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ABSTRACT

Estimating the discrepancy between two densities (p and ¢) is central to machine
learning. Most frequently used methods for the quantification of this discrepancy
capture it as a function of the ratio of the densities p/q. In practice, closed-form
expressions for these densities or their ratio are rarely available. As such, esti-
mating density ratios accurately using only samples from p and g is of high sig-
nificance and has led to a flurry of recent work in this direction. Among these,
binary classification based density ratio estimators have shown great promise and
have been extremely successful in specialized domains. However, estimating the
density ratio using a binary classifier, when the samples from the densities are well
separated, remains challenging. In this work, we first show that the state-of-the-art
solutions for such well separated cases have limited applicability, may suffer from
theoretical inconsistencies or lack formal guarantees and therefore perform poorly
in the general case. We then present an alternative framework for density ratio es-
timation that is motivated by the scaled-Bregman divergence. Our proposal is to
scale the densities p and ¢ by another density m and estimate log p/q as log p/m—
log g/m. We show that if the scaling measures are constructed such that they
overlap with p and ¢, then a single multi-class logistic regression can be trained to
accurately recover p/m and ¢/m on samples from p, ¢ and m. We formally jus-
tify our method with the scaled-Bregman theorem and show that it does not suffer
from the issues that plague the existing solutions. We provide a large battery of
empirical evaluations of our method with both synthetic and real datasets on the
tasks of density ratio estimation, mutual information estimation, and representa-
tion learning. Finally, we demonstrate that our method can be applied to improve
non-classification based model-free density ratio estimators as well.

1 INTRODUCTION

Quantification of discrepancy between two distributions underpins the
foundation of a large number of machine learning techniques. Of es-
pecial prominence are distribution discrepancy measures known as f-
divergences ( . ), which are defined as expectations of the
functions of the ratio of the two densities. As such, density ratio estima-
tion is often a central task in deep generative modeling, mutual informa-
tion and divergence estimation, representation learning, etc. (

s ; s ). However, estimating density ra-
tio by modeling each of the densities is challenging for most problems
of interest as modeling high dimensional densities is a harder problem
than estimating their ratios ( ). Therefore, in prac-
tice, estimators are employed that only require samples from the pair of
densities in order to estimate their ratio without explicitly modeling the
individual densities. One of the most commonly used density ratio esti-
mators (DRE) is a binary classifier based DRE (BC-DRE) which can be
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Figure 1: First Order
Discrepancy vs Higher
Order Discrepancy.

formally shown to estimate the ground truth density ratio when trained to correctly discriminate be-
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tween the samples from the two densities (e.g. , ; ,

k) b ’ ’ )’

BC-DREs have been tremendously successful in problems involving minimization of the discrep-
ancy between the data and the model distributions even in high-dimensional settings (

, ). However, they do not fare as well when applied to the task of estlmatmg
the dlscrepancy between two distributions that are far apart or easily separable otherwise. This issue
has been characterized recently as the density-chasm problem by ( ). The discrep-
ancy between two distributions can manifest itself in many different ways. Here, we roughly group
these ways into two classes, First Order Discrepancy (FOD) and Higher Order Discrepancy
(HOD). Two distributions can easily be separated when the first order statistics, such as their means,
are far apart from each other. We refer to this type of discrepancy between p and g as FOD. Similarly,
if the discrepancy between p and ¢ (with no FOD) originates due to the difference in higher order
statistics we refer to this as HOD. For example, consider Figure 1 where in all the three cases, the
KL|[pl||g] = 50, but in (a) it originates from FOD since N'(pu; = —5,01 = 1), N (1 = 5,01 = 1),
in (b) it originates from HOD since N (1 = 0,01 = 1), M(u2 = 0,01 = 0.097), and in (c) it
originates from FOD and HOD since N (1 = —1.5,01 = 0.5), N'(u2 = 1,01 = 0.25).

In a recent work, ( ) attempt to address the density-chasm problem. They considered
distributions p and ¢ that are clearly separated and proposed that in such cases density ratios can be
better estimated if the mixture of the two densities is mapped onto a unit-sphere using a flow-based
map ( , ). Using a bijective map ensures that the density ratio between
the original distributions is maintained post mapping. While this method (F-DRE) may resolve the
density-chasm problem due to FOD, we found that it struggles when the densities are separated due
to HOD.

On the other hand, ( ) proposed to estimate the density ratio between p and g as
pﬂl X Z—; X e X pTK. This telescoping is achieved by training X' BC-DREs where the distributions
p1, ..., are designed to be closely-packed such that all of the K ratios can be easily estimated
using BC-DREs without suffering from the density-chasm problem. They call this estimator, tele-
scoping density ratio estimator or TRE. Empirically, we found that while TRE performs relatively
better than BC-DRE and F-DRE in cases with density-chasm problem due to HOD, it cannot deal
with the density-chasm problem originating due to FOD. Intuitively, this happens because TRE
trains &' DREs, each of which is trained on K different pairs of distributions. This leads to the
distribution shift issue at test time, especially when p and ¢ have high FOD. Further, care needs to
be taken when designing intermediate distributions p1, ..., px to ensure that each of the ratios are
well defined. In fact, the construction schemes introduced in the original work may render TRE
theoretically ill-defined if both p and ¢ do not have full support (Appendix A).

We will show that neither of these state-of-the-art methods are applicable when the density ratio
estimation problem involves both FOD and HOD. Unfortunately, most problems in practice tend
to have both types of discrepancy. This leaves a clear technical gap in the task of density ratio
estimation. Hence, in this work, we present SCALED DENSITY RATIO ESTIMATOR (SDRE), a
novel method for estimating density ratio that:

1. Theoretically well-defined and does not suffer from distribution shift.

2. Resolves both FOD and HOD types of density-chasm issues.

3. Does not require training additional FLOW-based models or BC-DREs and therefore is
computationally more efficient.

2 NOTATION AND BACKGROUND

Bregman distance between two d-dimensional vectors a and b is defined as Bg(a,b) = ¢(a) —
#(b) — Vo (b)(a—1b). Here ¢ : R? — R is a convex function. Following the notation in

) the scaled-Bregman Divergence (sBD) between probability measures P and () scaled
by an arbitrary measure M can be defined as,

seamn = [ s (2) -5 (8)-r (D) (E-D]o o
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Here, f : X — R is a convex function, f’ is its right derivative. Further, all the measures P, Q
and M are defined on the measurable space (&X', .A) and are absolutely continuous with respect to a
o-finite measure \, therefore admitting the following densities,

AP dQ  dM

T Q—ﬁ, m_ﬁ' 2

p

It is easy to show that for f(t) = tlog(t), sBD reduces to KL divergence and is independent of the
scaling measure M and A,

B0 = [ Zos(2) - B (1) |- i o
We define

as the density ratios between p & m, ¢ & m and p & q respectively.

