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ABSTRACT

Deep Reinforcement Learning (DRL) is one of the promising methods for gen-1

eral learning policies from the environment. However, DRL has two basic prob-2

lems: sample inefficiency and weak generalization. Real-world robotic DRL, for3

example, often requires time-consuming data collection and frequent human in-4

tervention to reset the environment. If faced with a new environment or task, the5

robot can master basic skills in advance instead of learning from scratch, then its6

learning efficiency and adaptability will be greatly improved. Therefore, in this7

paper, we propose a novel structured skill graph (SG) for accelerating the learning8

of robotic DRL policies and rapid adaptation to unseen real-world tasks. Similar9

to the knowledge graph (KG), SG adopts the tri-element structure to store infor-10

mation. But different from KG storing static knowledge, SG can store dynamic11

policies and adopt different tri-elements. To construct the SG, we utilize vari-12

ous real-world quadrupedal locomotion skills in different realistic environments.13

When faced with new real-world tasks, the relevant skills in SK will be extracted14

and used to help the robotic DRL learning and rapid adaptation. Extensive exper-15

imental results on the real-world quadruped robot locomotion tasks demonstrate16

the effectiveness of SG for facilitating DRL-based robot learning. Real-world17

quadrupedal robots can adapt to new environments or tasks in minutes with the18

help of our SG.19

1 INTRODUCTION20

How to efficiently combine human knowledge in intelligent systems is a typical research direction of21

artificial intelligence. Inspired by human problem solving, knowledge of presentation and reasoning22

are key for intelligent systems to solve challenging tasks (Shortliffe, 2012). Recently, knowledge23

graph (KG), as a structured storage form of human knowledge, have attracted great attention from24

academia and industry (Hogan et al., 2020; Ji et al., 2022; Chaudhri et al., 2022). The KG is a25

knowledge base of information about entities that uses a collection of subject-predicate-object triples26

(also known as facts) to represent entities and their relations. In the KG, nodes represent entities,27

and edges between nodes reflect the relations between entities. Nowadays, the KG has been widely28

used in the recommendation, question answering, text generation, and other fields (Lehmann et al.,29

2015; Li et al., 2020; Erxleben et al., 2014; Mahdisoltani et al., 2014). However, existing KG30

usually focuses on text processing and pays little attention to the various dynamic behavioral or skill31

information possessed by agents or robots.32

To acquire any dynamic behaviors and skills of agents, deep reinforcement learning (DRL) (Sutton33

& Barto, 2018) is a general and powerful learning framework. In recent years, it has made some34

major breakthroughs in the fields of game environments (Silver et al., 2016; Berner et al., 2019;35

Vinyals et al., 2019), robotic manipulation behaviors (Kalashnikov et al., 2018; Ebert et al., 2018),36

quadrupedal locomotion (Hwangbo et al., 2019; Lee et al., 2020; Miki et al., 2022) and so on.37

Unfortunately, DRL has suffered from two fundamental problems: sample inefficiency and poor38

generalization performance (Kirk et al., 2021). To alleviate these issues, many works try to leverage39

meta RL (Rakelly et al., 2019; Li et al., 2021; Pong et al., 2022; Yuan & Lu, 2022; Lin et al., 2022;40

Wang & van Hoof, 2022), skill-based RL (Pertsch et al., 2020; Nam et al., 2022; Shankar & Gupta,41

2020; Shankar et al., 2022), multi-task RL (Yang et al., 2020b; D’Eramo et al., 2020; Zhang & Wang,42

2021; Sodhani et al., 2021; Yu et al., 2021; Hong et al., 2022) and other methods (Xu et al., 2022).43
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Most of these works are still limited to simple simulation environments and struggle to perform well44

in challenging real-world tasks.45

The fundamental problems of DRL methods also exist for real-world DRL-based quadrupedal46

locomotion research. Although several recent works have achieved outstanding breakthroughs47

(Hwangbo et al., 2019; Lee et al., 2020; Yang et al., 2020a; Miki et al., 2022), the stable control48

is a challenging point for DRL-based methods. The action space of the quadrupedal robot is a high-49

dimensional (12 and above) continuous space. It is difficult for learning-based methods to find the50

optimal solution in a high-dimensional continuous space from scratch.51

To perform well on real-world quadrupedal locomotion tasks, many works introduce prior knowl-52

edge during the training of DRL policies. The prior knowledge greatly improves the training effi-53

ciency and generalization ability of policies. It is usually represented in a variety of forms, such as54

ideal motion data (Peng et al., 2020; Vollenweider et al., 2022), trajectory generators (Iscen et al.,55

