVD ; and (108) follows form Lemma H.2,
with W = XB−k+1, ΠW ≡ P and ΓW ≡ Q.
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I THE BIRTHDAY PARADOX

We provide a proof of Claim B.2. We have

(pU[⌊2R1⌋])
⊗B

(
M (1), ...,M (B) 2 by 2 distinct

)
=

B∏
k=1

⌊2R1⌋ − k + 1

⌊2R1⌋

≥ (⌊2R1⌋ −B + 1)B

⌊2R1⌋B

≥
(
1− B − 1

⌊2R1⌋

)B

≥ 1− B(B − 1)

⌊2R1⌋
(109)

≥ 1− B2

⌊2R1⌋
,

where (109) follows from Bernoulli’s inequality, since R1 > log(B).

J EXISTENCE OF A UNIVERSAL p⊗∗-CRITIC

We provide a proof of Theorem A.4. From Li & Vitányi (2019, Theorem 4.3.1), there exists a
sequence {qn}n≥1 containing all lower semi-computable semi-measures on {0, 1}∗, and a sequence
{πn}n≥1 of (strictly) positive reals, such that the mixture defined by

m :=
∑
n≥1

πnqn (110)

is a lower semi-computable semi-measure on {0, 1}∗. For every n ∈ N, let m(Xn) denote∑
x1:n∈Xn

m(x1:n).

From (110), we have ∀x ∈ {0, 1}∗,m(x) > 0. Moreover, ∀x0 ∈ X , p(x0) > 0, thus ∀x ∈
∪n∈NXn, p⊗∗(x) > 0. Define function δ0, by

∀n ∈ N,∀x1:n ∈ Xn, δ0(x1:n) := log
( m(x1:n)

m(Xn)p⊗n(x1:n)

)
. (111)

Fix any lower semi-computable p⊗∗-critic δ. Define map qδ : {0, 1}∗ → R by

∀x ∈ ∪n∈NXn, qδ(x) := m(X l(x))2δ(x)p⊗∗(x),

and x 7→ 0 elsewhere. From Lemma A.2 (iii), the function which is null outside of ∪n∈NXn,
and defined by x 7→ m(X l(x)) on ∪n∈NXn, is lower semi-computable. Moreover, x 7→ 2δ(x) and
x 7→ p⊗∗(x) are lower semi-computable by Lemma A.2 (i) and (iii) respectively. Thus, qδ is the
product three non-negative lower semi-computable functions. Hence, qδ is lower semi-computable
by Lemma A.2 (i). Moreover, we have∑

x∈{0,1}∗

qδ(x) =
∑
n∈N

m(Xn)
∑

x∈Xn

2δ(x)p⊗n(x)

≤
∑
n∈N

m(Xn) (112)

≤ 1, (113)

where (112) follows from the definition of a p⊗∗-critic; and (113) follows from the fact that m is a
semi-measure. Therefore, qδ is a lower semi-computable semi-measure. Thus, from (110), we have
m ≥ πqδqδ, for some positive real πqδ . In order to derive (23), fix x ∈ ∪n∈NXn, and denote l(x) by
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n. From (110), we have m(x) > 0. Therefore, since ∀x0 ∈ X , p(x0) > 0, we have qδ(x) > 0. Thus,
from (111), we have

δ0(x) = log
( m(x1:n)

m(Xn)p⊗n(x1:n)

)
≥ log

( πqδq(x1:n)

m(Xn)p⊗n(x1:n)

)
= log(πqδ) + δ(x).

This is true for any lower semi-computable p⊗∗-critic δ, and any x ∈ ∪n∈NXn. Since log(πqδ) does
not depend on x, then property (23) holds. This concludes the proof.

K ADDITIONAL SEMI-COMPUTABILITY ARGUMENTS

We provide a proof of Lemma A.2. If f is lower semi-computable, we denote by (x, k) 7→ φf,−(x, k)
a computable function from E to Q, monotonically approaching f from below, in the sense of
Definition A.1. If f is upper semi-computable, then φf,+(x, k) denotes a function of the form
φ−f,−(x, k), which monotonically approaches f from above.