Given samples {ai; ZN:} and {x{] } ;Vil from distributions p and g respectively and assuming p << g,
the goal of DRE 7, , is to estimate ,, /.

2.1 BINARY CLASSIFICATION TO DRE USING BD

Proposition 3 ( , ) formally establishes the link between binary classification and
density ratio estimation using sBD. We re-state it here.

Proposition 1 (Proposition 3 (Menon & Ong, 2016) rephrased) Given a class-probability esti-
mator i) : X + [0,1] such that the density ratio estimator, 7, 4(x) = 12 Then for any convex

-7
differentiable f : [0,1] — R,

. 1 A
B pmana D s (O N(X)] = 5B [D g1 (g (X) 174 (X)) )
where Dy is Bregman Divergence (BD), fT:[0,00) — R | fT(z) = (1 + z)f(145), Dyt is sBD
and Puarginal 1S the marginal distribution of X.

2.2 DENSITY CHASM

( ) note that most empirical estimators of density ratio, especially those im-
plemented using a deep neural network tend to over-fit the loss function in some way or the other.
This phenomenon was recently characterized by ( ) for the BC-DRE as the density
chasm problem. They found that the BC-DRE tends to substantially underestimate the ground-truth
KL-divergence (as a function of the estimated ratio) between p and ¢ when these distributions are
significantly separated from each other. We conjecture that this underestimation occurs because in
the case of finite training data, when the two sets of samples are easily separable, the estimated
ratios do not need to be as large as they theoretically had to be to achieve perfect classification
performance. In such a case, many different decision boundaries achieve equally good performance.

3 RELATED WORK

Our work is most closely related to and improves upon the shortcomings of the recently proposed
TRE method. Therefore, in order to better understand these shortcomings, we begin by analyzing
TRE under Proposition 3 of ( ) as described in equation 5 above.

TRE uses a two step, divide-and-conquer strategy to resolve the density chasm problem. In the
first step, they construct K waymark distributions py, ..., px by gradually transporting samples
from p towards samples from ¢g. Then, they train KX BC-DRE models, one for each consecutive

pairs of distributions. This allows for estimating the ratio r,,,, as the product of the A" BC-DREs,
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Figure 2: TRE vs SDRE on p = N/ (—1,0.1) and ¢ = N (1,0.2)

% = z% X oee X pTK. They introduced two schemes for creating waymark distributions that make

sure that consecutive pairs of distributions are packed close-enough to ensure that none of the K
BC-DREs suffers from the density-chasm issue. Hence, TRE attempts to resolve the density-chasm
issue by replacing the ratio between p and ¢ with a bridge of K intermediate density ratios that by
design (of the waymark distribution) do not suffer from density-chasm problem.

Application of Proposition 3 to TRE shows that each of the K individual binary classifiers, upon
training lead to K DREs that minimize the sBD to their corresponding true density ratios on the
samples from their corresponding denominator densities. This however, does not guarantee that a
product of such individual DREs minimizes the sBD to r,,,, on samples from ¢ (or all K interme-
diate distributions for K > 1). This issue is acknowledged by the authors who note that TRE’s
performance suffers significantly from the distribution shift issue especially when the distributions
p and g have high FOD. An example of this can be seen in Figure 2a where we train TRE to estimate
the density ratio between p = N(—1,0.1) and ¢ = N'(+1,0.2) using 3 intermediate distributions
1, P2, 3 constructed using the linear-mixing construction described in Section 4.2. In the first row
we evaluate the ratios p/p1, p1/p2, p2/ps and p3/q on samples from their respective denominator
densities and in the second row we evaluate log % on samples from all the K + 2 distributions. As
per equation 5, individual DREs are in fact able to estimate their corresponding density ratios accu-
rately on the samples from their corresponding denominator densities. But, their combination does
not lead to an accurate estimation of p/q for any of the K + 2 distributions except po, making TRE
not useful for estimating discrepancy measures such as KL divergence as the model is not accurate
on samples from p.

Another interesting related work comes from ( ) (F-DRE), who propose to train BC-
DRE in a learned feature space where the two distributions p and ¢ are mapped onto a unit sphere.
To this end, they employ a FLOW-based model on the input and train it to map the mixture of the
samples from the two distributions to a standard Gaussian. It is easy to show that any bijective
map will preserve the original density ratio r,,/, in the feature space as the Jacobian correction term
simply cancels out. However, such a method cannot bring the distributions closer along both FOD
and HOD since doing that will change the original density ratio. Due to this, in practice, we found
that F-DRE tends to work only in fairly limited settings.

4 DENSITY RATIO ESTIMATION BY SCALING DENSITIES

We tackle the density chasm problem using the notion of scaling densities from the scaled-Bregman
divergence (equation 1, sBD). sBD introduces a scaling measure m in the estimation of the discrep-
ancy between two distributions p and ¢. This allows for changing the sampling distribution in the
estimation of, for instance, KL divergence as described in equation 3 from p to m by re-writing the
original integrand log % as

log? =log £ —1og L. 6)
q m m

We leverage this insight and propose the SCALED DENSITY RATIO ESTIMATOR (SDRE) method
for density ratio estimation that is theoretically well-defined, computationally more efficient, does
not suffer from distribution-shift issue and thereby, mitigates the density-chasm problem originating
from both FOD and HOD discrepancies. To this end, in SDRE, we first scale the densities p and ¢
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by another probability measure m and estimate log g as log £ — log L. If the scaling measure m
is constructed such that p << m, ¢ << m and its samples overlap with the samples from both p
and ¢, then as shown in the next section, a single multi-class logistic regression trained to classify
samples from p, ¢ and m into 3 classes, can accurately recover p and L on samples from any of
the 3 distributions. Later, we show that the SDRE approach can also be apphed to model-free DREs
(Section 5.3).

4.1 MULTI-CLASS CLASSIFICATION TO MULTI-DISTRIBUTION DRE

( ) build upon Proposition 3 of ( ) (equation 5) using their scaled-
Bregmann theorem and state the following lemma.