2018; Rahme et al., 2020), evolutionary trajectory generator (Thor et al., 2021; Shi et al., 2022a),56

control methods (Yang et al., 2021; Gangapurwala et al., 2021), and so on. However, in most of57

these studies, prior knowledge only plays an auxiliary role in policy learning. The specific construc-58

tion of prior knowledge is somewhat arbitrary and requires manual parameter tuning. For example,59

in the design of trajectory generators, the swing trajectory of the leg is generally considered to have60

a certain periodicity. But generators can only be designed for specific tasks. Faced with new tasks61

and environments, we need to spend time redesigning the form of the generator. As a result, such62

generators are unstructured and difficult to extend. Borrowing ideas from KG construction, our work63

aims to build structured prior knowledge for quadruped robots. The structuring of prior knowledge64

means that robots can learn and adapt quickly when faced with new tasks or environments with the65

help of prior knowledge.66

In this paper, we propose a novel skill graph (SG) for real-world quadrupedal robots to enable fast67

learning of DRL policies. Compared with the common KG, our proposed SG is mainly aimed at the68

dynamic behavior and skills of the realistic robot. Moreover, our robotic behavior data is structured,69

thus the construction of SG focuses on the definition and representation of entities, attributes and70

relations. Another feature is that the constructed SG is highly scalable and will be widely utilized71

for rapid learning, transfer and generalization of real-world robotics tasks. Specifically, we first72

formulate various real-world quadruped locomotion tasks and collect a large amount of behavioral73

data. The structure behavioral data are then utilized to construct the robotic SG, to complete the74

representation of skills. Next, according to the downstream real-world tasks, relevant skills are75

extracted from the SG. The highly relevant skills can help robots adapt to new challenging real-76

world tasks. The main contributions of our paper are as follows:77

• We construct a novel realistic robotic SG containing 2 quadrupedal robots, 5 common en-78

vironments, and 844 quadrupedal robot skills. The SG can structure prior knowledge in79

real-world DRL-based quadrupedal locomotion research.80

• The robotic SG can be utilized to visualize skills, thereby facilitating the development and81

maintenance of skills. It can also greatly facilitate fast learning of DRL policies in the face82

of downstream real-world tasks.83

• Experiments on realistic robots demonstrate the effectiveness of our proposed SG. The84

quadrupedal robot can acquire novel skills and adapt to new environments in minutes.85

2 RELATED WORK86

2.1 INTEGRATING COMMONSENSE KNOWLEDGE INTO DRL AGENTS87

There has been some recent work on how to integrate commonsense knowledge into DRL agents.88

(Jiang et al., 2020) built a commonsense DRL simulation environment and used information from89

external KG to guide the learning of DRL agents. (Murugesan et al., 2021) designed a text-based90

game environment for training and evaluating RL agents with commonsense knowledge. They also91

introduced several baseline DRL agents that track sequential context and dynamically retrieve rel-92

evant commonsense knowledge from ConceptNet. (Höpner et al., 2022) utilized subclass relations93

in open source knowledge graphs to abstract specific objects and developed a residual policy gradi-94

ent method that integrates knowledge across different abstraction levels in class hierarchies. (Am-95
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manabrolu & Riedl, 2021) proposed a KG-based world model, a multi-task transformer-based archi-96

tecture that learns to simultaneously generate a set of graph disparities and a set of context-dependent97

actions. (Zhao et al., 2022) proposed a dynamic knowledge and skill graph (KSG) and developed a98

specific KSG based on CNDBpedia. The KSG can search for the skills of different agents in differ-99

ent environments, providing transferable information for acquiring new skills. While these works100

are limited to simple simulation environments or text-based games, the SG we build is based on101

realistic quadrupedal locomotion data.102

2.2 SKILL-BASED RL103

In common skill-based RL, skills are generally represented as sub-policies or a series of low-level104

actions to facilitate the learning of long-horizon behaviors. Many works propose having the agent105

take action on time-expanding skills, such as options (Sutton et al., 1999; Shankar & Gupta, 2020;106

Shankar et al., 2022) or motion primitives (Pastor et al., 2009; Pertsch et al., 2020; Salter et al.,107

2022; Rao et al., 2022; Pertsch et al., 2021). Intuitively, temporal abstraction can effectively reduce108

the task horizon of the agent and enable directed exploration, which is a major challenge for DRL109

agents facing challenging tasks (Nachum et al., 2019). However, skill-based RL struggles with real-110

world tasks and requires a large number of environment interactions (Lee et al., 2021). (Shi et al.,111

2022b) used model-based RL to guide skill planning to improve the sample efficiency of skill-based112

approaches. In contrast to these works, we build structured realistic skills with SG, enabling DRL113

agents efficiently adapt to complex real-world tasks.114

2.3 OFFLINE META-RL115

While skill-based RL generally requires high-quality offline data (that is, data collected by expert116

policies), offline meta RL does not have this hard requirement. Instead, such methods require (sub-117

optimal) offline data containing reward functions or task annotations (Nam et al., 2022; Mitchell118

et al., 2021; Dorfman & Tamar, 2020; Dorfman et al., 2020; Pong et al., 2022; Shi et al., 2022b).119