K.1 ASSUME THAT f AND g ARE COMPUTABLE

K.1.1 f + g

Function φf,− + φg,− is a computable function from E × N to Q, which monotonically approaches
f + g from below. Similarly, φf,+ + φg,+ constitutes a computable rational upper approximation.

K.1.2 |f |

We construct φ|f |,− as follows. Let x ∈ E and k ∈ N. If φf,−(x, k) ≥ 0, return |φf,−(x, k)|.
Otherwise, if φf,+(x, k) ≤ 0, return |φf,+(x, k)|. Otherwise, return 0. We define φ|f |,+(x, k) as

max
(
|φf,−(x, k)|, |φf,+(x, k)|

)
.

Straightforwardly, this implies that |f | is computable.

K.1.3 fg

Define φfg,−(x, k) as follows. If φf,−(x, k) ≥ 0 and φg,−(x, k) ≥ 0, then return
φf,−(x, k)φg,−(x, k). Otherwise, if φf,+(x, k) ≤ 0 and φg,+(x, k) ≤ 0, then return
φf,+(x, k)φg,+(x, k). Otherwise, return

−max
(
|φf,−(x, k)|, |φf,+(x, k)|

)
max

(
|φg,−(x, k)|, |φg,+(x, k)|

)
.

Define φfg,+ as −φ(−f)g,−.

K.2 SUPPOSE THAT f IS COMPUTABLE AND ONLY TAKES POSITIVE VALUES

K.2.1 1/f

Define φ1/f,−(x, k) as 1/φf,+(x, k). Compute k1(x), the smallest positive integer k such that
φf,−(x, k) > 0. For all integers k ∈ [1, k1(x)], define φ1/f,+(x, k) as 1/φf,−(x, k1(x)). For all
integers k ∈ (k1(x),∞), define φ1/f,+(x, k) as 1/φf,−(x, k).

K.2.2 f1/b

Compute k1(x), the smallest positive integer k such that φf,−(x, k) > 0. For all integers
k ∈ [1, k1(x)), define φf1/b,−(x, k) := 0 and φf1/b,+(x, k) = ⌈φf,+(x, k)⌉. Consider an inte-
ger k ∈ [k1(x),∞). Compute the greatest integer m such that (m/2k)b ≤ φf,−(x, k). Then, define
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φf1/b,−(x, k) := m/2k. Therefore, we have

∀k ≥ k1(x), 0 ≤ φf,−(x, k)
1/b − φf1/b,−(x, k) <

1

2k
. (114)

From (114), and since the b-th root function and k 7→ φf,−(x, k) are both non-decreasing, we have

∀k ≥ k1(x) + 1, φf1/b,−(x, k − 1) ≤ φf,−(x, k)
1/b. (115)

Since φf1/b,−(x, k − 1) can also be written in the form m′/2k, then, from the maximality of the
integer m appearing in the construction of φf1/b,−(x, k), we have

∀k ≥ k1(x) + 1, φf1/b,−(x, k − 1) ≤ φf1/b,−(x, k). (116)

This also holds for all integers k ∈ [2, k1(x)+1). Properties (114) and (116) imply that f1/b is lower
semi-computable. We prove upper semi-computability similarly, using the smallest integer m̃ such
that (m̃/2k)b ≥ φf,+(x, k), and setting φf1/b,+(x, k) := m̃/2k.

K.3 ASSUME THAT f AND g ARE LOWER SEMI-COMPUTABLE

K.3.1 f + g

Function φf,− + φg,− is a computable function from E × N to Q, which monotonically approaches
f + g from below.

K.3.2 ⌈f⌉

Define φ⌈f⌉,− as ⌈φf,−⌉.