Lemma 1 Given a class-probability estimator 1) : X + [0,1]°1, let the density ratio estimator

P(z) = 7;70(8) Then for any convex differentiable f : [0,1]°71 R,

B ~ppina [P (X 1D(X))] = (1 = 7C)Egrpe [Pyt (r(X)[|7(X))]- @)

Here, fT = g(x)f(ﬁ) and g(z) = 7€ is the prior probability of class C, nc(z) is
the class probability of = under the class C and p¢ is the distribution of X indexed by the class C'. 7
is a C — 1 dimensional vector of density ratios between the C' — 1 densities (p1,...pc_1) and the
reference density pc. Similarly, 7(x) is a C' — 1-dimensional vector of class probabilities. Please
note that the choice of the reference class C' is arbitrary. In simple terms, Lemma 1 shows that
a multi-class logistic regression (among other multi-class classifiers) leads to a multi-class density
ratio estimator that minimizes the sBD to the corresponding true density ratio on samples from the
reference distribution.

We demonstrate the implication of Lemma 1 on SDRE in Figure 2b. Here, we train SDRE on
the same exact setup as TRE in Figure 2a where p = N(—1,0.1) and ¢ = N'(+1,0.2). To this
end, we propose to use Cauchy(0, 1) as the scaling measure. This is because the samples from the
heavy tailed distributions easily overlap with the highly concentrated samples of p and ¢ as shown in
Figure 2b. Then we train a single 3-way logistic regression to classify samples from p, g and m. As
clearly shown, SDRE is able to perfectly estimate log p/q on samples from all the three distributions
without suffering from any distribution shift issues. This empirically confirms that, unlike TRE, the
SDRE estimator converges to the correct density ratio on the entire domain of m as long as m is
such that both p and ¢ are absolutely continuous to m.

SDRE can also use more than one scaling measures {my }=_,. Not only does Lemma 1 hold true
for any number (K) of distributions, but also ( ) show that, when the number
of samples is fixed, increasing K leads to a more consistent estimator. Please note, increasing
the number of scaling measure does not change the estimation of 7,,,. In a multi-class logistic
regression model trained on samples from p, ¢ and my, the ratio between p and g is estimated as the

function of their logits h1, ha, hy as follows. From Lemma 1, 7, /,,,, = exp(h1) e log Tp/m, =

exp(hr)
log % = hy — hy. Similarly, log 74/, = log Zigg}”) = ho — hy,. This gives us the final ratio

as, logry,/q =logry/m, —10g7¢/m, = h1— ha, that can be calculated similarly with respect to any
of the K scaling measure.

To demonstrate that the improved performance of SDRE over TRE in the example from Figure 2
does not only stem from the novel construction scheme for m, we also train SDRE using TRE’s
waymark distributions as scaling measures. This is illustrated in Figure 5c in Appendix B. Unlike
TRE that does not estimate logg accurately on samples from p, g, p; and p3, SDRE is able to

estimate log g on all 5 distributions significantly better even with sub-optimal scaling measures.

4.2 CONSTRUCTING M

In this work, we use three ways of constructing the scaling measure M. Here we describe them
briefly. Please see Appendix A for details. Overlapping Distribution: We introduce a novel
scaling measure construction scheme under which, M is defined as any distribution whose sam-
ples overlap with both p and ¢ and p << m, ¢ << m. For example, it can be heavy-tailed
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distributions, such as Cauchy and Student-t, or simply normal and uniform distributions or their
mixtures. Linear Mixing: In this construction scheme, distribution M is defined as the empir-
ical distribution of the samples constructed by linearly combining samples X,, = {x;}f\il and
Xq= {xfl}fil from distributions p and ¢ respectively. That is, m is the empirical distribution over
the set X,,, = {}, |2}, = (1 — @)z}, + axl,z, € X,, 2 € X }],. This construction is related
to the linear combination waymark of ( ). We clarify the difference in Appendix
A. Dimension-wise Mixing: In this construction scheme, that is borrowed from TRE as it is, M
is defined as the empirical distribution of the samples generated by combining different subsets of
dimensions from samples from p and q.

4.3 SDRE vs TRE

SDRE differs from TRE in two major ways. First, TRE instructs to create K, closely-packed way-
mark distributions pq, . . ., px between p and ¢ such that none of the K 41 BC-DREs that it proposes
to train, suffers from the density chasm problem. This approach is not only computationally more
demanding as it requires training K + 1 models (with some parameter sharing), but also leads to the
aforementioned distribution shift issue. In contrast, SDRE instructs to introduce scaling densities
{mk}le such that their samples overlap with the samples from both p and ¢. It then estimates
log % as log -2~ . —log - by training a single multi-class logistic regression model across all K + 2

distributions. This approach is not only computationally more efficient, but is also theoretically
guaranteed to not suffer from distribution shift as shown in the previous section.

Second, for K = 1, TRE and SDRE are similar as they both can be seen as using telescoping of
ratios to estimate r,,,. However, they are not equivalent. TRE proposes the following telescoping:

log p/q = log p/m +logm/q and SDRE proposes to telescope in the following manner: log p/q =

log p/m —log q/m. As such, TRE and SDRE use two different sets (% Vs jﬁ[ in the second term)
of Radon-Nikodym Derivatives (RND) to re-define log p/q. The consequence of this is that TRE is
only defined when p << m << ¢, whereas SDRE is defined for any m such that, p << m and
q << m. This implies that only under the following two conditions TRE and SDRE telescopings
are equivalent: (1) K = 1 and (2) m is such that p << m << g and ¢ << m. This condition holds
when p, ¢ and m have full support. However this condition easily breaks if, for example, p and g are
mixtures of finite support distributions except for the trivial case when support of m is exactly equal
to the support of q. We demonstrate this in Figure 6 in Appendix B with a concrete example.

Another important and practical implication of this distinction is that, since m only appears in the
denominator in SDRE, it can also be used to improve model-free approaches to density ratio es-
timation, such as the fixed-design estimators based on the maximum mean discrepancy measure
( s ). We show this in Section 5.3. It is also worth noting that unlike TRE, SDRE
is realized as a single multi-class logistic regression that is trained using a softmax cross-entropy
loss. This allows us to use the results from ( ) who formally studied the distinc-
tion in the convergence of softmax cross-entropy and binary cross-entropy based NCE methods (e.g.
sDRE vs TRE/BC-DRE). They showed that ranking-based noise contrastive estimation (

, ) (multi-class objective) is consistent under a much weaker assumption compared
to the binary version. Specifically, in contrast to the binary version, the ranking based approach does
not require the capacity to model the normalization constant of the distributions.

5 EXPERIMENTS

In this section, we provide a thorough empirical analysis on the accuracy and robustness of SDRE
and demonstrate that SDRE outperforms all other baselines — BC-DRE, TRE ( ),
and F-DRE ( , ). We start with a toy 1D Gaussian dataset and fully analyze the behav-
ior of SDRE. Then, we extend to high-dimensional complex tasks ranging from mutual information
(MI) estimation to representation learning and show significant improvements on all accounts. Fi-
nally, we also show how SDRE can be applied to improve model-free DREs.