These works first meta-train DRL agents using pre-collected offline datasets. Then, they aim to120

rapidly adapt the agent to unseen tasks, assuming only limited access to data from new tasks. These121

methods usually require the offline training data to be divided into separate datasets for each training122

task. The task distribution is compact and the difference among tasks is small. So these methods123

struggle to generalize to more different tasks. Unlike these works, the SG we build will help agents124

quickly adapt to new and more difficult real-world tasks.125

2.4 PRIOR KNOWLEDGE IN REAL-WORLD DRL-BASED QUADRUPEDAL LOCOMOTION126

In the realistic DRL-based quadrupedal locomotion research, prior knowledge is represented in a127

variety of forms, such as motion data (Singla et al., 2019; Peng et al., 2020; Vollenweider et al.,128

2022; Bohez et al., 2022), trajectory generators (Iscen et al., 2018; Jain et al., 2019; Rahme et al.,129

2020; Zhang et al., 2021), control methods (Yang et al., 2021; Gangapurwala et al., 2021; Yao130

et al., 2021), and so on. Motion data is often generated by other sub-optimal controllers or public131

datasets. Through imitation learning or other methods, the robot can obtain natural and agile motion132

patterns, and then complete specified tasks according to the external reward. Trajectory generators133

and control methods generally introduce priors into the action space of DRL policies to narrow the134

search range of actions. This greatly reduces the learning difficulty of the robot and improves their135

sample efficiency. Compare with these methods, our work aims to construct structured skill priors136

for studying rapid adaptation and fast learning capabilities in real-world quadrupedal locomotion137

tasks.138

3 PRELIMINARIES139

The standard framework of RL is Markov decision processes (MDPs) specified by the tuple140

M := (S,A, r, P, ρ0, γ), where S and A denote the state and action spaces, r(s,a) is the reward141

function, P (s′|s,a) is the stochastic transition dynamics, ρ0(s) is the initial state distribution, and142

γ is the discount factor. The goal in RL is to learn a policy π(a|s) that maximizes the expected143

discounted reward η(π) := Eτ∼pπ(τ) [
∑∞

t=0 γ
tr(st,at)], where τ := (s0,a0, r0, s1,a1, r1, ...)144

represents a trajectory. The action-value function Q(s,a) is the discounted return obtained145
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Figure 1: The construction process of our proposed SG. We first identify the realistic quadruped
robot and environment, as well as formulate the real-world tasks. Then the empirical data is collected
according to each task, and is further trained to obtain the robot’s behavior set. Following this, we
definite and represent the entities, attributes and relations in the behavior set. The connection among
the behaviors is obtained, and the robotic SG is constructed accordingly. The constructed SG is
finally leveraged for visualization, skill retrieval and reuse.

by executing action a at current state s and then following the policy π(a|s): Q(s,a) :=146

Eτ∼pπ(τ) [
∑∞

t=0 γ
tr(st,at)|s0 = s,a0 = a]. A typical actor-critic method alternates between the147

policy evaluation and policy improvement phases. In policy evaluation, we fitting the action-value148

function Q(s,a) to evaluate the current policy π(a|s). The policy π(a|s) is then updated to maxi-149

mize the target Q-value in the policy improvement phase.150

4 CONSTRUCTION AND APPLICATION OF ROBOTIC SKILL GRAPH151

In this paper, we aim to build a robotic skill graph (SG) that consists entirely of the skills of real-152

world quadrupedal robots. The SG can provide transferable skills for realistic robots to learn novel153

skills and adapt to new environments. The construction process of SG is shown in Figure 1, and can154

be roughly divided into three parts: behavioral data preparation, definition and representation of the155

SG elements, and SG application. Construction details will be explained further below.156

4.1 DATA PREPARATION FOR SKILL GRAPH157

In the data preparation phase, we need to design the environment and tasks of the real-world158

quadrupedal robot. Specifically, the hardware structure of the robot and the stability of the robot159

behavior need to be considered. In the initial release of our proposed SG, some simple but necessary160

environments are included, such as marble flat, marble slope, grass, etc. The tasks of the robot are161

to track the desired locomotion target. The specific design results in the experiment section.162

After the environment and tasks are determined, we utilize realistic quadruped robots to collect a163

large amount of empirical data. These data are stored in the form of empirical pairs (st, at, rt, st+1).164

The action at is the desired joint angle (12-dimension). The state st is a 44-dimensional continuous165

vector, which contains COM linear velocity (2 dims), attitude angle (3 dims) and angular velocity166