K.3.3 2f

Fix x ∈ E and k ∈ N. Let a ∈ Z and b ∈ N such that φf,−(x, k) = a/b. Compute the greatest
integer m such that (m/2k)b ≤ 2a. Then, define φ2f ,−(x, k) := m/2k. Therefore, we have

0 ≤ 2φf,−(x,k) − φ2f ,−(x, k) <
1

2k
. (117)

From (117), and since the exponential function and k 7→ φf,−(x, k) are both non-decreasing, we
have

∀k ≥ 2, φ2f ,−(x, k − 1) ≤ 2φf,−(x,k). (118)

Since φ2f ,−(x, k−1) can also be written in the form m′/2k, then, from the maximality of the integer
m appearing in the construction of φ2f ,−(x, k), we have

∀k ≥ 2, φ2f ,−(x, k − 1) ≤ φ2f ,−(x, k). (119)

Properties (117) and (119) imply that 2f is lower semi-computable.

K.4 ASSUME THAT f AND g ARE SEMI-COMPUTABLE AND NON-NEGATIVE

K.4.1 fg

If φf,−(x, k) ≥ 0 and φg,−(x, k) ≥ 0, return φf,−(x, k)φg,−(x, k). Otherwise, return 0.

K.4.2 2f/(3 + f)2

There exists a real ε ∈ (0, 1) such that u 7→ 2u/(3 + u)2 is non-decreasing on (−ε,∞). Fix
x ∈ E . Compute k1(x), the smallest positive integer k such that φf,−(x, k) > −ε. For all integers
k ∈ [1, k1(x)), define φ2f/(3+f)2,−(x, k) := 0. Fix an integer k ≥ k1(x). Let a ∈ Z and b ∈ N such
that φf,−(x, k) = a/b. Compute the greatest integer m such that (m/2k)b ≤ 2a/(3 + a/b)2b. Then,
define φ2f/(3+f)2,−(x, k) := m/2k. Therefore, we have

∀k ≥ k1(x), 0 ≤ 2φf,−(x,k)

(3 + φf,−(x, k))2
− φ2f/(3+f)2,−(x, k) <

1

2k
. (120)
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From (120), and since k 7→ φf,−(x, k) is non-decreasing, and u 7→ 2u/(3 + u)2 is non-decreasing
on (−ε,∞), we have

∀k ≥ k1(x) + 1, φ2f/(3+f)2,−(x, k − 1) ≤ 2φf,−(x,k)

(3 + φf,−(x, k))2
. (121)

Since φ2f/(3+f)2,−(x, k − 1) can also be written in the form m′/2k, then, from the maximality of
the integer m appearing in the construction of φ2f/(3+f)2,−(x, k), we have

∀k ≥ k1(x) + 1, φ2f/(3+f)2,−(x, k − 1) ≤ φ2f/(3+f)2,−(x, k). (122)

This is also true for all integers k ∈ [2, k1(x)+1). Properties (120) and (122) imply that 2f/(3+f)2

is lower semi-computable.

K.4.3 log(f)

Assume that f only takes positive values. Fix x ∈ E . Compute k1(x), the smallest positive integer
k such that φf,−(x, k) > 0. Fix an integer k ≥ k1(x). Compute the largest integer m such that
2m ≤ φf,−(x, k)

2k . Then, define φlog(f),−(x, k) := m/2k. For all integers k ∈ [1, k1(x)), define
φlog(f),−(x, k) as φlog(f),−(x, k1(x)). Therefore, we have

∀k ≥ k1(x), 0 ≤ log(φf,−(x, k))− φlog(f),−(x, k) <
1

2k
. (123)

From (123), and since the logarithm and k 7→ φf,−(x, k) are both non-decreasing, we have

∀k ≥ k1(x) + 1, φlog(f),−(x, k − 1) ≤ log(φf,−(x, k)). (124)

Since φlog(f),−(x, k − 1) can also be written in the form m′/2k, then, from the maximality of the
integer m appearing in the construction of φlog(f),−(x, k), we have

∀k ≥ k1(x) + 1, φlog(f),−(x, k − 1) ≤ φlog(f),−(x, k). (125)

This also holds for all integers k ∈ [2, k1(x) + 1). Properties (123) and (125) imply that log(f) is
lower semi-computable.