Under review as a conference paper at ICLR 2021

» q GT-KL BC-DRE TRE F-DRE SsDRE
N(0,1x1076)  A(0,1) 1332 1.82 2.92¢-5 4.57 13.32
N(=5,1) N(5,1) 50 69.56 3451 1596  53.97
N(=1,0.08)  N(2,015) 20027 192 142.64 1584  201.32
N(=2,0.08)  N(2,0.15) 35582 17.95 22798 1449 3588l

Table 1: 1D density ratio estimation task. GT-KL stands for ground-truth KL Divergence.

5.1 1D EXPERIMENT

In the following 1D experiments, we use two 1D Gaussian distributions and consider the four se-
tups described in Table 1. The first and second configurations (row-wise) are designed such that
the distributions are only separated by HOD and FOD, respectively. The other two configurations
represent the cases in which the distributions are separated by both FOD and HOD. In SDRE, we
use the quadratic form p(z) = wz? + b to model each of the densities and use Cauchy centered at
0 and linear mixing to construct m. We use KL-divergence estimation (expectation of the log ratios
on samples from p) as the evaluation metric. We provide the exact setup for SDRE in Table 3 in
Appendix C.

In all of the configurations, while the baseline methods, including TRE and F-DRE, fail to correctly
estimate the KL divergences by a significant margin, SDRE reliably estimates them as shown in
Table 1. Figure 7 in Appendix C illustrates that SDRE accurately estimates the underlying density
ratios on the entire support of m as well. These results demonstrate that it is better to use a single
scaling measure whose samples overlaps with those from both p and ¢, instead of using a chain
of upto K = 28 closely-packed waymark distributions (see Table 3 in Appendix C for the exact
TRE configurations). To provide further clarity into SDRE’s density ratio estimation behavior, we
analyze the reliability of its log ratio estimates using the Bayesian setup in Appendix D. The high
accuracy of SDRE’s KL divergence estimates can be attributed to the fact that the SDRE estimator
is most certain and precise around the support of p, and the KL divergence estimates are computed
with samples from p. This is illustrated in Figure 8 of Appendix D.

5.2 HIGH DIMENSIONAL EXPERIMENT

Following from TRE, we use the MI estimation problem from ( );

( ) to evaluate SDRE on the more challenging higher-dimensional setup. In this problem, we
estimate the mutual information, between a standard normal distribution and a Gaussian random
variable z € R2¢ with a block-diagonal covariance matrix, where each block is 2 x 2 with 1 on
the diagonal and p on the off-diagonal. p is computed given the number of dimensions and target
mutual information with I = f% log(—p?). Because this method of distribution construction only
creates separation in HOD, we further adapt it by moving the means of the two distributions and
create harder problems with both FOD and HOD. In SDRE, we model the densities of p, ¢, and the
scaling measures my, with a quadratic form p(z) = 27 Wz + g4(x) + b, where g, is a linear layer.
We use linear-mixing to construct my, where i = 3 or K = 5. We provide the exact configurations
for SDRE in Table 4 in Appendix E. We describe the setups and report the results averaged across
3 runs with different random seeds in Table 2. In all of the settings, SDRE outperforms all other
baselines, confirming the generalization of the results from the toy 1D experiments. These results
corroborate our conjecture that TRE only solves problems with HOD. It is worth noting that, using
only upto 5 scaling measures that are constructed using the linear mixing scheme, SDRE beats TRE
substantially on cases with both FOD and HOD even though, TRE uses upto 15 waymarks that
are also constructed using their linear mixing approach. This demonstrates, as per Lemma 1, our
proposal of using the multi-class logistic regression does, in fact, prevent distribution shifts issues
present in TRE when both FOD and HOD are present. F-DRE, in contrast, is only accurate in
problems with FOD, but tends to underestimate the log ratios even more than BC-DRE on settings
with MI greater than 20. Further details about this experiment such as how we chose m and K can
be found in Appendix E, where we also provide plots of estimated log ratio vs the ground truth log
ratio and training curves.
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Dim 1,42 GT-MI Single BC-DRE TRE F-DRE SDRE
40 | 00 | 20 | 1090+004 | 14524207 | 14874033 | 1881+0.15 |
| | -L,1 | 100 | 29.03:+£009 | 33.95+0.14 | 13.86+0.26 | 119.96 + 0.94 |
| 160 | %0 | 40 | 21474262 | 34094021 | 12894087 | 38714073 |
| 05,06 | 136 | 2483+893 | 69274024 | 13.74+0.13 | 133.64 £3.70 |
| 330 | 00 | 80 | 234740964 | 72854393 | 9.17+0.60 | 87.76 +0.77 |
| 05,05 | 240 | 2486407 | 100.18+0.29 | 10.53 +0.03 | 217.14 + 6.02 |

Table 2: High-dimensional mutual information estimation task.

17.5 - =»¢~ sDRE w/ KMM ratios & mixing m / w~ sDRE w/ KMM ratios & mixing m
15.0 MEEaieRRE AN Mlatio=Edeauch vz N, 35~ 5 SDRE w/ KMM ratios & Cauchy m
»~ sDRE w/ KMM ratios & mixture m 30 - =»~ SDRE w/ KMM ratios & mixture m
12.5 - =~ KMM ratios P 3¢~ KMM ratios o
100 -~ True ratios — 0 25F True ratios
0 10.0 - )

i i i i i i i
0.0 0.5 1.0 1.5 2.0 2.5 3.0 1. 00 1. 25 1. 50 1. 75 2. 00 2. 25 2. 50 2. 75 3. 00
d s

(a) Varying d (bandwidth is 0.1) (b) Varying o (bandwidth is 0.02)

Figure 3: Improving KL estimation between two standard Normals via KMM-DRE using SDRE

Robustness and Generalization beyond Gaussian Distribution: We rigorously test the robust-
ness of SDRE by evaluating it on the following setups. (1) p and ¢ as 1D truncated normal dis-
tributions to evaluate it on another setup with distributions with finite support. (2) Randomized
mean parameters to ensure that the SDRE model does not benefit from the symmetry of the dis-
tributions around 0 in Table 2. (3) p and ¢ as Student-T distributions with randomized means to
test the performance of SDRE under model mismatch. In all these settings, SDRE model is able to
reliably estimate the true KL-divergence demonstrating that it is highly robust. Please see Table 5 in
Appendix G for results and additional details.