(3 dims), joint angle (12 dims) and joint angular velocity (12 dims), action at the last time step ( 12167

dims). When designing the reward function rt, the locomotion target and energy consumption of the168

robot need to be considered: r = r1 + r2 + r3 + 0.001 ∗ r4, where r1 = e−
∑

(v̂−v)2/0.025, r2 =169

e−
∑

(ω̂−ω)2/0.025, r3 = e−
∑

(p̂−p)2/0.025, and r4 = −
∑
τ2/12. v̂, v, ω̂, ω, p̂, p and τ represent the170

desired linear velocity, current linear velocity, desired yaw rate, yaw rate, desired pitch angle, pitch171

angle and desired torque, respectively.172

In terms of robotic behaviors design, we find that, compared with various latent variable operations173

in context-based meta-RL, it is more effective to directly combine the basic skills based on DRL174

policies to learn to solve challenging tasks (Yang et al., 2020a). Therefore, we leverage an efficient175

offline RL algorithm CQL (Kumar et al., 2020) to train the policy on the collected empirical data.176

The trained policy network and value network are utilized as representations of behaviors. Since177

real-world data collection is quite time-consuming and labor-intensive, the data scale of a single178

task is not large. Meanwhile, limited by the sensor accuracy of the robot, the data contains a noise179

of different stochastic degrees. To alleviate these issues, we leverage a simple and efficient data180

4



Under review as a conference paper at ICLR 2023

augmentation approach. Inspired by (Sinha et al., 2021), we add a small amount of Gaussian noise181

to the state st of the collected data before policy training.182

4.2 THE DEFINITION OF ENTITIES, ATTRIBUTES, AND RELATIONS183

To build the robotic SG, we need to define the available knowledge units, including entities, at-184

tributes, and relations. Three types of entity nodes are considered in SG: quadrupedal robot, envi-185

ronment and skill.186

Different from common KG, we innovatively introduce dynamic behavioral skill information to con-187

struct robotic SG. The robot, environment and skill will act as the entities whose specific attributes188

need to be defined. The attributes of the robot entities are straightforward since different robots189

have different mechanical structures and dynamic models. So the robots’ physical characteristics190

(such as mass, inertia, body length, and leg length) can be used as attributes of the robot entities.191

For the definition of the attributes of the skill entities, since skills are highly related to the task, the192

robot’s desired tracking locomotion target is a reasonable option. However, the definition of the at-193

tributes of the environment entities is slightly more complicated. In multi-task RL, one-hot encoding194

is usually used to represent tasks (or environments). it is generally assumed that tasks (or environ-195

ments) are independent and identically distributed. However, one-hot encoding is too simplistic for196

real-world robotic tasks, which is not conducive to the rapid adaptation of robots to new tasks (or197

environments). We utilize physical quantities (friction coefficient, slope, etc.) as a better choice for198

environment entity properties.199

An entity relation is an association between entities that specifies how entities are connected. In our200

proposed robotic SG, we mainly focus on the relations among robot, environment and skill entities.201

There are two types of entity relations: discrete and continuous. The relations among the three202

different kinds of entities (robot, environment and skill) are discrete. That is, the relation exists (can)203

or does not exist (cannot). Moreover, the relations among entities of the same label are continuous,204

and these relations are established using the similarity metric. Entities with higher similarity are205

more closely related, and vice versa.206

Similar to KG, SG adopts tri-elements ⟨entity, relation, entity⟩ structure to store dy-207

namic skill information. For example, for robot A and environment B entities, the tri-208

element ⟨robot A, in, environment B⟩ in SG can be expressed as a quadrupedal robot A209

can demonstrate skills in environment B. For skill C and skill D entities, the tri-element210

⟨skill C, 0.8 similarity, skill D⟩ in SG can be expressed as the skill C and skill D have a simi-211

larity of 0.8.212

4.3 APPLICATIONS OF SKILL GRAPH213

An important application of SG is the visualization of robotic skills. The number and relation of214

robot, environment and skill entities can be clearly displayed. The SG can also show all the skills of215

the robot in the same environment. Users can easily understand the relation between these entities,216

and then better analyze, construct and utilize robotic skills. Different from the introduction of prior217

knowledge in previous work, our proposed SG is highly structured and easy to extend and maintain.218

Our proposed SG can also provide the skill retrieval function for entities, which is mainly divided219

into two parts. The first part is the retrieval of robot, environment and skill entities, which can220

be divided into three types: label retrieval, attribute retrieval and entity relation retrieval. The SG221

defines three entity labels: robot, environment and skill. Attributes of entities with different labels222

are different. Users can directly query which entities are in the SG according to the label. In the SG,223

environment and skill entities have unique attributes, which are environment characteristics and skill224

parameters, respectively. Users can further use attributes to specify entities and retrieve entity nodes225

that satisfy specific relations between entities.226

The second part is to match related skills based on similarity metrics. When the robot is solving227

real-world tasks, if the required skills are in the SG, then we directly retrieve these skills. But if228

the required new skill is not in the SG, we need to first calculate the similarity between the new229

environment and the existing environment, then select the most similar skill in the most similar230

environment. The specific skill retrieval process is shown in Algorithm 1.231
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Algorithm 1 Skill Retrieval Based on Similarity of Entity