K.5 FUNCTIONS OF FINITE BINARY STRINGS

Let X be a finite computable subset of {0, 1}∗, and f be a lower semi-computable function from
{0, 1}∗ into R.
Lemma K.1. ∪n∈NXn is a computable set.

Proof. By Definition A.1, it is sufficient to construct a computable function τ from {0, 1}∗ to {0, 1},
which returns 1 if its input is in ∪n∈NXn, and 0 otherwise. Since X is computable, there exists a
computable function τ0 from {0, 1}∗ to {0, 1}, which returns 1 if its input is in X , and 0 otherwise.
Fix x ∈ {0, 1}∗. Define τ(x) as follows. Enumerate all partitions of x into consecutive sub-strings.
For each, call τ0 on every sub-string. If for some partition, the output of τ0 is 1 for every sub-string,
then return 1. Otherwise, return 0.

Hereafter, we use the notation τ defined in the above proof.

K.5.1 PARTIAL SUMS

Consider the function f̃ : {0, 1}∗ → R which is null outside of ∪n∈NXn, and is defined by

∀x ∈ ∪n∈NXn, f̃(x) =
∑

y∈X l(x)

f(y).

Fix x ∈ {0, 1}∗ and k ∈ N. Define φf̃ ,−(x, k) as follows. Compute τ(x). If it is null, return 0.

Otherwise: compute l(x), and for each y in X l(x), compute φf,−(y, k), then return∑
y∈X l(x)

φf,−(y, k).
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Fix some x ∈ ∪n∈NXn. The (finite) set of indices of the above sum does not depend on k. Therefore,
since for each y ∈ {0, 1}∗ we have φf,−(y, k) →

k→∞
f(y), we get

∀x ∈ ∪n∈NXn, φf̃ ,−(x, k) −→
k→∞

f̃(x). (126)

Similarly, since for any y ∈ {0, 1}∗ and any k ≥ 1, we have φf,−(y, k) ≤ φf,−(y, k + 1), then we
have

∀x ∈ ∪n∈NXn,∀k ∈ N, φf̃ ,−(x, k) ≤ φf̃ ,−(x, k + 1). (127)

Properties (126) and (127) also hold for finite strings outside of ∪n∈NXn. Thus, f̃ is lower semi-
computable.

K.5.2 PRODUCT DISTRIBUTION

Let p be a lower semi-computable probability measure on X . Fix x ∈ {0, 1}∗ and k ∈ N. Define
φp⊗∗,−(x, k) as follows. Compute τ(x). If it is null, return 0. Otherwise, proceed as follows.
Compute l(x). We write x as x1:l(x), with xt ∈ X for any integer t in [1, l(x)]. Compute and return

l(x)∏
t=1

φp,−(xt, k).

Fix some x ∈ ∪n∈NXn. The (finite) set of indices of the above product does not depend on k.
Therefore, since for each y ∈ X , we have φp,−(y, k) →

k→∞
p(y), we get

∀x ∈ ∪n∈NXn, φp⊗∗,−(x, k) −→
k→∞

p⊗∗(x). (128)

Similarly, since for any y ∈ X , and any k ≥ 1, we have φp,−(y, k) ≤ φp,−(y, k + 1), and since p is
non-negative, then we have

∀x ∈ ∪n∈NXn,∀k ∈ N, φp⊗∗,−(x, k) ≤ φp⊗∗,−(x, k + 1). (129)

Properties (128) and (129) also hold for finite strings outside of ∪n∈NXn. Thus, p⊗∗ is lower
semi-computable.
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