5.3 IMPROVING KMM-BASED DRE WITH SDRE

We demonstrate the applicability of SDRE in the fixed design setup by applying it to the Kernel
Mean Matching-DRE method (KMM-DRE; , ) for KL
estimation. In fixed design setup, the DRE method directly outputs the densities for a set of samples
without building a model. We consider two KL estimation experiments with increasing difficulty:
(a) We estimate KL between N(—d, 1) and N (+d, 1) by varying d from 0 to 3 and (b) We estimate
KL between N (0, s%) and N(0,1/s%) by varying s from 1 to 3. For each experiment, we report the
following KL estimates: (1) KL by MC using true ratios, (2) KL by MC using KMM-DRE estimates,
and (3) KL by MC using estimates from KMM-DRE with SDRE for three types of m construction:
linear mixing, mixture, and Cauchy. We conduct the same experiments for different bandwidth o,
the parameter of the Gaussian kernel used by the KMM estimator. As it can be seen from Figure 14,
SDRE consistently improves KMM-DRE in both experiments with different difficulty by improving
the baseline KMM-DRE KL divergence estimates by up to 11 nats in some cases. We defer a detailed
discussion of the results to Appendix H.

5.4 REPRESENTATION LEARNING IN SPATIALMULTIOMNIGLOT

Following the setup from ( ); ( ), we apply SDRE to mutual in-
formation estimation and representation learning in the SpatialMultiOmniglot problem. The goal
is to estimate the mutual information between v and v, where u is a n X n grid of Omniglot char-



Under review as a conference paper at ICLR 2021

Ground Truth

—e— Single Ratio

30 e WmE
—e— sDRE
25

20

15

Mutual information

—e— Single Ratio
—+— TRE

Mean label accuracy (test)

10

F———\—____. —e— sDRE
5
4 5 6 7 8 ] 4 5 6 7 8 9
Number of characters Number of characters
(a) Mutual information estimation (b) Representation learning accuracy

Figure 4: SpatialMultiOmniglot representation learning results

acters from different Omniglot alphabets and v is a » X n grid containing the next characters of
the corresponding characters in u. After learning, we evaluate the representations from the encoder
with a standard linear evaluation protocol ( s ). For the model, as in TRE, we use
a separable architecture commonly used in MI-based representation learning literature and model
the densities with log p(u,v) = g(u)TW f(u), where g and f are 14-layer convolutional ResNets
( , ). We construct the scaling distributions via dimension-wise mixing. In this exper-
iment, we only compare to the single ratio baseline and TRE because ( , , Figure
4) already demonstrated that it significantly outperforms both Contrastive Predictive Coding (CPC)
( , ) and Wasserstein Predictive Coding (WPC) ( , ) models of repre-
sentation learning on the same exact task.

As can be seen in Figure 4a, SDRE outperforms both TRE and the single ratio baseline, exactly
matching the ground truth MI. This improvement in MI estimation is reflected in the representa-
tions. Figure 4b illustrates that SDRE’s encoder learns representations that achieve ~ 100% Om-
niglot character classification for both d = n? = 4,9. On the other hand, the performances of the
single ratio estimator and TRE (using the same exact dimension-wise mixing to construct waymark
distributions) both degrade noticeably as the complexity of the task increases. As such, TRE only
reach up to 91% and 85% respectively for d = 4 and d = 9. All models were trained with the same
encoder architecture to ensure fair comparison. Please refer to Appendix F for further details and
two additional experiments where we study the effects of varying K and the encoder design.

6 CONCLUSION

In this work, we presented the alternative method of SDRE for density ratio estimation. We demon-
strated that it has better theoretical grounding and improves the state-of-the-art in more challenging,
high-dimensional density ratio estimation problems that have both FOD and HOD type of discrep-
ancies. However, the presented framework has its limitations. For example, while SDRE estimates
the ratio fairly well, (1) we do not provide any bounds on the estimation and (2) m is not learned but
provided to the model. We hope to address these issues in future work.

Moreover, our representation learning results suggest that improving MI estimation correlates with
better representation learning. Therefore, another interesting direction for future work could be
to explore if SDRE can improve MI-based representation learning methods, such as contrastive
learning (e.g. , ; , ).

7 ETHICAL IMPACT

While density ratio estimation does not directly have major ethical concerns, it can, however, be
used towards improving other deep learning methods of representation learning, generative models,
etc. These work tend to have significant ethical considerations. For example, improved generative
models using SDRE could potentially be used to advance the deep-fake methods that may be used
with malicious intent. However, we hope that other applications of our work, such as those of MI
estimation in science domains, outweigh the drawback of its potential illicit usages.
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8 REPRODUCIBILITY STATEMENT

We have taken efforts to clearly describe all the experimental setups in separate appendices, one for
each of the experiments. For the baseline methods, we have used models provided by the original
authors. Where possible we have used existing evaluation tasks and metrics to report the results.
Finally, in order to ensure reproducibility of our own results, we are releasing all the code at the
time of submission. While most of our code is setup as Jupyter notebooks for easy accessibility, we
will work to add documentation to improve the readability further.
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A APPENDIX

CONSTRUCTING M
‘We now elaborate on the three types of scaling measures that we used in this work.

Overlapping Distribution: =~ SDRE estimator, log G = log £ — log % is defined when p <<

m
m and ¢ << m. Therefore, m needs to such that its support contains the supports of p and q.

Any distribution with full support such as the normal distribution trivially satisfies this requirement.
However, satisfying this requirement does not guarantee empirical overlap of the distributions p,
q with m in finite sample setting. In order to ensure overlap of samples between the two pairs of
distributions we recommend the following:

» Heavy-tailed Distributions: Distributions such as, Cauchy and Student-t are better choice
for M compared to the normal distribution. This is because their heavier tails allow for
easily connecting p and g with higher sample overlap when they are far apart (especially in
the case of FOD).

* Mixtures: Another way to connect p and g using m such that they have their samples
overlap, is to use the mixture distribution. Here, we first convolve p and ¢ with a standard
normal and then take equal mixtures of the two.

* Truncated Normal: If p and ¢ have finite support, one can also use a truncated normal
distribution or a uniform distribution that at least spans over the entire support of gq. This is
assuming that p << gq.

Linear Mixing:  In this construction scheme, distribution M is defined as the empirical distribu-
tion of the samples constructed by linearly combining samples X, = {z}, }f\i p and X, = {x;}f\il
from distributions p and ¢ respectively. That is, m is the empirical distribution over the set
X = {xmxﬁn = azl + (1 — a)zl,zp € Xp,xl € X}, This construction is related to the
linear combination waymark of ( ). In TRE the waymark distribution is defined as
the empirical distribution of the set X,,, = {a, |z}, = V1 — o2zl + azl,z, € X,z € X}V .

m m

11
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This weighting scheme skews the samples from the waymark distribution towards p. Therefore, care
needs to be taken when p and ¢ are finite support distributions so that the samples from the waymark
distributions do not fall out of the support of q.