Input: Agent name: A, Environment feature: E f , The desired skill parameters: desired P .
1: MATCH (a:Agent{name: A}) RETURN a;
2: ▷ Retrieve the given agent a according to agent name
3: MATCH (e:Environment{Feature: E f}) RETURN e;
4: ▷ Retrieve the given environment e according to environment feature
5: if The environment e is inexistent then
6: MATCH (a:Agent{name: A}) → (Envs:Environment); RETURN Envs
7: ▷ Retrieves all environments Envs associated with a given agent a
8: Calculate the feature similarity between e and Envs;
9: Select the most similar environment E s, RETURN e = E s;

10: end if
11: MATCH (a:Agent) → (e:Environment) → (s:Skill) RETURN s;
12: ▷ Retrieve all skills of agent a in Environment e
13: Calculate the similarity of skill parameters between the desired skill and retrieved skills s;
14: Select the most similar skill s, RETURN s.

Skills retrieved in SG will be further fine-tuned, so that the robot can quickly learn novel skills and232

adapt to the new environment. Specifically, the policy and value network retrieved in SG will serve233

as initial networks. These initial networks are further trained according to the online RL algorithm234

SAC (Haarnoja et al., 2018). Only a limited number of realistic samples and training time are utilized235

in this fine-tuning process. The novel skill learned will be added to the robotic SG according to the236

construction rules to realize the continuous learning of the robot.237

5 EXPERIMENTS238

In this section, we aim to validate the functionality of SG and its facilitation for DRL policy learning239

on real-world tasks in quadruped robots. Firstly, we define several evaluation metrics about real-240

world tasks. We then illustrate some algorithmic baselines that will be compared with our proposed241

method. Furthermore, the SG is visually displayed in several typical cases. Finally, in multiple242

real-world scenarios, we verify the skill retrieval and reuse function of SG, as well as quantitatively243

analyze its promoting effect on DRL policy learning.244

5.1 EXPERIMENTAL SETUP245

Metrics: For real-world quadrupedal locomotion tasks, we utilize two different types of evaluation246

metrics: cumulative undiscounted reward (Return), and cost of transportation (COT). we first define247

Return: M1 =
∑T

t rt, where T is the number of real-world interactions. The Return metric is the248

most important metric for the DRL community, and directly evaluates the robot’s performance on249

new real-world tasks. We also utilize the COT to compare the energy consumption of DRL policies250

on real-world tasks: M2 =
∑T

t [(|τtq̇t|)/(mg∥vt∥2)]/T, where mg and v are the total weight and251

linear velocity of the robot, respectively. COT is a common metric in the legged locomotion research252

field, since it quantifies the positive mechanical power applied by the actuator per unit weight and253

unit locomotion speed (Collins et al., 2005).254

Baselines: We compare the following baselines: 1) SAC: The SAC is a popular online off-policy255

DRL algorithm and the one we utilize for new skill learning. So it serves as a weak baseline for256

policy learning. 2) Fine-Tuning: Leveraging a more efficient online off-policy REDQ algorithm257

(Chen et al., 2021), (Smith et al., 2022a) first learn the robot’s forward, backward, and fall standing258

skills in a simulated environment, and then further learn these skills in the real world. 3) Dreamer:259

(Wu et al., 2022) applied the model-based RL algorithm Dreamer (Hafner et al., 2019; 2020) to a260

quadruped robot, and learned directly online in the real world without any simulator. They trained261

a quadruped robot to roll, stand and walk from scratch under 1 hour without resetting. 4) Efficient262

RL: Leveraging the more sample-efficient online off-policy RL algorithm DroQ (Hiraoka et al.,263

2022) and the machine learning framework JAX (Bradbury et al., 2018), (Smith et al., 2022b) can264

learn the walking locomotion of the quadrupedal robot directly in the real world in just 20 minutes.265

6



Under review as a conference paper at ICLR 2023

First Environment

Retrieval

Se
co

nd
 S

ki
ll 



R

et
rie

va
l

Figure 2: The visualization of our proposed (partial) skill graph. Specifically, we visualize the
relation between entities and the relation between environments (Left). Meanwhile, we make a
visualization of all the skills of a robot in an environment (Middle). We also visualize the skill
retrieval process (Right). Robot, environment and skill entities are represented by orange, blue and
purple nodes respectively. The relations between entities are represented by edges between nodes.
The connection relation will be displayed only if the similarity between skills is greater than 0.95,
which is convenient for visualization. Please refer to Appendix Figure 10, Figure 11, and Figure 12
for the SG’s details.