Using either of the weighting schemes, one can construct K different scaling measures. SDRE can
either use these K scaling measures separately using a K+2-way classifier or define a single mixture
distribution using them as component distributions and train a 3-way classifier. We refer to this
construction as Mixture of Linear Mixing.

Dimension-wise Mixing: In this construction scheme, that is borrowed from TRE as it is, M
is defined as the empirical distribution of the samples generated by combining different subsets of
dimensions from samples from p and q. We describe the exact construction scheme from TRE below
for completeness:

Given a d-length vector x and that d is divisible by [, we can write down = = (x[1],...x[l]), where
each z[¢] has the length d/I. Then, a sample from the kth scaling measure is given by: z}, =

(zg[1], g g, 2 [ + 1], s wp[l]), for j = 1,...,1), where z;, ~ p and ;, ~ q are randomly paired.

B APPENDIX

TRE vs sDRE

In Figure 2b in Section 3, we showed that in comparison to TRE that uses 3 intermediate waymark
distributions, SDRE is able to significantly better estimate the ground truth density ratio using just a
single Cauchy scaling measure that we introduced. To demonstrate that this improved performance
does not only stem from the novel m, but also from the use of a single multi-class logisitic regression
(afforded by the exact form of SDRE telescoping), we train SDRE using TRE’s waymark distribu-
tions as scaling measures. This is illustrated in Figure 5c. Unlike TRE that does not estimate log §
accurately on samples from p, ¢, p; and p3, SDRE is able to estimate log % on all 5 distributions
significantly better even with sub-optimal scaling measures. The impact of using the sub-optimal
scaling measure in SDRE on the quality of density ratio estimation can be teased out by comparing
to the results in Figures 5b where SDRE is trained using Cauchy for m.

Finite Support Distribution Example for X' = 1:  For the case, K = 1, in Section 4.3 we
theoretically showed that TRE and SDRE are not equivalent in general. We now demonstrate this
with a specific example in Figure 6. Here we set p = 0.5 X TN(—1,0.1,low = —1.1, high =
—0.9)+0.5x TN (1,0.1,low = 0.9, high = 1.1) and ¢ = 0.5 X TN (—1,0.2,low = —1.2, high =
0.8) + 0.5 x TN (1,0.2,low = 0.8, high = 1), as shown in Figure 6a. We set both, the waymark
distribution TRE and the scaling measure for SDRE to m = TN (0,1,low = —1.2, high = 1.2)
using the proposed overlapping distribution construction. As such, p << ¢ << m and therefore,

TRE is undefined for the second term as % is not defined for samples from m that are outside the

support of g. On the other hand, SDRE is well defined as - is finite and defined over the entire

support of m. It can be clearly seen in Figure 6b that TRE estimator for % blows up to very high
values on samples from m where ¢ does not have any support. This, however, is not the case with
SDRE, which accurately estimates - as 0 on samples outside the support of ¢ as shown in Figure
6¢.

Despite being undefined, when used with our proposed m, TRE may still estimate log r,,/, accu-
rately on samples from p. We conjecture that this is because, the numerical estimation of the dM /dQ
is finite over the support of p. As such, care needs to be taken when equating TRE to SDRE to ensure
that the relevant RNDs are well defined along with of the accuracy of the numerical estimation.

12
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Figure Label p q TRE py; SDRE m

N(0,1) Linear Mixing with Mixture of Linear Mixing with
’ a =[6.10e-05, 0.0078, 0.13] «a =[6.10e-05, 0.0078, 0.13]
Linear Mixing with
a =[0.053,0.11,
0.16, 0.21, 0.26, 0.31,
0.37,0.42,0.47,0.53,
0.58, 0.63, 0.68, 0.74,
0.79, 0.84, 0.89, 0.95]
Linear Mixing with
a =[0.03, 0.07,
0.1,0.14,0.17,0.21,
0.24, 0.28, 0.31, 0.34,
c N(-2,0.08) N (2,0.15) 0.38,0.41,0.45,0.48, C(0,1)
0.52, 0.55,0.59, 0.62,
0.66, 0.69, 0.72, 0.76,
0.79, 0.83, 0.86, 0.9,
0.93, 0.97]
Linear Mixing with
a=[0.11, 0.22,
0.33, 0.44, 0.55, 0.66,
0.77, 0.88]

a N(0,1e — 6)

b N(=1,0.08) N (2,0.15) (0,1)

d N(=5,1) N5, (0,2)

Table 3: Experiment configurations for Figure 7

C APPENDIX

1D DENSITY RATIO ESTIMATION TASK

In Section 5.1 we used KL-divergence as the evaluation metric to assess the accuracy of the density
ratio estimation of each of the models, BC-DRE, TRE, F-DRE and SDRE. Since KL-divergence
only evaluate the density ratio over samples from p, here we provide the plots of the log density
ratio for all the models over a larger interval to better capture their behavior.

The configurations of the experiments are described in Table 3. Column 1 (Figure Labels) corre-
sponds to the respective columns in Figure 7. The rows of Figure 7 represent the four models in this
order: BC-DRE, TRE, F-DRE, and SDRE. Except for the first configuration (Figure Label a), which
was trained with 1,000 samples in total, all other configurations are trained with 100,000 samples in
total for all four models.

As evident from the figure, SDRE is the only model that not only accurately estimates the KL
divergences, but also perfectly estimates the log density ratios on the entire support of m.