5.2 TASK DESIGN RESULTS AND VISUALIZATION266

Task Design Results: For designing real-world quadrupedal locomotion tasks, firstly we need to267

identify the robot and the environment. In the initial release of SG, we use Unitree A11 and our own268

robot as the robot entities of SG, and their attributes are shown in Appendix Figure 7 and Table 3.269

(2) Marble floor

(5) Grassland(4) Asphalt road

(3) Marble slope(1) Indoor floor

Figure 3: Five realistic environ-
ments considered in the SG.

Then, we set reasonable variables from the aspects of environ-270

ment and locomotion targets. Five common terrains (indoor271

ground, outdoor marble plane, etc.) are considered first, as272

shown in Figure 3. For the design of the attributes of the en-273

vironment entity, we currently consider the friction coefficient274

and slope of the ground, as shown in Appendix Table 4.275

In terms of locomotion target design, we currently mainly set276

reasonable tracking targets from four variables: vx, vy, dψ and277

θ. vx and vy are the velocities along the x and y axes of the278

Center of mass (COM) in the world frame. dψ and θ are the279

yaw velocity and the pitch angle in the body frame, respec-280

tively. We use these four variables to form a vector to represent281

the locomotion target: K = (vx, vy, dψ, θ). These continuous282

variables will be discretized, and the values are shown in Appendix Table 5. The values of the lo-283

comotion target vector K are shown in Appendix Table 6. For example, the robot behavior with the284

locomotion target of K = (0.1, 0, 0, 0) in the indoor environment is the realization of a skill in SG.285

The initial release of SG contains a total of 844 skills, most of which are collected on the indoor286

floor, and a small number of skills are collected outdoors, as shown in Table 1.287

Table 1: The number of skills
included in each environment.

Env. Num.
Indoor Floor 312
Marble Floor 204
Marble Slope 80
Asphalt Road 136

Grassland 112
Total Num. 844

Visualization: After the SG is constructed, we display it visually,288

as shown in Figure 2. The left image in Figure 2 mainly shows the289

relation among the three kinds entities and among the environment290

entities in the SG. Specifically, the relation between entities can be291

expressed as: 1) the quadruped robot Unitree A1 is in an indoor292

environment; 2) the quadruped robot has a skill whose locomotion293

target is K = (0.1, 0, 0, 0); 3) a skill whose locomotion target is294

K = (0.1, 0, 0, 0) can be used in indoor marble ground display. The295

relation between environments is characterized by similarity. For296

example, the similarity between indoor floor and outdoor marble297

floor is higher than that of indoor floor and grass. The middle image298

in Figure 2 mainly shows the relation between skills in an environment of a robot in SG.299

1https://www.unitree.com/products/a1/
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(a) Task 32 (b) Task 33 (c) Task 34

Figure 4: Return (Upper) and COT (Bottom) of the rapid learning and adaptation process of
quadruped robots on new real-world tasks 32, 33 and 34. TaskMN represents the new task number,
where M represents the M th environment in Appendix Figure 8 , and N represents the N th loco-
motion target in Appendix Table 7. The x-axis represents the number of episodes. The shaded area
represents one standard deviation. The total sample number for the skills fine-tuning phase is only
5000. Each experiment was repeated three times.

5.3 SKILL RETRIEVAL AND REUSE300

Figure 5: Performance of skills
in SG before and after fine-tuning
when the robot is faced with six
new real-world tasks. The x-axis
represents the new task number
MN , and the y-axis represents
the return score. The solid black
line represents one standard devi-
ation. Each experiment was re-
peated three times.

Skill Retrieval: To verify the robot’s ability to rapidly learn301

and adapt when faced with new real-world tasks, we designed302

six specific tasks. The new environment and locomotion target303

design details are shown in Appendix Figure 8 and Table 7.304

To realize the rapid learning and adaptation of the robot, we305

need to perform skill retrieval on the SG. The right image in306

Figure 2 is a specific example of skill retrieval. In this ex-307

ample, the quadruped robot is assigned to complete a novel308

task, that is, the locomotion target on uneven ground is K =309

(−1.2, 0, 0, 0). The entire skill retrieval process is divided into310

two parts. First, SG’s most similar environment (indoor envi-311

ronment) is calculated by the Algorithm 1. Then, according to312

the similarity between the skills, we can find the most similar313

skill in SG, that is, the locomotion target is K = (−1, 0, 0, 0).314

Skill Reuse: We analyze the rapid learning and adap-315

tation process of the robot from the perspective of re-316

turn score and energy consumption. The Return and317

COT curves during the rapid learning process of the318

robot are shown in Figure 4 and Appendix Figure 9.319

We can find that, compared with the baseline algorithm SAC,320

our method has higher return scores and lower energy consumption in the stage of skill fine-tuning.321

Therefore, our method can make the robot learn new skills more stably from the original skills in the322

SG. The video in the supplementary material can further illustrate the effectiveness of our method.323

In contrast, the performance of the SAC algorithm fluctuates greatly, and it struggles to obtain a324

more stable skill within only 5000 steps.325

Figure 6: New skills (red
nodes) have been added
to robotic SG.

The overall performance of the original and the fine-tuned skills in SG326

are shown in Figure 5. It can be seen that, when the new tasks are not327

too different from the skills in SG (such as tasks 11, 21 and 33), the328

original skills have good generalization ability. It is similar to the return329

score of the fine-tuned skills. When the new tasks are quite different330

(such as tasks 31, 32 and 34), the fine-tuned skill performance is greatly331

improved.332

Furthermore, new skills learned by the robot will be added to the robotic333

SG, allowing the robot to continuously cope with the changing environ-334

ment, as shown in Figure 6. Details are shown in Appendix Figure 13.335
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Table 2: Experimental results of our most relevant works. We list approximate numbers reported by
the tasks most similar to ours. Specifically, we list the amount of real-world data used for training,
and the associated wall-clock time (in minutes). Moreover, whether to utilize a simulation environ-
ment for training and whether to use an external network connection for real machine testing are
considered. We also focus on comparing the skills learned in these studies.

Algorithms Samples Time Simulation External Connection Learned Skills

Fine-Tuning 22.5× 103 60 Yes Yes Recovery, forward
and backward walking

Dreamer 72× 103 60 No Yes Recovery, forward
and backward walking

Efficient RL 20× 103 20 No Yes Forward walking

Ours 5× 103 5 ∼ 10 No No

844 skills covering
a variety of desired
locomotion targets
and environments

Comparison with previous works: To further examine the significance of the robotic SG for DRL-336

based quadrupedal locomotion research, we compare it with some of the most relevant works, as337

shown in Table 2. These works all utilize the Unitree A1 as the verification platform of the algorithm.338

Five aspects are being investigated, they are the sample number, the time used in real-world training,339

whether the training requires simulation, whether the execution of the policy requires an external340

network connection, and the specific skills learned by the policy.341

It can be found that the sample number and time required by our proposed method are the least. Our342

method only needs about 5, 000 samples in the fine-tuning phase and can achieve stable performance343

on new tasks after training for 5 to 10 minutes. It means that robots can learn and adapt more quickly344

when faced with new tasks. We also do not need the simulation, thus bypassing the notorious345

reality gap problem (Koos et al., 2010). Meanwhile, the behavior of the robot without an external346

connection is more flexible, and we use Wi-Fi to communicate in real time. Whereas other work347

considers only a few robotic skills, we consider large-scale skills to achieve faster learning efficiency348

and better adaptability of robots. The SG greatly improves the scalability of the skills, laying the349

foundation for subsequent more challenging real-world robotics tasks.350

6 CONCLUSION AND FUTURE WORK351

In this paper, we construct a novel robotic SG based on real-world quadrupedal robot skills to enable352

rapid learning and environmental adaptation. Different from common KG, SG mainly focuses on the353

dynamic behavior information of quadruped robots. To construct the SG, we designed the environ-354

ment and tasks, and collected extensive empirical data based on real-world quadruped locomotion355

tasks. We then leveraged offline RL algorithm to obtain a representation of the robot’s behavior,356

namely the policy and value network. Moreover, We defined entities, attributes, and build relations357

among them. The constructed SG supports functions such as visualization, skill retrieval, and skill358

reuse. Experiments on real-world tasks demonstrate the effectiveness of the SG for rapid learning359

of the robot’s novel skills. In the future, we will continue to expand and improve SG, as shown in360

Appendix Figure 14. More robots with different mechanical structures, dynamic unstructured envi-361

ronments, and diverse skills will be considered. Although the robotic SG proposed is preliminary, it362

will be of great significance to the development of the DRL community (meta-RL, multi-task RL,363

offline RL, etc.), robotic learning, and other research fields.364
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rez, José Emilio Labra Gayo, Sabrina Kirrane, Sebastian Neumaier, Axel Polleres, Roberto Nav-436

igli, Axel-Cyrille Ngonga Ngomo, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan437

Sequeda, Steffen Staab, and Antoine Zimmermann. Knowledge Graphs. arXiv e-prints, art.438

arXiv:2003.02320, March 2020.439

Sunghoon Hong, Deunsol Yoon, and Kee-Eung Kim. Structure-aware transformer policy for inho-440

mogeneous multi-task reinforcement learning. In The Tenth International Conference on Learn-441

ing Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL442

https://openreview.net/forum?id=fy_XRVHqly.443
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A APPENDIX711

Figure 7: Two robots were used in the initial release of SG: the Unitree A1 robot (Left) and our own
robot (Right).