D APPENDIX

UNCERTAINTY QUANTIFICATION OF SDRE LOG-RATIO ESTIMATES WITH
HAMILTONIAN MONTE CARLO

In the 1D experiments, SDRE consistently led to highly accurate KL divergence estimates even in
challenging settings where state-of-the-art methods fail. To understand why SDRE gives such ac-
curate KL estimates, we conduct an analysis on the reliability of its log-ratio estimates by analyzing
the distribution of the estimates in a Bayesian setup, and study how it impacts the KL divergence
estimation. For this analysis, we use a classifier with the standard normal distribution as the prior on
its parameters. The distribution of the log-ratio estimates is simply the distribution of the estimates
from the classifiers with different posterior parameters, which are sampled. We consider the setup
where p = N (—1.0,0.1) and ¢ = N(1.0,0.2) and draw samples from the posterior using an Hamil-

14
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Figure 7: 1D density ratio estimation task. The configurations of the 1D Gaussians are the following in
column-wise order: (a) p = N(0, le—6),q = N (0,1), KL= 13.32 (b) p = N (—1,0.08),q = N(2,0.15),
KL = 200.27 (c) p = N (-2,0.08),q = N (2,0.15), KL = 355.82 (d) p = N (=5,1),q9 = N(5,1), KL
= 50.0. The models are the following row-wise: single ratio BC-DRE, TRE, F-DRE, and SDRE.

tonian Monte Carlo (HMC) sampler. We then compute a set of samples of the log-ratio estimates
from SDRE and estimate the mean and quantiles using these samples. Figure 8 shows these results.
We find that SDRE is accurate and manifests lowest uncertainty around the mean (—1.0) of p. The
uncertainty increases as we move away from the modes of distributions p and ¢. Since KL diver-
gence is the expectation of the log-ratio on samples from p and the high density region of p exactly
matches the high confidence region of SDRE, it is able to consistently estimate the KL divergence

accurately even when p and ¢ are far apart.

(a)log £ (b) log £ (c)log £
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200 200
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Figure 8: Uncertainty quantification for SDRE estimator. Here, p = A/(—1.0,0.1),q = AN(1.0,0.2) and
m = C(0,1). We plot the 3x standard deviation around the mean in light blue.
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Dim MI m using LM

40 20 [0.25,0.5,.75]

100 [0.35,0.5,.85]

160 40 [0.25,0.5,.75]
136  [0.15,0.35,0.5,.75,.95]

320 80 [0.25,0.5,.75]

240 [0.15,0.35,0.5,.75,.95]

Table 4: Configuration of SDRE for the high dimensional experiments. LM stands for Linear Mixing
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Figure 9: Diagnostic plot for a high dimensional experiment.

E APPENDIX

HIGH DIMENSIONAL EXPERIMENT

In Section 5.2, we showed that SDRE performs better than all baseline models when p and g are
high dimensional Gaussian distributions. Prior work of ( ) has considered high
dimensional cases with HOD only, whereas here we additionally consider cases with FOD and HOD
to provide a more complete picture. Our results show that SDRE outperforms all other methods on
the task of MI estimation as the function of the estimated density ratio. It is worth noting that SDRE
uses only upto 5 scaling measures that are constructed using the linear mixing scheme and beats
TRE substantially on cases with both FOD and HOD, although TRE uses upto 15 waymarks also
constructed using linear mixing approach. This demonstrates, as per Lemma 1, our proposal of
using the multi-class logistic regression does, in fact, prevent distribution shifts issues of TRE when
both FOD and HOD are present and help estimate the density ratio more accurately.

We now describe the SDRE configuration and other setup related details.

Scaling Measures:  For all the high dimensional experiments throughout this work, we construct
m using the linear mixing scheme as described in Appendix A. Table 4 provides the number K of
scaling measures along with the exact mixing weights for each of the 6 settings.

As a general principle, we chose these three sets of mixing weights so that their camulative samples
overlap with the samples of p and ¢ similar to how the heavy tailed distribution worked in the 1D
case. Please note, unlike the 1D experiment, the HOD in these experiments is significantly higher.
Therefore, using a heavy tailed distribution does not work. Linear mixing p and ¢ on the other hand,
mixes first and higher order statistics and therefore, populates samples that overlap with both p and
q. In some cases, we found that a mixture of linear mixing with K = 1 can also be used to estimate
the density ratio. However, this requires using a neural network-based classifier and requires much
more tuning of the hyperparameters.

For choosing K, we use a grid search based approach. We monitor the classification accuracy across
all the K + 2 distribution. If this accuracy is very high (> 95% for all classes), this implies that
the classification task is easy and therefore the DRE may suffer from the density chasm issue. On
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Figure 10: Diagnostic plot for a high dimensional experiment with randomized means.
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Figure 11: Mutual information estimation and representation learning with varying K.

the other hand, if the classification accuracy is too low (< 50% for all classes), then again, the DRE
does not estimate well. We found that targeting an accuracy curve as shown in Figure 9 (last panel)
leads to optimal density ratio estimation. This curve plots the test accuracy across all the classes and,
empirically when it stays between the low and the high bounds of (50%,95%), the DRE estimates
the ratios fairly well. The first panel shows that SDRE estimates the ground truth ratio accurately
across samples from all the K + 2 distributions, the second panel shows that KL estimates of SDRE
is close to the ground truth KL and the third panel shows that both test and training losses have
converged. Figure 10 shows another example for the case of randomized means. While SDRE also
manages to get the ground truth KL correctly and most of the ratio estimates are also accurate, it
does, however, slightly overestimate the log ratio for some of the samples from p.

Additional Baseline Comparisons We also compare to ( ) in a high-
dimensional setting (row 2 of 2 with dimensionality of 40 and p; = —1, uo = 1. In this setting in
which the ground truth MI is 100, while SDRE meaningfully estimates the MI as 119.96, the best
model from ( ) only estimates it to be 1.60.

F APPENDIX

SPATIALMULTIOMNIGLOT EXPERIMENT

SpatialMultiOmniglot is a dataset of paired images u and v, where u is a n X n grid of Omniglot
characters from different Omniglot alphabets and v is a n X n grid containing the next characters
of the corresponding characters in w. In this setup, we treat each grid of n X n as a collection of
n? categorical random variables, not the individual pixels. The mutual information I(u,v) can be

2
computed as: I(u,v) = Y ., logl;, where [; is the alphabet size for the it" character in u. This
problem allows us to easily control the complexity of the task since increasing n increases the mutual
information.
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Figure 12: SpatialMultiOmniglot representation learning results with same encoder for fandg.

For the model, as in TRE, we use a separable architecture commonly used in MI-based represen-
tation learning literature and model the densities with log p(u,v) = g(u)TW f(u), where g and
f are 14-layer convolutional ResNets ( , ). We construct the scaling distributions via
dimension-wise mixing — exactly the way that TRE does.

To evaluate the representations after learning, we adopt a standard linear evaluation protocol to train
a linear classifier on the output of the frozen encoder g(u) to predict the alphabetic index of each
character in the grid u.

ADDITIONAL EXPERIMENTS

In addition to the experiments in the main text, we run two more experiments with SpatialMultiOm-
niglot to test the effect of the size of K and the effect of using the same encoder for g and f (i.e,
modeling the densities with the form log p(u, v) = g(u)TWg(v)).

Varying K: We test the effect of changing K in the d = 4 experiment. For K = 1, we aggregate
all the dimension-wise mixed samples into 1 class, whereas for K = 3, we separate them into their
respective classes (corresponding to the number of dimensions mixed). We illustrate this effect in
11. In line with the finding of ( ), increasing the number of K not only helps
the model reach the ground truth MI, but also the quality of representations worsens from 100% to
86.7% test classification accuracy.

Single Encoder Design: Furthermore, we test the contribution of using two different encoders f
and g instead of one. As seen in Figure 12, in both cases of d = 4,9, the two models reach slightly
different but similar MI estimates, but, interestingly, do not differ at all in the test classification
accuracy. Empirically, we also found that using one encoder helps the model converge to much
faster. Overall, this experiment demonstrates that using two different encoders does not necessarily
work to our advantage.

G APPENDIX

ROBUSTNESS AND MODEL MISMATCH ANALYSIS

In order to evaluate the robustness of SDRE method, we use the following setups.

Breaking Symmetry: In the experiment setup for the high dimensional experiments as described
in Section 5.2, the means of the Gaussian distribution p and ¢ were symmetrical in majority of the
cases. In order to ensure that this symmetry around zero did not provide an advantage to the SDRE
method, we also evaluate it on Gaussian p and ¢ with randomized means for the two settings shown
in rows 2 and 3 of Table 5. Beside the mean parameters, we do not change any other configuration in
the experiment or the model. SDRE manages to estimate the ground truth KL divergence accurately
in this case, therefore establishing that it did not benefit unfairly from the symmetry of distributions
around zero in the high dimensional experiments.
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Model Mismatch: In rows 3, 5 and 6 of Table 5, we evaluate SDRE by replacing one or both
distributions p and q from Gaussian in the case above with Student-t distribution of the same scale
with randomized means. We set the degrees of freedom to 10. These experiments test how SDRE
performs when there is a model mismatch, i.e. how SDRE performs using the same quadratic model
that was used when p and ¢ were set to be Gaussian with lighter tails. As can be seen, SDRE seems
to be very robust in these cases and is able to accurately estimate the ground truth KL.

p and ¢ with Finite Support: Finally, we test SDRE on another case where p and ¢ are finite
support distributions that have both FOD and HOD. For this, we set them to truncated normal, as
shown in row 1. This setting is similar to the 1D example with Gaussian p and ¢ that we have used
throughout the manuscript. We also set m to be truncated normal with scale set to 2 in order to allow
it to have overlap with both p and ¢. As expected, SDRE not only manages to correctly estimate the
ground truth KL, but also correctly decays its log ratio estimates when the samples do not fall under

the support of p as shown in Figure 13.

Dim P q m GT-KL SDRE
Truncated Normal Truncated Normal Truncated Normal
1 loc=-1, scale=0.1 loc=1, scale=0.2 loc=-1, scale=2 50.65 52.35
(-1.1,-0.9) (-1.1,1.2) (-1.1,1.2)
Normal Normal
160 loc=R(-.5,.5), loc=R(-.5..5), cov=I LM 54.29 54.10
cov=2 x 2 BD b -
Normal Mixture of
160 loc=-1, Normal loc=0.9, cov=1 LM 105.60 98.27
cov=2 x 2 BD and Normal loc=0.9, cov=/1
1053{15 nst g) Student T
320 ol loc=R(-.5,.5), scale=1, LM 53.82 51.03
scale=2 x 2 BD, df=10
df=10 -
Normal Normal
320 loc=R(-1,1), loc=R(-1,1), LM 110.05 | 102.63
cov=2 x 2 BD cov=I]
Student T Student T
loc=R(-1,1), loc=R(-1,1),
320 scale=2 x 2 BD, scale=1, LM 103.12 | 113.53
df=10 df=10
Normal Stllgiilg T
320 loc=0, " LM 82.02 83.63
cov=2 x 2 BD scale=I,
V= df=20

Table 5: Robustness evaluation for SDRE. Here R(a,b) stands for randomized mean vector where each dimen-
sion is sampled uniformly from the interval (a, b). LM stands for the linear mixing construction scheme.

H APPENDIX

IMPROVING KMM-BASED DRE WITH SDRE

Another advantage of SDRE is that it is applicable to DRE methods with a fixed design setup, i.e. a
DRE method that directly outputs the densities for a set of samples without building a model; TRE
is not applicable to DRE methods in this setup as it models the ratios directly. The flexibility of our
model derives from the fact m is in the denominator of both ratios. An example of DRE methods
with a fixed design setup is the kernel mean matching (KMM) based DRE method (KMM-DRE;
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Figure 13: SDRE is able to match the ground truth log-ratio and correctly decays all the values
towards —oo if they don’t fall under the support of p.
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Figure 14: Improving KL estimation between two standard Normals via KMM-DRE using SDRE

; , ). The main advantage of this method is that the ratio
estimators can be computed in closed form and therefore are computationally more efficient.

We demonstrate the applicability of SDRE in the fixed design setup by applying SDRE to the
KMM-DRE method for KL estimation. In order to show the benefit of SDRE, we consider two
KL estimation experiments with increasing difficulty: (a) We estimate KL between N (—d, 1) and
N(+d,1) by varying d from 0 to 3 and (b) We estimate KL between N (0, s2) and N(0,1/s?)
by varying s from 1 to 3. For each experiment, we report the following KL estimates: (1) KL
by MC using true ratios, (2) KL by MC using KMM-DRE estimates, and (3) KL by MC using
estimates from KMM-DRE with SDRE for three types of m construction: linear mixing, mixture,
and Cauchy.! We conduct the same experiments for different bandwidth o, the parameter of the
Gaussian kernel used by the KMM estimator. Figure 14 summarizes the results. Overall, SDRE
significantly improves the baseline KMM-DRE KL divergence estimates by up to 11 nats.

As it can be seen from the figures, SDRE consistently improve KMM-DRE in both experiments
with different difficulty. In Figure 14a, it can be seen SDRE with mixture and Cauchy as M gives
KL estimates closer to the true value even when d = 2.5, while KMM-DRE fails even for d = 1.0.
In Figure 14b, we can see SDRE with mixing M helps calibrate the KL estimates from KMM-DRE:
For s < 1.75, KMM-DRE overestimates the KL. and SDRE gives estimates closer to the true KL
by giving a lower estimate; for s > 1.75, KMM-DRE underestimates the KL and SDRE gives
estimates closer to the true KL by giving a higher estimate. It is also worth noting that different

'For KMM-DRE, we solve the constrained optimization problem using the solvers from JuMP,jl, via Den-
sityRatioEstimation.jl. We set the kernel bandwidth to 0.1 and unit sum tolerance to 0.
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types of M helps in the two experiments as experiment (a) is a case of FOD and (b) is a case of
HOD.
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