Table 3: The dynamic and kinematic parameters of robots. These values will be used as attributes
of the robot entities. Robot 1 is Unitree A1, and Robot 2 is made by ourselves. Parameters
Ixx, Ixy, Ixz, Iyy, Iyz and Izz are the approximated inertia for the single rigid body dynamic model.
The International System of Units is used.

Dynamic and Kenimatic Paramteres
Parameters Robot 1 Robot 2

Trunk length 0.361m 0.28m
Trunk width 0.094m 0.2m
Trunk weight 6 kg 4.953 kg

Hip link length 0.0838m 0.04m
Hip link weight 0.696 kg 0.54 kg

Thigh link length 0.2m 0.2m
Thigh link weight 1.013 kg 0.886 kg
Calf link length 0.2m 0.2m
Calf link weight 0.166 kg 0.119 kg

Total Mass 13.74 kg 11.149 kg
Ixx 0.016 kgm2 0.010 kgm2

Ixy −3.66× 10−5 kgm2 1.608× 10−6 kgm2

Ixz −6.11× 10−5 kgm2 6.104× 10−6 kgm2

Iyy 0.038 kgm2 0.011 kgm2

Iyz −2.75× 10−5 kgm2 2.358× 10−6 kgm2

Izz 0.046 kgm2 0.017 kgm2

Table 4: Environmental parameters. These values will be used as attributes of the environment
entity.

Environmental Parameters
Environments Friction Coefficient Slope Angle (rad)

Indoor Marble Flat Floor 0.25 ∼ 0.5 0
Outdoor Marble Flat Floor 0.4 ∼ 0.6 0

Marble Slope Floor 0.4 ∼ 0.6 0.174
Asphalt Road 0.72 0

Grassland 0.35 0
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Table 5: In designing locomotion targets, we select 4 different controllable variables in robot states
to be the desired states in robot tasks. X,Y,A, and P are the index of vx, vy, dψ and P , respectively.

X vx(m/s) Y vy(m/s) A dψ(rad/s) P θ(rad)
0 0 0 0 0 0 0 0
1 -1 1 -0.8 1 -2 1 -0.4
2 -0.75 2 -0.6 2 -1.5 2 -0.2
3 -0.5 3 -0.4 3 -1 3 0.2
4 -0.25 4 -0.2 4 -0.5 4 0.4
5 0.25 5 0.2 5 0.5
6 0.5 6 0.4 6 1
7 0.75 7 0.6 7 1.5
8 1 8 0.8 8 2

Table 6: The variables are paired together as the reference state of the task while the rest of the
variables are set to be their default value.

vx(m/s) vy(m/s) dψ(rad/s) θ(rad)
vx X000 XY 00 X0A0 X00P
vy - 0Y 00 0Y A0 X00P
dψ - - 00A0 00AP

(1) EVA Foam Mats (2) Sponge Mat (3) Wooden Boards

Figure 8: Three new environments are considered in the skill reuse phase of robotic SG, including
EVA foam floor mats, sponge mat, and wooden boards respectively.

Table 7: Four novel locomotion targets are considered in the skill reuse phase of robotic SG.

vx(m/s) vy(m/s) dψ(rad/s) θ(rad)
1 0.9 0 0 0
2 1.2 0 0.6 0
3 −1.2 0 0 0
4 1.2 0.48 0 0

Table 8: Hyperparameters used for CQL and SAC algorithms. Other unspecified hyperparameters
are the same as Takuma Seno (2021).

Algorithms Hyperparameters

CQL actor encoder = MLP (hidden units=[256, 256], activation=’tanh’)
critic encoder = MLP (hidden units=[256, 256], activation=’tanh’)

conservative weight=0.1

SAC actor encoder = MLP (hidden units=[256, 256], activation=’tanh’)
critic encoder = MLP (hidden units=[256, 256], activation=’tanh’)

batch size=512
n steps=4
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(a) Task 11 (b) Task 21 (c) Task 31

Figure 9: Return (upper) and COT (bottom) of the rapid learning and adaptation process of
quadruped robots on new real-world tasks 11, 21 and 31. TaskMN represents the new task number,
where M represents the M th environment in Figure 8 , and N represents the N th locomotion target
in Table 7. The x-axis represents the number of episodes. The shaded area represents one standard
deviation. Each experiment was repeated three times.

Figure 10: Visual details of relations between entities, and relations between environments.
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Figure 11: Visualization of all the skills of a robot in an environment.
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Figure 12: Visual details of the skill retrieval process.
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Figure 13: New skills (red nodes) have been added to robotic SG in detail.

22



Under review as a conference paper at ICLR 2023

Figure 14: A visualization of the SG we plan to complete in the near future. It is expected to contain
dozens of common environments and thousands of robotic skills.
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